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Abstract
Evolutionary relationships between species are repre-
sented by phylogenetic trees, but these relationships are
subject to uncertainty due to the random nature of evo-
lution. A geometry for the space of phylogenetic trees
is necessary in order to properly quantify this uncer-
tainty during the statistical analysis of collections of
possible evolutionary trees inferred from biological data.
Recently, the wald space has been introduced: a length
space for trees which is a certain subset of the manifold
of symmetric positive definite matrices. In this work,
the wald space is introduced formally and its topology
and structure is studied in detail. In particular, we show
that wald space has the topology of a disjoint union of
open cubes, it is contractible, and by careful character-
isation of cube boundaries, we demonstrate that wald
space is a Whitney stratified space of type (A). Impos-
ing the metric induced by the affine invariant metric
on symmetric positive definite matrices, we prove that
wald space is a geodesic Riemann stratified space. A new
numerical method is proposed and investigated for con-
struction of geodesics, computation of Fréchet means
and calculation of curvature in wald space. This work
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is intended to serve as a mathematical foundation for
further geometric and statistical research on this space.

MSC 2020
30L05, 57N80, 53A35 (primary)

1 INTRODUCTION

1.1 Background

Over billions of years, evolution has been driven by unobserved random processes. Inferences
about evolutionary history, which by necessity are largely based on observations of present-
day species, are therefore always subject to some level of uncertainty. Phylogenetic trees are
used to represent possible evolutionary histories relating a set of species, or taxa, which form
the leaves of each tree. Internal vertices on phylogenetic trees usually represent speciation
events, and edge lengths represent the degree of evolutionary divergence over any given edge.
Trees are typically inferred from genetic sequence data from extant species, and a variety of
well-established statistical methods exist for phylogenetic inference [14]. These generally out-
put a sample of trees (a collection of possible evolutionary histories compatible with the data).
Moreover, evolutionary relationships can vary stochastically from one gene to another, giv-
ing a further source of random variation in samples of trees [27]. It is then natural to pose
statistical questions about such samples: for example identifying a samplemean, identifying prin-
cipal modes of variation in the sample, or testing differences between samples. This, in turn,
calls for the design of suitable metric spaces in which each element is a phylogenetic tree on
some fixed set of taxa, and which are ideally both biologically substantive and computationally
tractable.
The design of these tree spaces is aggravated by the continuous and combinatorial nature

of phylogenetic trees and furthermore, a metric space that is also a geodesic space (so that
distance corresponds to the length of shortest paths, also called geodesics) is to be preferred,
as it facilitates computation of statistics like the Fréchet mean significantly. The first geodesic
space of phylogenetic trees was introduced by [7] and is called the BHV space, where BHV is an
acronym of the authors Billera, Holmes and Vogtmann. For a fixed set of species 𝐿 = {1, … ,𝑁},
also called taxa or labels, with 3 ⩽ 𝑁 ∈ ℕ, BHV space is constructed via embedding all phy-
logenetic trees into a Euclidean space ℝ𝑀 , where 𝑀 ∈ ℕ is exponentially growing in 𝑁, and
then taking the infinitesimally induced intrinsic distance on this embedded subset, giving
a metric space. As a result, BHV space features a very rich and computationally tractable
geometry as it is a CAT(0) space, that is, globally of non-positive curvature, and thus has unique
geodesics and Fréchet means. Following the development of a polynomial time algorithm for
computing geodesics that overcame the combinatorial difficulties [35], various algorithms have
been derived for computing statistics like sample means [6, 29] and variance [9], confidence
regions for the population mean [43] and principal component analysis [32–34], Feragen et al.
2013). The BHV paper has had considerable influence more widely on research in phyloge-
netics (see [42], for example), non-Euclidean statistics [28], algebraic geometry [1], probability
theory [13] and other areas of mathematics [2]. In addition to the BHV tree space, a variety
of alternative tree spaces have been proposed, both for discrete and continuous underlying
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WALD SPACE FOR PHYLOGENETIC TREES 3 of 45

F IGURE 1 Two trees 𝑇1 and 𝑇2 with positive edge length 𝓁 ∈ (0,∞). Letting 𝓁 →∞, the intuitive limit
element for both trees is the forest 𝐹, as species are considered not related if their evolutionary distance
approaches infinity. In wald space, the distance between 𝑇1 and 𝑇2 goes to zero accordingly as 𝓁 →∞ and their
limit is the forest 𝐹 that is also contained in wald space. In BHV space, however, their distance goes to infinity as
𝓁 →∞ and 𝐹 is not an element of the space.

point sets of trees. For example, in the tropical tree space [30, 40] edge weights are times, not
evolutionary divergences, thus allowing for a distancemetric between two trees involving tropical
algebra.
The geometries of the BHV and tropical tree spaces are unrelated to the methods used to

infer phylogenies from sequence data. In contrast, there are substantially different tree spaces
that originate via the evolutionary genetic substitution models used by molecular phylogenetic
methods for tree inference (see [44] for details of these). Evolutionary substitution models are
essentially Markov processes on a phylogenetic tree with state space Ω. For DNA sequence data,
the state space is Ω = {A, C, T, G}. Under an appropriate set of assumptions on the substitution
model, each tree determines a probability distribution on the set of possible letter patterns at the
labelled vertices 𝐿, (i.e., a probability mass function 𝑝∶ Ω𝑁 → [0, 1]), 𝑁 = |𝐿|, and this can be
used to compute the likelihood of any tree. At about the same that BHV space was introduced,
[23] provided a geometrical interpretation of tree estimation methods, where, given the substi-
tution model, an embedding of phylogenetic trees into an |Ω|𝑁-dimensional simplex using the
likelihoods was discussed informally. The concept was then picked up by [31], introducing the
topological space known as the edge-product space, taking not only into account phylogenetic
trees but also forests, characterising each forest via a vector containing correlations between all
pairs of labels in 𝐿 under the induced distribution 𝑝. This representation is then an embedding of
all phylogenetic forests into a𝑁(𝑁 − 1)∕2-dimensional space. Using the same characterisation of
phylogenetic trees via distributions on Ω𝑁 obtained from a fixed substitution model, [17] consid-
ered probabilistic distances to obtain metrics on tree space, but these metrics do not yield length
spaces. Therefore, in [16], the fact that all phylogenetic trees with a fixed fully resolved tree topol-
ogy are a manifold was used to apply the Fisher information geometry for statistical manifolds on
each such piece of the space to eventually obtain a metric space that is a length space. Addition-
ally, instead of using substitution models with finite state space Ω, [16] considered a Gaussian
model with state spaceΩ = ℝ in order to deal with the problem of computational tractability. The
distributions characterising phylogenetic trees are then zero-mean multivariate Gaussians, and
sums over Ω𝑁 for discrete Ω are replaced with integrals over ℝ𝑁 . The characterisation with this
Gaussian model together with the choice of the Fisher information geometry and the extension
to phylogenetic forests ultimately leads to the wald space, which is essentially an embedding
of the phylogenetic forests into the real symmetric 𝑁 ×𝑁-dimensional strictly positive definite
matrices  [16]. The elements of wald space are called wälder (‘Wald’ is a German word meaning
‘forest’).
The geometry of wald space is fundamentally different from BHV space [16, 26], as illus-

trated in Figure 1, which also underlines the biological reasonability of the wald space. Loosely
speaking, wald space can be viewed topologically as being obtained by compactifying the

 14697750, 2024, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12893 by N

ew
castle U

niversity, W
iley O

nline L
ibrary on [30/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 45 LUEG et al.

boundaries at the ‘infinities’ of BHV space, which comes with the price of fundamentally
changing the geometry that is not locally Euclidean anymore. We avoid, though, the com-
pactification at the ‘zeroes’ of the edge-product space proposed by [31] which suggests itself
by mathematical elegance. It is biologically questionable, however, as it would allow different
taxa to agree with one another. In [16], apart from defining the wald space, certain proper-
ties of the space were established, such as showing the distance between any two points to
be finite, and algorithms for approximating geodesics were proposed. In [26], a compact def-
inition of wald space as well as more refined algorithms for approximating geodesics were
introduced.

1.2 Contribution of this paper

Previous work on wald space established the space as a length space, and this paper was origi-
nally motivated by the aim of proving the existence of a minimising geodesic between every two
points, that is, establishing wald space as a geodesic metric space, as the existence of geodesics
is crucial for performing statistical analysis within the space. This aim is achieved in Theo-
rem 4.2.1. The proof involves three essential characterisations of the elements of wald space (as
graph-theoretic forests; as split systems; and as certain symmetric positive definite matrices).
In turn, these enable a rigourous analysis of the topology of wald space, such as Theorem 3.3.5
about its stratified structure, in addition to providing a foundation for further research on this
space.
The remainder of the paper is structured as follows. In Section 2, we define the wald space

for a fixed set of labels {1, … ,𝑁} as equivalence classes of partially labelled graph-theoretic forests.
The topology on  is obtained by defining a map 𝜓 from  into the set of 𝑁 ×𝑁 symmetric
positive definite matrices and requiring 𝜓 to be a homeomorphism onto its image. We then pro-
vide an equivalent, but more tractable, definition in terms of splits or bipartitions of labels, and
an equivalent map 𝜙 from split-representations of wälder to symmetric positive definite matri-
ces. In particular, we show that wald space can be identified topologically with a disjoint union
of open unit cubes. Each open unit cube is called a grove. In Section 3, we describe the struc-
ture or stratification of the wald space by investigating on how the groves are glued together
along their respective boundaries. This is achieved by first providing in Subsection 3.1 a detailed
characterisation of the matrices in the image 𝜙() in terms of a set of algebraic constraints
on the matrix elements. Using this characterisation, for example, we show that wald space is
contractible. Then in Subsection 3.2 we use a partial ordering of forest topologies, first intro-
duced by [31] to establish results about the boundaries of groves and the stratification of wald
space. This culminates in Subsection 3.3 in which we prove wald space satisfies certain axioms
at grove boundaries, collectively known as Whitney condition (A) [36], which ensure that tan-
gent spaces behave well as the boundaries of strata are approached. We then go on to consider
the induced affine invariant or information geometry on wald space in Section 4. We show the
topology induced by the metric is the same as the previous topology defined using 𝜙, and hence
show that  is a geodesic metric space (i.e., every two points are connected by a minimising
geodesic). Finally in Section 5, we use a new algorithm for computing approximate geodesics to
explore the geometry on wald space, specifically computing sectional curvatures within groves
and Alexandrov curvatures for fundamental examples. We also investigate the behaviour of the
sample Fréchet mean, in particular with reference to the issue of stickiness observed in in BHV
space (see, e.g., [19, 22] for a description). In Section 6, we discuss the contributions of the
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WALD SPACE FOR PHYLOGENETIC TREES 5 of 45

paper and some of the many open questions and unsolved problems about the geometry of wald
space.

1.3 Notation

Throughout the paper, we use the following notation and concepts, where points 4–6 below can
be found in standard textbooks of differential geometry, for example, [24, chapter XII].

(1) 2 ⩽ 𝑁 ∈ ℕ is a fixed integer defining the set of labels 𝐿 = {1, … ,𝑁}.
(2) ⊔𝑛

𝑖=1
𝐴𝑖 denotes the union if the 𝐴𝑖 are pairwise disjoint (𝑖 = 1, … , 𝑛).

(3) When we speak of partitions, no empty sets are allowed.
(4) For a set 𝐸, its cardinality is denoted by |𝐸|.
(5)  is the Euclidean space of real symmetric 𝑁 ×𝑁 matrices.
(6)  is the space of real symmetric and positive definite𝑁 ×𝑁 matrices. It is an open cone in 

and carries the topology and smoothmanifold structure inherited from  . In particular, every
tangent space 𝑇𝑃 at 𝑃 ∈  is isomorphic to  .

(7) We equip  with the affine invariant Riemannian metric, also called information geometry,
yielding a Cartan–Hadamard manifold. Its metric tensor is given by

⟨𝑋,𝑌⟩𝑃 = trace (𝑃−1𝑋𝑃−1𝑌)
for 𝑋,𝑌 ∈  ≅ 𝑇𝑃 and the unique geodesic 𝛾 through 𝑃 = 𝛾(0), 𝑄 = 𝛾(1) ∈  is given by

(−∞,∞) →  , 𝑡 ↦ 𝛾(𝑡) =
√
𝑃 exp

(
𝑡 log

(√
𝑃
−1
𝑄
√
𝑃
−1
))√

𝑃

with the usual matrix exponential and logarithm, respectively. Here,
√
𝑃 denotes the unique

positive definite root of 𝑃.
(8) The Riemannian metric induces a metric on  denoted by 𝑑 and for a rectifiable curve 𝛾 ∶
[𝑎, 𝑏] →  let 𝐿 (𝛾) be its length.

In a word of caution, we note that the term topology appears in two contexts: (i) as a system of
open sets defining a topological space and (ii) as a branching structure of a graph-theoretic forest.
The latter is standard in the phylogenetic literature, despite the potential for confusion.

2 DEFINITION OFWALD SPACE VIA GRAPHS AND SPLITS

2.1 From a Graph viewpoint

This section recalls definitions and results from [16] and [26].

Definition 2.1.1. A forest is a triple (𝔙,𝔈,𝓁), where

(PF1) (𝔙,𝔈) is a graph-theoretical undirected forest with vertex set 𝔙 such that 𝐿 ⊆ 𝔙 and that
𝑣 ∈ 𝔙 ⧵ 𝐿 implies deg(𝑣) ⩾ 3, where deg(𝑣) is the degree of a vertex 𝑣, and edge set 𝔈 ⊆{
{𝑢, 𝑣} ∶ 𝑢, 𝑣 ∈ 𝔙, 𝑢 ≠ 𝑣

}
,
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6 of 45 LUEG et al.

(PF2) and 𝓁 = (𝓁𝑒)𝑒∈𝔈 ∈ (0,∞)𝔈.

Definition 2.1.2. Two forests (𝔙,𝔈,𝓁), (𝔙′, 𝔈′,𝓁′) are topologically equivalent, if there is a
bijection 𝑓∶ 𝔙 → 𝔙′ such that

(i) 𝑓(𝑢) = 𝑢 for all 𝑢 ∈ 𝐿,
(ii) {𝑢, 𝑣} ∈ 𝔈 ⇔ {𝑓(𝑢), 𝑓(𝑣)} ∈ 𝔈′.

They are phylogenetically equivalent if additionally

(iii) 𝓁{𝑢,𝑣} = 𝓁′
{𝑓(𝑢),𝑓(𝑣)}

for all edges {𝑢, 𝑣} ∈ 𝔈.

Moreover,

(1) Every phylogenetic equivalence class is called a phylogenetic forest and denoted by 𝔉 =
[𝔙,𝔈,𝓁].

(2)  is the set of all phylogenetic forests.
(3) Every topological equivalence class is called a forest topology and denoted by [𝔉] = [𝔙,𝔈].

Definition 2.1.3. Let (𝔙,𝔈,𝓁) be a forest. For two leaves 𝑢, 𝑣 ∈ 𝐿 let 𝔈(𝑢, 𝑣) be the set of edges
in 𝔈 of the unique path between 𝑢 and 𝑣, if 𝑢 and 𝑣 are connected, else set 𝔈(𝑢, 𝑣) = ∅. Further
define a mapping of forests via

𝜓 ∶ (𝔙,𝔈,𝓁) ↦ (𝜌𝑢𝑣)
𝑁
𝑢,𝑣=1 ∈ 

where

𝜌𝑢𝑣 =

⎧⎪⎪⎨⎪⎪⎩
exp

(
−

∑
𝑒∈𝔈(𝑢,𝑣)

𝓁𝑒

)
if 𝑢 ≠ 𝑣 and 𝔈(𝑢, 𝑣) ≠ ∅

0 if 𝑢 ≠ 𝑣 and 𝔈(𝑢, 𝑣) = ∅

1 if 𝑢 = 𝑣

(2.1)

for 1 ⩽ 𝑢, 𝑣 ⩽ 𝑁.

By definition, the above matrix is the same for two forests representing the same phylogenetic
forest. It is even positive definite and characterises phylogenetic forests uniquely as the following
theorem shows.

Theorem 2.1.4 ([16], Theorem 4.1). For every forest (𝔙,𝔈,𝓁), we have

𝜓(𝔙,𝔈,𝓁) ∈ 

and for any two forests (𝔙,𝔈,𝓁) and (𝔙′, 𝔈′,𝓁′) we have

𝜓(𝔙,𝔈,𝓁) = 𝜓(𝔙′, 𝔈′,𝓁′)
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WALD SPACE FOR PHYLOGENETIC TREES 7 of 45

if and only if

[𝔙,𝔈,𝓁] = [𝔙′, 𝔈′,𝓁′] .

In consequence of Theorem 2.1.4, 𝜓 induces a well-defined injection from into  . In slight
abuse of notation we denote this mapping also by 𝜓, that is

𝜓∶  →  , 𝔉 = [𝔙,𝔈,𝓁] ↦ 𝜓(𝔉) ∶= 𝜓(𝔙,𝔈,𝓁). (2.2)

Definition 2.1.5. The wald space is the topological space equipped with the unique topology
under which the map 𝜓∶  →  from Equation (2.2) is a homeomorphism onto its image.

2.2 From a split viewpoint

If (𝔙,𝔈,𝓁) is a representative of a phylogenetic forest 𝔉, there is 𝐾 ∈ ℕ such that the graph-
theoretic forest (𝔙,𝔈) decomposes into 𝐾 disjoint non-empty graph-theoretic trees

(𝔙1,𝔈1), … , (𝔙𝐾,𝔈𝐾) .

In particular, this decomposition induces a partition 𝐿1, … , 𝐿𝐾 of the leaf set 𝐿 with 𝐿𝛼 ⊆ 𝔙𝛼,
1 ⩽ 𝛼 ⩽ 𝐾.
Furthermore for 1 ⩽ 𝛼 ⩽ 𝐾, taking away an edge 𝑒 ∈ 𝔈𝛼 decomposes (𝔙𝛼,𝔈𝛼) into two disjoint

graph-theoretic trees that split the leaf set 𝐿𝛼 into two disjoint subsets 𝐴 and 𝐵.
The representation of phylogenetic trees via splits is more abstract than as graphs but more

tractable. We first introduce the weighted split representation and then show equivalence of the
concepts.

Definition 2.2.1. A tuple 𝐹 = (𝐸, 𝜆) with 𝐸 ≠ ∅ is a split-based phylogenetic forest if

(i) there is 1 ⩽ 𝐾 ⩽ 𝑁 and a partition 𝐿1, … , 𝐿𝐾 of the leaf set 𝐿;
(ii) every element 𝑒 ∈ 𝐸 is of the form 𝑒 = {𝐴, 𝐵}, called a split, where for some 1 ⩽ 𝛼 ⩽ 𝐾, 𝐴, 𝐵

is a partition of 𝐿𝛼; 𝐸𝛼 denotes the elements in 𝐸 that are splits of 𝐿𝛼; for notational ease we
write interchangeably

𝑒 = {𝐴, 𝐵} = 𝐴|𝐵 = 𝑎1 …𝑎𝑟|𝑏1 … 𝑏𝑠 = 𝑎1 …𝑎𝑟|𝐵 = 𝐴|𝑏1 … 𝑏𝑠 ,
whenever 𝐴 = {𝑎1, … , 𝑎𝑟}, 𝐵 = {𝑏1, … , 𝑏𝑠};

(iii) all splits in 𝐸𝛼 (1 ⩽ 𝛼 ⩽ 𝐾) are pairwise compatible with one another, where two splits 𝐴|𝐵
and 𝐶|𝐷 of 𝐿𝛼 are compatible with one another if one of the sets below is empty:

𝐴 ∩ 𝐶, 𝐴 ∩ 𝐷, 𝐵 ∩ 𝐶, 𝐵 ∩ 𝐷 ;

(iv) for all distinct 𝑢, 𝑣 ∈ 𝐿𝛼, 1 ⩽ 𝛼 ⩽ 𝐾, there exists a split 𝑒 = 𝐴|𝐵 ∈ 𝐸𝛼 such that 𝑢 ∈ 𝐴 and
𝑣 ∈ 𝐵;

(v) 𝜆 ∶= (𝜆𝑒)𝑒∈𝐸 ∈ (0, 1)𝐸 .
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8 of 45 LUEG et al.

Moreover, 𝐹∞ with 𝐸 = ∅ and void array 𝜆 is the completely disconnected split-based phylogenetic
forest with leaf partion {1}, … , {𝑁}.

The partition𝐿1, … , 𝐿𝐾 is notmentioned explicitly in the definition of a split-based phylogenetic
forest 𝐹 = (𝐸, 𝜆) because it can be derived from 𝐸 via {𝐿1, … , 𝐿𝐾̃} ∶=

{
𝐴 ∪ 𝐵∶ 𝐴|𝐵 ∈ 𝐸}, where

𝐾̃ ⩽ 𝐾, and for all 𝑢 ∈ 𝐿 ⧵
⋃𝐾̃
𝛼=1 𝐿𝛼, the singleton {𝑢} is added to the collection to obtain 𝐿1, … , 𝐿𝐾 .

Theorem 2.2.2. There is a one-to-one correspondence between split-based phylogenetic forests 𝐹 =
(𝐸, 𝜆) from Definition 2.2.1 and phylogenetic forests𝔉 = [𝔙,𝔈,𝓁] from Definition 2.1.2 with 𝓁 and
𝜆 related by

𝜆𝑠 ∶= 1 − exp (−𝓁𝑒) (2.3)

with an arbitrary but fixed representative (𝔙,𝔈,𝓁). Furthermore, there is a one-to-one correspon-
dence between compatible split sets 𝐸 from Definition 2.2.1(i)–(iv), and phylogenetic forest topologies
[𝔙,𝔈].

Proof. Case I. Suppose 𝐾 = 1, that is, 𝔉 comprises only one tree: We take recourse to [39,
Theorem 3.1.4] who establish a one-to-one correspondence of compatible split sets 𝐸 from Def-
inition 2.2.1(i)–(iv), and phylogenetic forest topologies [𝔙,𝔈], in case these are taken from
graph-theoretic trees. Indeed, our phylogenetic forest topologies correspond to isomorphic X-
trees there (our 𝐿 is 𝑋 there and the labelling map from [39, Definition 2.1.1] is the identity in
our case) and for every representative (𝔙,𝔈) ∈ [𝔙,𝔈] there is a unique compatible split set 𝐸
from Definition 2.2.1(i)–(iv) ((iv) is a consequence of 𝐿 ⊆ 𝔙, 𝐾 = 1 and injectivity of the labelling
map). Vice versa, there is a bijection 𝑒 ↦ 𝑠𝑒, 𝔈 → 𝐸 that, removing the edge 𝑒 from 𝔈 produces
two disconnected trees, yields a unique split 𝑠 = 𝑠𝑒 = 𝐴|𝐵 of the leaf set 𝐿 = 𝐴 ∪ 𝐵. This yields
the second assertion, namely a one-to-one correspondence between compatible split sets 𝐸 from
Definition 2.2.1 (i)–(iv) and phylogenetic forest topologies [𝔙,𝔈] in case of underlying graph-
theoretic trees. The first assertion follows from the correspondence in (2.3), which thus yields,
due to phylogenetic equivalence in Definition 2.1.2(iii), a one-to-one correspondence between
split based phylogenetic forests𝐹 = (𝐸, 𝜆) and phylogenetic forests [𝔙,𝔈,𝓁], in case of underlying
graph-theoretic trees.
Case II. Suppose𝔉 comprises several 𝐾 > 1 trees: Here, consider two phylogenetic forests rep-

resentatives (𝔙,𝔈,𝓁), (𝔙′, 𝔈′,𝓁′) ∈ [𝔙,𝔈,𝓁]. Due to Definition 2.1.2(i) and (ii), both (𝔙,𝔈,𝓁)
and (𝔙′, 𝔈′,𝓁′) have the same number of connected components, each of which is a graph-
theoretic tree and the bijection 𝑓 from Definition 2.1.2 restricts to bijections between the
corresponding graph-theoretic trees. For each of these, Case I (𝐾 = 1) is applicable, thus yielding
the assertion in the general case. □

In consequence of Theorem 2.2.2, we introduce the following additional notation.

Definition 2.2.3. From now on, we identify split-based phylogenetic forests 𝐹 = (𝐸, 𝜆) with
phylogenetic forests 𝔉 = [𝔙,𝔈,𝓁] and say that 𝐹 is a wald, in plural wälder, so that 𝐹 ∈ ,
and use interchangeably the name split and edges for the elements of 𝐸 (as they are ‘edges’ in
equivalence classes). In particular, the 𝜆𝑒, 𝑒 ∈ 𝐸, from Definition 2.2.1, are called edge weights.
Furthermore,
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WALD SPACE FOR PHYLOGENETIC TREES 9 of 45

(1) [𝐹] ∶= 𝐸 also denotes the topology [𝔙,𝔈] of 𝐹 and

 ∶= {𝐸 ∶ ∃𝜆 ∈ (0, 1)𝐸such that(𝐸, 𝜆) is a split-based phylogenetic forest} ∪ {∅}

denotes the set of all possible topologies;
(2) wälder of the same topology 𝐸 form a grove

𝐸 =
{
𝐹 = (𝐸′, 𝜆′) ∈ ∶ 𝐸 = 𝐸′

}
,

(3) for any two 𝑢, 𝑣 ∈ 𝐿 with leaf partition 𝐿1, … , 𝐿𝐾 , define

𝐸(𝑢, 𝑣) ∶= {𝐴|𝐵 ∶ ∃ 1 ⩽ 𝛼 ⩽ 𝐾 and 𝑒 ∈ 𝔈(𝑢, 𝑣) that splits 𝐿𝛼 into 𝐴 and 𝐵} ,
which also denotes set of edges between 𝑢 and 𝑣, that may be empty;

(4) the edge length basedmatrix representation𝜓 fromEquation (2.2) translates to the edgeweight
based matrix representation 𝜙 defined by

𝜙∶  →  , 𝐹 = (𝐸, 𝜆) ↦ (𝜌𝑢𝑣)
𝑁
𝑢,𝑣=1 ∶=

( ∏
𝑒∈𝐸(𝑢,𝑣)

(1 − 𝜆𝑒)

)𝑁
𝑢,𝑣=1

, (2.4)

with the agreement that in case of empty 𝐸(𝑢, 𝑣)

𝜌𝑢𝑣 ∶= 1 whenever 𝑢 = 𝑣 and
𝜌𝑢𝑣 ∶= 0 whenever 𝑢 ∈ 𝐿𝛼 and 𝑣 ∈ 𝐿𝛽 , 𝛼 ≠ 𝛽, 𝛼, 𝛽 ∈ {1, … , 𝐾}

}
; (2.5)

here 𝜆 is computed from 𝓁 as defined in Equation (2.3).

Remark 2.2.4. In light of Definition 2.1.5, thewald space is the topological space equipped with
the unique topology such that the map 𝜙∶  →  is a homeomorphism onto its image. Thus,
groves can be identified topologically with open unit cubes

𝐸 ≅ (0, 1)
𝐸 (2.6)

and the wald space thus with the disjoint union

 =
⨆
𝐸∈

𝐸 ≅
⨆
𝐸∈

(0, 1)𝐸 , (2.7)

where we note that |𝐸| runs from 0 (corresponding to 𝐹∞) to 2𝑁 − 3 (for fully resolved trees), as
is easily seen upon induction on 𝑁.
Furthermore, observe that

(1) Equation (2.3) links strictly monotonous edge weights with edge lengths so that the limits
𝜆𝑒 → 0, 1 correspond to the limits 𝓁𝑒 → 0,+∞, respectively;
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10 of 45 LUEG et al.

F IGURE 2 The topology 𝐸 as defined in Example 2.2.5 with the corresponding splits annotated to the edges.

(2) for any partition 𝐴, 𝐵 of 𝐿𝛼 (1 ⩽ 𝛼 ⩽ 𝐾, as above), we have that

𝑒 = 𝐴|𝐵 ⟺ 𝑒 ∈ 𝐸(𝑢, 𝑣) for all 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵 , (2.8)

where the implication to the right is a consequence of 𝐸𝛼 being a tree topology and the reverse
implication is a consequence of 𝐴 and 𝐵 being a partition of 𝐿𝛼.

Example 2.2.5. Let 𝑁 = 6. Consider

𝐸 =
{
1|234, 3|124, 4|123, 12|34, 5|6},

that is, the partition of labels is 𝐿1 = {1, 2, 3, 4}, 𝐿2 = {5, 6}, the corresponding graph is depicted in
Figure 2. One can easily check that all edges that are splits of 𝐿1 are compatible, likewise for all
splits of 𝐿2 (there is only one split, 5|6, in this case).
Moreover, observe that the unique path from 1 to 4 contains the edges 𝐸(1, 4) ={
1|234, 4|123, 12|34}, that is, all splits separating 1 and 4.
Indeed, for every connected pair of leaves, there is a split separating this pair, for

instance, for all 𝑢, 𝑣 ∈ 𝐿1 there is a split 𝑒 = 𝐴|𝐵 ∈ 𝐸 such that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵. Remov-
ing the edge 1|234 from the subtree comprising the leaf set 𝐿1 violates this condition: If
there is no split separating 1 and 2, which remain connected, then one vertex is labelled
twice with 1 and 2. Note that [39, e.g., section 3.1] allow such trees, we, however, exclude
them.

3 TOPOLOGY AND STRATIFICATION OFWALD SPACE

3.1 Embedding

Recall fromTheorem 2.1.4 that𝜓 ∶ →  fromEquation (2.1) is injective and so is the equivalent
𝜙 ∶ →  from Equation (2.4). Its image is characterised by algebraic equalities and inequali-
ties, as shown by the following theorem. Further exploration will yield that the topology of wald
space is that of a stratified union of disjoint open unit cubes, each corresponding to a grove from
Definition 2.2.3.

Theorem 3.1.1. A matrix 𝑃 = (𝜌𝑢𝑣)𝑁𝑢,𝑣=1 ∈  is the 𝜙-image of a wald 𝐹 ∈ if and only if all of
the following conditions are satisfied for arbitrary 𝑢, 𝑣, 𝑠, 𝑡 ∈ 𝐿:

(R1) 𝜌𝑢𝑢 = 1,
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WALD SPACE FOR PHYLOGENETIC TREES 11 of 45

(R2) two of the following three are equal and smaller than (or equal to) the third

𝜌𝑢𝑣𝜌𝑠𝑡, 𝜌𝑢𝑠𝜌𝑣𝑡, 𝜌𝑢𝑡𝜌𝑣𝑠 ,

(R3) 𝜌𝑢𝑣 ⩾ 0.

Furthermore, the wald 𝐹 ∈ is then uniquely determined.

Before proving Theorem 3.1.1, we elaborate on the above algebraic conditions.

Remark 3.1.2.

(1) Condition (R2) above is called the four-point condition. In its non-strict version, all three prod-
ucts are equal and this indicates some degeneracy, namely that some internal vertices have
degree four or higher. The four-point condition is equivalent to (e.g., [11] or [39, p. 147])

𝜌𝑢𝑣𝜌𝑠𝑡 ⩾ min
{
𝜌𝑢𝑠𝜌𝑣𝑡, 𝜌𝑢𝑡𝜌𝑣𝑠

}
(3.1)

and implies (e.g., setting 𝑠 = 𝑡 in (R2) and exploiting (R1))
(R4) 𝜌𝑢𝑣 ⩾ 𝜌𝑢𝑠𝜌𝑠𝑣 for all 𝑢, 𝑣, 𝑠 ∈ 𝐿.
Notably (R1) and (R2) imply, in conjunction with 𝑃 ∈  that
(R5) 𝜌𝑢𝑣 < 1 for all 𝑢 ≠ 𝑣,
for otherwise, if 𝜌𝑢𝑣 = 1 for some 𝑢 ≠ 𝑣, Condition (R4) implied for any 𝑠 ∈ 𝐿 that

𝜌𝑢𝑠 ⩾ 𝜌𝑢𝑣𝜌𝑣𝑠 = 𝜌𝑣𝑠 and 𝜌𝑣𝑠 ⩾ 𝜌𝑢𝑣𝜌𝑢𝑠 = 𝜌𝑢𝑠,

so 𝜌𝑢𝑠 = 𝜌𝑣𝑠 and hence, 𝑃 would be singular, a contradiction to 𝑃 ∈  .
(2) Observe that 𝜙(𝐹) = (exp(−𝑑𝑢𝑣))𝑁𝑢,𝑣=1, where the 𝑑𝑢𝑣 are the finite or infinite distances

𝑑𝑢𝑣 ∶=
∑

𝑒∈𝐸(𝑢,𝑣)

𝓁𝑒 = − log 𝜌𝑢𝑣,

between leaves 𝑢, 𝑣 ∈ 𝐿, and, with Definition 2.2.3 4, this translates to 𝑑𝑢𝑢 = 0 and 𝑑𝑢𝑣 = ∞
whenever 𝑢 and 𝑣 are in different components. In the literature, (𝑑𝑢𝑣)𝑁𝑢,𝑣=1 is also called tree
metric (e.g., [39, chapter 7]) or distance matrix (e.g., [14, chapter 11]). Indeed, it conveys a
metric on 𝐿 as Condition (R4) encodes the triangle inequality (for any 𝑢, 𝑣, 𝑠 ∈ 𝐿)

𝑑𝑢𝑣 ⩽ 𝑑𝑢𝑠 + 𝑑𝑣𝑠.

(3) In particular, the unit𝑁 ×𝑁matrix 𝐼 = (𝛿𝑢𝑣)𝑢,𝑣∈𝐿 ∈  is the 𝜙-image of the complete discon-
nected wald 𝐹∞ ∈ with topology 𝐸∞ = ∅ in which each leaf comprises one of the 𝐾 = 𝑁
single element trees.

(4) For a given 𝑃 ∈  satisfying conditions (R1), (R2) and (R3) there are neighbour joining
algorithms in [39, Section 7.3], determining its split 𝐸 ∈  .
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12 of 45 LUEG et al.

F IGURE 3 𝜙() for 𝑁 = 3 embedded in  , where only the off-diagonal entries on the boundary are
depicted. Note that the geometry of the wald space is not Euclidean and thus this depiction may be deceiving (as
it is a non-isometric embedding into ℝ3), for example, the regions where one coordinate equals 1 are infinitely far
away.

Proof of Theorem 3.1.1. ‘⟹’. Let 𝐹 ∈ and (𝜌𝑢𝑣)𝑁𝑢,𝑣=1 = 𝜙(𝐹). (R1) and (R3) hold by definition.
Further, applying Semple and Steel [39, Theorem 7.2.6] to each connected component asserts (R2)
for all 𝑢, 𝑣, 𝑠, 𝑡 ∈ 𝐿𝛼 for all 𝛼 = 1,… , 𝐾. Furthermore, as 𝜌𝑢𝑣 = 0 whenever 𝑢 ≠ 𝑣 are in different
components, for any 𝑠 ∈ 𝐿 ⧵ {𝑢, 𝑣}, 𝜌𝑢𝑠 = 0 or 𝜌𝑣𝑠 = 0, so (R2) holds true in general.
‘⟸’. Let 𝑃 = (𝜌𝑢𝑣)𝑁𝑢,𝑣=1 ∈  satisfy (R1), (R2) and (R3) (and thus by Remark 3.1.2 also (R4) and

(R5)). The equivalence relation on 𝐿, defined by 𝑢 ∼ 𝑣 ⟺ 𝜌𝑢𝑣 ≠ 0 partitions 𝐿 into 𝐿1, … , 𝐿𝐾
for some 𝐾 ∈ {1, … ,𝑁}. For each 𝛼 = 1,… , 𝐾, apply Semple and Steel [39, Theorem 7.2.6] to each
tree metric (𝑑𝑢𝑣)𝑢,𝑣∈𝐿𝛼 (defined in Remark 3.1.2 2.) to obtain a unique corresponding tree, say
[𝔙𝛼,𝔈𝛼,𝓁

(𝛼)], where, in contrast to our definition, [39] allow leaves on top of each other, in their
language, vertices labelled more than once. The union of trees gives a forest 𝔉 = [𝔙,𝔈,𝓁] with
label set 𝐿 with𝔙 =

⋃
𝛼 𝔙𝛼,𝔈 =

⋃
𝛼 𝔈𝛼, satisfying 𝜓(𝔉) = 𝑃. Suppose now a vertex was labelled

more than once, say, with distinct leaf labels 𝑢, 𝑣 ∈ 𝐿𝛼, that is, 𝑢 ≠ 𝑣, for some 𝛼 = 1,… , 𝐾. Then,
𝑢 and 𝑣 have zero distance 𝑑𝑢𝑣, hence 𝜌𝑢𝑣 = 1, yielding a contradiction to (R5) (i.e., 𝑃 ∉  as
argued in Remark 3.1.2 1.) Thus,𝔉 ∈ and with Definition 2.2.3, we obtain 𝐹 ∈ with 𝜙(𝐹) =
𝜓(𝔉) = 𝑃. □

As 𝜙() is defined by algebraic equalities and non-strict inequalities, we have the following
corollary at once.

Corollary 3.1.3. 𝜙() ⊆  is a closed subset of  .

Example 3.1.4 ( for 𝑁 = 3). For 𝑁 = 3, all matrices 𝑃 = 𝜙(𝐹) with 𝐹 ∈ are given by (using
Theorem 3.1.1)

⎛⎜⎜⎜⎝
1 𝜌12 𝜌13

𝜌12 1 𝜌23

𝜌13 𝜌23 1

⎞⎟⎟⎟⎠ satisfying the triangle inequalities
⎧⎪⎨⎪⎩
𝜌12 ⩾ 𝜌13𝜌23,

𝜌13 ⩾ 𝜌12𝜌23,

𝜌23 ⩾ 𝜌12𝜌13,

and 0 ⩽ 𝜌12, 𝜌13, 𝜌23 < 1. This set in coordinates 𝜌12, 𝜌13, 𝜌23 is depicted in Figure 3, where the
2-dimensional surfaces correspond to the non-linear boundaries resulting from the triangle
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WALD SPACE FOR PHYLOGENETIC TREES 13 of 45

inequalities. Note that the regions, where at least one coordinate is one, are not included in 𝜙(),
as the corresponding matrix is no longer strictly positive definite.

Corollary 3.1.5. Conveyed by the homeomorphism𝜙, is star shaped as a subsetℝ𝑁×𝑁 with respect
to 𝐹∞ and hence contractible.

Proof. Let 𝐹 ∈ with 𝜙(𝐹) = 𝑃 = (𝜌𝑢𝑣)𝑢,𝑣∈𝐿 satisfying (R1) - (R3) by Theorem 3.1.1. Recalling
from Remark 3.1.2, 3., that 𝜙(𝐹∞) = 𝐼, consider(

𝜌(𝑥)𝑢𝑣

)
𝑢,𝑣∈𝐿

= 𝑃(𝑥) = 𝑥 𝐼 + (1 − 𝑥)𝑃,

and observe that for all 𝑥 ∈ [0, 1], 𝑃(𝑥) ∈  , 𝜌(𝑥)𝑢𝑢 = 1 = 𝜌𝑢𝑢 for all 𝑢 ∈ 𝐿 and 𝜌
(𝑥)
𝑢𝑣 = (1 − 𝑥)𝜌𝑢𝑣 ⩾ 0

for all 𝑢, 𝑣 ∈ 𝐿with 𝑢 ≠ 𝑣, that is,𝑃(𝑥) satisfies (R1) and (R3) for all 𝑥 ∈ [0, 1]. Moreover, to see that
𝑃(𝑥) satisfies Equation (3.1) for all 𝑥 ∈ (0, 1) for all 𝑢, 𝑣, 𝑠, 𝑡 ∈ 𝐿, assume without loss of generality
that

𝜌𝑢𝑣𝜌𝑠𝑡 = 𝜌𝑢𝑠𝜌𝑣𝑡 ⩽ 𝜌𝑢𝑡𝜌𝑣𝑠 . (3.2)

If all four 𝑢, 𝑣, 𝑠, 𝑡 are pairwise distinct, then

𝜌(𝑥)𝑢𝑣 𝜌
(𝑥)
𝑠𝑡 = 𝜌

(𝑥)
𝑢𝑠 𝜌

(𝑥)
𝑣𝑡 ⩽ 𝜌

(𝑥)
𝑢𝑡 𝜌

(𝑥)
𝑣𝑠 , (3.3)

as well. If only one pair is equal, there are two typical cases. If 𝑢 = 𝑣, say, we obtain a different but
valid four-point condition

𝜌(𝑥)𝑢𝑣 𝜌
(𝑥)
𝑠𝑡 ⩾ 𝜌

(𝑥)
𝑢𝑠 𝜌

(𝑥)
𝑣𝑡 = 𝜌

(𝑥)
𝑢𝑡 𝜌

(𝑥)
𝑣𝑠 ,

where the inequality is strict in case of 𝜌𝑠𝑡 > 0 due to 1 − 𝑥 > (1 − 𝑥)2. If 𝑢 = 𝑡, say, thenwe obtain
Equation (3.3) where the inequality is strict if 𝜌𝑣𝑠 > 0. If exactly two pairs are the same, then,
with the above setup only 𝑢 = 𝑡 and 𝑣 = 𝑠 is possible and both Equation (3.2) and Equation (3.3)
are strict. In case of three equal indices, one different, or the same, Equation (3.3) holds again.
Therefore,𝑃(𝑥) satisfies (R2) for all𝑥 ∈ [0, 1], and byTheorem3.1.1 the entire continuous path𝑥 ↦
𝑃(𝑥), [0, 1] →  corresponds to a path𝐹(𝑥) ∶= 𝜙−1(𝑃(𝑥)) ∈ , connecting𝐹 = 𝐹(0)with𝐹∞ = 𝐹(1)
as asserted. □

Showing contractibility of the edge-product space,Moulton and Steel contract to the same forest
(cf. [31, Proposition 5.1]), employing a different proof, however.

Remark 3.1.6. We make the following observations about the proof of Corollary 3.1.5.

(1) All of the wälder 𝜙−1(𝑃(𝑥)), for 0 ⩽ 𝑥 < 1 in the proof share the same partition of leaves into
connected tree components, due to 𝜌𝑢𝑣 ≠ 0 ⟺ (1 − 𝑥)𝜌𝑢𝑣 ≠ 0 for all 𝑥 ∈ [0, 1) for all 𝑢, 𝑣 ∈
𝐿.

(2) For 0 < 𝑥 < 1, 𝑃(𝑥) satisfies unchanged, strict or non-strict four-point conditions (R2), that
may be different, though, from those of 𝑃(0) = 𝜙(𝐹).

(3) All triangle inequalities (R4) involving initial non-zero 𝜌𝑢𝑣 are strict, however, for 0 < 𝑥 < 1,
so that for 𝜙−1(𝑃(𝑥)) none of the leaves have degree 2. For example, starting with the wald
consisting of a chain of three vertices with𝑁 = 3 (so each vertex is labelled and the middle is
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14 of 45 LUEG et al.

F IGURE 4 Depicting the off-diagonal matrix entries of 𝜙() embedded in  for 𝑁 = 3 (orange boundary)
in a 3-dimensional coordinate system (cf. Example 3.1.4) and the 2-dimensional images 𝜙(𝐵𝑎) (purple) of the
slices 𝐵𝑎 for 𝑎 = 0.2, 0.87, 0.997 (from left to right).

of degree two), it is immediately transformed into a fully resolved tree (and stays one for all
𝑥 ∈ (0, 1)).

(4) The point 𝐹∞ can be viewed as a vantage point of which is then a bounded part of a cone
where every

𝐵𝑎 =

⎧⎪⎨⎪⎩𝐹 ∈
||| 𝜙(𝐹) = (𝜌𝑢𝑣)𝑁𝑢,𝑣=1, 𝑎 = 1 − 𝑁∏

𝑢,𝑣=1
𝑢<𝑣

(1 − 𝜌𝑢𝑣)

⎫⎪⎬⎪⎭.
is a slice of level 𝑎 ∈ [0, 1). Then for every 𝐹 ∈ 𝐵𝑎, there is 𝑟𝐹 > 1 such that

𝐹 = 𝜙−1((1 − 𝑥)𝜙(𝐹∞) + 𝑥𝜙(𝐹)) ∈

for all 0 ⩽ 𝑥 < 𝑟𝐹 and 𝜙(𝐹) is singular for 𝑥 = 𝑟𝐹 . For 𝑁 = 3, the set 𝐵𝑎 for several 𝑎 ∈ (0, 1]
embedded into  is depicted in Figure 4.

We next consider the restriction of the map 𝜙 to each grove 𝐸 explicitly in terms of edge
weights.

Definition 3.1.7. With the agreement (2.5) in case of empty 𝐸(𝑢, 𝑣), we denote the restriction of
𝜙∶  →  from Definition 2.2.3 to a grove 𝐸 by

𝜙𝐸 ∶ (0, 1)
𝐸 →  , 𝜆 ↦ (𝜌𝑢𝑣)𝑢,𝑣∈𝐿 =

( ∏
𝑒∈𝐸(𝑢,𝑣)

(1 − 𝜆𝑒)

)𝑁
𝑢,𝑣=1

; (3.4)

its continuation onto all of ℝ𝐸 is denoted by

𝜙̄𝐸 ∶ ℝ
𝐸 →  , 𝜆 ↦ (𝜌𝑢𝑣)𝑢,𝑣∈𝐿 =

( ∏
𝑒∈𝐸(𝑢,𝑣)

(1 − 𝜆𝑒)

)𝑁
𝑢,𝑣=1

, (3.5)
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WALD SPACE FOR PHYLOGENETIC TREES 15 of 45

Remark 3.1.8. The continuation 𝜙̄𝐸 is multivariate real analytic on all of ℝ𝐸 .

The following theorem characterises each grove.

Theorem 3.1.9.

(1) For 𝐹 = (𝐸, 𝜆) ∈ with 𝜙(𝐹) = (𝜌𝑢𝑣)𝑢,𝑣∈𝐿 we have

𝜆𝑒 = 1 − max
𝑢,𝑣∈𝐴
𝑠,𝑡∈𝐵

√
𝜌𝑢𝑡𝜌𝑣𝑠
𝜌𝑢𝑣𝜌𝑠𝑡

, for all 𝑒 = 𝐴|𝐵 ∈ 𝐸 .
(2) The derivative of 𝜙𝐸 has full rank |𝐸| throughout (0, 1)𝐸 .
(3) The map 𝜙𝐸 ∶ (0, 1)𝐸 ≅ 𝐸 →  is a smooth embedding.

Proof. For the first assertion consider 𝑒 = 𝐴|𝐵, where𝐴 ∪ 𝐵 = 𝐿𝛼, for some 1 ⩽ 𝛼 ⩽ 𝐾 and where
𝐿1, … , 𝐿𝐾 is the leaf partition induced by 𝐸. Then the matrix entries 𝑑𝑢𝑣 ∶= − log 𝜌𝑢𝑣 (𝑢, 𝑣 ∈ 𝐿𝛼)
define a metric on 𝐿𝛼, as noted in Remark 3.1.2. For such a metric, [10, Lemma 8] asserts that one
can assign a tree (𝔙𝛼,𝔈𝛼,𝓁𝛼) where

𝓁𝛼𝑒 = min𝑢,𝑣∈𝐴
𝑠,𝑡∈𝐵

1
2
(𝑑𝑢𝑡 + 𝑑𝑣𝑠 − 𝑑𝑢𝑣 − 𝑑𝑠𝑡), (3.6)

which is uniquely determined by [10, Theorem 2]. Due to our uniqueness results from Theo-
rem 2.2.2 and Theorem 3.1.1, due to Equation (2.3), 𝜆𝑒 = 1 − exp(−𝓁𝛼𝑒 ) and hence, using 𝜌𝑢𝑣 =
exp(−𝑑𝑢𝑣), the asserted equation follows at once from Equation (3.6).
For the second assertion, let 𝑒 ∈ 𝐸 and suppose that 𝐹 = (𝐸, 𝜆) decomposes into 𝐾 subtrees

inducing the leaf partition 𝐿1, … , 𝐿𝐾 . Using Equation (3.4), if either 𝑢, 𝑣 ∈ 𝐿 are in different
subtrees or 𝑢 = 𝑣, then (

𝜕𝜙𝐸
𝜕𝜆𝑒
(𝜆)

)
𝑢𝑣

= 0 .

Else, if 𝑢, 𝑣 ∈ 𝐿𝛼 for some 1 ⩽ 𝛼 ⩽ 𝐾, then 𝜌𝑢𝑣 > 0 and with the Kronecker delta 𝛿,(
𝜕𝜙𝐸
𝜕𝜆𝑒
(𝜆)

)
𝑢𝑣

= −𝛿𝑒∈𝐸(𝑢,𝑣)
∏

𝑒∈𝐸(𝑢,𝑣)
𝑒≠𝑒

(1 − 𝜆𝑒) = −
𝜌𝑢𝑣
1 − 𝜆𝑒

𝛿𝑒∈𝐸(𝑢,𝑣) . (3.7)

Thus, for every 𝑥 ∈ ℝ𝐸 , we have

((d𝜙𝐸)𝜆(𝑥))𝑢𝑣 = −𝜌𝑢𝑣
∑
𝑒∈𝐸

𝑥𝑒
1 − 𝜆𝑒

𝛿𝑒∈𝐸(𝑢,𝑣) ,

so that ((d𝜙𝐸)𝜆(𝑥))𝑢𝑣 = 0 implies

0 =
∑

𝑒∈𝐸(𝑢,𝑣)

𝑥𝑒
1 − 𝜆𝑒

=∶ ℎ𝑢𝑣. (3.8)
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16 of 45 LUEG et al.

We now view each of the 𝓁′𝑒 ∶=
𝑥𝑒
1−𝜆𝑒

, 𝑒 ∈ 𝐸 as a real valued ‘length’ of 𝑒. With a representative
(𝔙,𝔈) of 𝐸 with leaf set partition 𝐿1, … , 𝐿𝐾 , for every 𝑒 ∈ 𝐸 there are 𝑣1, 𝑣2 ∈ 𝔙𝛼 with suitable
1 ⩽ 𝛼 ⩽ 𝐾 such that 𝑒 corresponds to {𝑣1, 𝑣2} ∈ 𝔈𝛼. In particular, as (𝔙𝛼,𝔈𝛼) is a tree, there are
𝑢, 𝑣, 𝑠, 𝑡 ∈ 𝐿𝛼 (not necessarily all of them distinct), such that

𝓁′𝑒 =
1
2
(ℎ𝑢𝑣 + ℎ𝑠𝑡 − ℎ𝑢𝑡 − ℎ𝑣𝑠).

If the right-hand side is zero due to Equation (3.8), then 𝑥𝑒 = 0, yielding that (d𝜙𝐸)𝜆 has full rank,
as asserted.
The third assertion follows directly from assertions 1 and 2 in the statement of the theorem,

that is, 𝜙𝐸 is bijectively smooth onto its image and its differential is injective. □

In the following, we are concerned with 𝜙̄𝐸(𝜆) if 𝜆 ∈ (0, 1)𝐸 approaches the boundary. The next
result characterises exactly under which conditions 𝜙̄𝐸(𝜆) stays in the image 𝜙() of wald space
under 𝜙.

Lemma 3.1.10. Let𝐹 ∈ with topology [𝐹] = 𝐸 and let 𝜆∗ ∈ 𝜕([0, 1]𝐸)with 𝜙̄𝐸(𝜆∗) = (𝜌∗𝑢𝑣)
𝑁
𝑢,𝑣=1

.
Then

𝜙̄𝐸(𝜆
∗) ∈ 𝜙() ⟺ 𝜙̄𝐸(𝜆

∗) ∈  ⟺ 𝜌∗𝑢𝑣 < 1 for all 𝑢, 𝑣 ∈ 𝐿 with 𝑢 ≠ 𝑣.

Proof. The first equivalence follows from that Equation (3.9) is well-defined. We prove the
second equivalence.
‘⇒’: Follows from Remark 3.1.2, Condition (R5).
‘⇐’: Analogously to the proof of Theorem 3.1.1, ‘⇐’, we find a phylogenetic forest in the sense of

[39, chapter 2.8], whose tree metric coincides with the one obtained from 𝜙̄𝐸(𝜆∗), but there might
be multiply labelled vertices. However, this is impossible due to 𝜌∗𝑢𝑣 < 1 for any 𝑢 ≠ 𝑣, which is
equivalent to a distance greater than zero between 𝑢 and 𝑣. Therefore, there exists a phylogenetic
forest 𝐹′ ∈ with 𝜙(𝐹′) = 𝜙̄𝐸(𝜆∗), and thus by Theorem 3.1.1, 𝜙̄𝐸(𝜆∗) ∈  . □

The previous result immediately shows which matrices in  form the boundary of a grove.

Corollary 3.1.11. Let 𝐸 be a wald topology. Then the boundary of the grove 𝐸 in is given by

𝜕𝐸 =
{
𝜙−1

(
𝜙̄𝐸(𝜆

∗)
)
∶ 𝜆∗ ∈ 𝜕([0, 1]𝐸), 𝜙̄𝐸(𝜆

∗) ∈ 

}
. (3.9)

The following result gives a first glimpse on how different groves are connected through the
convergence of wälder.

Theorem 3.1.12. Let  ∋ (𝐸𝑛, 𝜆
(𝑛)) = 𝐹𝑛 → 𝐹

′ = (𝐸′, 𝜆′) ∈ . Then there is a subsequence 𝑛𝑘 ,
𝑘 ∈ ℕ and a common topology 𝐸 such that 𝐸𝑛𝑘 = 𝐸 for all 𝑘 ∈ ℕ. Furthermore,

(1) 𝜆(𝑛𝑘) has a cluster point 𝜆∗ ∈ [0, 1]𝐸 ,
(2) and 𝜙(𝐹′) = 𝜙̄𝐸(𝜆∗) for every of such cluster point 𝜆∗ ∈ [0, 1]𝐸 ,
(3) and 𝐹′ ∈ 𝜕𝐸 whenever 𝐸 ≠ 𝐸′.
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WALD SPACE FOR PHYLOGENETIC TREES 17 of 45

F IGURE 5 A sequence of wälder (left and middle) converging (right) but having different 𝜆 cluster points as
detailed in Example 3.1.13.

Proof. For the first assertion, noting that there are only finitely many wald topologies, there needs
to exist a subsequence 𝐹𝑛𝑘 of 𝐹𝑛 with 𝐸𝑛𝑘 = 𝐸 for some topology 𝐸 for all 𝑘 ∈ ℕ, and thus, as
𝐹𝑛𝑘 ∈ 𝐸 ≅ (0, 1)

𝐸 , there exists 𝜆(𝑛𝑘) ∈ (0, 1)𝐸 with 𝜙𝐸(𝜆(𝑛𝑘)) = 𝜙(𝐹𝑛𝑘 ) for all 𝑘 ∈ ℕ.
For assertion 1, by Bolzano–Weierstraß, there needs to exist a cluster point 𝜆∗ ∈ [0, 1]𝐸 of 𝜆(𝑛𝑘).
For assertion 2, for any cluster point 𝜆∗ ∈ [0, 1]𝐸 , from the continuity of 𝜙̄𝐸 , 𝜙̄𝐸(𝜆∗) is a cluster

point of (𝜙(𝐹𝑛))𝑛∈ℕ and by 𝐹𝑛 → 𝐹′ we find 𝜙(𝐹𝑛) → 𝜙(𝐹′) and thus 𝜙̄𝐸(𝜆∗) = 𝜙(𝐹′).
For assertion 3, let 𝜆∗ ∈ [0, 1]𝐸 be a cluster point. If 𝜆∗ ∈ (0, 1)𝐸 then 𝐹′ ∈ 𝐸 and 𝐸 = 𝐸′, a

contradiction. Thus, 𝜆∗ ∈ 𝜕([0, 1]𝐸), and due to 𝜙̄𝐸(𝜆∗) = 𝜙(𝐹′) ∈  , the assertion follows. □

The following example teaches that when 𝐹𝑛 → 𝐹, 𝜆(𝑛) can have distinct cluster points.

Example 3.1.13. Let 𝑁 = 3, set 𝑒𝑖 ∶= 𝑢|(𝐿 ⧵ {𝑢}), 𝑢 ∈ 𝐿 = {1, 2, 3} and 𝐸 = {𝑒1, 𝑒2, 𝑒3}. Define the
sequence of wälder 𝐹𝑛 ∶= (𝐸, 𝜆(𝑛)), 𝑛 ∈ ℕ, using a sequence 𝜀𝑛 ∈ (0,

1
4
) with 𝜀𝑛 → 0 as 𝑛 → ∞,

via

𝜆(2𝑛−1)𝑒1
∶=
1
2
− 𝜀𝑛, 𝜆(2𝑛−1)𝑒2

∶= 𝜀𝑛, 𝜆(2𝑛−1)𝑒3
∶= 1 − 𝜀𝑛,

𝜆(2𝑛)𝑒1
∶= 𝜀𝑛, 𝜆(2𝑛)𝑒2

∶=
1
2
− 𝜀𝑛, 𝜆(2𝑛)𝑒3

∶= 1 − 𝜀𝑛.

The corresponding forests are depicted in Figure 5. Clearly, the sequence 𝜆(𝑛) (𝑛 ∈ ℕ) has two
distinct cluster points (1∕2, 0, 1), (0, 1∕2, 1) ∈ (0, 1)3. We observe, however, that

𝜙(𝐹2𝑛−1) =

⎛⎜⎜⎜⎜⎝
1 (1 − 𝜀𝑛)(

1
2
+ 𝜀𝑛) ( 1

2
+ 𝜀𝑛)𝜀𝑛

(1 − 𝜀𝑛)(
1
2
+ 𝜀𝑛) 1 (1 − 𝜀𝑛)𝜀𝑛

( 1
2
+ 𝜀𝑛)𝜀𝑛 (1 − 𝜀𝑛)𝜀𝑛 1

⎞⎟⎟⎟⎟⎠
𝑛→∞
⟶

⎛⎜⎜⎜⎜⎝
1 1

2
0

1
2

1 0

0 0 1

⎞⎟⎟⎟⎟⎠
,

and similarly, 𝜙(𝐹2𝑛) converges to the same matrix as 𝑛 → ∞. Letting 𝑒′ = 1|2 and defining 𝐹′ =
(𝐸′, 𝜆′) = ({𝑒′}, 𝜆′) with 𝜆′

𝑒′
= 1
2
(i.e., label partitions 𝐿′

1
= {3}, 𝐿′

2
= {1, 2}; cf. Figure 5), we have

that 𝜙(𝐹𝑛) → 𝜙(𝐹′), so 𝐹𝑛 → 𝐹′.

Theorem 3.1.12 shows that whenever a sequence of wälder𝐹𝑛 ∈ 𝐸 converges to a wald𝐹′ ∈

with topology 𝐸′ and 𝐹′ ∉ 𝐸 , then 𝐹′ ∈ 𝜕𝐸 . In the following section, we make this relationship
between 𝐸′ and 𝐸 more precise and unravel the boundary correspondences via a partial ordering
on the wald topologies.
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18 of 45 LUEG et al.

3.2 At Grove’s end

In light of Theorem 3.1.12, we investigate how two wald topologies 𝐸 = [𝐹] and 𝐸′ = [𝐹′] are
related to each other.

Definition 3.2.1. Let 𝐹 ∈ be a wald with topology 𝐸 = [𝐹]. For an edge 𝑒 = 𝐴|𝐵 ∈ 𝐸, we
define the edge restricted to some subset 𝐿′ ⊆ 𝐿 by

𝑒|𝐿′ ∶= (𝐴 ∩ 𝐿′)|(𝐵 ∩ 𝐿′)
if both of the sets above are non-void, else, we say that the restriction does not exist. In case of
existence, we also say that 𝑒|𝐿′ is a valid split.
The following definition is from [31] and translated into the language of wälder and their

topologies.

Definition 3.2.2. For two wälder 𝐹, 𝐹′ ∈ with topologies 𝐸 = [𝐹], 𝐸′ = [𝐹′], respectively, we
define a relation ≤ by

𝐸′ = [𝐹′] ⩽ [𝐹] = 𝐸 (3.10)

if all of the following three properties hold:

Refinement: with the partitions 𝐿1, … , 𝐿𝐾 and 𝐿′
1
, … , 𝐿′

𝐾′
of 𝐿 induced by 𝐸′ and 𝐸,

respectively, for every 1 ⩽ 𝛼′ ⩽ 𝐾′ there is 1 ⩽ 𝛼 ⩽ 𝐾 with 𝐿′
𝛼′
⊆ 𝐿𝛼;

Restriction: for every 1 ⩽ 𝛼′ ⩽ 𝐾′,

𝐸′
𝛼′
⊆ 𝐸|𝐿′

𝛼′
∶=

{
𝑒∶ ∃𝑒 ∈ 𝐸such that𝑒 ∶= 𝑒|𝐿′

𝛼′
is a valid split

}
where the right-hand side is the set of splits 𝐸 restricted to 𝐿′

𝛼′
;

Cut: for every 1 ⩽ 𝛼′
1
≠ 𝛼′

2
⩽ 𝐾′ and 1 ⩽ 𝛼 ⩽ 𝐾 with 𝐿′

𝛼′
1

, 𝐿′
𝛼′
2

⊂ 𝐿𝛼, there is some

𝐴|𝐵 ∈ 𝐸 with 𝐿′
𝛼′
1

⊆ 𝐴, 𝐿′
𝛼′
2

⊆ 𝐵 .

Further, we say 𝐸′ < 𝐸 if 𝐸 ≠ 𝐸′ ⩽ 𝐸. We also write 𝐹′ < 𝐹 if 𝐸′ < 𝐸.

The restriction condition above corresponds to the definition of a tree displaying another tree
in [31]. From [31, Lemma 3.1], it follows at once that the relation ≤ as defined in Equation (3.10)
is a partial ordering.

Example 3.2.3. Let 𝑁 = 5, so 𝐿 = {1, … , 5}. Define three wald topologies

𝐸 =
{
1|2345, 12|345, 3|1245, 123|45, 1234|5, 1235|4},

𝐸′1 = {2|3, 4|5},
𝐸′2 = {2|5, 3|4}.
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WALD SPACE FOR PHYLOGENETIC TREES 19 of 45

F IGURE 6 Wald topologies 𝐸, 𝐸′
1
and 𝐸′

2
from Example 3.2.3, where 𝐸′

1
< 𝐸 but 𝐸′

2
 𝐸.

They are depicted in Figure 6. Then 𝐸′
1
< 𝐸, as the refinement property holds, the restriction

property, due to 𝐸|{2,3} = {2|3}, 𝐸|{4,5} = {4|5} and the cut property, as the edge 1|2345 separates {1}
from {2, 3} and {4, 5}, and 123|45 separates {2, 3} from {4, 5}. Separating edges like 1|2345 cannot
be restricted to any of the leaf sets {1}, {2, 3} and {4, 5}, and if edges are restricted, they can only
be restricted to one leaf set, for example, 12|345 can be restricted only to {2, 3} and not to any of
the others.
In contrast, 𝐸′

2
 𝐸, although the refinement and restriction properties are satisfied, the cut

property is not, as there is no edge 𝐴|𝐵 = 𝑒 ∈ 𝐸 with {2, 5} ⊆ 𝐴 and {3, 4} ⊆ 𝐵.
Definition 3.2.4. Let 𝐸, 𝐸′ be wald topologies with 𝐸′ ⩽ 𝐸.

(1) For each edge 𝑒′ ∈ 𝐸′
𝛼′
, 1 ⩽ 𝛼′ ⩽ 𝐾′, denote the set of all corresponding splits in 𝐸 by

𝑅𝑒′ ∶=
{
𝑒 ∈ 𝐸∶ 𝑒|𝐿′

𝛼′
= 𝑒′

}
.

(2) Furthermore, denote the set of all disappearing splits in 𝐸 with

𝑅dis ∶=
{
𝑒 ∈ 𝐸∶ ∃𝛼′ such that 𝑒|𝐿′

𝛼′
is a valid split of 𝐿′

𝛼′
, but 𝑒|𝐿′

𝛼′
∉ 𝐸′

}
.

(3) Denote the set of all cut splits with

𝑅cut ∶=
{
𝑒 ∈ 𝐸∶ ∄𝛼′ such that 𝑒|𝐿′

𝛼′
is a valid split of 𝐿′

𝛼′

}
.

Example 3.2.5.

(1) We revisit Example 3.2.3, cf. also Figure 6. Note that with respect to 𝐸′
1
< 𝐸, we have, for

instance, with 𝑒′ = 2|3 that 𝑅𝑒′ = {12|345, 3|1245}, 𝑅dis = ∅ and 𝑅cut = {1|2345, 123|45}. By
definition, none of the cut edges can be restricted.

(2) Let 𝑁 = 4, so 𝐿 = {1, 2, 3, 4}. Define two wald topologies with

𝐸 =
{
1|234, 2|134, 3|124, 123|4, 12|34},

𝐸′ =
{
1|234, 2|134, 3|124, 123|4},

where 𝐸 is a fully resolved tree with interior edge 12|34 and 𝐸′ is a star tree, that is, four leaves
attached to one interior vertex, cf. Figure 7. Then 𝐸′ < 𝐸 because 𝐸′ ⊂ 𝐸, and the split 12|34
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20 of 45 LUEG et al.

F IGURE 7 Wald topologies 𝐸 and 𝐸′ from Example 3.2.5 (2), where 𝐸′ < 𝐸.

F IGURE 8 Wald topologies 𝐸 and 𝐸′ from Example 3.2.5 (3), where 𝐸′ < 𝐸.

disappears, that is, 𝑅dis = {12|34}. Furthermore, 𝑅cut = ∅ and 𝑅𝑒′ = {𝑒′} for all 𝑒′ ∈ 𝐸′.
(3) Let 𝑁 = 5, so 𝐿 = {1, 2, 3, 4, 5}. Define two wald topologies with

𝐸 =
{
1|2345, 2|1345, 3|1245, 4|1235, 5|1234, 12|345, 123|45},

𝐸′ =
{
1|245, 2|145, 4|125, 5|124, 12|45},

where 𝐸 is a fully resolved tree with two cherries containing 1,2 and 4,5, respectively, and
3 attached as a leaf to an interior vertex, cf. Figure 8. Furthermore, 𝐸′ has two connected
components, a fully resolved tree with labels 1,2,4,5 and isolated label 3, cf. Figure 8. Then
𝐸′ < 𝐸 and 𝑅12|45 = {12|345, 123|45}, 𝑅cut = {3|1245} and 𝑅dis = ∅.

Lemma 3.2.6. Let 𝐸′ ⩽ 𝐸 with label partitions 𝐿1, … , 𝐿𝐾 and 𝐿′1, … , 𝐿
′
𝐾′
, respectively, and 𝑢, 𝑣 ∈ 𝐿.

Then the following hold.

(i) If 𝐾 = 𝐾′, then without loss of generality 𝐿′𝛼 = 𝐿𝛼 and 𝐸
′
𝛼 ⊆ 𝐸𝛼 for all 𝛼 = 1,… , 𝐾 and 𝑅𝑒′ =

{𝑒′} for all 𝑒′ ∈ 𝐸′.
(ii) 𝐾 < 𝐾′ ⟺ 𝑅cut ≠ ∅.
(iii) If 𝐾 = 𝐾′, then 𝐸′ < 𝐸 ⟺ 𝑅dis ≠ ∅.
(iv) 𝑅𝑒′ ≠ ∅ for all 𝑒′ ∈ 𝐸′ and if ∃𝑒′ ∈ 𝐸′𝛼′ with |𝑅𝑒′ | > 1 and 𝐿′𝛼′ ⊆ 𝐿𝛼 , then 𝐿′𝛼′ ⊊ 𝐿𝛼 .
(v) 𝐸 = 𝐸′ ⟺ (𝑅dis = ∅ and 𝑅cut = ∅).
(vi) 𝑅𝑒′ ∩ 𝑅𝑒′′ = ∅ for all 𝐸′ ∋ 𝑒′ ≠ 𝑒′′ ∈ 𝐸′.
(vii) The splits in 𝐸|𝐿′

𝛼′
are pairwise compatible.

(viii) 𝑒′ ∈ 𝐸′(𝑢, 𝑣) ⟺ 𝑅𝑒′ ∩ 𝐸(𝑢, 𝑣) ≠ ∅ ⟺ 𝑅𝑒′ ⊆ 𝐸(𝑢, 𝑣).
(ix) 𝑅dis, 𝑅cut in conjunction with the 𝑅𝑒′ over all 𝑒′ ∈ 𝐸′ give a pairwise disjoint union of 𝐸, where

𝑅dis and 𝑅cut might be empty.
(x) Let 𝑢, 𝑣 ∈ 𝐿′

𝛼′
for some 1 ⩽ 𝛼′ ⩽ 𝐾′. Then 𝑅dis ∩ 𝐸(𝑢, 𝑣) in conjunction with the 𝑅𝑒′ over all

𝑒′ ∈ 𝐸′(𝑢, 𝑣) give a pairwise disjoint union of 𝐸(𝑢, 𝑣), where 𝑅dis ∩ 𝐸(𝑢, 𝑣)might be empty.
(xi) For any 𝐿′

𝛼′
, 𝐿′
𝛼′′
⊂ 𝐿𝛼 with 𝛼′ ≠ 𝛼′′, there exists a split 𝐴|𝐵 = 𝑒 ∈ 𝐸 with 𝐿′𝛼′ ⊆ 𝐴, 𝐿′𝛼′′ ⊆ 𝐵

and 𝑒 ∈ 𝑅cut.

Let 𝐹, 𝐹′ ∈ with 𝜌 = 𝜙(𝐹), 𝜌′ = 𝜙(𝐹′) and topologies 𝐸 and 𝐸′, respectively, with label partitions
𝐿1, … , 𝐿𝐾 and 𝐿′1, … , 𝐿

′
𝐾′
, respectively. Then the following hold
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WALD SPACE FOR PHYLOGENETIC TREES 21 of 45

(xii) If for all 𝑢, 𝑣 ∈ 𝐿: 𝜌𝑢𝑣 = 0 ⇒ 𝜌′𝑢𝑣 = 0, then 𝐿
′
1
, … , 𝐿′

𝐾′
is a refinement of 𝐿1, … , 𝐿𝐾 .

Finally, we have the general result.

(xiii) For every wald topology 𝐸′ with |𝐸′| < 2𝑁 − 3, there is a wald topology 𝐸 with |𝐸| = |𝐸′| + 1
and 𝐸′ < 𝐸.

Proof. As Assertions (ii) and (v) follow from Assertion (xi), we proceed in the following logical
order.

(i) 𝐾 = 𝐾′ implies without loss of generality 𝐿𝛼 = 𝐿′𝛼 for all 𝛼 = 1,… , 𝐾 and therefore 𝑒|𝐿′𝛼 =
𝑒|𝐿𝛼 = 𝑒 are valid splits for all 𝑒 ∈ 𝐸𝛼 for all 𝛼 = 1,… , 𝐾, so 𝐸′𝛼 ⊆ 𝐸𝛼 as well as 𝑅𝑒′ = {𝑒′} for
all 𝑒′ ∈ 𝐸′.

(iii) From (i) without loss of generality 𝐿𝛼 = 𝐿′𝛼 and 𝐸
′
𝛼 ⊆ 𝐸𝛼, 𝛼 = 1,… , 𝐾. Thus, 𝑅dis = ∅ ⟺

(for all 𝛼 = 1,… , 𝐾, 𝐸′𝛼 = 𝐸𝛼) ⟺ 𝐸′ = 𝐸.
(iv) By the restriction property of 𝐸′ ⩽ 𝐸, each 𝑒′ ∈ 𝐸′

𝛼′
is the restriction of some 𝑒 ∈ 𝐸𝛼, thus

𝑒 ∈ 𝑅𝑒′ ≠ ∅. Assume that there exist 𝑒1, 𝑒2 ∈ 𝑅𝑒′ with 𝑒1 ≠ 𝑒2. If 𝐿′𝛼′ = 𝐿𝛼 was true, then
𝑒1 = 𝑒1|𝐿′

𝛼′
= 𝑒2|𝐿′

𝛼′
= 𝑒2, a contradiction.

(vi) Assume the contrary: let 𝐴|𝐵 = 𝑒 ∈ 𝑅𝑒′ ∩ 𝑅𝑒′′ , where 𝑒′ ∈ 𝐿′𝛼′ ⊂ 𝐿𝛼 and 𝑒′′ ∈ 𝐿′𝛼′′ ⊂ 𝐿𝛼.
If 𝛼′ = 𝛼′′, then 𝑒′ = 𝑒|𝐿′

𝛼′
= 𝑒′′, a contradiction to 𝑒′ ≠ 𝑒′′, so 𝛼′ ≠ 𝛼′′. As 𝑒 is in both 𝑅𝑒′

and 𝑅𝑒′′ , both restrictions to 𝐿′𝛼′ and 𝐿
′
𝛼′′

exist and therefore

𝐴 ∩ 𝐿′
𝛼′

≠ ∅, 𝐵 ∩ 𝐿′
𝛼′

≠ ∅, 𝐴 ∩ 𝐿′
𝛼′′

≠ ∅, 𝐵 ∩ 𝐿′
𝛼′′

≠ ∅.

Due to 𝐸′ ⩽ 𝐸, by the cut property there exists 𝐶|𝐷 = 𝑒 ∈ 𝐸𝛼 separating 𝐿′𝛼′ and 𝐿′𝛼′′ , that
is, 𝐿′

𝛼′
⊆ 𝐶 and 𝐿′

𝛼′′
⊆ 𝐷. But then 𝑒, 𝑒 ∈ 𝐸𝛼 cannot be compatible, a contradiction.

(vii) Let 𝐿′
𝛼′
⊂ 𝐿𝛼 and 𝑒′1, 𝑒

′
2
∈ 𝐸|𝐿′

𝛼′
such that 𝑒′

𝑖
= 𝑒𝑖|𝐿′

𝛼′
for some 𝑒1, 𝑒2 with 𝑒𝑖 = 𝐴𝑖|𝐵𝑖 ∈ 𝐸, 𝑖 =

1, 2. Then 𝑒1, 𝑒2 ∈ 𝐸𝛼 for otherwise their restrictions to 𝐿′𝛼′ would not be valid splits. As
𝑒1 and 𝑒2 are compatible, without loss of generality 𝐴1 ∩ 𝐴2 = ∅. Consequently, 𝑒′𝑖 = (𝐴𝑖 ∩
𝐿′
𝛼′
)|(𝐵𝑖 ∩ 𝐿′𝛼′) for 𝑖 = 1, 2 and so 𝑒′1 and 𝑒′2 are compatible as (𝐴1 ∩ 𝐿′𝛼′) ∩ (𝐴2 ∩ 𝐿′𝛼′) = ∅.

(viii) We show 𝑒′ ∈ 𝐸′(𝑢, 𝑣) ⇒ 𝑅𝑒′ ⊆ 𝐸(𝑢, 𝑣) ⇒ 𝑅𝑒′ ∩ 𝐸(𝑢, 𝑣) ≠ ∅ ⇒ 𝑒′ ∈ 𝐸′(𝑢, 𝑣).
If 𝑒′ ∈ 𝐸′(𝑢, 𝑣), then due to (iv), 𝑅𝑒′ ≠ ∅. Hence, 𝑒′ ∶= 𝑒|𝐿′

𝛼′
= (𝐴 ∩ 𝐿′

𝛼′
)|(𝐵 ∩ 𝐿′

𝛼′
) for

some 𝑒 = 𝐴|𝐵 ∈ 𝑅𝑒′ , and thus 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵, or vice versa, that is, 𝑒 ∈ 𝐸(𝑢, 𝑣). As the
choice 𝑒 ∈ 𝑅𝑒′ was arbitrary, 𝑅𝑒′ ⊆ 𝐸(𝑢, 𝑣). If 𝑒 ∈ 𝑅𝑒′ ∩ 𝐸(𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝐿′𝛼′ , then 𝑒

′ = 𝑒|𝐿′
𝛼′

and 𝑒′ ∈ 𝐸′(𝑢, 𝑣) due to Equation (2.8).
(ix) By definition of 𝑅dis and 𝑅cut, they are disjoint and furthermore have empty intersection

with each 𝑅𝑒′ , 𝑒′ ∈ 𝐸′ and the latter are pair-wise disjoint due to (vi).
(x) By definition, 𝑅cut ∩ 𝐸(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝐿′𝛼′ (else 𝑅cut would contain valid splits). Then (ix)

in conjunction with (viii) yields the assertion.
(xi) Without loss of generality, let 𝐾 = 1 < 𝐾′ and suppose that 𝛼′ = 1, 𝛼′′ = 2.

In the first step, note that it suffices to find a split 𝑒 = 𝐴|𝐵 that separates 𝐿′
1
from 𝐿′

𝛼′
for all

2 ⩽ 𝛼′ ⩽ 𝐾′ for then, without loss of generality 𝐿′
1
⊆ 𝐴, 𝐿′

2
, … 𝐿′

𝐾′
⊂ 𝐵, which implies 𝐿′

1
= 𝐴, 𝐿′

2
∪

… ∪ 𝐿′
𝐾′
= 𝐵, so that none of the 𝑒|𝐿′

1
, … 𝑒|𝐿′

𝐾′
is a valid split and in consequence 𝑒 ∈ 𝑅cut as desired.

In the second step, we show the existence of such a 𝑒. In fact, to this end, it suffices to establish
the following claim for all 3 ⩽ 𝐽 ⩽ 𝐾′, invoke induction and separately show the assertion for
𝐾′ = 2.
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22 of 45 LUEG et al.

Claim: If ∃ split 𝑓 = 𝐶|𝐷 separating 𝐿′
1
from all of 𝐿′

1
, … , 𝐿′

𝐽−1
, that is, without loss of

generality 𝐿′
1
⊆ 𝐶, 𝐿′

2
, … , 𝐿′

𝐽−1
⊂ 𝐷, that has the property 𝐶 ∩ 𝐿′

𝐽
≠ ∅ ≠ 𝐷 ∩ 𝐿′

𝐽
then

∀ compatible splits 𝑒 = 𝐴|𝐵 separating 𝐿′
1
from 𝐿′

𝐽
where, without loss of generality

𝐿′
1
⊆ 𝐴, 𝐿′

𝐽
⊆ 𝐵 we have that 𝑒 separates 𝐿′

1
from all of 𝐿′

1
, … , 𝐿′

𝐽
, that is, equivalently

𝐿′
𝛼′
⊂ 𝐵 ∀2 ⩽ 𝛼′ ⩽ 𝐽 .

Indeed, if𝐾′ = 2 and 𝑒 = 𝐴|𝐵 separates 𝐿′
1
from 𝐿′

2
then, without loss of generality,𝐴 = 𝐿′

1
and

𝐵 = 𝐿′
2
.

In the third step, we show the claim. To this end let𝐾′ ⩾ 3, 3 ⩽ 𝐽 ⩽ 𝐾′,𝑓 = 𝐶|𝐷 as in the claim’s
hypothesis and suppose that 𝑒 = 𝐴|𝐵 is an arbitrary compatible split with 𝐿′

1
⊆ 𝐴, 𝐿′

𝐽
⊆ 𝐵. Then

𝐶 ∩ 𝐴 ⊇ 𝐿′1 ≠ ∅, 𝐶 ∩ 𝐵 ⊇ 𝐶 ∩ 𝐿
′
𝐽 ≠ ∅, 𝐷 ∩ 𝐵 ⊇ 𝐷 ∩ 𝐿

′
𝐽 ≠ ∅ .

By compatibility of splits we have thus ∅ = 𝐷 ∩ 𝐴 ⊇ 𝐿′
𝛼′
∩ 𝐴 for all 2 ⩽ 𝛼′ ⩽ 𝐽 by hypothesis,

yielding

𝐿′
𝛼′
⊂ 𝐵 ∀2 ⩽ 𝛼′ ⩽ 𝐽 ,

thus establishing the claim.
(ii) We show equivalently 𝐾 = 𝐾′ ⇔ 𝑅cut = ∅. ‘⇒’: If 𝐾 = 𝐾′, then by (i) without loss of gener-

ality 𝐿′𝛼 = 𝐿𝛼 and in particular 𝑒|𝐿′𝛼 = 𝑒|𝐿𝛼 = 𝑒 are valid splits for all 𝑒 ∈ 𝐸𝛼, 𝛼 = 1,… , 𝐾, so that
𝑅cut = ∅. ‘⇐’ follows at once from (xi).
(v) ‘⇒’: Trivial. ‘⇐’: 𝑅cut = ∅ ⇒ 𝐾 = 𝐾′ due to (ii) and thus 𝑅dis = ∅ ⇒ 𝐸 = 𝐸′ due to (iii).
(xii) Let 1 ⩽ 𝛼′ ⩽ 𝐾′ and 𝑢 ∈ 𝐿′

𝛼′
. Then, there is 1 ⩽ 𝛼 ⩽ 𝐾 such that 𝑢 ∈ 𝐿𝛼. For any other

𝑣 ∈ 𝐿′
𝛼′
, 𝜌′𝑢𝑣 > 0, so by assumption 𝜌𝑢𝑣 > 0, thus 𝑣 ∈ 𝐿𝛼, yielding 𝐿

′
𝛼′
⊆ 𝐿𝛼.

(xiii) Suppose that 𝐹′ is a wald with leaf partition 𝐿′
1
, … , 𝐿′

𝐾′
and |𝐸′| < 2𝑁 − 3.

In case of𝐾′ = 1 there is a vertex of degree 𝑘 ⩾ 4, that is, there is a partition𝐴1,… ,𝐴𝑘 of 𝐿 = 𝐿′1
with splits

𝐴𝑖|𝐿 ⧵ 𝐴𝑖 ∈ 𝐸′, 1 ⩽ 𝑖 ⩽ 𝑘
and all other splits in 𝐸′ are of form

𝐴′𝑖 |𝐿 ⧵ 𝐴′𝑖 ∈ 𝐸′, 1 ⩽ 𝑖 ⩽ 𝑘,
where 𝐴′

𝑖
is a suitable subset of 𝐴𝑖 . Then one verifies at once that the new split 𝑒 ∶= 𝐴1 ∪ 𝐴2|𝐿 ⧵

(𝐴1 ∪ 𝐴2) is compatible with all splits in 𝐸′ so that 𝐸 ∶= 𝐸′ ∪ {𝑒} is a wald topology with the
desired properties |𝐸| = |𝐸′| + 1 and 𝐸′ < 𝐸. For the latter note that 𝑅𝑒′ = {𝑒′} for all 𝑒′ ∈ 𝐸′,
𝑅cut = ∅ and 𝑅dis = {𝑒}.
In case of 𝐾′ ⩾ 2 introduce the new split 𝑓 ∶= 𝐿′

1
|𝐿′
2
and for every 𝑒′

1
= 𝐴|𝐵 ∈ 𝐸′

1
let 𝑒(𝑒′

1
) ∶=

𝐴|𝐵 ∪ 𝐿′
2
, so that 𝑒(𝑒′

1
)|𝐿′
1
= 𝑒′
1
. Similarly, for every 𝑒′

2
= 𝐶|𝐷 ∈ 𝐸′

2
let 𝑒(𝑒′

2
) ∶= 𝐶|𝐷 ∪ 𝐿′

1
, so that

𝑒(𝑒′
2
)|𝐿′
2
= 𝑒′
2
. Setting

𝐸 ∶= {𝑒(𝑒′) ∶ 𝑒′ ∈ 𝐸′1 ∪ 𝐸
′
2} ∪ {𝑓} ∪ 𝐸

′
3 … ∪ 𝐸

′
𝐾′
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WALD SPACE FOR PHYLOGENETIC TREES 23 of 45

one verifies that all splits in 𝐸 are pairwise compatible. Hence, 𝐸 is a wald topology with |𝐸| =|𝐸′| + 1 and 𝐸′ < 𝐸. Indeed, for the latter note that 𝑅𝑒′ = {𝑒(𝑒′)} for all 𝑒′ ∈ 𝐸′1 ∪ 𝐸′2, 𝑅𝑒′ = {𝑒′} for
all 𝑒′ ∈ 𝐸′

3
∪ … ∪ 𝐸′

𝐾′
, 𝑅cut = {𝑓} and 𝑅dis = ∅. □

In the following theorem, we characterise the boundaries of groves via the partial ordering on
wald topologies.

Theorem 3.2.7. For wald topologies 𝐸 and 𝐸′, the following three statements are equivalent (with
𝜕𝐸 as in Equation 3.9):

(i) 𝐸′ < 𝐸,
(ii) 𝐸′ ⊂ 𝜕𝐸 ,
(iii) 𝐸′ ∩ 𝜕𝐸 ≠ ∅.

Proof. Let 𝐸 have label partition 𝐿1, … , 𝐿𝐾 .
‘(𝑖) ⇒ (𝑖𝑖)’. Assume that 𝐹′ = (𝐸′, 𝜆′) ∈ 𝐸′ with partition 𝐿′1, … , 𝐿

′
𝐾′
. Using Lemma 3.2.6(ix),

set

𝜆∗𝑒 ∶=

⎧⎪⎨⎪⎩
0 𝑒 ∈ 𝑅dis

1 𝑒 ∈ 𝑅cut

1 − (1 − 𝜆′
𝑒′
)1∕|𝑅𝑒′ | 𝑒 ∈ 𝑅𝑒′ , 𝑒′ ∈ 𝐸′

to obtain 𝜆∗ ∈ 𝜕([0, 1]𝐸) because 𝑅cut ∪ 𝑅dis ≠ ∅ due to 𝐸′ < 𝐸 by Lemma 3.2.6(v). By injectivity
of 𝜙, it suffices to show (∗):

𝜙̄𝐸(𝜆
∗) =∶ (𝜌∗𝑢𝑣)

𝑁
𝑢,𝑣=1

(∗)
= (𝜌′𝑢𝑣)

𝑁
𝑢,𝑣=1 ∶= 𝜙(𝐹

′) .

First, observe by Agreement (2.5) that for all 𝑢 ∈ 𝐿,

𝜌∗𝑢𝑢 = 1 = 𝜌
′
𝑢𝑢 .

Next, again from Agreement (2.5), for all 𝑢, 𝑣 ∈ 𝐿 with 𝑢 ≠ 𝑣 that are not connected in 𝐹′, say
𝑢 ∈ 𝐿′

𝛼′
1

, 𝑣 ∈ 𝐿′
𝛼′
2

for some 𝛼′
1
, 𝛼′
2
∈ {1, … , 𝐾′}, we have 𝜌′𝑢𝑣 = 0. If 𝑢 and 𝑣 are also not connected

in 𝐸, then 𝜌∗𝑢𝑣 = 0 = 𝜌
′
𝑢𝑣. Assume now that 𝑢 and 𝑣 are connected in 𝐸. Then, by Lemma 3.2.6(xi),

there exists an edge 𝐴|𝐵 = 𝑒 ∈ 𝑅cut with 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵, and due to 𝜆∗𝑒 = 1 by construction,
𝜌∗𝑢𝑣 = 0 = 𝜌

′
𝑢𝑣.

Finally, for all 𝑢, 𝑣 ∈ 𝐿 that are connected in 𝐹′, we have, due to construction and
Lemma 3.2.6(x),

𝜌∗𝑢𝑣 =
∏

𝑒∈𝐸(𝑢,𝑣)

(1 − 𝜆∗𝑒 )

=
⎛⎜⎜⎝

∏
𝑒∈𝑅dis∩𝐸(𝑢,𝑣)

(1 − 𝜆∗𝑒 )
⎞⎟⎟⎠
( ∏
𝑒′∈𝐸′(𝑢,𝑣)

∏
𝑒∈𝑅𝑒′

(1 − 𝜆′
𝑒′
)1∕|𝑅𝑒′ |

)
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24 of 45 LUEG et al.

=
∏

𝑒′∈𝐸′(𝑢,𝑣)

(1 − 𝜆′
𝑒′
) = 𝜌′𝑢𝑣 .

Thus, we have shown 𝜙(𝐹′) = 𝜙̄𝐸(𝜆∗). As 𝐹′ = (𝐸′, 𝜆′) was arbitrary, we have shown 𝐸′ ⊂ 𝜕𝐸
where equality cannot be due to 𝜆∗ ∈ 𝜕([0, 1]𝐸).
‘(𝑖𝑖) ⇒ (𝑖𝑖𝑖)’ is trivial.
‘(𝑖𝑖𝑖) ⇒ (𝑖)’. Let 𝐹′ = (𝐸′, 𝜆′) ∈ 𝐸′ ∩ 𝜕𝐸 , that is, there exists 𝜆∗ ∈ 𝜕([0, 1]𝐸) with 𝜙̄𝐸(𝜆∗) =

𝜙(𝐹′) ∈  . In the following, we will construct 𝐹◦ = (𝐸◦, 𝜆◦) with 𝜆◦ ∈ (0, 1)𝐸◦ and show that

Claim I: 𝐸◦ < 𝐸, and
Claim II: 𝜙(𝐹◦) = 𝜙(𝐹′).

AsClaim II implies𝐹◦ = 𝐹′ and𝐸◦ = 𝐸′, in conjunctionwithClaim Iwe then obtain the assertion
𝐸′ < 𝐸.
To see Claim I, let 𝜙̄𝐸(𝜆∗) = (𝜌∗𝑢𝑣)

𝑁
𝑢,𝑣=1

. Denote the connectivity classes of 𝐿, where 𝑢, 𝑣 ∈ 𝐿 are
connected if and only if 𝜌∗𝑢𝑣 > 0, by

𝐿◦1, … , 𝐿
◦
𝐾◦ ,

with 1 ⩽ 𝐾◦ ⩽ 𝑁. As 𝜌∗𝑢𝑣 > 0 implies 𝜌𝑢𝑣 > 0, we have that 𝐿
◦
1
, … , 𝐿◦

𝐾◦ is a refinement of 𝐿1, … , 𝐿𝐾
by Lemma 3.2.6(xii).
Define 𝐸◦ by setting for each 1 ⩽ 𝛼◦ ⩽ 𝐾◦ (where, say, 𝐿◦𝛼◦ ⊂ 𝐿𝛼 for some 1 ⩽ 𝛼 ⩽ 𝐾)

𝐸◦𝛼◦ ∶=
{
𝑒|𝐿◦

𝛼◦
∶ ∃𝑒 ∈ 𝐸such that 𝑒|𝐿◦

𝛼◦
is a valid split and 𝜆∗𝑒 ≠ 0

}
, (3.11)

and 𝐸◦ ∶=
⋃
𝛼◦ 𝐸

◦
𝛼◦ . By Lemma 3.2.6(vii), each 𝐸

◦
𝛼◦ comprises compatible splits only so that 𝐸

◦

satisfies the restriction property from Definition 3.2.2.
Verifying the cut property, suppose there exist 1 ⩽ 𝛼◦

1
≠ 𝛼◦

2
⩽ 𝐾◦ and 1 ⩽ 𝛼 ⩽ 𝐾 such that

𝐿◦
𝛼◦
1
, 𝐿◦
𝛼◦
2
⊂ 𝐿𝛼. Hence, by construction

𝜌∗𝑢𝑠 = 0, 𝜌
∗
𝑢𝑣 > 0 and 𝜌

∗
𝑠𝑡 > 0 for all 𝑢, 𝑣 ∈ 𝐿

◦
𝛼1
and 𝑠, 𝑡 ∈ 𝐿◦𝛼2 . (3.12)

Let now 𝑢 ∈ 𝐿◦
𝛼◦
1
and 𝑠 ∈ 𝐿◦

𝛼◦
2
, then by definition of 𝜙̄𝐸 , 𝜌∗𝑢𝑠 =

∏
𝑒∈𝐸(𝑢,𝑠)(1 − 𝜆

∗
𝑒 ) = 0, so there must

exist 𝑒 = 𝐴|𝐵 ∈ 𝐸(𝑢, 𝑠) with 𝜆∗𝑒 = 1. This implies 𝐿◦𝛼◦
1
⊆ 𝐴 and 𝐿◦

𝛼◦
2
⊆ 𝐵, for otherwise, if 𝐴 ∌ 𝑣 ∈

𝐿◦
𝛼◦
1
, say, then 𝑣 ∈ 𝐵 and hence 𝑒 ∈ 𝐸(𝑢, 𝑣) due to Equation (2.8) and hence 𝜌∗𝑢𝑣 = 0, due to 𝜆

∗
𝑒 = 1,

a contradiction to Equation (3.12). Thus, the cut property holds.
Having verified all of the properties from Definition 3.2.2, we have shown 𝐸◦ ⩽ 𝐸, and we can

use the notation introduced in Definition 3.2.4 and Lemma 3.2.6 is applicable for 𝐸◦ ⩽ 𝐸. As 𝜆∗ is
on the boundary, there must be some 𝑒 ∈ 𝐸 with either 𝜆∗𝑒 = 1 > 𝜆𝑒 > 0 or all 𝜆

∗
𝑒 < 1 and there is

𝜆∗𝑒 = 0 < 𝜆𝑒. In the first case, 𝑒 ∈ 𝑅cut, in the second case 𝑒 ∈ 𝑅dis, so that in both cases 𝐸
◦ ≠ 𝐸 by

Lemma 3.2.6, (v), yielding 𝐸◦ < 𝐸, which was Claim I.
To see Claim II, we define suitable edge weights 𝜆◦. Let 1 ⩽ 𝛼◦ ⩽ 𝐾◦ be arbitrary and let 1 ⩽

𝛼 ⩽ 𝐾 be such that 𝐿◦𝛼◦ ⊆ 𝐿𝛼. For each 𝑒
◦ ∈ 𝐸◦𝛼◦ , define

𝜆◦𝑒◦ ∶= 1 −
∏
𝑒∈𝑅𝑒◦

(1 − 𝜆∗𝑒 ) . (3.13)
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WALD SPACE FOR PHYLOGENETIC TREES 25 of 45

Indeed, 𝜆◦𝑒◦ ∈ (0, 1), as by Lemma 3.2.6(ix), none of the 𝑒 ∈ 𝑅𝑒◦ lie in 𝑅cut, we have 𝜆∗𝑒 < 1,
and, as at least for one 𝑒 ∈ 𝑅𝑒◦ , we have 𝜆∗𝑒 > 0 by Equation (3.11). Thus, 𝐹◦ ∶= (𝐸◦, 𝜆◦) is a
well-defined wald.
We now show the final part of Claim II, namely that 𝜙(𝐹′) = 𝜙(𝐹◦). Recall that 𝜙(𝐹′) =

𝜙̄𝐸(𝜆
∗) = (𝜌∗𝑢𝑣)

𝑁
𝑢,𝑣=1

and let 𝜙(𝐹◦) = (𝜌◦𝑢𝑣)
𝑁
𝑢,𝑣=1

. By Agreement (2.5), for all 𝑢 ∈ 𝐿 we have 𝜌∗𝑢𝑢 =
1 = 𝜌◦𝑢𝑢 and by definition of the connectivity classes 𝐿◦

1
, … , 𝐿◦

𝐾◦ we have 𝜌∗𝑢𝑣 = 0 if and only if
𝜌◦𝑢𝑣 = 0 for all 𝑢, 𝑣 ∈ 𝐿.
For all other 𝑢, 𝑣 ∈ 𝐿, we may assume that 𝑢, 𝑣 ∈ 𝐿◦𝛼◦ with 𝐿

◦
𝛼◦ ⊆ 𝐿𝛼 for some 1 ⩽ 𝛼

◦ ⩽ 𝐾◦ and
1 ⩽ 𝛼 ⩽ 𝐾. By Lemma 3.2.6(viii) and (ix), the sets 𝑅dis ∩ 𝐸(𝑢, 𝑣) in conjunction with 𝑅𝑒◦ for all
𝑒◦ ∈ 𝐸◦(𝑢, 𝑣) form a partition of 𝐸(𝑢, 𝑣). For the first set we have

𝑒 ∈ 𝑅dis ∩ 𝐸(𝑢, 𝑣) ⇒ 𝜆
∗
𝑒 = 0 . (3.14)

Indeed, if 𝑒 ∈ 𝑅dis ∩ 𝐸(𝑢, 𝑣) then the restriction 𝑒◦ ∶= 𝑒|𝐿◦
𝛼◦
is a valid split as it splits 𝐿◦𝛼◦ into

two non-empty sets. But as 𝑒 ∈ 𝑅dis this split does not exist in 𝐸◦ which, taking into account
Equation (3.11), is only possible for 𝜆∗𝑒 = 0.
In consequence, we have (the first and the last equality are the definitions, respectively, the

second uses that 𝑅dis ∩ 𝐸(𝑢, 𝑣) and 𝑅𝑒◦ , 𝑒◦ ∈ 𝐸◦(𝑢, 𝑣) partition 𝐸(𝑢, 𝑣) and the third uses for the
first factor (3.14) and (3.13) for the second factor)

𝜌∗𝑢𝑣 =
∏

𝑒∈𝐸(𝑢,𝑣)

(1 − 𝜆∗𝑒 )

=

⎛⎜⎜⎜⎜⎜⎝
∏

𝑒∈𝑅dis∩𝐸(𝑢,𝑣)

(1 − 𝜆∗𝑒 )

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
=1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
∏

𝑒◦∈𝐸◦(𝑢,𝑣)

∏
𝑒∈𝑅𝑒◦

(1 − 𝜆∗𝑒 )

⏟ ⎴⎴⏟⎴⎴⏟
=1−𝜆◦

𝑒◦

⎞⎟⎟⎟⎟⎟⎟⎠
=

∏
𝑒◦∈𝐸◦(𝑢,𝑣)

(1 − 𝜆◦𝑒◦)

= 𝜌◦𝑢𝑣,

completing the proof. □

From the above theorem and its proof, we collect at once the following key relationships.

Corollary 3.2.8. Let 𝐹 ∈ with topology 𝐸. Then

𝜕𝐸 =
⨆
𝐸′<𝐸

𝐸′ .

Further for 𝐹′ ∈ with topology 𝐸′ < 𝐸, 𝜙𝐸′(𝜆′) = 𝜙(𝐹′) = 𝜙̄𝐸(𝜆∗) for 𝜆′ ∈ (0, 1)𝐸
′ and 𝜆∗ ∈

𝜕([0, 1]𝐸), the following hold:
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26 of 45 LUEG et al.

F IGURE 9 Depicting the grove 𝐸 ≅ (0, 1)3 of a fully resolved tree with 𝑁 = 3 leaves, and its boundary 𝜕𝐸 ,
as discussed in Example 3.2.9. Left: 𝐸 and its 2-dimensional ‘boundary at zero’ (coordinate axes are excluded).
Right: the ‘boundary at one’ comprising the 1-dimensional component (points on same blue curves represent a
single wald) and 0-dimensional component (points on the red spider) represent 𝐹∞.

(1) for each 1 ⩽ 𝛼′ ⩽ 𝐾′, we have that

𝐸′
𝛼′
=
{
𝑒|𝐿′

𝛼′
∶ 𝑒 ∈ 𝐸such that𝑒|𝐿′

𝛼′
is a valid split and 𝜆∗𝑒 ≠ 0

}
,

(2) for any 𝑒′ ∈ 𝐸′,

𝜆′
𝑒′
= 1 −

⋃
𝑒∈𝑅𝑒′

(1 − 𝜆∗𝑒 ) .

Example 3.2.9. Let 𝑁 = 3, so 𝐿 = {1, 2, 3} and let

𝐸 = {𝑒1 = 1|23, 𝑒2 = 2|13, 𝑒3 = 3|12}.
Abbreviating 𝜆𝑒𝑖 = 𝜆𝑖 for 𝑖 = 1, 2, 3 we have 𝐸 ≅ (0, 1)

3, cf. Equation (2.6), and the map
𝜙̄𝐸 ∶ [0, 1]

3 →  from Equation (3.5) has the form

𝜙̄𝐸(𝜆) =

⎛⎜⎜⎜⎝
1 𝜌12 𝜌13

𝜌12 1 𝜌23

𝜌13 𝜌23 1

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

1 (1 − 𝜆1)(1 − 𝜆2) (1 − 𝜆1)(1 − 𝜆3)

(1 − 𝜆1)(1 − 𝜆2) 1 (1 − 𝜆2)(1 − 𝜆3)

(1 − 𝜆1)(1 − 𝜆3) (1 − 𝜆2)(1 − 𝜆3) 1

⎞⎟⎟⎟⎠.
One can easily see from Lemma 3.1.10 that 𝜙̄𝐸(𝜆) ∈  if and only if at most one coordinate of
𝜆 is zero, otherwise there would exist 𝑢, 𝑣 ∈ 𝐿 with 𝑢 ≠ 𝑣 such that 𝜌𝑢𝑣 = 1. This means that
the origin and the intersections of the coordinate axes with the cube [0, 1]3 are not mapped into
𝜙() and thus not part of the boundary of 𝐸 . The cube and the corresponding wälder 𝐹′ ∈
 of the grove’s boundaries (i.e., there exists 𝜆 ∈ 𝜕([0, 1]𝐸) with 𝜙̄𝐸(𝜆) = 𝜙(𝐹′)) are depicted in
Figure 9.
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WALD SPACE FOR PHYLOGENETIC TREES 27 of 45

Note that for the boundaries where at least one 𝜆 coordinate is one, infinitely many coordi-
nates give the samewald: let𝐹′ = ({2|3}, 𝜆′)with 𝜆′

2|3 = 0.8, then all coordinates 𝜆∗ = (1, 𝜆∗2 , 𝜆∗3) ∈
𝜕([0, 1]𝐸) that satisfy 1 − (1 − 𝜆∗

2
)(1 − 𝜆∗

3
) = 0.8 give 𝜙̄𝐸(𝜆∗) = 𝜙(𝐹′). This is also illustrated in

Figure 9 (right panel), where several arrows point to the coordinates on curves that corre-
spond the same wald. This means that a 2-dimensional boundary of the cube collapses into a
1-dimensional grove.
If at least two coordinates of 𝜆∗ are equal to 1, then the corresponding phylogenetic for-

est will be the forest consisting of three isolated vertices, and in this case, four points as well
as the three segments where two coordinates are 1 and one is strictly between zero and one
on the boundary of the cube collapse to only one point in  , marked red in Figure 9 (right
panel).

Corollary 3.2.10. Let 𝐹, 𝐹′ ∈ with topologies 𝐸, 𝐸′, respectively, and let (𝐹𝑛)𝑛∈ℕ ⊂ 𝐸 ⊂ be
a sequence. If 𝐹𝑛 → 𝐹′, then 𝐸′ ⩽ 𝐸.

Proof. Let 𝜆(𝑛) ∈ (0, 1)𝐸 ≅ 𝐸 such that 𝜙𝐸(𝜆(𝑛)) = 𝜙(𝐹𝑛) for all 𝑛 ∈ ℕ. With the same argument
as in the proof of Theorem 3.1.12, there exists at least one subsequence (𝜆(𝑛𝑘))𝑘∈ℕ such that 𝜆(𝑛𝑘) →
𝜆∗ ∈ [0, 1]𝐸 with 𝜙̄𝐸(𝜆∗) = 𝜙(𝐹′) ∈  , so either 𝐹′ ∈ 𝐸 , then 𝐸′ = 𝐸, or 𝐹′ ∈ 𝜕𝐸 (by definition
of 𝜕𝐸 from Equation 3.9), then by Theorem 3.2.7 it follows that 𝐸′ < 𝐸, so in general 𝐸′ ⩽ 𝐸. □

3.3 Whitney stratification of wald space

Recall from Subsection 1.3 the differentiable manifold of strictly positive definite matrices  , and
that the tangent space 𝑇𝑃 at 𝑃 ∈  is isomorphic to the vector space of symmetric matrices
 . To study convergence of linear subspaces of  , we recall the Grassmannian manifold of 𝑘-
dimensional linear subspaces in ℝ𝑚, 0 ⩽ 𝑘 ⩽ 𝑚, see, for example, [25, chapter 7].
Every 𝑘-dimensional linear subspace  of ℝ𝑚 is the span of the columns 𝑣1, … , 𝑣𝑘 of a matrix

(𝑣1, … , 𝑣𝑘) = 𝑉 ∈ 𝑆(𝑚, 𝑘), the column space,

 = span{𝑣1, … , 𝑣𝑘} = col(𝑉),

where

𝑆(𝑚, 𝑘) = {𝑉 ∈ ℝ𝑚×𝑘 ∶ rank(𝑉) = 𝑘}

is the Stiefel manifold of maximal rank (𝑚 × 𝑘)-matrices equipped with the smooth manifold
structure inherited from embedding in the Euclidean ℝ𝑚×𝑘. As col(𝑉) = col(𝑉𝐺) for every 𝐺 ∈
𝑆(𝑘, 𝑘) and 𝑉 ∈ 𝑆(𝑘,𝑚), the space{

 ⊂ ℝ𝑚∶  linear subspace, dim() = 𝑘
}

can be identified with the Grassmannian

𝐺(𝑚, 𝑘) ∶= 𝑆(𝑚, 𝑘)∕𝑆(𝑘, 𝑘) .
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28 of 45 LUEG et al.

As every orbit {𝑉𝐺 ∶ 𝐺 ∈ 𝑆(𝑘, 𝑘)} of𝑉 ∈ 𝑆(𝑚, 𝑘) is closed in 𝑆(𝑚, 𝑘) and as for every𝑉 ∈ 𝑆(𝑚, 𝑘)
its isotropy group {𝐺 ∈ 𝑆(𝑘, 𝑘) ∶ 𝑉𝐺 = 𝑉} contains the unit matrix only, the quotient carries a
canonical smooth manifold structure.

Definition 3.3.1. With the above notation, a sequence of 𝑘-dimensional linear subspaces𝑛, 𝑛 ∈
ℕ, of ℝ𝑚, 1 ⩽ 𝑘 < 𝑚, converges in the Grassmannian 𝐺(𝑚, 𝑘) to a 𝑘-dimensional linear subspace
 if there are 𝑉𝑛, 𝑉 ∈ 𝑆(𝑚, 𝑘) and 𝐺𝑛 ∈ 𝑆(𝑘, 𝑘) such that

col(𝑉𝑛) = 𝑛 for all 𝑛 ∈ ℕ, col(𝑉) =  and ‖𝑉𝑛𝐺𝑛 − 𝑉‖→ 0 as 𝑛 → ∞ .
Remark 3.3.2.

(1) Note that none of the cluster points of 𝐺𝑛 or 𝐺𝑛∕‖𝐺𝑛‖ can be singular, hence they are all in
𝑆(𝑘, 𝑘)

(2) Theremay be, however, a sequence𝑉𝑛 ∈ 𝑆(𝑚, 𝑘) and𝑉 ∈ 𝑆(𝑚, 𝑘),𝑊 ∈ ℝ𝑚×𝑘 ⧵ 𝑆(𝑚, 𝑘)with

col(𝑉𝑛) = 𝑛 →  = col(𝑉)

in the Grassmanian 𝐺(𝑚, 𝑘) but

‖𝑉𝑛 −𝑊‖→ 0
in ℝ𝑚×𝑘. Nevertheless, we have the following relationship.

Lemma 3.3.3. Let 𝑉𝑛 ∈ 𝑆(𝑚, 𝑘) and assume that the two limits below exist. Then

col
(
lim
𝑛→∞

𝑉𝑛

)
⊆ lim
𝑛→∞

col(𝑉𝑛) .

Proof. Let 𝑣 ∈ ℝ𝑚 with 𝑣 ⟂ lim𝑛→∞ col(𝑉𝑛). Then the assertion follows, once we show 𝑣 ⟂ 𝑊
with𝑊 = lim𝑛→∞ 𝑉𝑛.
By hypothesis, for every 𝜖 > 0 there are 𝑁 ∈ ℕ and 𝐺𝑛 ∈ 𝑆(𝑘, 𝑘) such that

|𝑣𝑇𝑉𝑛𝐺𝑛| < 𝜖 ∀𝑛 > 𝑁 .
Let us first assume that there is a subsequence 𝑛𝑘 with ‖𝐺𝑛𝑘‖ > 1. Then

|𝑣𝑇𝑉𝑛𝑘𝑅𝑛𝑘 | < 𝜖‖𝐺𝑛𝑘‖ < 𝜖 ∀𝑛𝑘 > 𝑁 ,
where 𝑅𝑛𝑘 =

𝐺𝑛𝑘‖𝐺𝑛𝑘 ‖ ∈ 𝑆(𝑘, 𝑘) is of unit norm, hence it has a cluster point 𝑅 satisfying |𝑣𝑇𝑊𝑅| ⩽ 𝜖.
As 𝜖 > 0was arbitrary, we have 𝑣𝑇𝑊𝑅 = 0. As 𝑅 ∈ 𝑆(𝑘, 𝑘) by Remark 3.3.2 we have thus 𝑣𝑇𝑊 = 0
as asserted.
If there is no such subsequence, without loss of generality we may assume ‖𝐺𝑛‖ ⩽ 1 for all

𝑛 ⩾ 𝑁. Again, 𝐺𝑛 has a cluster point 𝑅 and thus |𝑣𝑇𝑊𝑅| ⩽ 𝜖 which implies, as above, 𝑣𝑇𝑊𝑅 = 0.
As 𝑅 ∈ 𝑆(𝑘, 𝑘) by Remark 3.3.2 we have 𝑣𝑇𝑊 = 0 as asserted. □
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WALD SPACE FOR PHYLOGENETIC TREES 29 of 45

In the following, recall the definition of a Whitney stratified space of type (A) and (B),
respectively, taken from the wording of Huckemann and Eltzner [21, section 10.6].

Definition 3.3.4. A stratified space  of dimension𝑚 embedded in a Euclidean space (possibly
of higher dimension𝑀 ⩾ 𝑚) is a direct sum

 =
𝑘⨆
𝑖=1

𝑆𝑖

such that 0 ⩽ 𝑑1 < … < 𝑑𝑘 = 𝑚, each 𝑆𝑖 is a 𝑑𝑖-dimensionalmanifold and 𝑆𝑖 ∩ 𝑆𝑗 = ∅ for 𝑖 ≠ 𝑗 and
if 𝑆𝑖 ∩ 𝑆𝑗 ≠ ∅ then 𝑆𝑖 ⊂ 𝑆𝑗 .
A stratified space  isWhitney stratified of type (A),

(A) if for a sequence 𝑞1, 𝑞2,⋯ ∈ 𝑆𝑗 that converges to some point 𝑝 ∈ 𝑆𝑖 , such that the sequence
of tangent spaces 𝑇𝑞𝑛𝑆𝑗 converges in the Grassmannian 𝐺(𝑀, 𝑑𝑗) to a 𝑑𝑗-dimensional lin-
ear space 𝑇 as 𝑛 → ∞, then 𝑇𝑝𝑆𝑖 ⊆ 𝑇, where all the linear spaces are seen as subspaces of
ℝ𝑀 .

Moreover, a stratified space  is aWhitney stratified space of type (B),

(B) if for sequences 𝑝1, 𝑝2,⋯ ∈ 𝑆𝑖 and 𝑞1, 𝑞2,⋯ ∈ 𝑆𝑗 which converge to the same point 𝑝 ∈ 𝑆𝑖
such that the sequence of secant lines 𝑐𝑛 between 𝑝𝑛 and 𝑞𝑛 converges to a line 𝑐 as 𝑛 → ∞
(in theGrassmannian𝐺(𝑀, 1)), and such that the sequence of tangent planes𝑇𝑞𝑛𝑆𝑗 converges
to a 𝑑𝑗-dimensional plane 𝑇 as 𝑛 → ∞ (in the Grassmannian 𝐺(𝑀, 𝑑𝑗)), then 𝑐 ⊂ 𝑇.

Theorem 3.3.5. Wald space with the smooth structure on every grove 𝐸 conveyed by 𝜙𝐸 from (3.4),
is a Whitney stratified space of type (A).

Proof. First, we show that is a stratified space. In conjunctionwith Remark 2.2.4, themanifolds
𝑆𝑖 of dimension 𝑑𝑖 = 𝑖 are the unions over disjoint groves of of equal dimension 𝑖 = 0, … , 2𝑁 −
3 = 𝑚, counting the number of edges, each diffeomorphic to an 𝑖-dimensional open unit
cube,

𝑆𝑖 =
⨆
|𝐸|=𝑖 𝐸 .

If𝑆𝑖 ∩ 𝑆𝑗 ≠ ∅ for some 0 ⩽ 𝑖 ≠ 𝑗 ⩽ 𝑚 then there arewald topologies𝐸, 𝐸′with 𝑗 = |𝐸|, 𝑖 = |𝐸′| and
𝐸′∩ ∈ 𝐸 ≠ ∅, implying 𝐸′ ⊂ 𝐸 by Theorem 3.2.7. In particular, then 𝑖 < 𝑗. Further, if 𝐸′ with
𝑖 = |𝐸′| is any other wald topology, induction on Lemma 3.2.6(xiii) shows that it can be extended
to a wald topology 𝐸 with 𝑗 = |𝐸| such that 𝐸′ < 𝐸 and hence 𝐸′ ⊂ 𝐸′ by Theorem 3.2.7. Thus,
we have shown that 𝑆𝑖 ⊂ 𝑆𝑗 , as required.
To showWhitney condition (A), it suffices to assume 𝑖 ≠ 𝑗. Let 𝐹1, 𝐹2,⋯ ∈ 𝑆𝑗 be a sequence of

wälder that converges to some wald 𝐹′ = (𝐸′, 𝜆′) ∈ 𝑆𝑖 , so 𝑖 < 𝑗. As 𝑆𝑗 is a disjoint union of finitely
many groves, without loss of generality we may assume that 𝐹1, 𝐹2,⋯ ∈ 𝐸 for some wald topol-
ogy 𝐸 > 𝐸′ with |𝐸| = 𝑗. Hence, under the hypothesis that 𝑇𝐹𝑛𝐸 ≅ 𝑇Φ(𝐹𝑛)Φ𝐸(𝐸) ⊂  converges
in the Grassmannian 𝐺(dim(), 𝑗), to a 𝑗-dimensional linear space 𝑇 ⊂  as 𝑛 → ∞, we need to

 14697750, 2024, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12893 by N

ew
castle U

niversity, W
iley O

nline L
ibrary on [30/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



30 of 45 LUEG et al.

show that

𝑇𝐹′𝐸′ ≅ 𝑇Φ(𝐹′)Φ𝐸′(𝐸′) ⊆ 𝑇 . (3.15)

With the analytic continuation 𝜙̄𝐸 of 𝜙𝐸 , see Remark 3.1.8, a cluster point 𝜆∗ ∈ [0, 1]𝐸 of 𝜆(𝑛) =
𝜙−1
𝐸
(𝐹𝑛) ∈ (0, 1)

𝐸 , 𝐹′ = 𝜙−1◦𝜙̄𝐸(𝜆∗), see Theorem 3.1.12, and the unit standard basis 𝜕∕𝜕𝜆𝑒, 𝑒 ∈ 𝐸
of 𝐸 ≅ (0, 1)𝐸 we have thus

𝑇Φ(𝐹𝑛)Φ𝐸(𝐸) = span

{
𝜕𝜙̄𝐸
𝜕𝜆𝑒

(
𝜆(𝑛)

)
∶ 𝑒 ∈ 𝐸

}
and, due to Lemma 3.3.3,

span

{
𝜕𝜙̄𝐸
𝜕𝜆𝑒
(𝜆∗)∶ 𝑒 ∈ 𝐸

}
= span

{
lim
𝑛→∞

𝜕𝜙̄𝐸
𝜕𝜆𝑒

(
𝜆(𝑛)

)
∶ 𝑒 ∈ 𝐸

}
⊆ lim
𝑛→∞

span

{
𝜕𝜙̄𝐸
𝜕𝜆𝑒

(
𝜆(𝑛)

)
∶ 𝑒 ∈ 𝐸

}
= 𝑇.

As likewise

𝑇𝜙(𝐹′)𝜙(𝐸′) = span

{
𝜕𝜙𝐸′

𝜕𝜆′
𝑒′

(𝜆′)∶ 𝑒′ ∈ 𝐸′
}

showing assertion (3.15) is equivalent to showing

span

{
𝜕𝜙𝐸′

𝜕𝜆′
𝑒′

(𝜆′)∶ 𝑒′ ∈ 𝐸′
}
⊆ span

{
𝜕𝜙̄𝐸
𝜕𝜆𝑒
(𝜆∗)∶ 𝑒 ∈ 𝐸

}
.

To see this, it suffices to show that for each 𝑒′ ∈ 𝐸′, there exists a constant 𝑐 > 0 and an edge 𝑒 ∈ 𝐸
such that

𝜕𝜙𝐸′

𝜕𝜆′
𝑒′

(𝜆′) = 𝑐
𝜕𝜙̄𝐸
𝜕𝜆𝑒
(𝜆∗). (3.16)

In the following, we show (3.16).
Recalling for 𝑢, 𝑣 ∈ 𝐿(

𝜙̄𝐸(𝜆
∗)
)
𝑢𝑣
=

∏
𝑒∈𝐸(𝑢,𝑣)

(
1 − 𝜆∗𝑒

)
,

(
𝜙𝐸′(𝜆

′)
)
𝑢𝑣
=

∏
𝑒′∈𝐸′(𝑢,𝑣)

(
1 − 𝜆′

𝑒′

)
from Definition 3.1.7, obtain their derivatives

(
𝜕𝜙̄𝐸
𝜕𝜆𝑒
(𝜆∗)

)
𝑢𝑣

= −𝟏𝑒∈𝐸(𝑢,𝑣)
∏

𝑒∈𝐸(𝑢,𝑣)
𝑒≠𝑒

(
1 − 𝜆∗𝑒

)
, (3.17)
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WALD SPACE FOR PHYLOGENETIC TREES 31 of 45

(
𝜕𝜙𝐸′

𝜕𝜆′
𝑒′

(𝜆′)

)
𝑢𝑣

= −𝟏𝑒′∈𝐸′(𝑢,𝑣)
∏

𝑒′∈𝐸′(𝑢,𝑣)
𝑒′≠𝑒′

(
1 − 𝜆′

𝑒′

)
. (3.18)

Recall from Corollary 3.2.8 the two relationships between 𝐹′ and 𝜙̄𝐸(𝜆∗):

𝐸′
𝛼′
=
{
𝑒′ ∶ 𝑒′ = 𝑒|𝐿′

𝛼′
is a valid split of 𝐿′

𝛼′
, 𝑒 ∈ 𝐸 and 𝜆∗𝑒 ≠ 0

}
as well as for each 𝑒′ ∈ 𝐸′,

𝜆′
𝑒′
= 1 −

∏
𝑒∈𝑅𝑒′

(1 − 𝜆∗𝑒 ) ≠ 0. (3.19)

Consequently, for any 𝑒′ ∈ 𝐸′
𝛼′
there exists 𝑒 ∈ 𝑅𝑒′ with 𝜆∗𝑒 ≠ 0.

Now, let 𝑢, 𝑣 ∈ 𝐿 be arbitrary and for every 𝑒′ ∈ 𝐸′, we consider 𝑒 as above.

(1) Case 𝑒 ∉ 𝐸(𝑢, 𝑣). Then (𝜙̄𝐸(𝜆∗))𝑢𝑣 is constant as 𝜆𝑒 varies and as 𝑅𝑒′ ∋ 𝑒 ∉ 𝐸(𝑢, 𝑣), that
is, 𝑅𝑒′ ⊈ 𝐸(𝑢, 𝑣), we have 𝑒′ ∉ 𝐸′(𝑢, 𝑣) by Lemma 3.2.6 (viii) so that likewise (𝜙𝐸′(𝜆′))𝑢𝑣 is
constant as 𝜆′

𝑒′
varies, yielding(

𝜕𝜙𝐸′

𝜕𝜆′
𝑒′

(𝜆′)

)
𝑢𝑣

= 0 =

(
𝜕𝜙̄𝐸
𝜕𝜆𝑒
(𝜆∗)

)
𝑢𝑣

.

Thus, for 𝑐 in (3.16) any positive constant can be chosen.
(2) Case 𝑒 = 𝐴|𝐵 ∈ 𝐸(𝑢, 𝑣). Without loss of generality, assume that 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵. Then there

are two subcases:
(a) 𝑒′ ∉ 𝐸′(𝑢, 𝑣). On the onehand, as above this implies

(
𝜕𝜙𝐸′

𝜕𝜆′
𝑒′
(𝜆′)

)
𝑢𝑣

= 0, on the other hand,

as 𝑒′ = 𝐴 ∩ 𝐿′
𝛼′
|𝐵 ∩ 𝐿′

𝛼′
∉ 𝐸′(𝑢, 𝑣), either 𝑢 ∉ 𝐿′

𝛼′
or 𝑣 ∉ 𝐿′

𝛼′
, implying

0 =
(
𝜙𝐸′(𝜆

′)
)
𝑢𝑣
=
(
𝜙̄𝐸(𝜆

∗)
)
𝑢𝑣
=

∏
𝑒∈𝐸(𝑢,𝑣)

(
1 − 𝜆∗𝑒

)
.

Thus, 𝜆∗𝑒 = 1 for some 𝑒 ∈ 𝐸(𝑢, 𝑣) with 𝑒 ≠ 𝑒 (recall that 𝜆
∗
𝑒 < 1 for otherwise 𝜆

′
𝑒′
= 1 by

(3.19)), which implies in conjunction with (3.17) that(
𝜕𝜙̄𝐸
𝜕𝜆𝑒
(𝜆∗)

)
𝑢𝑣

= 0 =

(
𝜕𝜙𝐸′

𝜕𝜆′
𝑒′

(𝜆′)

)
𝑢𝑣

.

Again, for 𝑐 in (3.16)) any positive constant can be chosen.
(b) 𝑒′ ∈ 𝐸′(𝑢, 𝑣). Then Lemma 3.2.6(viii) yields 𝑅𝑒′ ⊆ 𝐸(𝑢, 𝑣) and we have, invoking (3.18) as

well as (3.19), that(
𝜕𝜙𝐸′

𝜕𝜆′
𝑒′

(𝜆′)

)
𝑢𝑣

= −
∏

𝑒′∈𝐸′(𝑢,𝑣)
𝑒′≠𝑒′

(
1 − 𝜆′

𝑒′

)
= −

∏
𝑒′∈𝐸′(𝑢,𝑣)
𝑒′≠𝑒′

∏
𝑒∈𝑅𝑒′

(
1 − 𝜆∗𝑒

)

= −
∏

𝑒∈𝐸(𝑢,𝑣)
𝑒∉𝑅𝑒′

(
1 − 𝜆∗𝑒

)
, (3.20)
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32 of 45 LUEG et al.

where the last equality follows from observing that 𝑒 ∉ 𝑅𝑒′ ⇔ ∃𝑒′ ∈ 𝐸′, 𝑒′ ≠
𝑒′such that𝑒 ∈ 𝑅𝑒′ , due to Lemma 3.2.6(vi). Furthermore, again by (3.17), recalling
from above that 𝑅𝑒′ ⊆ 𝐸(𝑢, 𝑣) and (3.20),(

𝜕𝜙̄𝐸
𝜕𝜆𝑒
(𝜆∗)

)
𝑢𝑣

= −
∏

𝑒∈𝐸(𝑢,𝑣)
𝑒≠𝑒

(
1 − 𝜆∗𝑒

)

= −

⎛⎜⎜⎜⎝
∏
𝑒∈𝑅𝑒′
𝑒≠𝑒

(
1 − 𝜆∗𝑒

)⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
∏

𝑒∈𝐸(𝑢,𝑣)
𝑒∉𝑅𝑒′

(
1 − 𝜆∗𝑒

)⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
∏
𝑒∈𝑅𝑒′
𝑒≠𝑒

(
1 − 𝜆∗𝑒

)⎞⎟⎟⎟⎠
(
𝜕𝜙𝐸′

𝜕𝜆′
𝑒′

(𝜆′)

)
𝑢𝑣

.

Thus,

𝑐 =
∏
𝑒∈𝑅𝑒′
𝑒≠𝑒

(
1 − 𝜆∗𝑒

)
satisfies (3.16) as it does not depend on 𝑢 and 𝑣 and is non-zero by Equation (3.19).

Having thus shown (3.16), as detailed above we have established (3.15) thus verifying Whitney
condition (A). □

Whitney condition (B) is a conjecture.

4 INFORMATION GEOMETRY FORWALD SPACE

In [16], we equipped the space of phylogenetic forests with a metric induced from the met-
ric of the Fisher-information Riemannian metric g on  (see Subsection 1.3), where the latter
induces the metric 𝑑 on  . In this section we show, first that this induced metric is compati-
ble with the stratification structure of , and second that this turns into a geodesic Riemann
stratified space.

4.1 Induced intrinsic metric

In [16], we introduced a metric on  induced from the geodesic distance metric 𝑑 of  intro-
duced in Subsection 1.3. Recalling also the definition of path length 𝐿 from Subsection 1.3, for
two wälder 𝐹, 𝐹′ ∈ , set

𝑑 (𝐹, 𝐹
′) ∶= inf

𝛾∶ [0,1]→

𝜙◦𝛾 continuous in  ,
𝛾(0)=𝐹,𝛾(1)=𝐹′

𝐿 (𝜙◦𝛾) .
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WALD SPACE FOR PHYLOGENETIC TREES 33 of 45

This metric defines the induced intrinsic metric topology on . Although in general this topology
may be finer than the one conveyed bymaking an embedding a homeomorphism, as the following
example teaches, this is not the case for wald space.

Example 4.1.1. Consider

 ∶= ({1} × [0, 1]) ∪
⋃

𝑦∈{1∕𝑛∶𝑛∈ℕ}∪{0}

[−1, 1) × {𝑦} ,

an infinite union of half open intervals inℝ2 connected vertically on the right. In the trace topology
where the canonical embedding 𝜄 ∶↪ ℝ2 is a homeomorphism, the sequence 𝑞𝑛 = (0, 1∕𝑛)
converges to 𝑞 = (0, 0). For the induced intrinsic metric

𝑑(𝑥, 𝑦) = inf
𝛾∶ [0,1]→

𝛾 continuous in ℝ2,
𝛾(0)=𝑥,𝛾(1)=𝑦

𝐿ℝ2(𝛾) ,

with the Euclidean length 𝐿ℝ2 , we have, however, 𝑑𝑊(𝑞𝑛, 𝑞) ⩾ 2 for all 𝑛 ∈ ℕ.

Theorem 4.1.2. The topology of  obtained from making 𝜙 a homeomorphism agrees with the
topology induced from the induced intrinsicmetric𝑑 . In particular,𝑑 turns into ametric space.

Proof. By definition, we have that 𝑑 ⩾ 𝑑 , which implies that sequences that converge with
respect to 𝑑 also converge with respect to 𝑑 .
For the converse, assume that ∋ 𝐹𝑛 → 𝐹

′ ∈ with respect to 𝑑 , as 𝑛 → ∞. As there are
only finitely many groves in  it suffices to show that 𝑑 (𝐹𝑛, 𝐹) → 0 for 𝐹𝑛 ∈ 𝐸 and 𝐹 ∈ 𝐸
with a common grove𝐸 . Hence,we assume that 𝜙̄−1𝐸 ◦𝜙(𝐹𝑛) = 𝜆𝑛 ∈ (0, 1)

𝐸 and 𝜙̄−1
𝐸
◦𝜙(𝐹′) = 𝜆′ ∈

[0, 1]𝐸 with 𝜆𝑛 → 𝜆′, due to Theorem 3.1.12. Then, with 𝛿(𝑡) = 𝑡𝜆′ + (1 − 𝑡)𝜆𝑛,

𝛾 ∶ [0, 1] →  , 𝑡 ↦ 𝜙−1◦𝜙̄𝐸◦𝛿(𝑡)) =∶ 𝛾(𝑡)

is a path in connecting 𝛾(0) = 𝐹 with 𝛾(1) = 𝐹𝑛. For 𝑘 ∈ ℕ and 𝑗 = 1,… , 𝑘 we note that

𝜙̄𝐸◦𝛿𝑛

(
𝑗

𝑘

)
= 𝜙̄𝐸◦𝛿𝑛

(
𝑗 − 1

𝑘

)
+ (𝐷𝜙̄𝐸)◦𝛿𝑛

(
𝑗 − 1

𝑘

)
⋅
𝜆′ − 𝜆𝑛
𝑘

+ 𝑜

(‖𝜆′ − 𝜆𝑛‖
𝑘

)
where both terms

𝜙̄𝐸◦𝛿𝑛

(
𝑗 − 1

𝑘

)
, (𝐷𝜙̄𝐸)◦𝛿𝑛

(
𝑗 − 1

𝑘

)
are bounded, also uniformly 𝑛 ∈ ℕ, due to Remark 3.1.8. In consequence, in conjunction with
Subsection 1.3,

𝑑 (𝐹𝑛, 𝐹)

⩽ lim
𝑘→∞

𝑘∑
𝑗=1

𝑑

(
𝜙̄𝐸◦𝛿

(
𝑗 − 1

𝑘

)
, 𝜙̄𝐸◦𝛿

(
𝑗

𝑘

))
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34 of 45 LUEG et al.

= lim
𝑘→∞

𝑘∑
𝑗=1

‖‖‖‖‖‖‖log
⎛⎜⎜⎝
√
𝜙̄𝐸◦𝛿

(
𝑗 − 1

𝑘

)−1
𝜙̄𝐸◦𝛿𝑛

(
𝑗

𝑘

)√
𝜙̄𝐸◦𝛿𝑛

(
𝑗 − 1

𝑘

)−1⎞⎟⎟⎠
‖‖‖‖‖‖‖

⩽ 𝐶‖𝜆′ − 𝜆𝑛‖
with a constant 𝐶 > 0 independent of 𝑛. Letting 𝑛 → ∞ thus yields the assertion. □

4.2 Geodesic space and Riemann stratification

Having established the equivalence between the stratification topology and that of the Fisher
information metric, we longer distinguish between them.

Theorem 4.2.1. The wald space equipped with the information geometry is a geodesic metric space,
that is, every two points in ( , 𝑑 ) are connected by a minimising geodesic.

Proof. By [24, p. 325], ( , g) is geodesically complete as a Riemannian manifold and thus by
the Hopf–Rinow theorem for Riemannian manifolds (among others, [24, p. 224]), it follows that
( , 𝑑 ) is complete and locally compact. ByCorollary 3.1.3,𝜙() is a closed subset of the complete
and locally compact metric space  and so (𝜙(), 𝑑 ) itself is, and so is ( , 𝑑 ). By [16, Theo-
rem 5.1], any two wälder in are connected by a continuous path of finite length in ( , 𝑑 ), which
is complete, and thus applying [20, Corollary, p. 123] yields that ( , 𝑑 ) is complete. Applying
the Hopf–Rinow theorem for metric spaces [8, p. 35] to ( , 𝑑 ), the assertion holds. □

Following Huckemann and Eltzner [21, section 10.6], extend the notion of a Whitney stratified
space in Definition 3.3.4 to the notion of a Riemann stratified space.

Definition 4.2.2. A Riemann stratified space is a Whitney stratified space  of type (A) such that
each stratum 𝑆𝑖 is a 𝑑𝑖-dimensional Riemannian manifold with Riemannian metric g 𝑖 , respec-
tively, if whenever a sequence 𝑞1, 𝑞2,⋯ ∈ 𝑆𝑗 which converges to a point 𝑝 ∈ 𝑆𝑖 (where, assume
again that the sequence of tangent planes 𝑇𝑞𝑛𝑆𝑗 converges to some 𝑑𝑗-dimensional plane 𝑇 as
𝑛 → ∞), then the Riemannian metric g

𝑗
𝑞𝑛

converges to some two form g∗𝑝 ∶ 𝑇 ⊗ 𝑇 → ℝ with
g 𝑖𝑝 ≡ g∗𝑝|𝑇𝑝𝑆𝑖⊗𝑇𝑝𝑆𝑖 .
Theorem 4.2.3. The wald space  equipped with the information geometry is a Riemann
stratified space.

Proof. As we impose the Riemannianmetric g from  onto all of 𝜙() ⊂  , the assertion follows
immediately. □

Example 4.2.4 (Geometry of wald space for 𝑁 = 2). For 𝑁 = 2, 𝐿 = {1, 2}, there is one edge 𝑒 =
1|2, and two different topologies, namely

𝐸 = {1|2} and 𝐸′ = ∅.
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WALD SPACE FOR PHYLOGENETIC TREES 35 of 45

F IGURE 10 Depicting the distance 𝑑 of an arbitrary wald, to the disconnected forest 𝐹∞ as a function of
𝜆1 (left) and between any two other wälder in , as a function of (𝜆1, 𝜆2) (right) as detailed in Example 4.2.4.

The corresponding groves are then 𝜙(𝐸′) = {𝐼}, where 𝐼 is the 2 × 2 unit matrix, and 𝐸 ≅ (0, 1)

such that = 𝐸 ⊔ 𝐸′ ≅ (0, 1]. Using 𝜆 ∈ (0, 1) for the only edge 𝑒 = 1|2, we have
𝜙(𝐸) =

{
𝜙𝐸(𝜆) =

(
1 1 − 𝜆

1 − 𝜆 1

)
∶ 𝜆 ∈ (0, 1)

}
,

Thus, with the definition of 𝑑 in Subsection 1.3, the distance between two phylogenetic forests
𝐹1 = 𝜙̄𝐸(𝜆1), 𝐹2 = 𝜙̄𝐸(𝜆2) with 𝜆1, 𝜆2 ∈ (0, 1] can be calculated as

𝑑 (𝐹1, 𝐹2) =

|||||||ln
⎛⎜⎜⎝
1 − 𝜆2 +

1√
2
𝑝(𝜆2)

1 − 𝜆1 +
1√
2
𝑝(𝜆1)

⎞⎟⎟⎠
+
1

2
√
2
ln

(
(𝑝(𝜆1) + (1 − 𝜆1))

2 − 1

(𝑝(𝜆1) − (1 − 𝜆1))
2 − 1

⋅
(𝑝(𝜆2) − (1 − 𝜆2))

2 − 1

(𝑝(𝜆2) + (1 − 𝜆2))
2 − 1

)|||||| ,
where 𝑝(𝑥) =

√
2
√
(1 − 𝑥)2 + 1 for 𝑥 ∈ [0, 1]. Figure 10 (right) depicts the distance as a function

of 𝜆1, 𝜆2. We obtain the distance to the disconnected forest 𝐹∞ = 𝜙−1𝜙̄𝐸(1):

𝑑 (𝐹1, 𝐹∞) =

|||||| 12√2 ln
(
(𝑝(𝜆1) + (1 − 𝜆1))

2 − 1

(𝑝(𝜆1) − (1 − 𝜆1))
2 − 1

)
− ln

(
1 − 𝜆1 +

1√
2
𝑝(𝜆1)

)|||||| .
This distance is depicted (as a function in 𝜆1) in Figure 10 (left).

5 NUMERICAL EXPLORATION OFWALD SPACE

In this section, we propose a new algorithm to approximate geodesics between two fully resolved
trees 𝐹1 and 𝐹2, that is a mixture of the successive projection algorithm and the extrinsic path
straightening algorithm from [26]. Using this algorithm allows to explore curvature and so-called
stickiness of Fréchet means.
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36 of 45 LUEG et al.

5.1 Approximating geodesics in wald space

From the ambient geometry of  , recalling the notation from Subsection 1.3, we employ the glob-
ally defined Riemannian exponential Exp and logarithm Log at 𝑃 ∈  , with 𝑄 ∈  , 𝑋 ∈ 𝑇𝑃 , as
well as points on the unique (if 𝑃 ≠ 𝑄) geodesic 𝛾𝑃,𝑄 in  comprising 𝑃 and 𝑄. Further, exp and
log denote the matrix exponential and logarithm, respectively:

Exp𝑃 ∶ 𝑇𝑃 →  , 𝑋 ↦
√
𝑃 exp

(√
𝑃
−1
𝑋
√
𝑃
−1)√

𝑃,

Log𝑃 ∶  → 𝑇𝑃 , 𝑄 ↦
√
𝑃 log

(√
𝑃
−1
𝑄
√
𝑃
−1)√

𝑃,

𝛾()
𝑃,𝑄
∶ [0, 1] →  , 𝑡 ↦ Exp𝑃

(
𝑡 Log𝑃(𝑄)

)
,

Furthermore, for a forest 𝐹 ∈ with topology 𝐸, denote the orthogonal projection from the tan-
gent space 𝑇𝑃 at 𝑃 = 𝜙(𝐹) onto the tangent space of the sub-manifold 𝑇𝑃𝜙𝐸(𝐸), as a subspace
of 𝑇𝑃 , with

𝜋𝑃 ∶ 𝑇𝑃 → 𝑇𝑃𝜙𝐸(𝐸).

This projection is computed using an orthonormal basis of 𝑇𝑃𝜙𝐸(𝐸) obtained from applying
Gram–Schmidt to the basis {

𝜕𝜙𝐸
𝜕𝜆𝑒
(𝜆)∶ 𝑒 ∈ 𝐸

}
of 𝑇𝑃𝜙𝐸(𝐸). Finally, we make use of the projection

𝜋∶  → , 𝑃 ↦ argmin
𝐹∈

𝑑 (𝑃, 𝜙(𝐹)),

where 𝜋 is well-defined for 𝑃 ∈  close enough to 𝜙(). The following algorithm is similar to
the extrinsic path straightening algorithm from [26], which has been inspired by [38]. It starts with
generating a discrete curve using the successive projection algorithm from [26] and then itera-
tively straightening it and adding more points in between the points of the discrete curve. To keep
notation simple, we omit 𝜙 and identify a forest 𝐹 ∈ with its matrix representation 𝜙(𝐹).

Definition 5.1.1 (Geodesic Approximation Algorithm). Let 5 ⩽ 𝑛0 ∈ ℕ be the odd number of
points in the initial path, 𝐼 ∈ ℕ the number of extensions iterations and 𝐽 ∈ ℕ the number of
straightening iterations of the path.

Input: 𝐹, 𝐹′ ∈

Initial path: Set 𝐹1 ∶= 𝐹, 𝐹𝑛0 ∶= 𝐹
′, then, for 𝑖 = 2, … , (𝑛0 − 3)∕2, compute

𝐹𝑖 = 𝜋

(
𝛾𝐹𝑖−1,𝐹𝑛0−𝑖+2

(
1

𝑛0 − 2𝑖 + 3

))
,

𝐹𝑛0−𝑖+1 = 𝜋

(
𝛾𝐹𝑛0−𝑖+2,𝐹𝑖−1

(
1

𝑛0 − 2𝑖 + 3

))
,
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WALD SPACE FOR PHYLOGENETIC TREES 37 of 45

and, with 𝐹(𝑛0−1)∕2 ∶= 𝜋(𝛾𝐹(𝑛0−3)∕2,𝐹(𝑛0+1)∕2 (0.5)), set the current discrete path to

Γ ∶=
(
𝐹1, … , 𝐹(𝑛0−3)∕2, 𝐹(𝑛0−1)∕2, 𝐹(𝑛0+1)∕2, … , 𝐹𝑛0

)
.

Iteratively extend and straighten: Do 𝐼 times:

Extend: With the current discrete path Γ = (𝐹0, … , 𝐹𝑛), for 𝑖 = 0, … , 𝑛 − 1 compute
𝐺𝑖 ∶= 𝜋

(
𝛾𝐹𝑖,𝐹𝑖+1(0.5)

)
and define the new current discrete path

Γ ∶= (𝐹0, 𝐺0, 𝐹1, 𝐺1, … , 𝐹𝑛−1, 𝐺𝑛−1, 𝐹𝑛).

Do 𝐽 times:

Straighten: With the current discrete path Γ = (𝐹0, … , 𝐹𝑛), for 𝑖 = 2, … , 𝑛 − 1,
compute 𝑋𝑖 =

1
2
(Log𝐹𝑖 (𝐹𝑖−1) +

(
Log𝐹𝑖 (𝐹𝑖+1)

)
, update 𝐹𝑖 ∶= 𝜋

(
Exp()

𝐹𝑖
(𝑋𝑖)

)
, and

define the new current discrete path

Γ ∶= (𝐹0, 𝐹1, … , 𝐹𝑛).

Return: The current discrete path Γ, which is a discrete approximation of the geodesic
between 𝐹 and 𝐹′ with 2𝐼(𝑛0 − 1) + 1 points.

Although Theorem 4.2.1 guarantees the existence of a shortest path between any 𝐹, 𝐹′ ∈ , it
may not be unique, and it is not certain whether the path found by the algorithm is near a shortest
path or represents just a local approximation.
To better assess the quality of the approximation Γ = (𝐹0, … , 𝐹𝑛) found by the algorithm, [37]

propose considering its energy,

𝐸(Γ) =
1
2

𝑛−1∑
𝑖=0

𝑑 (𝐹𝑖, 𝐹𝑖+1)
2 ,

yielding a means of comparison for discrete paths with equal number of points.

Example 5.1.2 (Geodesics inwald space for𝑁 = 3). Revisiting fromExample 3.2.9 with unique
top-dimensional grove 𝐸 ≅ (0, 1)

3, we approximate a shortest path between the two phyloge-
netic forests 𝐹1, 𝐹2 ∈ with 𝜙(𝐹1) = 𝜙𝐸(𝜆(1)) and 𝜙(𝐹2) = 𝜙𝐸(𝜆(2)) using the algorithm from
Definition 5.1.1, where

𝜆(1) = (0.1, 0.9, 0.07) and 𝜆(2) = (0.3, 0.1, 0.9).

This path is depicted in Figure 11, as well as the BHV space geodesic (which is a straight line with
respect to the 𝓁-parametrisation from Definition 2.1.2), first in the coordinates 𝜆 ∈ (0, 1)3 and
second embedded into  viewed as ℝ3, cf. Figure 3. In contrast to the BHV geometry, the shortest
path in the wald space geometry sojourns on the 2-dimensional boundary, where the coordinate
𝜆1 is zero for some time. The end points 𝜆(1), 𝜆(2), are trees that show a high level of disagreement
over the location of taxon 1, but a similar divergence between taxon 2 and taxon 3. The section of
the approximate geodesic with 𝜆1 = 0 represents trees on which the overall divergence between
taxon 1 and the other two taxa is reduced. In this way, the conflicting information in the end points
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38 of 45 LUEG et al.

F IGURE 11 The wald space geodesic (red) between fully resolved phylogenetic forests 𝐹1, 𝐹2 ∈ (𝑁 = 3)
sojourns on the boundary (brown). The image of the BHV space geodesic (blue) remains in the grove as discussed
in Example 5.1.2. In 𝜆-representation (left) and embedded in  viewed as ℝ3 (right, cf. Figure 3).

is resolved by reducing the divergence (and hence increasing the correlation) between taxon 1 and
the other two taxa, in comparison to the BHV geodesic which has 𝜆1 > 0 along its length.

5.2 Exploring curvature of wald space

As curvature computations involving higher order tensors are heavy on indices, we keep notation
as simple as possible in the following by indexing splits in 𝐸 by

ℎ, 𝑖, 𝑗, 𝑘,𝑚, 𝑠, 𝑡 ∈ 𝐸 .

The concepts of transformation of metric tensors, Christoffel symbols and curvature employed in
the following can be found in any standard text book on differential geometry, for example, [24,
25].
Recall that the Riemannian structure of wald space is inherited on each grove 𝐸 ≅ (0, 1)

𝐸

from the information geometric Riemann structure of  pulled back from 𝜙𝐸 ∶ (0, 1)𝐸 →  . In
consequence, the Riemannian metric tensor g (𝐸)

𝜆
of 𝐸 , evaluated at 𝜆 ∈ (0, 1)𝐸 , is given by the

Riemannian metric tensor g
𝜆
at 𝜙𝐸(𝜆) = 𝑃, where base vectors transform under the derivative of

𝜙𝐸 :

g
(𝐸)

𝜆
(𝑥, 𝑦) =

∑
𝑖∈𝐸

∑
𝑗∈𝐸

𝑥𝑖𝑦𝑗 g
()
𝑃

(
𝜕𝜙𝐸
𝜕𝜆𝑖
(𝜆),

𝜕𝜙𝐸
𝜕𝜆𝑗
(𝜆)

)

for (𝑥, 𝑦) ∈ 𝑇𝜆𝐸 × 𝑇𝜆𝐸 ≅ ℝ𝐸 × ℝ𝐸 and

(d𝜙𝐸)𝜆(𝑇𝜆𝐸) = span

{
𝜕𝜙𝐸
𝜕𝜆𝑖
(𝜆)∶ 𝑖 ∈ 𝐸

}
⊆ 𝑇𝑃 .
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WALD SPACE FOR PHYLOGENETIC TREES 39 of 45

As usual (g𝑖𝑗)𝑖,𝑗∈𝐸 denotes the matrix of g
(𝐸)

𝜆
in standard coordinates and (g 𝑖𝑗)𝑖,𝑗∈𝐸 its inverse.

This yields the Christoffel symbols for 𝑖, 𝑗,𝑚 ∈ 𝐸,

Γ𝑚𝑖𝑗 =
1
2

∑
𝑘∈𝐸

(
𝜕g𝑗𝑘

𝜕𝜆𝑖
+
𝜕g𝑘𝑖
𝜕𝜆𝑗

−
𝜕g𝑖𝑗

𝜕𝜆𝑘

)
g𝑘𝑚,

which give the representation of the curvature tensor

𝑅𝑖𝑗𝑘𝑠 =
∑
𝑡∈𝐸

(∑
ℎ∈𝐸

Γℎ
𝑖𝑘
Γ𝑡
𝑗ℎ
−
∑
ℎ∈𝐸

Γℎ
𝑗𝑘
Γ𝑡
𝑖ℎ
+
𝜕
𝜕𝜆𝑗
Γ𝑡
𝑖𝑘
−
𝜕
𝜕𝜆𝑖
Γ𝑡
𝑗𝑘

)
g𝑡𝑠

in the coordinates 𝑖, 𝑗, 𝑘, 𝑠 ∈ 𝐸.
Introducing the notation (𝑃 = 𝜙𝐸(𝜆))

𝑄𝑖 = 𝑃
−1 𝜕𝜙𝐸
𝜕𝜆𝑖
(𝜆) and 𝑄𝑖𝑗 = 𝑃

−1 𝜕
2𝜙𝐸
𝜕𝜆𝑖𝜕𝜆𝑗

(𝜆)

and performing a longer calculation in coordinates 𝑖, 𝑗 ∈ 𝐸, gives

𝑅𝑖𝑗𝑖𝑗 =
1
4

∑
𝑎,ℎ∈𝐸

g𝑎ℎ Tr
[(
2𝑄𝑖𝑗 − 𝑄𝑗𝑄𝑖 − 𝑄𝑖𝑄𝑗

)
𝑄𝑎
]
Tr
[(
2𝑄𝑖𝑗 − 𝑄𝑗𝑄𝑖 − 𝑄𝑖𝑄𝑗

)
𝑄ℎ
]

−
∑
𝑎,ℎ∈𝐸

g𝑎ℎ Tr
[
𝑄2𝑖 𝑄𝑎

]
Tr
[
𝑄2𝑗𝑄ℎ

]
−Tr

[(
2𝑄𝑖𝑗 − 𝑄𝑗𝑄𝑖 − 𝑄𝑖𝑄𝑗

)
𝑄𝑖𝑗

]
.

Evaluating the sectional curvature tensor at a pair of tangent vectors 𝑥, 𝑦 ∈ 𝑇𝜆𝐸 ≅ ℝ𝐸 at 𝜆 gives
the sectional curvature 𝐾(𝑥, 𝑦) at 𝜆 of the local 2-dimensional subspace spanned by geodesics
with initial directions generated by linear combinations of 𝑥 and 𝑦. Abbreviating |𝑥|(𝐸)

𝜆
∶=

(g
(𝐸)

𝜆
(𝑥, 𝑥))1∕2 we have

𝐾(𝑥, 𝑦) =

∑
𝑖∈𝐸

∑
𝑗∈𝐸 𝑥𝑖𝑦𝑖𝑅𝑖𝑗𝑖𝑗|𝑥|(𝐸)

𝜆
|𝑦|(𝐸)
𝜆
− g

(𝐸)

𝜆
(𝑥, 𝑦)

.

Example 5.2.1. Again revisiting from Example 3.2.9 with 𝑁 = 3, we first consider wälder in
the unique top-dimensional grove 𝐸 ≅ (0, 1)3, and then on its boundary.

(1) We computeminimum andmaximum sectional curvatures at the wälder 𝐹 with 𝜆 = (𝑎, 𝑎, 𝑎),
for 𝑎 ∈ (0, 1), as displayed in Figure 12. Traversing along 0 < 𝑎 < 1 we find both positive and
negative sectional curvatures and their extremes escape to positive and negative infinity as
the vantage point, the isolated forest 𝐹∞, is approached, where all dimensions collapse.

(2) To assessAlexandrov curvature that measures ‘fatness/slimless’ of geodesic triangles (hence it
does not require a Riemannian structure, a geodesic space suffices, see [41]) we compute sev-
eral geodesic triangles and their respective angle sums within . The corners of the triangles
are wälder 𝐹1, 𝐹2, 𝐹3 ∈ , where {𝑖, 𝑗, 𝑘} = {1, 2, 3}, 𝐸𝑖 ∶= {𝑗|𝑘} and 𝜆𝑗|𝑘 ∈ (0, 1]. Figure 13
depicts the geodesic triangles (left panel) non-isometrically embedded in ℝ3 representing
the off-diagonals in  , as well as their respective angle sums (right panel). When the two
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40 of 45 LUEG et al.

F IGURE 1 2 Minimum and maximum sectional curvatures along 0 < 𝑎 < 1 of wald space (𝑁 = 3) at 𝐹 ∈

with 𝜆 = (𝑎, 𝑎, 𝑎), as described in Example 5.2.1.

F IGURE 13 Displaying sums of angles in degrees (right) of geodesic triangles spanned by three wälder for
𝑁 = 3 with one disconnected leaf and edge weight 0 < 𝜆𝑒 < 1 between the other two leaves as discussed in
Example 5.2.1. Embedding in  viewed (non-isometrically) as ℝ3, the geodesic triangles are visualised on the
left, where the origin corresponds to 𝜆𝑒 = 1.

connected leaves approach one another (𝜆𝑒 ≈ 0) triangles become infinitely thin, but near
𝐹∞ (𝜆𝑒 ≈ 1) the triangles become Euclidean.

Conjecture 5.2.2. This example hints towards a general situation.

(i) Wald space groves feature positive and negative sectional curvatures alike, both of which become
unbounded when approaching the vantage point 𝐹∞.

(ii) When approaching the infinitely far away boundary of  from within  , some Alexandrov
curvatures tend to negative infinity.

5.3 Exploring stickiness in wald space

Statistical applications in tree space often require the concept of a mean or average tree. As the
expectation of a random variable taking values in a non-Euclideanmetric space (𝑀, 𝑑) is not well-
defined, [15] proposed to resort instead to a minimiser of expected squared distance to a random
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WALD SPACE FOR PHYLOGENETIC TREES 41 of 45

F IGURE 14 Two samples of wälder: 𝐹1, 𝐹2, 𝐹3 and 𝐹′1, 𝐹2, 𝐹3 where 𝐹1 and 𝐹
′
1
only differ by weights of their

interior edges. By symmetry, 𝐹 is a candidate for each Fréchet mean, see Example 5.3.1.

element 𝑋 in𝑀,

𝑝∗ ∈ argmin
𝑝∈𝑀

𝔼[𝑑(𝑝, 𝑋)2]

called a barycenter or Fréchet mean. In a Euclidean geometry, if existent, the Fréchet mean is
unique and identical to the expected value of 𝑋. Given a sample 𝑋1,… , 𝑋𝑛

𝑖.𝑖.𝑑.
∼ 𝑋, measurable

selections from the set

argmin
𝑝∈𝑀

(𝑝), (𝑝) ∶=
1
𝑛

𝑛∑
𝑗=1

𝑑(𝑝, 𝑋𝑗)
2

are called empirical Fréchet means and their asymptotic fluctuations allow for non-parametric
statistics. Usually,  is called the empirical Fréchet function.
Recently, it has been discovered by [12, 18] that positive curvatures may increase asymptotic

fluctuation by orders of magnitude, and by [19, 22] that infinite negative Alexandrov curva-
ture may completely cancel asymptotic fluctuation, putting a dead end to this approach of
non-Euclidean statistics. In particular, this can be the case for BHV spaces, cf. [3–5].

Example 5.3.1 (Stickiness in wald space). Consider two samples 𝐹1, 𝐹2, 𝐹3 ∈ and 𝐹′
1
, 𝐹2, 𝐹3 ∈

 with 𝑁 = 4, depicted in Figure 14, where 𝐹1 and 𝐹′1 only differ by weights of their interior
edges. By symmetry, their Fréchet means are of form 𝐹 having equal but unknown pendent edge
weights 0 < 𝜆pen < 1 and unknown interior edge weights 0 ⩽ 𝜆int < 1, as in Figure 14. It turns out
that the Fréchet means of both samples agree in BHV with 𝜆int = 0, that is, the empirical mean
sticks to the lower dimensional star tree stratum (featuring only pendant edges).
In contrast, the two empirical Fréchet functions in wald space

(𝐹) =
1
3

(
𝑑 (𝐹, 𝐹1)

2 + 𝑑 (𝐹, 𝐹2)
2 + 𝑑 (𝐹, 𝐹3)

2
)

 ′(𝐹) =
1
3

(
𝑑 (𝐹, 𝐹

′
1)
2 + 𝑑 (𝐹, 𝐹2)

2 + 𝑑 (𝐹, 𝐹3)
2
)

have differentminimisers, and, in particular theminimiser for ′ does not stick to the star stratum
but has 𝜆int > 0. Figure 15 illustrates the values of  and  ′ for different values of the parameters
𝜆pen, 𝜆int of 𝐹 near the respective minima.
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42 of 45 LUEG et al.

F IGURE 15 Heat map for the values of the Fréchet functions  (left) and  ′ (right) of two samples as
functions of 𝜆pen, 𝜆int determining candidate minimisers 𝐹 as detailed in Example 5.3.1 and illustrated in Figure 14.

Remark 5.3.2. This preliminary research indicates that effects of stickiness, which are still
expected where ‘too many’ lower dimensional strata hit higher dimensional strata, are less severe
in wald space than in BHV space, thusmaking wald spacemore attractive for asymptotic statistics
based on Fréchet means.

6 DISCUSSION

In previous work [16], the wald space was introduced as a space for statistical analysis of
phylogenetic trees, based on assumptions with a stronger biological motivation than existing
spaces. In that work, the focus was primarily on geometry, whereas here we have provided
a rigourous characterisation of the topology of wald space. Specifically, wald space  is a
disjoint union of open cubes with the Euclidean toplogy, and as topological subspaces we
have

𝑁−1 ⊂ ⊂ 𝑁

with the BHV space 𝑁−1 from [7] and the edge-product space 𝑁 from [31]. We have shown
that this topology is the same as that induced by the information metric 𝑑 defined in [16]. Fur-
thermore, we have shown is contractible, and so does not contain holes or handles of any kind.
Examples suggest that is a truncated cone in some sense (see Figure 4), but its precise formu-
lation remains an open problem. As established in Theorem 3.3.5, boundaries between strata in
wald space satisfy Whitney condition (A); whether Whitney condition (B) holds is an open prob-
lem, although we expect it to hold on the boundaries of any grove (0, 1)𝐸 ≅ 𝐸 corresponding to
the limit as one or more coordinates 𝜆𝑒 → 0 (i.e., the boundaries between strata in𝑁−1). Our
key geometrical result is that with the metric 𝑑 , wald space is a geodesic metric space, Theo-
rem 4.2.1. The existence of geodesics greatly enhances the potential of wald space as a home for
statistical analysis.
The approximate geodesics computed via the algorithm in Definition 5.1.1 provide insight into

the geometry and a source of conjectures. For example, unlike geodesics in BHV tree space,
it appears that geodesics in wald space can run for a proportion of their length along grove
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WALD SPACE FOR PHYLOGENETIC TREES 43 of 45

boundaries, even when the end points are within the interior of the same grove (see Exam-
ple 5.1.2). If wald space is uniquely geodesic (so that there is a unique geodesic between any
given pair of points), its potential as a home for statistical analysis would be improved fur-
ther. However, the presence of positive and negative sectional curvatures for different pairs of
tangent vectors at the same point, and an apparent lack of global bounds on these, suggests
geodesics may be non-unique, or at least makes proving uniqueness more challenging. Finally,
Example 5.3.1 which involves approximate calculation of Fréchet means, suggests that wald
space is less ‘sticky’ than BHV tree space and hence more attractive for studying asymptotic
statistics.
A variety of open problems remain, and we make the following conjectures.

(1) All points on any geodesic between two trees are also trees.
(2) Geodesics between trees in the same grove do not leave the closure of that grove.
(3) The disconnected forest 𝐹∞ is repulsive, in the sense that the only geodesics passing through

the disconnect forest have an end point there.

Other open problems include the following, all mentioned elsewhere in the paper.

(4) Is wald space a truncated topological cone?
(5) Does Whitney condition (B) hold at grove boundaries?
(6) Most importantly for statistical applications, is wald space uniquely geodesic or can examples

of exact non-unique geodesics be constructed? What is then the structure of cut loci?
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