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• Resistomes and microbiomes were 
quantified in two rural UK river 
catchments. 

• Differences in resistance were con-
trasted between the rivers vs local 
hydrology. 

• Microbiomes were assessed through 
Quantitative Microbial Profiling. 

• The wetter Eden River had higher levels 
of resistance than the drier Coquet 
River. 

• Local hydrology impacts levels of resis-
tance in rivers with diffuse pollution.  
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A B S T R A C T   

Many studies have characterised resistomes in river microbial communities. However, few have compared 
resistomes in parallel rural catchments that have few point-source inputs of antimicrobial genes (ARGs) and 
organisms (i.e., AMR) – catchments where one can contrast more nebulous drivers of AMR in rural rivers. Here, 
we used quantitative microbial profiling (QMP) to compare resistomes and microbiomes in two rural river 
catchments in Northern England, the Coquet and Eden in Northumberland and Cumbria, respectively, with 
different hydrological and geographical conditions. The Eden has higher flow rates, higher annual surface runoff, 
and longer periods of soil saturation, whereas the Coquet is drier and has lower flowrates. QMP analysis showed 
the Eden contained significantly more abundant microbes associated with soil sources, animal faeces, and 
wastewater than the Coquet, which had microbiomes like less polluted rivers (Wilcoxon test, p < 0.01). The Eden 
also had greater ARG abundances and resistome diversity (Kruskal Wallis, p < 0.05), and higher levels of 
potentially clinically relevant ARGs. The Eden catchment had greater and flashier runoff and more extensive 
agricultural land use in its middle reach, which explains higher levels of AMR in the river. Hydrological and 
geographic factors drive AMR in rural rivers, which must be considered in environmental monitoring 
programmes.  
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1. Introduction 

Antimicrobial resistance (AMR) is recognised as a global health and 
societal issue. In 2019, it was estimated that 4.95 million deaths could be 
associated or directly attributed to AMR (Murray et al., 2022) and it has 
been conservatively projected that up to 10 million additional deaths per 
year might be expected by 2050 (O’Neil, 2014). As a response to 
growing concerns, the United Nations, led by the World Health Orga-
nisation, is developing an integrated surveillance programme for AMR 
and antimicrobial use, which was recently highlighted by the G20 
Summit Leaders' Declaration aimed at “strengthening global health and 
implementing a one health approach” (G20 New Delhi Global Leaders 
(NDGL), 2023). However, AMR prevails across human, animal, and 
environmental sectors, and surveillance must be inclusive, even in pla-
ces where the consequences of antimicrobial use are not as evident 
(UNEP, 2023). 

AMR is intrinsic in the environment with antibiotic resistance genes 
(ARGs) that can encode antibiotic resistance being found in ~30,000 yr- 
old glacial sediments (Dcosta et al., 2011). However, extensive AMU in 
healthcare and agriculture has expanded resistomes across the biosphere 
through a combination of mutations and horizontal gene transfer (HGT) 
on mobile genetic elements (MGEs), microbial selection, and environ-
mental pollution (Bengtsson-Palme et al., 2018). Human activity, such 
as agricultural use (Xiang et al., 2018; Neher et al., 2020; Burch et al., 
2022) and wastewater discharges (Zhang et al., 2022), has increased 
resistance in the natural environment, changing the “intrinsic” resistome 
(i.e., “background” ARGs present in nature before human impact). The 
question is how to we characterise changes in the intrinsic resistome. 
Most studies focus on resistance “hot spots”, but such locations explain 
little about changes in intrinsic AMR that require different types of 
places for study. 

As background, hot spots include locations and environments 
contaminated by wastewater releases (Dhanji et al., 2011; Amos et al., 
2014; Devarajan et al., 2015; Tacão et al., 2022), agriculture activity 
(Seiler and Berendonk, 2012), pharmaceuticals (Šimatović and 
Udiković-Kolić, 2020; Wilkinson et al., 2022) and heavy metals (Gupta 
et al., 2022; Zhang et al., 2023a). Further, most studies focus on urban 
catchments, with less data being available on AMR in rural landscapes, 
which are critical for baselining the extent of human influence in more 
impacted locations. 

As implied, one way of assessing and explaining changes in intrinsic 
AMR is to study locations without extensive AMU or overt waste inputs, 
such as rural river catchments. Catchment studies can contrast subtle 
effects of different inputs and land uses, with rivers themselves acting as 
“biomarkers” for native AMR conditions (Vaz-Moreira et al., 2014). 
Within this context, the United Kingdom (UK) five-year National AMR 
Action Plan includes environmental AMR surveillance of rivers at the 
catchment scale to better understand what intrinsic resistance now looks 
like in the UK. 

In broad terms, there is a lack of work that compares rural catch-
ments with similar land-use to reveal underlying drivers of environ-
mental drivers of in situ AMR. Such comparisons are difficult, often due 
to inconsistency in sampling methods and analytical techniques between 
different environmental AMR research studies (Hassoun-Kheir et al., 
2021). However, comparisons of multiple river catchments with pre-
dominantly rural land-use, but different hydrometeorological charac-
teristics, can be used to interpret the potential impact of local hydrology, 
catchment characteristics, and climate as AMR drivers. Differences in 
rainfall and runoff likely impact microbiomes and resistomes in 
receiving rivers, due to different carriage of ARGs and microbes from the 
land (Almakki et al., 2019). However, relationships between temporal 
distribution and intensity of precipitation and land use has not been 
reported in most studies (Hamilton et al., 2020). 

In addition to characterising the distribution and abundance of ARGs 
in a catchment, analysis of microbial taxa is important in understanding 
land-water interactions. Analysis of next-generation sequencing (NGS) 

data using quantitative microbial profiling (QMP) has been shown to be 
an effective approach for such analysis, which overcomes weaknesses in 
traditional normalisation techniques for NGS data, such as rarefaction 
(McMurdie and Holmes, 2014). QMP also can improve quantitative 
abundance estimates of resident microbial communities (Ott et al., 
2021b). This approach, first introduced by Vandeputte et al. (2017), 
rarefies NGS reads to the lowest sampling depth (i.e. sequencing depth 
divided by cell counts), instead of the traditional minimum read depth 
(Gloor et al., 2017) that can lead to data from samples being omitted 
(McMurdie and Holmes, 2014) and false discovery rates from subse-
quent statistical testing (Mandal et al., 2015; Weiss et al., 2017). 

Here we compared hydrology, land use, microbiomes, and resis-
tomes in two rural river catchments in the UK, using the Coquet and 
Eden Rivers as case studies (Fig. 1). Differences in microbial commu-
nities and ARGs between catchments then were used to identify drivers 
of AMR within rural catchments. Overall, we show the benefit of parallel 
case-studies in assessing environmental AMR and how they can help 
inform priorities in AMR surveillance plans. 

2. Materials and methods 

2.1. Site description and catchment sampling 

The Coquet River catchment is in NE England (Northumberland) and 
spans from the Cheviot Hills to the seaside town of Amble (Fig. 1B). It 
has numerous small towns, including Shillmoor, Sharperton, Thropton, 
Rothbury, Warkworth and Amble. The total Coquet catchment area is 
606 km2 and the length of the river is 60 km. In contrast, the Eden River 
catchment is in NW England (Cumbria) and is larger than Coquet 
catchment, being 2324 km2 in area (Fig. 1A). The Eden is split into six 
sub-catchments, of which the Upper Eden (670 km2) and Lower Eden 
(461 km2) were chosen for work here due to their similar size as the 
Coquet. In the Eden sub-catchments, there are several small towns, such 
as Kirkby Stephen, Appleby in Westmorland, and Temple Sowerby as 
well as the city of Carlisle near the Irish Sea. For practical purposes, 
these catchments were chosen due to their close geographic proximity 
and to compare catchments spanning the west-east precipitation 
gradient in the Northern UK (due to eastern tracking weather systems 
and orographic effects), which significantly impacts western vs. eastern 
hydrology. 

The Coquet and Eden catchment areas were extracted using ArcMap 
(Attal, 2017; ESRI, 2018), and land-use was classified using Land Cover 
Map (LCM) 2015 (Rowland et al., 2017) (Fig. 1). Land-use types were 
grouped in ‘urban’, ‘rural’ and ‘pristine’ as shown in Table S1. The 
percentage of land-use within a 2 km buffer around each sampling site 
was calculated as per Amos et al. (2015) (Fig. 1C). Sample sites were 
selected to capture a variety of land-uses along the river, whilst also 
allowing sampling to be safe and logistically suitable. For example, most 
samples were collected at mid-stream from bridges. 

Exact locations of sample sites are shown in Table S2. Twelve and ten 
sampling sites were chosen for the Coquet and Eden, respectively, where 
Site A was sampled farthest upstream, and Sites L and J were sampled 
farthest downstream. Sampling was always performed from upstream to 
downstream, over three separate days in each catchment on the speci-
fied dates in 2020 and 2021 (Table S3). Sampling had been planned to 
take place over a shorter time, but sampling trips needed to be rear-
ranged due to numerous disruptive lockdowns during the COVID-19 
pandemic. 

When onsite, river water quality was assessed for temperature, dis-
solved oxygen (DO) and conductivity using an HQ40 portable multi-
meter (HACH) and pH using a 500 series portable pH meter (Jenway). 
River water samples were collected in triplicate, using a bucket cleaned 
with 70 % ethanol solution between uses and rinsed with the sample 
before collection. Five litres were collected in total, with three litres 
being used for DNA extraction and two litres used for all other analyses. 

River volumetric flow rate was estimated in situ during two of the 
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three sampling trips for each catchment (September and October/ 
November), where river velocity was estimated using the float method 
(Jowett, 1997; Michaud and Wierenga 2005). The cross-sectional area of 
the river at each site was calculated using the measured river width and 
depth, which was multiplied by the surface velocity. A correction factor 
of 0.85 was applied to surface velocity data (Michaud and Wierenga, 
2005; Ott et al., 2021a). Flow rate in the March sampling trip was not 
performed due to including microbial plate colony culturing (Section 
2.6), which required extra field- and lab-processing time. 

2.2. DNA extraction and quantification of 16SrRNA, ARGs, MGEs and 
Microbial Source Tracking (MST) probes 

For each site visit, three litres of river water (3 × 1.0 L composite 
samples) were filtered through 0.22 μm cellulose filter paper (Merck 
Millipore), before subsequent processing. DNA was extracted from mi-
crobial cells trapped on the filter paper using the FastDNA Spin kit for 
soil (MP Biomedicals, UK). Following extraction, samples were assessed 
for purity using a NanoDrop 1000 Spectrometer (Thermoscientific, UK) 
and DNA concentration was measured using the Qubit® dsDNA High 

Sensitivity (HS) Assay Kits (Invitrogen, UK). The extracted DNA was 
diluted to 5 ng/μL for quantitative polymerase chain reaction (qPCR) 
analysis to minimise inhibition. 

Human and ruminant Bacteroidetes MST quantification (HuBac and 
RuBac respectively) was performed using primers and probes supplied 
by the Environment Agency (EA) (Porter and Great Britain. Environment 
Agency., 2008). For the MST probes, and 16S rRNA (total bacteria), 
Taqman qPCR reactions were conducted using SSoAdvanced™ Univer-
sal Probes Supermix (BioRad) (Table S4). Faecal coliforms (Table S4) 
were quantified using the qPCR SYBR green-based method assay. SYBR- 
green reactions were conducted using SSoAdvanced Universal SYBR® 
Green Supermix (Bio-Rad). Assays were completed in duplicate using 
the Bio-Rad CFX c1000 System (Bio-Rad), with a negative control. 

2.3. Next-generation sequencing 

Amplification of the 16S rRNA gene was confirmed through PCR and 
qPCR. The Illumina MiSeq platform at NU-OMICS, Northumbria Uni-
versity (UK) was used to sequence the hypervariable V4 region 515F- 
806R of the 16S rRNA gene with V2 500 cycle chemistry. Sample 

Fig. 1. A) the Eden catchment map with sample locations and land-use B) The Coquet catchment map with sample locations and land-use C) Percentage of Pristine, 
Rural and Urban land-use within a 2 km buffer in sampling locations. Measurement sites include sample sites for this study, National River Flow Archive (NRFA) 
Gauge Site (see Section 2.7) and DEFRA Hydrology Database Explorer (HDE) Rainfall measurement sites (see Section 2.7). Land-use classifications according to Land 
Cover Map 2015 (Rowland et al., 2017) were grouped into Pristine, Rural and Urban according to Table S1. 
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preparation and sequencing was conducted using the Schloss MiSeq Wet 
Lab SOP (Kozich et al., 2013), including a positive control (mock com-
munity, ZymoBIOMICS Microbial Community DNA Standard, Zymo 
Research) and negative control (H2O). 

Raw sequences were available as FASTQ files and were processed 
using QIIME2 (v. 2021.4) (Estaki et al., 2020). Reads were denoised into 
Amplicon Sequence Variants (ASVs) with DADA2 (Callahan et al., 
2016). Then Naïve Bayes classifiers pre-trained on SILVA 138 99 % 
OTUs full-length sequences were used for taxonomic assigned to genus 
level. ASVs of <0.1 % of the mean sample depth were removed to ac-
count for MiSeq bleed (Comeau et al., 2017). The taxonomy and ASV 
table biom file were produced for downstream analysis in R Studio 
(v.4.2.2), with the phyloseq (v.1.42.0) and vegan (v.2.6-4) packages. 
ASVs not classified to phylum level, mean value <1 and maximum value 
<10 was removed. This resulted in a total of 2991 taxa for 66 samples 
(compared to 4197 taxa pre-quality filtering), with a minimum of 4280, 
median of 26,212 and maximum of 119,457 reads. 

2.4. Quantitative Microbial Profiling and Hill Diversity Analysis 

Quantitative Microbial Profiling (QMP) was used to rarefy ASVs as 
described previously (Vandeputte et al., 2017; Ott et al., 2021b), using R 
programming from http://www.raeslab.org/software/QMP (Vande-
putte et al., 2017). Samples were rarefied to an equal sampling depth (i. 
e., sequencing depth divided by cell counts), using the R function rar-
efy_even_sampling_depth (seed 711). Following rarefaction, abundances 
were multiplied with an estimated cell concentration/mL of river water, 
which was calculated by dividing the 16S rRNA concentration/mL by 
4.1, which is the estimated 16S rRNA gene copy numbers per bacterial 
cell (Klappenbach, 2001). 

Hill numbers were used to measure the species diversity. These have 
been used more frequently in macroecology as an improved method of 
determining species diversity and address the problem of rare taxa in 
diversity influences (Boeken and Shachak, 2006; Chao et al., 2014; 
Alberdi and Gilbert, 2019a). The influence of rare and abundant taxa are 
assessed through changing the order of diversity (q), where at q = 1 
relative abundances of ASVs are assessed according to their original 
values, at q < 1 rare ASVs are overweighed and at q > 1, highly abun-
dant ASVs are overweighed (Alberdi and Gilbert, 2019b). Hill numbers 
for QMP abundances were calculated using the hilldiv R package 
(v.1.5.1) (Alberdi and Gilbert, 2019b) and diversity profiles were 
visualised using ggplot2 (v.3.4.2). As described in Ott et al. (2021b), the 
Sørenson-type over-lap dissimilarity measure at q = 1 was plotted on a 
Non-metric Multi-dimensional Scaling (NMDS) plot (Alberdi and 
Gilbert, 2019b), to visualise the proportion of nonshared ASVs between 
sample sites and between different sampling months. 

2.5. Relative abundance of ARGs and MGEs using high-throughput qPCR 

Resistomes were characterised through high-throughput qPCR (HT- 
qPCR), using the Resistomap Oy (Helsinki, Finland) SmartChip Real- 
time PCR system. DNA from 58 unique samples were analysed. Thirty- 
two representative samples were analysed for the full array of 384 
ARG and MGEs offered by Resistomap (Table S6). Based on these ana-
lyses, 96 genes were selected for analysis of the remaining samples 
(Table S7). DNA samples were first diluted to 10 ng/μL based on con-
centrations measured with the NanoDrop 1000 Spectrometer (Thermo-
scientific, UK). DNA samples, qPCR reagents and primer sets were mixed 
in 100 nL reaction SmartChip™ wells, using the SmartChip™ Multi-
sample Nanodispenser (TakaraBio). It should be noted that there were 
originally 66 collected samples, but eight had insufficient DNA for HT- 
qPCR analysis (Table S5), including all the samples from Coquet Site A. 

Data processing and statistical analysis was performed through R 
programming. The threshold cycle (CT) of 28 was used as previously 
suggested (Stedtfeld et al., 2018). DNA were analysed in three qPCR 
reactions. Genes which were only present in one technical replicate (i.e., 

one out of three qPCR reactions), were excluded as false positives. The 
abundance of each gene was calculated as the relative abundance in 
proportion to the 16S rRNA gene as previously described (Muurinen 
et al., 2017). 

ARGs and MGEs were transformed into absolute copy numbers by 
multiplying with 16S rRNA concentration for each sample. 

2.6. Physiochemical analysis and microbial colony counts 

Water samples were filtered through 0.22 μm polyethersulfone (PES) 
syringe filters within 24 h of collection and then analysed for soluble 
chemistry within 48 h. Assessment of water chemistry was conducted 
using HACH LANGE kits of Chemical Oxygen Demand (COD) (LCK 314: 
15–150 mg/L), ammonium‑nitrogen (NH4-N) (LCK 304: 0.015–2 mg/L), 
orthophosphate as phosphorous (PO4-P) (LCK 349: 0.05–1.5 mg/L) and 
Total Nitrogen (TN) (LCK 138: 1–16 mg/L) analysis. 

Microbial plating and colony counts were conducted for the third 
sampling trip for both catchments (March 2021), focusing on non- 
resistant and resistant Escherichia coli (E. coli) isolation. River water 
was filtered onto 0.45 μm cellulose membrane filters (Sartorius™), 
which were on ChromoSelect agar for E. coli (Sigma-Aldrich), and 
incubated for 38 h at 37 ◦C. This process was repeated, except filters 
were placed on Chromoselect Agar with an added supplement for the 
detection of Extended Beta-Lactamase (ESBL) producing organisms 
(Sigma-Aldrich) (i.e., 1.5 mg of Ceftazidime and Cefotaxime, 1 mg of 
Ceftriazone and Aztreoname, and 5 mg of Fluconazole) to quantify E. coli 
resistance to ESBL antibiotics. The amount of water filtered was 2–20 mL 
for non-ESBL plates and 200–500 mL for ESBL plates. Each site was 
plated in triplicate. 

2.7. Catchment hydrology and land use 

Three river gauging sites within the Coquet catchment and four sites 
within the Eden were identified (Table S8) from the National River Flow 
Archive (NRFA; https://nrfa.ceh.ac.uk). For each site, the flowrate on 
each sampling day, various river flow indices, and catchment descriptors 
were obtained from the NRFA (Table 1). The flow indices were 
normalized by the upstream contributing area to allow comparisons 
between sites. 

Daily rainfall data was downloaded for the seven gauging sites from 
the DEFRA Hydrology Data Explorer (https://environment.data.gov. 
uk/hydrology/explore) (Table S8). The Antecedent Precipitation Index 
over the previous five days (API5) was calculated according to the UK 
Flood Estimation Handbook (FEH; CEH, 2023). This provides a measure 
of catchment wetness. 

Although both catchments are predominantly rural or “pristine”, the 

Table 1 
Definitions of hydrological parameters (from NRFA, 2023).  

Parameter Definition 

Catchment area (km2) Area of the catchment upstream contributing to the 
site 

PROPWET The fraction of the year that soils can be expected to be 
quite wet, where saturated soils are more likely to 
contribute to flooding 

BFI Baseflow Index: Proportion of the total flow that 
comes from groundwater 

SAAR (mm) Average annual rainfall in the standard period 
(1961–1990) in millimetres 

Mean Flow (m3/s) Record mean-gauged flow at gauging stations 
Mean annual runoff (mm/ 

year) 
Long-term mean annual flow as measured at the 
gauging station normalized by catchment area 

95 % Exceedance (Q95) 
(mm/day) 

Low flow parameter: flow which was equaled or 
exceeded 95 % of the flow record 

5 % Exceedance (Q5) (mm/ 
day) 

High flow parameter: flow which equaled or exceeded 
for 5 % of the flow record 

Flow rate on the day of 
sampling (m3/s) 

Gauged flow rate on the day of sampling (From NRFA)  
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Coquet has more pristine landscapes (48.5 %) compared with the Eden 
(24.8 %), especially in its headwaters (Sites A-B; see Fig. 1C), whereas 
the Eden has more urban land use (8.5 % vs 5.0 %). Rural landscapes, 
frequently used for animal grazing and other agricultural use, cover 
66.7 % and 46.0 % of the Eden and Coquet landscapes, respectively, 
with the middle reach of the Eden (Sites C-G) being 71.0 % rural, pre-
dominated by agriculture. 

2.8. Statistical analysis 

Statistical analysis and data manipulation was performed in the R 
environment (R Core Team, 2018). Graphics were developed with 
ggplot2 and finalised with Inkscape (v.09.4). The Kruskal-Wallis test was 
performed to analyse differences between the Coquet and Eden catch-
ments and sampling months for MST probe, colony count, and ARG 
abundance data. The Wilcoxon test was used to find significantly 
different abundances of taxa at Phylum level between the Coquet and 
Eden catchments (p < 0.01). Otherwise, significance was defined as p <
0.05. 

The log2fold change between ARG and MGE concentrations between 
the rivers Coquet and Eden was computed using the DESeq2 package, 
which utilised the Wald test, and p value were adjusted according to the 
Benjamini Hocherg method (Benjamini and Hochberg, 1995). The 
log2fold change was then plotted against statistical significance with a 
volcano plot using ggplot2. 

Quantile-Quantile plots (Q-Q plots) were used for the microbiome 
and resistome data to identify outlier samples. Two datapoints were 
excluded from the analysis which is discussed further in Sections 3.2 and 
3.3. Co-occurrence analysis was also conducted with the ARG and MGE 
genes, and abundance of ASVs by Order level, to determine possible 
hosts for ARGs. This was conducted through an initial Spearman cor-
relation, where significance values were adjusted according to Benja-
mini Hochberg (Benjamini and Hochberg, 1995). Strongly positive 
correlations (rs > 0.8, p < 0.01) were further visualised using network 
analysis based on the igraph R package and Gephi software (Bastian et al., 
2009). Spearman correlations, with significance values adjusted ac-
cording to the Benjamini Hochberg method (Benjamini and Hochberg, 
1995), were used to assess relationships between water quality, micro-
bial, AMR, and hydrological indicators which were visualised using the 
corrplot (v. 0.92) package. 

3. Results 

3.1. Differences in hydrological conditions in the Coquet and Eden 

Flow data and catchment descriptors, derived using the FEH meth-
odology, were extracted from the National River Flow Archive to 
describe precipitation patterns and hydrology of both catchments 
(Table 2). As background, the Standard Average Annual Rainfall (SAAR) 
reflects altitude and the influence of the Atlantic Ocean, with the highest 
values in the Eden catchment, particularly in the Eamount at Udford and 
Kirkby Stephen sites. 

High SAAR is associated with long periods of soil saturation (i.e., 
PROPWET), enhancing the generation of saturation excess surface 
runoff and higher annual runoff. The ratio of Q5 and Q95 is a measure of 
flashiness, with high values indicating a flashier flow regime. In each 
catchment, SAAR, mean annual runoff, and flashiness decrease with 
decreasing elevation towards the catchment outfall. BFI values, the ratio 
of baseflow to total streamflow, are similar in the two catchments, 
except for Kirkby Stephen. This may be due to the hydrological influence 
of the extensive peat soils, which enhance the flashiness of that sub- 
catchment. The Eamont flow regime is affected by the Haweswater 
and Wet Sleddale Reservoirs and Ullswater, which may impact on low 
and high flow values (characterised by Q5 and Q95) and BFI. 

The calculated API5 for both catchments at different rainfall gauges 
on the day of sampling is summarised in Table S9, i.e., 1.52 ± 0.321 mm 
in the Coquet and 1.94 ± 1.26 mm in the Eden. Although the API5 was 
similar for both catchments, there is higher variability in the Eden, 
primarily due to high API5 during the October sampling trip (Table S9). 

3.2. Coquet and Eden catchment microbial communities - quantification 
and diversity 

Estimated bacterial cell concentrations in the Coquet (based on 
16SrRNA data) varied from 6.37 × 103 ± 1.37 × 103 to 1.87 × 105 ±

7.97 × 104 cells/mL and in the Eden from 1.6 × 103 ± 7.48 × 103 to 
8.79 × 104 ± 3.17 × 104 cells/mL (Table S10). The lowest cell abun-
dances were recorded in the upstream sites (Site A) in both the Coquet 
and the Eden, whilst highest abundances were recorded at Site J in the 
Coquet downstream of Felton and Site J in the Eden within Carlisle city 
(see Fig. 1). These observations are consistent with greater areas of 
pristine land at upstream sites versus downstream sites in both rivers. 

However, when broadly comparing the sampled sites in the catch-
ments, there were no significant differences in bacterial cell count 
numbers between the Coquet and Eden based on 16S rRNA data (Kruskal 
Wallis test p = 0.55). There were also no significance differences in cell 

Table 2 
Catchment descriptors in the Eden and Coquet at relevant sites from the National Flow Archive (NRFA). Definitions of Hydrological Parameters are in Table 1.   

Eden (upstream-downstream) Coquet (upstream-downstream) 

Eden at Kirkby 
Stephen 

Eden at Temple 
Sowerby 

Eamount at 
Udford 

Eden at 
Sheepmount 

Usway Burn at 
Shillmoor 

Coquet at 
Rothbury 

Coquet at 
Morwick 

Catchment Area (km2)  69.4  616.4 396.2  2286.5  21.4  346  569.8 
SAAR (mm)  1492  1142 1768  1182  1056  905  850 
PROPWET  0.65  0.66 0.66  0.64  0.45  0.45  0.44 
BFI  0.25  0.37 0.51  0.48  0.38  0.47  0.44 
Mean Annual Runoff (mm/year)  1195  786 1258  752  824  534  486 
Mean Flow (mm/day)  3.27  2.15 3.45  2.06  2.26  1.46  1.33 
95 % Exceedance (Q95) 

(mm/day)  
0.21  0.28 0.53  0.38  0.32  0.22  0.20 

5 % (Exceedance (Q5) 
(mm/day)  

13.07  7.68 10.60  6.45  7.91  4.45  4.52 

Flashiness Q5:95 
(− )  

62.24  27.43 20.00  16.97  24.72  20.23  22.60 

NRFA Flow Rate (m3/s) on 
day of sampling 

Sep  1.497  10.79 NA  55.7  0.621  2.47  2.72 
Oct/ 
Nov  

5.168  40.89 NA  96.94  3.145  4.457  6.28 

Mar  1.221  13.31 NA  65.86  1.486  6.066  9.32  
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counts when comparing sampling months (Kruskal Wallis Coquet: p =
0.85, Eden: p = 0.95) (Table S11), however lower cell counts were 
generally observed in colder months (March/November). 

Microbiomes were assessed by 16S rRNA sequencing with Illumina 
MiSeq. Following QMP normalisation, there were 2975 taxa amongst 
samples. Sampling depth was highest in the Eden samples, especially in 
colder months such as November and March (Fig. S1). Conversely, lower 
sampling depth is seen in the October and September Eden samples, as 
well as March/November samples at downstream sampling points in the 
catchment. Lower sampling depth in general was observed in the Coquet 
samples. 

The microbial abundance was plotted for each site in both catch-
ments (Fig. 2), showing the top 25 ASVs in each. Both catchments 
showed low levels of abundance in upstream sites and an increase in the 
midstream. The Coquet shows a particularly high abundance at site J, 
such as a high abundance of Flavobacteriaceae in September. Outlier 
analysis revealed the levels were substantially higher than the typical 
ASV abundance across all sites and these data were removed from 
further analysis (Fig. S2). 

Analysis of microbial abundances using the QMP approach permits 
the analysis of significantly more abundant taxa between catchments to 
enable comparisons. Taxa that had significantly different abundance 
across all samples in both catchments at Phylum level are presented in 
Fig. 3. Overall, eight taxa were significantly different between catch-
ments (Wilcoxon test, p < 0.01). In the Coquet, Bdellovirbionota and 
Pastescibacteria are significantly more abundant compared to the Eden 
(Wilcox test, p < 0.01). In the Eden, Gemmatimonadota and Synergistota 
are more significantly abundant compared to the Coquet (Wilcox test p 
< 0.01). 

The order of diversity (q) were plotted against microbial diversity 
represented through Hill numbers (Fig. S3). Decreasing richness of 
species was evident from up to downstream in the Coquet and 
decreasing evenness of species. The same pattern was seen in the Eden, 
except in September when communities were less rich and more uneven 
along the river. 

Beta diversities in each catchment were visualised using a Sørenson- 
type overlap dissimilarity measure at q = 1 (Fig. S4). There were dif-
ferences in microbial community structure in the upstream and down-
stream sites in both catchments, except for some upstream sites in the 
Eden, which sometimes clustered with downstream sites, possibly due to 
greater agricultural activity near the river channel at upstream sites, 

such as Site A (Fig. 1A). Microbial community diversities in both rivers 
varied across sampling months, which was particular apparent in the 
Eden catchment. 

3.3. Comparing the resistomes and mobilomes in the Coquet and Eden 
catchments 

Relative and absolute abundance of ARGs sorted by antibiotic group 
are shown in Fig. 4 and Table S15. Outlier analysis indicated that Coquet 
Site D in September had particularly high relative and absolute abun-
dance of ARGs and MGEs compared to sites in the same catchment, and 
in the Eden, Site A had particularly high relative abundance of ARGs and 
MGEs (Fig. S5) consistent with land use (Fig. 1A). As Site D in the Coquet 
was based on a single sample and it was a statistical outlier, it was 
removed from further analysis, although data from the site are included 
in Table S15. For Eden Site A in March, outlier analysis indicated the 
sample data were in the normal range for the catchment once data were 
converted to absolute abundances (i.e., ARG and MGE copies/mL). 
Therefore, Site A in the Eden in March was retained in further analysis. 

The Coquet had an average total relative abundance of 0.09 ± 0.13 
ARG copies/16S rRNA (mean ± standard deviation) and absolute 
abundance of 1.6 × 104 ± 1.7 × 104 ARG copies/mL. The average 
relative abundance in the Eden sites was 0.2 ± 0.31 copies/16S rRNA 
and the absolute abundance was 5.2 × 104 ± 7.83 × 104 copies/mL. The 
Eden had on average higher relative and absolute abundance of ARGs 
compared to the Coquet, but this was not significant (Kruskal Wallis, p >
0.05). However, the Eden catchment had significantly higher ARG di-
versity, based on the 96 gene assay (Kruskal Wallis, p = 0.0207), with 
45.6 ± 20 genes detected out of 85 potential ARGs, compared to the 
Coquet's average of 32.5 ± 16.3 genes (Table S16). 

In both catchments, MGEs (including integrons; see Table S16) were 
detected at all sites (Fig. 5), with an average relative abundance of 0.21 
± 0.22 MGE copies/16S rRNA in the Coquet and 0.34 ± 0.69 MGE 
copies/16S rRNA in the Eden catchment. In the Coquet, the average 
absolute abundance of MGEs was 3.98 × 104 ± 3.6 × 104 MGE copies/ 
mL and 5.8 × 104 ± 6.4 × 104 MGE copies/mL in the Eden. The MGE 
abundance was not significantly different between the catchments 
(Kruskal Wallis, p = 0.46) (Table S16). 

The extent of shared ARGs and MGEs in the Coquet and Eden 
catchments is provided in Fig. S6. Overall, within the 96 ARG/MGE gene 
assay, the catchments had similar resistomes, where the Coquet had no 

Fig. 2. Bar plots showing Quantitative Microbial Profiling (QMP) abundance of the 25 most abundant amplicon sequencing variants (ASVs) grouped into Families, 
with the remaining grouped into ‘Others’. The error bars show the deviation between sampling months. 
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Fig. 3. Significantly different abundant Phylum in the Coquet and Eden catchments. Abundance was assessed through quantitative microbial profiling (QMP) and 
significant differences were determined through a Wilcoxon test, where the significance threshold was set at p < 0.01. 

Fig. 4. A) Relative abundance of ARGs/16S rRNA grouped by antibiotic class in the Coquet and Eden B) ARG copies/mL for the Coquet and Eden, c) Diversity of 
ARGs, D) percentage of absolute abundance (ARG copies/mL) in each catchment. 

K. Robins et al.                                                                                                                                                                                                                                  



Science of the Total Environment 928 (2024) 172348

8

unique genes and the Eden only had four unique genes, two conferring 
resistances to Beta-Lactams (blaKPC and blaGES), one tetracycline gene 
(tetPB_1), and one MLSB gene (IsaC). In terms of abundance, the blaKPC 
gene and tetM gene were found to be significantly more abundant in the 
Eden catchment (Fig. S7). 

3.4. Possible drivers for microbial community and resistomes in 
catchments 

Microbial source tracking probes (MST probes) for human and 
ruminant faecal derived Bacteroidetes (HuBac and RuBac, respectively) 
were used to determine potential contributing faecal sources in both 
catchments. Concentrations of HuBac and RuBac derived Bacteriodetes 
were significantly higher in the Eden compared to the Coquet (HuBac: 
Kruskal Wallis, p = 6.83 ×10–5, RuBac: Kruskal Wallis, p = 0.00257) 
(Table S11). HuBac and RuBac concentrations in both catchments 
increased as one moved downstream, maximising at mid-catchment, but 
then decreasing downstream (Fig. S8). This pattern was especially 
evident in the Eden, where upstream RuBac concentrations steadily in-
crease from upstream sites to the Site F (consistent with greater agri-
cultural land use mid-reach in the Eden; Fig. 1A), before decreasing 
towards the bottom of the catchment. On average, RuBac was about 10- 
fold more abundant than HuBac concentrations, likely due to the greater 
farm animal waste inputs associated with agricultural activity in both 
catchments (see Fig. 1). 

Microbiomes and resistomes in both catchments were assessed using 
network analysis (Fig. 6; Table S17). When both catchments were ana-
lysed together, there were 22 nodes, where the highest correlating taxa 
was Bacteroidales (3 degrees). The highest correlating ARGs were blaTEM 
(three degrees) and cfXA, blaVIM and tetO_2 (two degrees). The MST 
marker RuBac, also correlated significantly with blaVIM and sul4 

(Spearman, r > 0.8, p < 0.01). Analysed separately, the Eden and Coquet 
had a similar number of nodes in their networks, with 64 and 67 nodes 
respectively. In the Eden catchment, the highest correlated ARGs 
included strB (12 degrees), tetQ (10 degrees), tetW (8 degrees), and the 
highest correlating MGEs were tnpA_5_ (5 degrees), tnpA_1 (4 degrees) 
and ISAba3 (3 degrees). The highest correlating taxa were Bacteroidales 
(7 degrees), Acideaminococcales, Campylobacterales and Peptos-
treptococcales-Tissierellales (6 degrees). Both HuBac and RuBac also 
significantly correlated with noteworthy clinically relevant ARGs in the 
Eden catchment (e.g., mcr1 and carB, respectively) (Spearman, r > 0.8, p 
< 0.01). 

In the Coquet, the highest correlating ARGs were tetM (16 degrees), 
aacC4 (5 degrees), eerm36, and mcr1 (4 degrees). The highest correlating 
taxa were Aeromonadales, Bacteriodales, Candidatus Azambacteria and 
Pirellulales (all 3 degrees). Interestingly, no MGEs were strongly corre-
lated with taxa in the Coquet catchment, although this may be because 
the limited number of MGEs quantified (only 10 MGEs). Conversely, 
more MGEs correlated with taxa in Eden waters. 

The data from the two catchments were pooled to identify more 
general factors driving AMR within the two rural rivers. A correlation 
matrix was developed which compared parameters measured in this 
study, grouped into categories called physiochemical parameters, mi-
crobial indicators, and AMR indicators (see Fig. S9 for specific in-
dicators). All AMR indicators, whilst not significantly correlated in most 
cases, are generally positively correlated with water quality (e.g., con-
ductivity and pH) and the microbial indicators. For example, total MGE 
abundance is significantly positively correlated with 16S rRNA 
(Spearman, p < 0.05). Interestingly, whilst microbial indicators are 
negatively correlated with DO (i.e., as DO declines, microbial indicators 
increase), AMR indicators had only a weak, but positive correlation with 
DO. 

Fig. 5. A) Relative abundance of MGEs/16S rRNA B) MGE/copies/mL C) Diversity of MGEs, D) Percentage of Absolute abundance (MGE copies/mL) in 
each catchment. 

K. Robins et al.                                                                                                                                                                                                                                  



Science of the Total Environment 928 (2024) 172348

9

Although the hydrology indicators are not significantly correlated 
with water quality, microbial or AMR indicators, they do positively 
correlate with HuBac and RuBac, and negatively correlate with COD. 
Further, although statistical analysis was not possible based on the 
available data, water quality qualitatively trends with land use (pristine 
vs rural vs urban). The Antecedent Precipitation Index over the previous 

5 days (API5) negatively correlated with temperature, pH, DO, con-
ductivity, COD and NH4. There is also a negative correlation with the 
flow rate and ESBL coliforms. 

Fig. 6. Network Analysis for both catchments, and individual catchments revealing co-occurrence patterns amongst taxa at order level (assessed through quantitative 
microbial profiling (QMP), ARGs/mL, MGEs/mL and MST markers (Ruminant and Human Bacteroidetes (RuBac and HuBac). A connection indicates a strong 
spearman correlation (rs > 0.8) and significant (p < 0.01), which is adjusted with a Benjamini Hochberg correction. 
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4. Discussion 

4.1. Impact of hydrological factors on microbial communities in the 
Coquet and Eden catchments 

The hydrology of both catchments was characterised, and the Eden 
generally had more extreme differences in flow rates, rainfall and run- 
off compared to the Coquet catchment, especially in the middle of the 
Eden catchment (NRFA, 2023). More extreme flows will clearly influ-
ence flow rates but will also ‘flush’ upstream and on-land contaminants 
downstream, impacting river water quality lower in the catchment as 
seen previously (Chung et al., 2008; Zhang et al., 2014). This effect is 
most evident in the Eden through the human and ruminant Bacteroidetes 
levels, which increase towards the middle of the catchment before 
decreasing in concentration farther downstream. Decreases farther 
downstream are probably due to greater land-management in those 
reaches, where there are interventions such as fencing or riparian 
buffers that can protect stream water quality from farm animal-related 
runoff and pollution (Grudzinski et al., 2020). 

In general, the Coquet has higher numbers of the Bdellovibrionota and 
Patescibacteria phylum, which tend to be prevalent in less polluted sur-
face water or groundwater environments (Brown et al., 2015; Herrmann 
et al., 2019; Im et al., 2019; Chaudhari et al., 2021; Li et al., 2021). In 
particular, the Patescibacteria phylum is often present in nutrient-limited 
conditions (Tian et al., 2020). Bdellovibrionota, is a phylum that preys on 
other bacteria (Sockett and Lambert, 2004). This has been previously 
associated with low abundance of microalgae (Yang et al., 2023), and 
maintenance of a healthy and diverse ecosystem through removing 
dominant bacterial groups (Zhang et al., 2023b). Higher numbers of 
such strains are consistent with nutritional conditions and evidence of 
low pollutant inputs in the Coquet, where the Coquet River microbial 
communities reflect less impacted conditions than the Eden, which is 
consistent in the other genetic and microbial data for the catchment. 

Conversely, the Eden catchment had broadly greater abundances of 
microbes associated with soils, limnic environments and sediments, such 
as the phylum Gemmatimonadiota (Mujakić et al., 2022) and Synergistota, 
which is often present under conditions impacted by animal faeces, 
surface soils, and wastewater releases (Bhandari and Gupta, 2012). 
Longer periods of high soil wetness (PROPWET) and greater soil satu-
ration in the Eden catchment appears to result in greater run-off that 
contains phylum commonly present in the soils entering the river. This 
speculation is supported by significantly higher ruminant Bacteroidetes 
abundances in the Eden compared to the Coquet catchment and greater 
levels of agricultural activity in the Eden, especially near the river mid- 
reach (Fig. 1). 

4.2. Drivers of AMR in the Eden and Coquet catchments 

The river water resistomes in the two catchments were similar, 
although the diversity, as well as absolute and relative abundances of 
ARGs and MGEs were slightly higher in the Eden compared to the 
Coquet catchment, and the diversity of ARGs in the Eden was signifi-
cantly higher. Comparison of the catchments revealed that from the 96 
gene assay used in the study, the Eden catchment had four unique genes 
compared to the Coquet. This included the Beta-lactamase genes, blaKPC 
and blaGES that encode resistance to carbapenem antimicrobials, which 
were significantly more abundant in the Eden catchment compared to 
the Coquet. Both genes are often plasmid-mediated and genetically 
mobile, and can be shared through HGT (Queenan and Bush, 2007; 
Bennett, 2008; Mengistu et al., 2022). The high prevalence of the tetM 
ARG was previously found to be a consequence of environmental 
pollution caused by livestock (Munck et al., 2015). 

Carbapenemase genes have been more frequently studied in the 
context of agricultural and wastewater related contamination of natural 
waterbodies (Mills and Lee, 2019). In particular, blaKPC represents car-
bapenem resistance in Enterobacterales, which is a problem in hospital 

settings, especially in the North West of England (Stoesser et al., 2020). 
In this study, the blaKPC gene was detected once in Site G, and twice in 
two sites, Site B and E. These sites all have a high percentage of agri-
cultural land use that includes large-animal rearing, and have various 
small settlements nearby. Therefore, the presence of blaKPC could be a 
result of community wastewater, septic tanks, or agricultural contami-
nation. Interestingly, blaKPC was not found in the Coquet. More sampling 
is needed to determine the source of this gene, especially what it might 
suggest relative to the spread of such ARGs in the environment due to 
waste releases. 

Our network analysis revealed that the ARGs in the Coquet and Eden 
have multiple potential hosts. In both catchments Bacteroidales was 
highly correlated with ARGs, consistent with previous studies finding 
that Bacteroidales often carry abundant ARGs including tetracycline and 
Beta-lactam genes (Li et al., 2022). Aeromonadales, known to harbour 
clinically relevant drug resistance (Kneis et al., 2022), also significantly 
correlated with ARGs. The network analysis further highlighted differ-
ences in resistome and mobilome interactions between the catchments. 
There were multiple MGEs strongly correlating with ARGs in the Eden, 
whereas no strong correlations were seen between ARGs and MGEs in 
the Coquet. This further indicates greater anthropogenic impact in the 
Eden, where the presence of MGEs is indicative of acquired resistance 
(Datta and Hughes, 1983) and greater human and animal waste inputs to 
the river. 

In addition, human and ruminant Bacteroidetes had strong and sig-
nificant correlations with ARGs in the Eden, whilst there were no cor-
relations with these markers in the Coquet, indicating the increased 
likelihood of human and/or agricultural related resistance in the Eden 
catchment compared to the Coquet. However, due to the complexity of 
the microbial interactions in the environment, this is speculation at best, 
although it is broadly consistent will qualitative differences between the 
two catchments and might be useful for considering the effects of dif-
ferences between river catchments in general terms (Carr et al., 2019). 

To understand ecological drivers, correlation matrices were devel-
oped to investigate the links between water quality, microbial in-
dicators, resistance indicators and hydrology. Interestingly, unlike 
previous studies in more contaminated catchments (Ho et al., 2021; Ott 
et al., 2021a), there were few strong statistically significant positive 
correlations, although positive correlations were observed between 
selected AMR indicators, such as ESBL E. coli abundance and conduc-
tivity (a good indicator for dissolved solids in a river; Abdulsattar et al., 
2020). Conductivity may thus be linked to inorganic and organic 
pollution from fertilisers, or run-off from roads (particularly as most 
sites were sampled close to roads), which may contain heavy metals that 
can increase resistance through co-selection (Knapp et al., 2017; Robins 
et al., 2022). However, this cannot be verified with the available data. 

Unlike previous studies in heavily contaminated catchments, DO was 
only a weak indicator for AMR, whereas previous studies have found a 
strong, significant negative correlation (Ho et al., 2021; Ott et al., 
2021a). This could be due to the difference in AMR sources, where 
resistance may be primarily derived from diffuse agricultural sources 
(here) as opposed to point source contamination from wastewater 
(previous studies). This observation highlights the importance of 
studying less contaminated sites to understand the drivers for AMR in 
“average” river environments. In a heavily contaminated site with more 
discrete waste inputs, DO may be an effective indicator for resistance 
and be used as a marker for AMR (Ott et al., 2021a), which is analogous 
to the use of oxygen sag curves for releases of biodegradable carbon. 
However, in less contaminated sites, which are primarily influenced by 
more diffuse rural phenomena, DO may not be as good a proxy because 
local organic waste releases are not as acute. 

4.3. The need for further environmental surveillance 

The comparison of the Coquet and the Eden catchments illustrates 
the importance of increased integrated AMR surveillance and insights it 
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can bring relative to difference catchment dynamics and AMR. The 
quantitative approach used here lends further support to recent rec-
ommendations by the UN Environment Programme (UNEP, 2023). 
Moreover, this study has indicated that hydrology in conjunction with 
land use in the Eden catchment, elevated river flows, rainfall, and runoff 
lead to greater agricultural contamination in the river and increased 
resistance, a connection that is less in the Coquet catchment. 

Our study exemplifies the importance of sampling, analysis, and 
methods standardisation, which allowed us to better compare and un-
derstand subtle drivers of resistance in two “average” UK rivers. With 
higher flow rates apparently increasing rural in situ resistance, the ex-
pected more dynamic rainfall events due to climate change (Watts et al., 
2015) may increase resistance in rivers due to surface run-off. Whilst 
rivers in contaminated environments have been studied more, under-
standing regional catchments like the work here will provide new in-
sights into the temporal and spatial variation of AMR. 

Increased spatial surveillance could further inform environmental 
risk assessments through understanding of how catchments differ in 
terms of AMR relative to each other (Burch et al., 2022). Furthermore, 
this study shows the need for monitoring in different environments, 
where ultimately the data can be used to inform large scale routine 
monitoring for AMR in environments (Bengtsson-Palme et al., 2023; 
Hart et al., 2023). However, we want to emphasise the need for meta-
data as well as AMR data, such as water quality, hydrology, catchment 
characteristics, and nutrient conditions, to explain drivers of AMR 
within environmental studies. 

5. Conclusions 

This study aimed to compare the microbiome and resistome of two 
rural catchments in the United Kingdom. By comparing the Coquet and 
Eden catchments, we show that hydrological and geographic differences 
between catchments best explain differences in in situ resistance pat-
terns, which would have been less clear from isolated catchment studies. 
Further, consistent methods for microbiome and resistome characteri-
sation also are important to allow comparisons between studies and 
catchments. In addition, increased monitoring of AMR in locations that 
are not overtly contaminated is useful in explaining background AMR. 
Here, we did not truly determine changes in intrinsic AMR in the 
catchments, but we show that there are noteworthy levels of resistance 
potential, although drivers are more nebulous, being dominated by non- 
point source runoff that is impacted by local hydrology and catchment 
characteristics. Further work is needed on similar rural catchments to 
generalise the results herein. 
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