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The spectral shape, irradiance, direction, and diffuseness
of daylight vary regularly throughout the day. The
variations in illumination and their effect on the light
reflected from objects may in turn provide visual
information as to the time of day. We suggest that
artists’ color choices for paintings of outdoor scenes
might convey this information and that therefore the
time of day might be decoded from the colors of
paintings. Here we investigate whether human viewers’
estimates of the depicted time of day in paintings
correlate with their image statistics, specifically
chromaticity and luminance variations. We tested
time-of-day perception in 17th- to 20th-century Western
European paintings via two online rating experiments. In
Experiment 1, viewers’ ratings from seven time choices
varied significantly and largely consistently across
paintings but with some ambiguity between morning
and evening depictions. Analysis of the relationship
between image statistics and ratings revealed
correlations with the perceived time of day: higher
“morningness” ratings associated with higher
brightness, contrast, and saturation and darker
yellow/brighter blue hues; “eveningness” with lower
brightness, contrast, and saturation and darker
blue/brighter yellow hues. Multiple linear regressions of
extracted principal components yielded a predictive

model that explained 76% of the variance in time-of-day
perception. In Experiment 2, viewers rated paintings as
morning or evening only; rating distributions differed
significantly across paintings, and image statistics
predicted people’s perceptions. These results suggest
that artists used different color palettes and patterns to
depict different times of day, and the human visual
system holds consistent assumptions about the variation
of natural light depicted in paintings.

Introduction

Painters have long been attuned to real-world
properties that are relevant to the perceiver
(Mamassian, 2008) and have developed effective
techniques to represent everyday scenes in pictorial
space (Cavanagh, 2005). While not aiming for physical
accuracy, their depictions often contain invariants
(Gibson, 1971) or perceptual shortcuts (van Zuijlen,
Lin, Bala, Pont, & Wijntjes, 2021) that support the
viewer’s understanding of the scene. As such, paintings
provide a rich source of image features that vision
scientists can use to better understand human visual
perception.
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Analysis of these features has largely focused on
aesthetic preference (Hayn-Leichsenring, Lehmann, &
Redies, 2017; Nakauchi & Tamura, 2022) or material
properties, such as transparency (Sayim & Cavanagh,
2011), translucency (Wijntjes, Spoiala, & de Ridder,
2020), gloss (Di Cicco, Wijntjes, & Pont, 2019), or
velvetiness (Di Cicco, Van Zuijlen, Wijntjes, & Pont,
2021). Less well explored is how perceivers may
also infer more abstract yet ecologically important
dimensions from paintings, such as time of day or
weather. For these, painters may use explicit cues such
as human activities, shadow length, or sun position.
Yet other image features, independent of pictorial
content, may powerfully convey the time of day. Here
we examine the relationship between low-level image
statistics, in particular the distribution of chromaticities
and luminances, in paintings and the depicted time of
day.

In representational paintings, painters deploy
pigment on canvas to capture the effects of light
interacting with surfaces in the scenes they depict.
Variations in chromaticity and luminance across
the image, induced by complex material–light
interactions, may contain essential information about
three-dimensional (3D) structure (Bloj, Kersten, &
Hurlbert, 1999; Ruppertsberg, Bloj, & Hurlbert, 2008);
these painted patterns may in turn evoke perceptions
of 3D shape and surface color. Luminance shading
defines fundamental elements of volume and space
(Arnheim, 1974) and provides cues to the location and
orientation of objects and the direction of the light
(Carbon & Pastukhov, 2018; Kartashova, de Ridder,
te Pas, Schoemaker, & Pont, 2015). In paintings, cast
shadows may indicate the light source position, even
when simplified beyond physical plausibility (Casati,
2008; Cavanagh, 2005; Ostrovsky, Cavanagh, & Sinha,
2005). Cast shadow lengths (Hagen, 1976) might give
an additional indication of the time of day.

Chromatic content might also be used in paintings to
depict time of day. J.M.W. Turner’s pair of paintings,
The Morning After the Deluge and The Evening of the
Deluge, seem by their titles and content to demonstrate
an association between color and time of day, as well
as weather. The Morning After the Deluge features a
cyclone of brilliant colors, converging on yellow and
white, evoking a sunny day. In contrast, The Evening
of the Deluge features blackness encircling a gray-blue
core, suggesting a stormy night. The paintings not
only pay explicit homage to Goethe’s color theory
(Goethe, 1810) but also express an implicit rule
about the depiction of time. In his series paintings of
Rouen Cathedral, Claude Monet painted different still
moments of the cathedral in markedly different color
palettes, titling them with different times of day. In
Rouen Cathedral, Facade (sunset) (Figure 1, upper row
second), the orangish glow of the solid stone partially
covered by a crisp bluish shadow under a blue sky

creates a visual impression distinct from The Portal of
Rouen Cathedral in Morning Light (Figure 1, upper row
first), in which the smoothly shadowed, inarticulate
façade dissolves into the background sky. The questions
we pose are whether in deploying such chromatic cues
painters are capturing natural variations in illumination
over the course of the day and season and whether
people consistently read time of day from these cues.

Characteristics of terrestrial illumination

The spectrum, direction, and diffuseness of
natural illumination in the terrestrial world change
over the course of a day and across seasons due to
interactions between sunlight, atmospheric conditions,
the environment, and anthropogenic light. Diurnal
illumination, or daylight, is the total light originating
from the sky and sun after sunrise and before sunset,
while crepuscular illumination, or twilight, is the sum of
the skylight and artificial anthropogenic light when the
sun disk is below the horizon. Nocturnal illumination,
in the third phase of the day, is commonly provided
by moonlight, starlight, and light pollution between
astronomical dusk and astronomical dawn.

Solar elevation is the main determinant of the
illuminance and chromaticity of natural illumination
(Minnaert, 1993; Smith, 2005). The illumination is
more diffuse and less intense during early morning and
late afternoon compared to midday (Hoeppe, 2007;
Mardaljevic, 2019). This is due to the longer path
sunlight travels through the atmosphere, allowing for
greater scattering at lower elevations. Additionally,
low sun angles also result in lower illuminance on
upward-oriented surfaces, as the amount of light
reaching a surface is proportional to the cosine of
the angle of incidence. The spectral composition
of illumination also changes throughout the day,
with the proportion of short to long wavelengths
in light that reaches the earth decreasing as the
wavelength-dependent (Rayleigh) scattering increases,
skewing the transmitted beam more toward reddish
hues at sunrise and sunset.

In line with the idea that the human visual system
has evolved to be attuned to the characteristics of
natural illumination (Morgenstern, Geisler, & Murray,
2014; Pastilha & Hurlbert, 2022; Shepard, 1992), here
we suggest that the variations in chromaticity and
illuminance of natural illumination, and their effect on
the light reflected from objects, might also influence
painters’ choices of color palettes and, in turn, people’s
interpretations of the depicted environment.

Sunrise–sunset asymmetry

If solar elevation were the sole determinant of
their appearance, morning and evening skies should
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Figure 1. Claude Monet’s series paintings of Rouen Cathedral (1892–1894). The paintings capture the façade of the Rouen Cathedral
at different times of the day and year under various weather conditions. Monet’s depictions effectively amplify the changes in color
appearance that a typical color-constant viewer would perceive and reflect his own personal experiences and visual capabilities.
Downloaded fromWikimedia Commons.

be indistinguishable. Gombrich acknowledged this
ambiguity when he wrote of Corot’s work (Gombrich,
1976), “Corot softens the shadow of the fallen tree and
of the goose, thus convincingly suggesting the mellow
light of morning or evening.” Beurs, however, in his
observations from the 17th century, noted that although
the techniques used to depict sunrise and sunset may be
similar, there are distinct differences in the color palette
and temperature of the sky (Beurs, 1692). He observed
that sunrise often features cooler colors and more mists,
while sunset has warmer colors and holds the warmth
of the day. Beurs’s observations may be explained by
the diurnal temperature and humidity cycle that affects
the amount and type of light scattering by atmospheric
particles.

As the sun sinks toward the horizon during sunset,
the evening air begins to cool, causing larger water

molecules to gather in the atmosphere and scatter the
long-wavelength component of the sunlight, turning
the sky an orangey-red hue (Panorgias, Kulikowski,
Parry, McKeefry, & Murray, 2012). In the morning, the
air, still laden with overnight moisture and coolness, is
denser with smaller water particles. Airlight, the light
scattered toward the viewer from atmospheric particles,
becomes brighter with longer pathlengths, and its hue
is determined by the size of the scattering particles
(Koenderink, 2010; Koschmieder, 1924; Narasimhan &
Nayar, 2002). Morning mist, haze, and fog generate a
bluish airlight with a milky, diffuse quality (Deutsch,
1991; Minnis, Mayor, Smith, & Young, 1997; Pechony,
Price, & Nickolaenko, 2007; Rickel & Genin, 2005).

In the present study, we set out to investigate whether
human observers can estimate depicted time of day
in paintings and, if so, whether these perceptions may
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be related to image statistics. We hypothesize that
the image statistics of paintings contain information
about the characteristics of terrestrial illumination and
that human observers use this statistical regularity to
judge the time of day depicted in a painting. To test
this hypothesis, we conducted two rating experiments
with 17th- to 20th-century paintings. Experiment 1
involved participants viewing digital reproductions
of paintings and selecting the time of day depicted
from seven options. The observation that bimodal
distributions resulted for certain paintings, with some
participants rating them as morning and others as
evening, motivated Experiment 2. Its aim was to
examine whether observers were able to distinguish
between morning and evening in paintings when given
only those choices, using a stimulus set with metadata
to provide “ground truth.”

Methods

We conducted two online experiments, recruiting
participants via Amazon Mechanical Turk (AMT).
In Experiment 1, participants were presented with
digital reproductions of paintings and asked to choose
the time of day depicted from seven options: sunrise,
morning, noon, afternoon, evening, sunset, and night
(see Figure 2). In Experiment 2, participants were asked
to select between morning or evening (see Figure 3).
We analyzed the perceptual data in relation to image
statistics to better understand whether humans use
image statistics to judge the time of day depicted in
paintings.

Image data set

The images of paintings were downloaded
from online open-access data sets, including the
Materials in Painting (MIP) data set (van Zuijlen
et al., 2021; https://materialsinpaintings.tudelft.nl)
and the National Gallery (NG) data set (https:
//nationalgallery.org.uk/paintings). These data sets
were chosen because they display a wide diversity of
natural outdoor scenes under a variety of illumination
conditions.

Stimuli

In order to focus specifically on the role of
image statistics related to light and color and their
relationships with people’s perceptions of the time of
day in paintings, we selected primarily outdoor scenes
that would be influenced by natural light. We also chose
paintings that lacked explicit social or contextual cues,
such as human activities, which might easily indicate
the depicted time of day.

Figure 2. The interface of Experiment 1.

In Experiment 1, we chose 104 high-resolution
digital images of 17th- to 20th-century oil paintings
(see Figure A3). This collection comprised 50 from the
MIP data set and 54 from the NG data set. For eight
paintings out of the total selection, the title contained
information about the depicted time of day (e.g.,
Evening at Medfield, Massachusetts by George Inness).
We also selected four paintings from the NG data set
as catch trials. These four catch trials clearly depicted
nighttime scenes and were identified as nighttime
depictions according to their titles or metadata (e.g.,
A River Near a Town, by Moonlight by Aert van der
Neer). The metadata consist of information about a
painting that is not necessarily provided by the painter
but rather by curators or other art experts with art
historical knowledge and expertise.

In Experiment 2, we chose a new set of 90 digital
images, distinct from those in Experiment 1, featuring
17th- to 20th-century paintings from the MIP data
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Figure 3. The interface of Experiment 2.

set (refer to Figure A3). The titles of these paintings
provided cues to the time of day represented in each
scene: sunrise (10 paintings), morning (17 paintings),
sunset (36 paintings), and evening (27 paintings). To
standardize the stimuli, we resized the images to 1,000
pixels along the longer dimension, while preserving the
original aspect ratio.

All paintings reproduced within this article are
available under open access at a Creative Commons
Zero (CC0) or Creative Commons Attribution-
Noncommercial (CC BY-NC) 4.0 license. The complete
list of all paintings used within this study, including
those reproduced in this article, is available in Data Set
1 (Yu, 2023).

Observers

A total of 112 unique (Experiment 1, n = 51;
Experiment 2, n = 61) participants were recruited
via the AMT platform. Each agreed to the informed
consent before data collection. Data collection was
approved by the Human Research Ethics Committee
of the Delft University of Technology and adhered to
the ethical guidelines of the Declaration of Helsinki.

All observers were naive to the purpose of the
experiments.

Previous experience with AMT recruitment has
suggested that data might be noisy due to a small but
considerable portion of participants who appear to
perform poorly in experiments (Di Cicco et al., 2021;
van Zuijlen, Pont, & Wijntjes, 2020). We thus set an
exclusion criterion in Experiment 1 to automatically
remove participants who scored below an 80% correct
rate for the catch trials (detailed below). In total, 25
participants were removed this way. The exclusion was
performed prior to data analysis.

Procedure and task

We used a similar procedure for both Experiments
1 and 2. Experiment 1 consisted of seven alternative
choices, and Experiment 2 comprised two alternative
choices. Participants were informed that they would
be presented with images of paintings and that they
would indicate the time of day in each trial. After each
labeling, participants had to press the continue button
for the subsequent trial. Participants were also allowed
to go back and redo the previous trials. The trials were
randomized across participants.

In Experiment 1, there were 109 trials per observer.
Experiment 2 was composed of three blocks, each
containing 41 trials. Block 1 involved 21 observers,
while Blocks 2 and 3 had 20 observers each. Within
each block, there was no repetition of stimuli. Among
three blocks, there were 70 unique stimuli. Thirteen
stimuli were used in all three blocks, and seven stimuli
were used in each of two blocks.

Image analysis

Our hypothesis is that painters capture the variation
in illumination and reflected light from scenes over the
course of a day, and therefore the paintings will vary
in their luminance and chromatic content according
to the time of day they depict. We hypothesize that
participants will be able to discern and interpret this
content and that its statistical characteristics will predict
people’s perception of the time of day. We therefore
examined whether the image statistics of paintings
predict participants’ time-of-day ratings.

The images in this data set were downloaded as
photographic jpegs or pngs and displayed directly
without further transformation in the participants’
Internet browser windows. To model the color
appearance of the paintings as viewed by each
participant and from this calculate the image statistics
of the paintings, we assume that for each participant,
(a) the display calibration characteristics and (b)
the external viewing conditions stayed constant
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throughout the experiment. For each session, the
same color transformation from RGB pixel values
to color appearance will therefore apply across the
entire image data set. For the main analyses, we use
the sRGB color space model as the basis for that
transformation. sRGB is the widely adopted standard
color model for image display on monitors and the
web. It defines chromaticities for the RGB primaries,
based on original CRT phosphors, and a nonlinear
transfer function between input digital value (v) and
output intensity (I), with I = vγ and γ = 2.2. Using
the sRGB model, we calculated the color appearance
of the paintings displayed by converting RGB pixel
values into chromaticity and luminance coordinates
in CIE standard color spaces and derived further
image statistics from these. Although the sRGB model
might not perfectly predict color appearance for each
participant’s display, it is the optimal transformation
for approximating the average appearance, and it
also allows for consistent comparison and analysis
of the image statistics across all images in the data
set. We show in further analyses that calculated image
chromaticities and luminances are strongly correlated
across alternative white points for the sRGB color
transformations (Figure A5). Additional analyses using
laboratory screen calibrations confirm the main results
reported below.

The color appearance attributes and image statistics,
as described in detail in the Appendix, were computed
for our analysis. To the reader less well versed in
colorimetry: We are essentially converting colors
from screen-dependent coordinates (i.e., the RGB
values of the digital images) to screen-independent,
standardized color coordinates. We then employed
these standardized color metrics as input for a principal
component analysis (PCA) to reduce the dimensionality
of the data.

Color specifications and appearance metrics
Assuming the sRGB model and a default white point

of D65, we calculated 1,931 CIE XYZ values for each
pixel and, from these, CIELAB and LCH, according
to standard formulae, as detailed in the Appendix.
Furthermore, we directly converted the sRGB pixel
values to cone, rod, and melanopic photoreceptor
activations. We used the cone fundamentals specified by
Stockman et al. (Stockman & Sharpe, 2000; Stockman,
Sharpe, & Fach, 1999), the melanopsin curve by Lucas
et al. (2014), and the scotopic curve by Crawford (1949)
to compute the scotopic irradiance. We combined
precomputed spectra for sRGB primaries, which have
minimal roundtrip errors (as established by Mallett &
Yuksel, 2019), to generate the corresponding spectrum
for given sRGB pixel values.

For brightness and lightness measures, we used the
CIE Y tristimulus value (termed luminance in the

analyses below) and CIELAB L* (termed lightness
below).

For chromaticity measures, we used CIELAB a* and
b*, hue (calculated from CIELAB a* and b*, as in the
Appendix), saturation (calculated from CIELAB a*, b*
and L*, as in the Appendix), and chroma (calculated
from CIELAB a* and b*, as in the Appendix). Because
the chromaticity of daylight may be summarized by
its correlated color temperature (CCT), which is the
temperature of the black-body radiator with the nearest
chromaticity on the Planckian locus in CIE 1960 (u, v)
space, we therefore also convert CIE XYZ values for
each pixel into CCT (in Kelvin).

Statistical measures
For each of the luminance, lightness, and

chromaticity metrics above, we calculated descriptive
statistics (max, min, mean, variance, and skewness)
of their pixel value distributions for each image. For
the luminance and the blue channel in sRGB, we also
calculated RMS contrast. See the Appendix for formal
definitions.

In addition, we derived further image descriptors
relating to interactions between chromaticity and
luminance across each image:

Color difference at maximum luminance difference:
To summarize overall contrast, including both
luminance and chromatic contrast, we calculated
the color difference between the brightest and
darkest pixels in each image, using the CIE �E 2000
color-difference formula (�E00). The CIE �E 2000
color-difference formula (Luo, Cui, & Rigg, 2001),
based on CIELAB coordinates, is the recommended
standard for computing color differences that are
perceptually uniform across color space.

Luminance-weighted CCT: The luminance-weighted
CCT is calculated for each pixel as the product of
the pixel’s CCT and its corresponding luminance.
Luminance thereby serves as a weighting factor,
reducing the contribution of darker pixels and
increasing the contribution of brighter pixels.
Effectively, this weighting recognizes the greater
salience of brighter pixels in chromaticity perception.

Pixel-wise luminance–chromaticity correlations: We also
calculated the correlation between pixel luminance
and chromaticity measures (CIELAB b*, saturation,
and chroma) (Nakauchi & Tamura, 2022) within
each image using Pearson’s correlation coefficients.

Luminance–chromaticity image distance:We determined
the mean distance between the luminance and
each of the three chromatic channels (CIELAB b*,
saturation, and chroma). By calculating the difference
between pixel values at corresponding locations
within the respective channels, we obtained a measure
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of the pixel-wise chromaticity-luminance relationship
for individual images.

Image airlight color
To provide further insight into the atmospheric

conditions conveyed by the variation in chromaticity
and luminance within each image, we computed an
estimate of airlight appearance using the dark channel
prior method (He, Sun, & Tang, 2009). This approach
identifies and removes areas where at least one spectral
band is darker than the others before averaging the
remaining pixel values that correspond to clusters with
the highest average luminance and lowest chromatic
saturation. The resultant airlight color has been
shown to relate to the presence of scattered light in
hazy images. For more information, please refer to
the Appendix.

Statistical analysis

To quantify participants’ responses, we used
chronological scaling systems. In Experiment 1, we
used two scaling systems: The first assigned scores of 1
to 7 to seven rating categories in chronological order:
sunrise, morning, noon, afternoon, sunset, evening,
and night. This 7-point scale was used for the PCA
to examine the distribution of the original categories
and identify potential overlaps. For all other analyses,
including the correlational analyses and linear model
prediction, we used a 4-point scale, merging into single
categories (1) morning and sunrise, (2) noon and
afternoon, and (3) evening and sunset, and keeping
night in the final category. These were assigned scores
of 1, 3, 5, and 7, respectively. This scale took account
of potential ambiguity in the perceived chronology of
sunrise and sunset relative to morning and evening. In
Experiment 2, we simplified the scale to two categories,
assigning 0 to morning and 1 to evening.

We used three measures for data analysis: (a) the
mean score (“mean time of day”): the sum of all the
scores divided by the number of scores, providing
an overall measure of the perceived time of day for
each painting; (b) the proportional score per category:
the ratio between the total count of scores for a
particular category and the total number of scores, or
the proportion of scores that fall into each category;
and (c) categorical score: the mode of the scores given
by participants for a particular painting, indicating the
most frequently perceived time of day for that painting.

Two types of analyses were conducted to investigate
the relationship between participants’ responses and
image statistics. The first consisted of independent
correlation analyses on each of the image metrics for
both experiments using mean time-of-day scores. The
second used the principal components extracted from

the image metrics as predictors in a multiple regression
analysis to model the mean time of day. The accuracy
and quality of the model were evaluated using the
Akaike information criterion (AIC). Results with a
p-value less than 0.05 were considered statistically
significant.

Results

Experiment 1

The results indicate that people are readily able to
assess the time of day depicted in paintings. Observers’
ratings varied significantly across paintings (analysis
of variance [ANOVA]; F(103, 2600) = 15.23, α =
0.05/5356, p < 0.00001). There was no significant
difference between results with and without the data
that did not pass the catch-trial selection criterion
(Mann–Whitney test, p = 0.82). For individual images,
response distributions varied. For a small proportion
of images, responses were concentrated in a single
category, with maximum categorical scores of 77% for
morning, 81% for noon/afternoon, 77% for evening,
and 100% for nighttime (see Figure 4 for examples of
paintings with high interobserver consistency). Other
images exhibited a more evenly distributed mixture of
ratings, with approximately 12% of paintings having
a bipolar distribution of morning–evening ratings
(see Figure 5 for response category distributions for
the MIP paintings subset). The evident ambiguity
of this latter group provided partial motivation for
Experiment 2. Despite this variation in response
distributions, a substantial 24.9% of pairwise
comparisons between paintings (equating to 1,335
pairs) still presented significant differences (Bonferroni
corrected).

Image analysis
For each image, we calculated 30 image statistics

that capture the chromaticity and luminance variations,
as well as their relationships, within and across the
image set (see Methods for detailed descriptions
and Figure A1 for the complete list). The mean CIE
chromaticities of all paintings are shown in Figure 6,
with one disk representing each painting. The
chromaticities tend to cluster along the daylight locus,
varying from blueish to orangish. Almost all lie above
the daylight locus, with a positive Duv value indicating a
greenish shift. This chromatic relationship holds across
different white points (Figure A5). Figure 7 presents the
mean luminance of the paintings, providing additional
descriptive statistics for the image set.

We conducted a PCA to uncover the underlying
dimensions of the space, because the image statistics
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Figure 4. Sample paintings with high-consistency ratings. (A) Sanford Robinson Gifford, A Gorge in the Mountains (Kauterskill Clove),
1862. (B) Willard Metcalf, The North Country, 1923. (C) Emanuel Murant, The Old Castle, 1642–1700. (D) Arnold Böcklin, Island of the
Dead, 1880. Downloaded from the online repository of the Metropolitan Museum of Art, New York.

Figure 5. Percentages of population responses for the four merged categories for 48 of the MIP subset of paintings, Experiment 1.

are not independent of each other (see Figure A1
and Table A1). We extracted five principal components
(PCs), as defined by eigenvalues greater than 1 (Table
A2). The first two components (Dim1–PC1 on the
horizontal axis and Dim2–PC2 on the vertical axis)
accounted for 71.1% of the variability in the image
statistics data, as visualized in Figure 8. Adding a
third, fourth, or fifth component captured 81.7%,
86.8%, and 90.4% of the variability, respectively. In the
PC space, there were three distinct clusters of factor
loadings, indicated by the red arrows, which were
distributed on the positive and negative sides of the
horizontal axis and the negative side of the vertical axis
(Figure 8A).

It is important to emphasize that the orientation of
PCs is arbitrary; their signs can be flipped, and their
interpretation remains the same. For ease of discussion
and interpretation, we chose a specific orientation
to present our results. Principal component 1 (PC1)
is highly negatively loaded with measures such as
luminance, cone, rod, and melanopic photoreceptor
activations; contrast; luminance-weighted CCT; and
chroma–luminance image distance but positively
loaded with luminance–channel skewness, which
negatively correlates with the other measures. These
relationships indicate that brighter images also exhibit
higher contrast and are skewed toward brighter
pixel values, consistent with depictions of strong
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Figure 6. (A) Mean image chromaticities in the CIE xy plane for paintings, one disk per image. Disk colors approximately represent
image chromaticity. The black line indicates the daylight locus; the locations of D30, D40, D55, and D75 are marked. (B) The CIE LAB
plane at a lightness level (L*) of 0.8; one disk per painting.

Figure 7. Illustration of mean image luminance for each painting, depicted by individual bars arranged in descending order from
highest to lowest luminance. The colors of the bars represent mean image chromaticity, while the black line on top of the bars shows
the standard deviation.

daylight. PC1 also captures the relationship between
luminance and chromaticity within images via its
negative loading with luminance-weighted CCT
and chroma–luminance distance. Whereas PC1 thus
encapsulates luminance-related measures, PC2 instead
represents chromaticity-related measures: Mean
image saturation, mean image chroma, mean b*,
and mean image colorfulness all load negatively on
PC2. CCT, inverse CCT difference, and saturation
differences loaded the third principal component
(PC3). The highest loadings on the fourth and
fifth principal components (PC4, PC5) came from
minimal image b* and image b* standard deviation,
respectively.

Relationship between observer responses and image
metrics

To evaluate whether the above image metrics
predict time-of-day ratings, we performed correlations
(visualized in Figure A1) and found that all 30 image
statistics were significantly correlated with mean time-
of-day scores (p < 0.0001 for all). We report correlations
where the absolute value of r is greater than 0.6, namely,
positive correlations for luminance skewness (r = 0.82)
and saturation−luminance correlation (r = 0.62), as
well as negative correlations for mean image luminance
(r = −0.81), mean image luma (r = −0.81), mean
melanopsin input (r = −0.78), mean L-cone input
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Figure 8. Visualization of the first two dimensions of PCA. (A)
Factor loadings of 30 image statistics, with text labels, and the
red vectors indicating the factor loadings of the original
dimensions. (B) The covariance ellipses that were fitted for
each time-of-day class, in which each point represents one of
the 104 paintings and is color-coded based on its perceived
time-of-day classification.

(r = −0.82), mean M-cone input (r = −0.81), mean
S-cone input (r = −0.73), mean rod input (r = −0.79),
RMS luminance contrast (r = −0.81), RMS contrast
(B channel) (r = −0.71), b* standard deviation (r =
−0.72), �E00 (r = −0.67), mean luminance-weighted
CCT (r = −0.69), b*-luminance image distance (r =
−0.72), saturation−luminance image distance (r =
−0.69), and chroma−luminance image distance (r =
−0.73).

We further calculated the PC1 and PC2 coordinates
of each image. Assigning each image its categorical score

(as defined above) on the 7-point scale, we calculated the
mean image PC coordinates and covariance matrix for
each category. From the eigenvalues and eigenvectors
of the covariance matrices, we derived the major and
minor axes of the covariance ellipses for each category.
These are illustrated in Figure 8B, with the ellipses
enclosing 68% of the data points within each category,
corresponding to one standard deviation from the
mean for normally distributed data. The covariance
ellipses reveal that sunrise and sunset cover the largest
area, while night covers the smallest area. Sunrise
and sunset loaded on combined components, while
other time-of-day groups primarily loaded on the
first component. The factor loadings for the first five
components are shown in Table A1.

To predict the mean time-of-day rating, which spans
from morning to night across four combined categories,
we applied a multiple linear regression analysis using
the components extracted from our PCA. By applying
the forward technique, we added one extra component
as a predictor at a time. Accordingly, we computed
five candidate models and compared them using AIC
model selection (Burnham & Anderson, 2002). A lower
Akaike weight can be interpreted as a higher probability
that a certain model performs best. Table 1 shows the
statistical summary for all the candidate models. We
selected the model with the lowest Akaike weights,
which included only PC1 and PC2. The equation for
the best-fitting line is

mean time of day rating

= 0.583 + 0.034PC1 + 0.017PC2 (1)

This model explained (R2) 76% of the perceived
time-of-day variance (see Figure 9).

Intermediate discussion

In Experiment 1, we found that the mean image
chromaticities of the paintings were distributed over
a large range, close to and slightly above the daylight
locus. This implies that the mean image chromaticities
of the stimuli ranged from so-called warm to cool
daylight, with a slight green shift. The green shift might
be due to a large portion of landscape features in the
painting content. Perceived time of day correlated with
various image statistics incorporating luminance and
chromatic information. Multiple linear regressions
of extracted principal components resulted in a
two-dimensional predictive model that explained 76%
of the variance in time-of-day perception. People seem
to use assumptions about the variation in brightness
and color of natural light depicted in paintings to
infer the time of day, yet with large interindividual
differences. Some paintings were perceived consistently
as morning, noon, evening, or night, while for many
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Change statistics

R R2 Adjusted R2 Standard error of the estimate AIC R2 change F change df1 df2 Sig. F change

0.840a 0.706 0.703 0.09046 −202.675 0.706 245.379 1 102 0.000
0.872b 0.760 0.755 0.08218 −221.675 0.054 22.599 1 101 0.000
0.872c 0.761 0.754 0.08245 −220.010 0.001 0.322 1 100 0.571
0.876d 0.767 0.758 0.08173 −220.878 0.007 2.769 1 99 0.099
0.876e 0.768 0.756 0.08205 −219.129 0.001 0.236 1 98 0.628

Table 1. Model summary. Notes: Dependent variable: mean time-of-day rating. aPredictors: (Constant), PC1.
bPredictors: (Constant), PC1, PC2.
cPredictors: (Constant), PC1, PC2, PC3.
dPredictors: (Constant), PC1, PC2, PC3, PC4.
ePredictors: (Constant), PC1, PC2, PC3, PC4, PC5.

Figure 9. Scatterplot comparing the average perceived
time-of-day scores (y-axis) to the predicted time-of-day scores
(x-axis) based on the linear model established with the four
merged time-of-day category scores.

paintings, we found mixtures of three or four ratings.
Some paintings had ratings split almost evenly between
morning and evening. This observation partially
motivates Experiment 2.

Experiment 2

In Experiment 2, we investigated further whether
observers could discriminate specifically between
morning and evening in paintings that explicitly
portrayed these times of day. Grouping metadata-
labeled “morning” and “sunrise” paintings together
into the metadata-morning category and “sunset”
and “evening” into the metadata-evening category, we

found that observers’ ratings were indeed significantly
different for the two categories (Mann–Whitney test,
p = 0.000). Figure 10 illustrates the results, with the
paintings ordered according to average participant
ratings, from morningness (left) to eveningness (right).
Metadata-morning paintings are illustrated in the
upper panel and metadata-evening paintings in the
lower panel. Although paintings in both categories
cover a large time span, they clearly cluster toward
either side. A chi-square test on morning versus evening
counts (defined by the threshold value 0.5) further
demonstrated significant agreement between the
metadata and the participants’ labeling, with χ2(1) =
13.235 and p < 0.001.

Although there was a significant difference in
observer ratings across the images (ANOVA; α =
0.05/4005, p << 0.00001, F(89, 4235) = 14.5139), there
was also a large range of ratings distributions across
individual paintings, with some morning paintings
being rated as morning by 95% of the participants
and some evening paintings as evening by 100% of
participants. Overall, 27.9% of all painting pairs had
significantly different ratings distributions (Bonferroni
corrected). Figure 11 illustrates several paintings with
highly consistent interparticipant ratings.

Relationship between observer responses and image
metrics

As for Experiment 1, we computed the set of 30
image statistics for each painting and conducted single
linear regressions between these and the time-of-day
rating. The resulting correlation matrix is visualized
in Figure A2. Several image statistics, including
Min chroma, mean b*, min b*, b* SD, mean image
colorfulness, CCT difference, inverse CCT difference,
and saturation difference, were no longer significantly
correlated with the observers’ ratings. The correlations
between the human ratings and mean image saturation
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Figure 10. Morningness−eveningness perception in Experiment 2. Digital images of paintings from the MIP data set were ordered
according to the average time-of-day score. The order from left to right corresponds to a progression from morningness to
eveningness. (A) Metadata-indicated morning or sunrise scenes (27 total). (B) Metadata-indicated evening or sunset scenes (63 total).
The top 33% rated morning and evening paintings are marked by the solid line.

Figure 11. Sample paintings and their ratings. (A) Camille Pissarro,Morning, An Overcast Day, Rouen, 1896. (B) George Bellows, Blue
Morning, 1909. (C) Arkhip Ivanovich Kuindzhi, Red Sunset on the Dnieper, 1905–1908. (D) Théodore Rousseau, The Forest in Winter at
Sunset, c. 1846–c. 1867. Downloaded from the online repository of the Metropolitan Museum of Art, New York.

and chroma reversed in direction, with higher saturation
now associating with higher eveningness ratings.

A principal components analysis on the 30 image
statistics yields the results illustrated in Figure 12.

Subpanel (A) displays the factor loadings, while
subpanels (B) and (C) display the positioning of the
metadata-classified and observer-classified morning and
evening paintings, respectively, in the multidimensional

Downloaded from jov.arvojournals.org on 04/24/2024



Journal of Vision (2024) 24(1):1, 1–27 Yu et al. 13

Figure 12. Biplot visualizations of the first two principal
components. (A) Red arrows indicate the factor loadings of all
image statistics. (B) Morning and evening paintings based on
metadata classification, with points representing the 90
paintings and colors indicating the classification. (C) Morning
and evening paintings based on observers’ ratings classification,
with points and colors representing the classification. Ellipses
were fitted to enclose 68% of the data points within each
category.

image feature space. The observer-classified categories
are based on classifications selected by a majority of the
participants (e.g., observer-classified morning paintings
were rated as morning by more than 50% of observers).
We used the same method as in Experiment 1 to fit
ellipses designed to enclose 68% of the data points
within each category.

Notably, the clusters for morning and evening
paintings based on metadata classification showed
significant overlap (Figure 12B), while the clusters
based on observer classification demonstrated less
overlap (Figure 12C). This difference in overlap is
primarily attributable to the reduction in the size
of the ellipses, rather than shifts in their positions.
Despite these differences in overlap, the shapes of the
covariance ellipses remained largely consistent across
both classification methods.

The factor loadings for the PCs identified in this
analysis were similar to those found in Experiment 1
on the negative side of the horizontal axis but different
for the remaining factor loadings (Figure 12A). This
and the reversal of certain correlations compared
with Experiment 1 is probably due to the narrower
range of paintings in this data set, consisting only of
morning and evening paintings, relative to the broader
time-of-day selection in Experiment 1.

PC1 coordinates were significantly different
between metadata-morning and metadata-evening
(Mann–Whitney test, p = 0.000), but PC2 coordinates
were not (Mann–Whitney test, p = 0.294). Yet for
observer-classified morning versus evening paintings,
both PC1 and PC2 differed significantly (Mann–
Whitney test, p = 0.000 and p = 0.005, respectively).
Thus, our results suggest that observers perceive more
pronounced differences in depicted time of day than the
metadata specify.

To probe the image factors underlying observers’
time-of-day ratings, we compared the distributions
of luminance-related and chromaticity-related image
statistics for both observer-classified and metadata-
classified morning and evening paintings. Figure 13
shows the CIE Y and CCT distributions for all
paintings, with observer classifications shown in the
right plots and metadata classifications in the left
plots. The analysis revealed that while there were no
significant differences between mean image luminance
for metadata-indicated morning and evening paintings
(Figure 13A), there was a significant difference based on
observer classifications (Figure 13B). The mean image
chromaticity (CCT) differed significantly between
morning and evening paintings for both metadata and
observer classifications (Figures 13C, D).

To explore the influence of chromaticity on
perceptions of morning versus evening, beyond the
one-dimensional metric CCT, we analyzed the CIE x,y
distributions of the third most extreme observer-rated
morning versus evening paintings. (These paintings
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Figure 13. Distribution plots of mean image luminance (CIE Y) and chromaticity (CCT). (A, C) Metadata classification. (B, D) Observers’
rating classification. ***Statistically significant differences (Mann–Whitney test, p < 0.0001).

are indicated by the 33% line in Figure 10.) For all
paintings, the mean image chromaticities generally
follow the daylight locus, as shown in Figures 14A,
B. For both metadata-classified and observer-rated
morning paintings, the mean chromaticities cluster
near D50, much more tightly for the observer-rated
paintings. The mean chromaticities of evening
paintings cover a large range of the daylight locus
but are weighted toward the warm end, with a larger
covariance error ellipse for the observer-rated than
metadata-classified paintings. (Mean image CCTs: for
metadata-classified images: morning 5233K, evening
4692K; for observer-rated images: morning 5686K,
evening 3945K.)

Mean airlight chromaticities, which correlate with
both the chromaticities of diffuse ambient illumination
(Koenderink, 2010) and with the amount of haze
(Narasimhan & Nayar, 2002), generally shift to cooler
chromaticities for both metadata-rated (Figure 14C)
and observer-rated (Figure 14D) paintings relative to
the mean image chromaticities, as expected. (Mean
airlight CCTs: for metadata-classified images: morning

5482K, evening 5116K; for observer-rated images:
morning 6131K, evening 4305K.)

The exception to this is the observer-classified evening
paintings, for which the mean airlight chromaticity
is slightly shifted to warmer colors. Overall, for both
mean image and airlight chromaticities, the morning
paintings tend to be bluer than the evening paintings.

Intermediate discussion

In Experiment 2, we set out to investigate whether
there are notable differences in the way that artists
depict morning and evening and whether observers
can use these differences to identify morning or
evening. To this end, we selected a set of paintings with
metadata indicating whether they depict a morning
or evening scene and asked observers to classify the
paintings as either morning or evening. The mean
image chromaticities of morning paintings were close
to neutral white, while those of evening paintings varied
from warm white to cool white, with a high frequency
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Figure 14. Mean image chromaticities and airlight chromaticities of paintings plotted in the CIE xy plane. (A, B) Mean image
chromaticities based on metadata and observer ratings, respectively, with the top 33% rated morning and evening paintings included
in panel (B). (C, D) Airlight color chromaticities based on metadata and observer ratings, respectively, with the top 33% rated morning
and evening paintings included in panel (D). The black line indicates the daylight locus, and the diagonal cross indicates D55, serving
as a reference for the chromaticity values.
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of warm white occurrences. The airlight chromaticities
of morning paintings were on average bluer than those
of evening paintings. These differences were found to be
larger between observer-classified morning and evening
paintings than between metadata-classified morning
and evening paintings. This suggests that, overall, there
may be different statistical regularities between morning
and evening depictions and that people are able to use
those to differentiate between morning and evening.

General discussion

We studied the time-of-day perception using 17th-
to 20th-century oil paintings. In Experiment 1, we
collected human ratings on the time of day depicted
in paintings. We collected both quantitative image
statistics and qualitative perceptual data. These showed
systematic correlations yielding insights into how the
time of day can be perceived and predicted. Variance
in the data was high, but statistical regularities in
the human data correlated with regularities in the
image characteristics. We found that “morningness”
correlated with bright, high-contrast, saturated, and
brighter blue/darker yellow images and “eveningness”
with darker, low-contrast, desaturated, and brighter
yellow/darker blue images. This finding shows that
image statistics related to light and color in paintings
reflect the characteristics of terrestrial illumination
and can be used by people to perceive the depicted
time of day. Specifically, luminance and chromaticity
were found to be the most effective predictors of
perceived time of day. The desaturation association
with eveningness might also be related to the Hunt
effect: Colors in darker environments are perceived
as less saturated than those in brighter environments
(Hunt, 1950).

In Experiment 2, we examined the statistical
differences between morning and evening depictions
based on both human perception and metadata. We
found that there are subtle differences between morning
and evening depictions in terms of luminance but
more significant differences in terms of chromaticity.
These differences were particularly pronounced in
perception-classified paintings, as opposed to the
metadata-classified paintings. People tended to
associate paintings depicting morning with a CCT
similar to the average daylight of D55, while they
perceived paintings depicting evening as having a CCT
that ranges from warm to cool white. In addition, the
airlight color of morning paintings was also bluer than
that of evening paintings. One contributing factor to
this differentiation might be the presence of depicted
haze, which might serve as a visual cue in distinguishing
between morning and evening scenes. These regularities
used by observers to distinguish between morning

and evening reflect recorded measurements of natural
illumination. As the sun rises and solar elevation
increases, the temperature transitions from low to
high and the frequency of dense water vapor, haze,
and fog tends to be higher in the morning than in the
evening (Deutsch, 1991; Minnis et al., 1997; Pechony
et al., 2007; Rickel & Genin, 2005). The presence of
visible mist or haze in a scene can cause a higher level
of diffuseness and lower color differences within the
light field, resulting in an overall more even distribution
of white in the image. The atmospheric filtering is
also far from neutral (Lee & Hernández-Andrés, 2005;
Yu, Wijntjes, Eisemann, & Pont, 2023), causing a
blue-shifted airlight color in the morning relative to the
evening. On the other hand, at sunset, the temperature
decreases as the sun’s elevation decreases, resulting in
a higher proportion of water molecules in the lower
atmosphere compared to the morning. These water
molecules are larger than air molecules and scatter
the long-wavelength component of sunlight, along
with blue scattered light from the upper levels of the
atmosphere, leading to large spatial and angular color
variations in the sunset sky ranging from orangey-red
to deep blue (Panorgias et al., 2012).

It is worth noting that the reliability of metadata is
an important consideration in this study. Certain forms
of metadata may be based on the interpretation and
knowledge of curators and might not necessarily reflect
the original intentions of the painter. This is especially
relevant for paintings created before the 19th century,
when metadata were not yet being systematically
recorded. However, most of the paintings used in this
study were from the 19th century (Figure A4), and the
primary metadata we used here were painting titles,
which were generally chosen by the artists themselves.

The chromaticity of a painting, calculated from the
conversion of sRGB to XYZ values, may reflect the
range of estimated illumination chromaticities that
observers see in the painting under the assumption
of a “gray world” (Buchsbaum, 1980). It is worth
noting that the spread of chromaticities was calculated
from the RGB values of the image, which may not
produce the same chromaticity on every monitor due to
variations in monitor specifications. To account for this,
we can calculate the spread of chromaticities for a range
of different white points, or assumed chromaticities for
RGB values of [1, 1, 1]. While the transformation of the
spread to different regions of the chromaticity diagram
may vary, the relationship between chromaticity
and time-of-day perception remains similar (see
Figure A5).

In addition to the confounding factors of the actual
colors of the painting and the colors displayed on
participants’ screens, there may be a discrepancy
between the artist’s intended colors and the current
colors due to color degradation. One influencing
factor is the yellowing of varnish, which can affect
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the overall color palette of a painting and potentially
influence the perceived time of day. Varnish serves
as a protective layer on oil paintings, shielding them
from environmental factors like dust, UV light, and
moisture. While it is essential for preserving artwork and
frequently employed in art restoration, the yellowing
of varnish might alter perceptions of the time of day
depicted, with yellow-tinted paintings possibly being
seen as morning scenes. However, our experiments did
not substantiate this hypothesis. Experiment 1 revealed
a negative correlation between average time-of-day
scores and the year of creation, with a significance
level of p = 0.0051 (r = −0.27), indicating a weak
correlation. However, a positive correlation would be
expected if yellowing were occurring and influencing
time-of-day judgments. In Experiment 2, the correlation
was not statistically significant (r = −0.16, p = 0.1284).
Additionally, the canvas ground used in the 19th
century was lighter compared to those employed in
earlier periods. This led to the hypothesis that darker
paintings from earlier periods might be more frequently
perceived as evening scenes. However, the correlations
between average scores and the year of creation were
either not statistically significant or very weak in both
experiments.

In addition to creating a sense of space, our study
shows that light and color in paintings are also
associated with a temporal dimension: time of day
in paintings. Specifically, we found that luminance
and chromaticity are the most effective predictors of
perceived time of day in paintings. Our findings show
that image statistics might partly explain time-of-day
perception in paintings.

Conclusions

In this study, we analyzed the image statistics of
paintings in order to understand how people perceive
the time of day depicted in these works of art. We used
dimension-reduction techniques to reduce the number
of image statistics and then used these statistics to
predict the perceived time of day in the paintings.

In conclusion, our study showed that the image
statistics of paintings varied systematically depending
on the time of day depicted, reflecting the characteristics
of terrestrial illumination. Two predictors—luminance-
related and chromaticity-related components—were
the most effective at predicting the perceived time
of day in the paintings. This suggests that people
are able to perceive the difference between different
time-of-day depictions in paintings and use cues related
to luminance and chromaticity to discern the time of
day depicted. Our results also indicate that while subtle
and insignificant differences exist between morning and
evening depictions in terms of luminance, statistically

significant differences are evident in chromaticity.
These average chromaticity differences appeared more
pronounced in people’s perceptions of the two times of
day in paintings, rather than in metadata classification.
We found that chromaticity may be an influential factor
in people’s perceptions of morning and evening and
that observers can use both luminance and chromaticity
to differentiate between the two times of day. These
findings provide insight into color statistics of paintings
that contribute to their perceived time of day and
may be useful for artists and researchers studying the
representation of the time of day in art.

Keywords: image statistics, time-of-day perception,
chromatic properties, art history, light
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Appendix

Image color conversion and statistical
estimation

The color of each pixel in a given image at position
(1 ≤ i ≤ W, 1 ≤ j ≤ H) is described as a triplet of color
coordinates in the sRGB color space as [R(i, j), G(i, j),
B(i, j)], where W is the width and H is the height of the
image in pixel number.

To ensure robust statistical estimates for the natural
images, we excluded pixel values below the 5th percentile
and above the 95th percentiles of the histograms,
mitigating the influence of outlier pixel values that
could represent random noise or artifacts within the
image data.

Color conversions were as follows:
1. sRGB → XYZ and Yxy
The sRGB component values, R(i, j), G(i, j), and B(i,

j), range from 0 to 1. The linear values, Clinear(i, j), are
calculated as follows:

Clinear (i, j) =⎧⎨
⎩

CsRGB(i, j)
12.92 , CsRGB (i, j) ≤ 0.04045(

CsRGB(i, j)+ 0.055
1.055

)2.4
, CsRGB (i, j) > 0.04045

where C(i, j) refers to R(i, j), G(i, j), or B(i, j).
Assuming standard chromaticity values for the

R, G, and B components and a D65 white point,
the conversion matrix from linear RGB to CIE 1931
tristimulus values is[X (i, j)

Y (i, j)
Z (i, j)

]
=

[0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9503

][Rlinear (i, j)
Glinear (i, j)
Blinear (i, j)

]

The CIE chromaticity coordinates (x, y) are derived
from the tristimulus values (X, Y, Z) as follows:

x (i, j) = X (i, j)
X (i, j) +Y (i, j) + Z (i, j)

y (i, j) = Y (i, j)
X (i, j) +Y (i, j) + Z (i, j)

2. RGB → LMS / rod / melanopic receptoral
activations

The spectrum of a given pixel is estimated as
λRGB (i, j)

= λR × R (i, j) + λG × G (i, j) + λB × B (i, j) ,
where λR is the precomputed spectrum of the sRGB R
primary (Mallett & Yuksel, 2019) and R(i, j) the linear
R pixel value (and respectively for G and B).

The spectral sensitivity Sk(λ) of the kth receptor
type is specified by the Stockman and Sharpe (2000)
cone fundamentals for L, M, and S; the melanopsin
curve specified by Lucas et al. (2014) for melanopic
irradiance; and the Crawford (1949) method for
scotopic irradiance. The receptor-specific irradiance
(ek) of a pixel can be calculated as follows:

ek (i, j) = ∫ λRGB (i, j)Sk (λ) dλ.

3. XYZ → CIELAB
L*, a*, b* quantities defined by the equations

L∗ (i, j) = 116 f
(
Y (i, j)
Yn

)
− 16

a∗ (i, j) = 500
[
f
(
X (i, j)
Xn

)
− f

(
Y (i, j)
Yn

)]

b∗ (i, j) = 200
[
f
(
Y (i, j)
Yn

)
− f

(
Z (i, j)
Zn

)]
where

f (X (i, j) /Xn) = (X (i, j) /Xn)1/3

if X (i, j) /Xn < (24/116)3

f (X (i, j) /Xn) =
(
841
108

)
(X (i, j) /Xn) + 16/116

if X (i, j) /Xn ≥ (24/116)3

and
f (Y (i, j) /Yn) = (Y (i, j) /Yn)1/3

if Y/Yn < (24/116)3

f (Y (i, j) /Yn) =
(
841
108

)
(Y (i, j) /Yn) + 16/116

if Y/Yn ≥ (24/116)3

and
f (Z (i, j) /Zn) = (Z (i, j) /Zn)1/3

if Z/Zn < (24/116)3

f (Z (i, j) /Zn) =
(
841
108

)
(Z (i, j) /Zn) + 16/116

if Z/Zn ≥ (24/116)3
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Xn, Yn, Zn describe a specified white achromatic
reference illuminant.

CIELAB lightness: L* as defined above
CIELAB chroma: C* = arctan(b*/a*)
CIELAB hue: h = arctan(b*/a*)

Saturation is the degree to which a color is pure and
is defined as the ratio of chroma to luminance.

S (i, j) = C∗ (i, j)
L∗ (i, j)

4. CCT (T):
The CCT of a given pixel T(i, j) is derived from its

chromaticity in the (u, v) plane, in turn derived from (x,
y) chromaticity in the usual way (Carter et al., 2018).
We used a combination of triangular and parabolic
calculations to estimate CCT from (u, v), reducing the
error to 1 K (Ohno, 2014). We employed the triangular
solution for |Duv| < 0.002 and the parabolic solution for
other regions. By employing this method, we accurately
estimated the CCT of each pixel, another measure of
pixel chromaticity.

To offer a more uniform perceptual representation,
we calculated the inverse CCT as 106/CCT in reciprocal
mega-Kelvin (MK−1). We denoted the inverse CCT as
T′(i, j), where

T′ (i, j) = 106

T (i, j)

The luminance-weighted CCT, denoted as TY(i, j), is
calculated as the product of the luminance Y(i, j) and
CCT T(i, j):

The luminance-weighted CCT is given by the
following:

TY (i, j) = Y (i, j) × T (i, j)

5. The following formulae are used to calculate
several statistical measures of an image, including
the mean, minimum, maximum, variance, standard
deviation, skewness, difference, and RMS contrast,
based on the individual pixel data points represented by
r(i, j):

Mean (μ):

μ = 1
WH

W∑
i=1

H∑
j=1

r (i, j)

Minimum (min):

rmin = min
(1≤i≤W ;1≤ j≤H )

r (i, j)

Maximum (max):

rmax = max
(0≤i≤W ;0≤ j≤H )

r (i, j)

Variance (var):

var = 1
WH

W∑
i=1

H∑
j=1

[r (i, j) − μ]2

Standard deviation (σ ):

σ = √
var

Skewness (g):

g = 1
WH

1[√
var

]3
W∑
i=1

H∑
j=1

[r (i, j) − μ]3

Difference (�r):

�r = rmax − rmin

RMS contrast (C):

C =
√√√√ 1

WH

W∑
i=1

H∑
j=1

[r (i, j) − μ]2

6. The Euclidean image distance and correlation
coefficient between two color channels of an image can
be described using the following formulae, where u and
v represent arbitrary color channels:

The Euclidean image distance:

Duv = 1
WH

√√√√ W∑
i=1

H∑
j=1

[u (i, j) − v (i, j)]2

This formula calculates the root mean square of the
differences between corresponding pixel values in the
two color channels over the entire image. It can be used
to quantify the dissimilarity between the two color
channels.

The correlation coefficient:

Ruv =
∑W

i=1
∑H

j=1 [u (i, j) − ū] [v (i, j) − v̄]√∑W
i=1

∑H
j=1

[
u (i, j) − S̄

]2[v (i, j) − v̄]2

This formula calculates the correlation between the
corresponding pixel values in the two channels over the
entire image. It can be used to quantify the similarity
between the two color channels. This measure can be
useful in a variety of image-processing applications,
such as color-based segmentation and image retrieval.

7. Color difference (�E00)
The color-difference formula (CIEDE2000) is based

on the LAB color space.

�L′ = L∗
max − L∗

min

L̄ = L∗
max + L∗

min

2
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C̄ = C∗
max + C∗

min

2

a′
max = a∗

max + a∗
max

2

⎛
⎝1 −

√
C̄7

C̄7 + 257

⎞
⎠

a′
min = a∗

min + a∗
min

2

⎛
⎝1 −

√
C̄7

C̄7 + 257

⎞
⎠

C̄′ = C′
max + C′

min

2
and �C′ = C′

min − C′
max

where

C′
max =

√
a′
max

2 + b∗
max

2 C′
min =

√
a′
min

2 + b∗
min

2

h′
max = atan2(b∗

max, a′
max) mod 360◦,

h′
min = atan2

(
b∗

min, a′
min

)
mod 360◦

�h′ =⎧⎨
⎩

h′
min − h′

max
h′
min − h′

max + 360◦

h′
min − h′

max − 360◦

∣∣h′
max − h′

min
∣∣ ≤ 180◦∣∣h′

max − h′
min

∣∣ > 180◦, h′
min ≤ h′

max∣∣h′
max − h′

min
∣∣ > 180◦, h′

min > h′
max

�H ′ = 2
√
C′

maxC′
min sin

(
�h′/2

)
H̄ ′ =⎧⎨
⎩

(
h′
min + h′

max
)
/2

(h′
min + h′

max + 360◦ )/2(
h′
min + h′

max − 360◦) /2

∣∣h′
max − h′

min
∣∣ ≤ 180◦∣∣h′

max − h′
min

∣∣ > 180◦, h′
min + h′

max < 360◦∣∣h′
max − h′

min
∣∣ > 180◦, h′

min + h′
max ≥ 360◦

T= 1 − 0.17 cos
(
H̄ ′ − 30◦) + 0.24 cos

(
2H̄ ′)

+ 0.32 cos
(
3H̄ ′ + 6◦) − 0.20 cos

(
4H̄ ′ + 63◦)

SL = 1 + 0.015
(
L̄ − 50

)2√
20 + (

L̄ − 50
)2

SC = 1 + 0.045C̄′ SH = 1 + 0.015C̄′T

RT=

− 2

√√√√ C̄′7

C̄′7 + 257
sin

[
60◦ · exp

(
−
[
H̄ ′ − 275◦

25◦

]2)]

KL = KC = KH = 1

�E00
(
L∗
max, a

∗
max, b

∗
max;L∗

min, a
∗
min, b

∗
min

)

=
√(

�L′

KLSL

)2
+

(
�C′

KCSC

)2
+

(
�H ′

KHSH

)2
+ RT

(
�C′

KCSC

)(
�H ′

KHSH

)

The color difference between the mean of 5%
brightest pixels and the mean of 5% darkest pixel is

�E00 = �E00
(
L∗
max, a

∗
max, b

∗
max;L∗

min, a
∗
min, b

∗
min

)
8. Mean image colorfulness (C)
rg is the difference between the R channel and the G

channel. yb represents half of the sum of the R and G
channels minus the B channel.

rg = R − G

yb = 1
2
(R + G) − B

Next, the standard deviation (σ rgyb) and mean (μrgyb)
are computed before calculating the final colorfulness
metric, C.

μrg = 1
WH

W∑
i=1

H∑
j=1

rg (i, j)

μyb = 1
WH

W∑
i=1

H∑
j=1

yb (i, j)

σrg =
√√√√ 1

WH

W∑
i=1

H∑
j=1

[rg (i, j) − rg]2

σyb =
√√√√ 1

WH

W∑
i=1

H∑
j=1

[
yb (i, j) − yb

]2

σrgyb =
√

σrg2 + σyb2

μrgyb =
√

μrg2 + μyb2

The mean image colorfulness is given by the
following:

C = σrgyb + 0.3∗μrgyb

9. Luma
The luma Y′(i, j) of a pixel in an image is calculated

as a linear combination of its RGB primary values and
is commonly used in color video encoding in addition
to luminance due to its colorimetric properties. The
formula for Y′(i, j) is as follows:

Y ′ (i, j)= 0.2126R (i, j) + 0.7152G (i, j)
+ 0.0722B (i, j)
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Figure A1. Results of Experiment 1. Correlation matrices of human rating and image statistics are represented by ellipses that vary in
thickness and color. Thinner ellipses indicate a stronger correlation, while fatter ellipses indicate a weaker correlation. The elongation
of the ellipses shows the direction of correlation, with red indicating negative correlation, blue indicating positive correlation, and
white indicating zero correlation. Only correlation coefficients that have a significant effect at p < 0.05 are included in the matrix cells.

10. Airlight estimation
A practical way to estimate airlight color comes

from dehazing literature, as airlight estimation is
a prerequisite for dehazing. In a commentary on
the dehazing study by He et al. (2009), Odisio and
Alessandrini (2014) outline the following way of airlight
estimation:

(1) First apply a filter to each RGB channel that
replaces each pixel value with the local minimum
value, defined by some kernel width r. This step is
used for local smoothing.

(2) For each pixel, take the minimum value of three
channels, resulting in a dark channel image.

(3) Select the top 0.3% of the brightest pixels of the
dark channel.

(4) Cluster these pixels and select the cluster with the
highest luminance.

(5) Take the mean RGB color, and this is the
airlight.

Correlation matrices of human rating and image
statistics

In Figure A1 and Figure A2, we illustrate the
correlations between human ratings and selected image
statistics for Experiments 1 and 2, resulting from
independent regressions of mean rating scores on each
image statistics measure. The red time-of-day score
corresponds to the mean score, which is the sum of all
scores divided by the number of scores, representing
an overall measure of the perceived time of day for
each painting. The morningness score, noonness
score, eveningness score, and nightness score represent
the proportional score per category, indicating the
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Figure A2. Results of Experiment 2. Correlation matrices of human rating and image statistics are represented by ellipses that vary in
thickness and color. Thinner ellipses indicate a stronger correlation, while fatter ellipses indicate a weaker correlation. The elongation
of the ellipses shows the direction of correlation, with red indicating negative correlation, blue indicating positive correlation, and
white indicating zero correlation. Only correlation coefficients that have a significant effect at p < 0.05 are included in the matrix cells.

proportion of scores falling into each category relative
to the total count of scores.

Principal component analysis: factor loadings
and explained variance for Experiment 1

Table A1 displays the factor loadings for the first
five principal components of paintings in Experiment
1. The table shows the loading values for each image
statistic, with red indicating negative loading and green
indicating positive loading.

Table A2 elaborates on the results from Experiment
1, providing a detailed breakdown of the total variance
explained by each of the principal components.
The components are listed in descending order of
the variance they account for. For each principal
component, the table presents the initial eigenvalues,

the percentage of total variance explained, and the
cumulative percentage of variance explained up to that
component. Notably, the first few components explain a
substantial proportion of the total variance, indicating
their significant contribution in capturing the patterns
in the image data.

Distribution of years of creation for paintings in
Experiments 1 and 2

Figure A3 shows the distribution of years of creation
for the paintings used in Experiments 1 and 2. The
histogram demonstrates that most of the paintings were
created around 1900, with relatively fewer paintings
from earlier or later periods. This information is
helpful in understanding the potential reliability of
metadata.
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Component Matrixa

Component
PC1 PC2 PC3 PC4 PC5

mean image luma -0,964 -0,100 -0,163 -0,140 -0,089
mean melanopsin input -0,962 0,079 -0,198 -0,146 -0,030
mean luminance (CIE Y) -0,963 -0,105 -0,162 -0,138 -0,091
mean L-cone input -0,962 -0,121 -0,158 -0,135 -0,095
mean M-cone input -0,966 -0,065 -0,171 -0,144 -0,079
mean S-cone input -0,942 0,194 -0,217 -0,141 0,012
mean rod input -0,966 0,038 -0,191 -0,147 -0,044
mean luminance-weighted CCT -0,893 0,197 -0,241 -0,184 0,164
b*-luminance image distance -0,918 0,220 -0,208 0,007 0,096
saturation-luminance image distance -0,908 0,284 -0,089 -0,058 -0,029
chroma-luminance image distance -0,938 0,213 -0,175 -0,038 -0,082
RMS contrast (luminance) -0,864 -0,075 -0,257 0,233 -0,223
RMS contrast (B channel) -0,855 0,107 -0,077 0,413 0,006
Color difference (∆E00) -0,719 -0,162 -0,343 0,409 -0,158
CCT difference -0,527 0,108 0,674 0,227 -0,190
mean image saturation -0,244 -0,945 0,082 0,064 -0,018
mean image chroma -0,259 -0,945 0,076 0,053 -0,036
min chroma -0,434 -0,474 0,480 -0,450 0,201
mean b* -0,171 -0,888 0,163 -0,023 -0,310
min b* -0,430 -0,342 0,559 -0,531 -0,013
b* SD -0,296 -0,539 -0,341 0,251 0,621
mean image colorfulness -0,314 -0,834 -0,204 0,188 0,305
luminance-channel skewness 0,884 0,113 0,031 0,127 0,082
b*-channel skewness 0,385 0,286 0,043 -0,262 0,075
inverse CCT difference 0,542 0,024 -0,689 -0,287 0,148
max saturation 0,588 -0,670 -0,179 -0,172 -0,024
saturation difference 0,550 -0,015 -0,670 -0,295 -0,133
b*-luminance correlation 0,684 -0,376 -0,343 0,001 -0,376
chroma-luminance correlation 0,779 -0,292 -0,368 0,013 -0,261
saturation-luminance correlation 0,743 -0,023 -0,490 -0,131 -0,014
Extraction Method: Principal Component Analysis.
a. 5 components extracted.

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0

Table A1. Results of Experiment 1. Notes: Factor loadings for the first five principal components. Extraction method: principal
component analysis. aFive components extracted.

Mean chromaticities of paintings for varying
screen white points

To account for the potential impact of different
white points on the calculation of chromaticities, we
calculated the spread of mean image chromaticities for
Experiment 1 for a range of different white points, or
assumed chromaticities for RGB values of [1, 1, 1].
This allowed us to consider the effect of chromatic
adaptation or different monitor white points on
the calculation of chromaticities in our study. In
Figure A4, we plot the mean image chromaticities in
the CIE xy plane for a range of different white points,
with one disk representing one image.

To further investigate the relationship between
luminance and chromaticity across different white
points, we plotted the correlation matrices of mean
image luminance, CIELAB a*, and CIELAB b*
values for nine different white points in Figure A5.
We found that both luminance and chromaticity are
significantly and strongly correlated across different
white points, while the correlation of CIELAB a* is
relatively lower. This is as expected, given that the mean
image chromaticity follows a distinct pattern along the
daylight locus with only minor green shift.
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Total variance explained

Initial eigenvalues Extraction sums of squared loadings

Component Total % of variance Cumulative % Total % of variance Cumulative %

1 16.292 54.307 54.307 16.292 54.307 54.307
2 5.027 16.758 71.065 5.027 16.758 71.065
3 3.205 10.682 81.747 3.205 10.682 81.747
4 1.514 5.046 86.793 1.514 5.046 86.793
5 1.069 3.563 90.355 1.069 3.563 90.355
6 0.894 2.979 93.334
7 0.448 1.492 94.826
8 0.347 1.156 95.982
9 0.280 0.934 96.916
10 0.181 0.602 97.518
11 0.170 0.566 98.084
12 0.132 0.439 98.523
13 0.104 0.347 98.870
14 0.078 0.262 99.132
15 0.074 0.248 99.380
16 0.049 0.164 99.544
17 0.045 0.149 99.693
18 0.035 0.117 99.810
19 0.022 0.073 99.883
20 0.016 0.054 99.937
21 0.012 0.039 99.976
22 0.004 0.014 99.990
23 0.002 0.008 99.998
24 0.000 0.001 99.999
25 0.000 0.001 100.000
26 8.233E-5 0.000 100.000
27 9.315E-16 3.105E-15 100.000
28 2.195E-16 7.316E-16 100.000
29 1.842E-18 6.141E-18 100.000
30 –1.278E-15 –4.258E-15 100.000

Table A2. Results of Experiment 1, showing the total variance explained by each principal component in the analysis. Notes: The
components are ordered by the amount of variance they explain, from highest to lowest. Extraction method: principal component
analysis.

Figure A3. Histogram of years of creation for paintings used in Experiment 1 (A) and Experiment 2 (B).
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Figure A4. Results of Experiment 1. Mean image chromaticities in the CIE xy plane for paintings with a range of different white points,
one disk per image. The disk colors represent the chromaticity of each image. The black line indicates the daylight locus and the
location of D55 is marked. (A) Illuminant A. (B) D50. (C) D55. (D) D75. (E) Illuminant E. (F) Illuminant F1. (G) Illuminant F2. (H)
Illuminant F3. The XYZ color coordinates of each white point are indicated in the chromaticity diagram.

Figure A5. Results of Experiment 1. Correlation matrices for mean image luminance and chromaticity values in terms of CIE-Y and
CIELAB a* and b* for nine different white points. Ellipses varying in thickness and color represent the correlation strength, with
thinner ellipses indicating stronger correlations and fatter ellipses indicating weaker ones. The elongation of the ellipses shows the
correlation direction, with red indicating positive, blue indicating negative, and white indicating no correlation. Matrix cells only
include significant correlation coefficients at p < 0.05. (A) Luminance. (B) a* value. (C) b* value.
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