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Abstract 

Data driven models that integrate advanced analytics 

involving statistical and machine learning algorithms are 

widely applied for simulating and predicting energy 

demand at the community level. These models are used to 

inform various energy efficiency measures, infrastructure 

development, planning and investment decision. The 

paper presents an innovative framework for simulating 

and projecting climate change impacts on the future 

dynamics of community energy demand. The modelling 

framework selectively couples some of the most advanced 

analytical approaches and its potential are demonstrated 

using a case study community “Auroville” located in 

India. 

Highlights 

• A novel framework of data-driven advanced analytics 

and modelling techniques. 

• Simulating and predicting community-level energy 

demand. 

• Climate change impact analysis. 

• Suitable for identifying energy efficiency measures, 

infrastructure planning and investment decision, 

strategies for energy demand reduction and energy 

conservation. 

Introduction 

Climate change and energy are two separate but highly 

interconnected global challenges of the 21st century. The 

energy sector being one of the major contributors to 

greenhouse gases has the potential to stop/reverse the 

changing climate, given a rapidly transitioning towards a 

low-carbon energy system is followed along with a 

significant demand reduction. To address these challenges 

and to ensure a sustainable future, a collaborative 

approach from all key sectors and actors working in the 

energy area is required across the globe. Key areas to 

target include technological innovation, key policy 

interventions,  implementation of energy efficiency 

measures, and change in behaviour and lifestyle. In this 

context, energy demand reduction plays a crucial role and 

recently, a significant amount of research has been 

conducted in the area of community-level energy demand 

modelling. 

Unlike physically-based models that can be calibrated 

using building-specific physical parameters (such as 

construction type, technology variants, occupancy details, 

etc.) and rely on expert knowledge, 

statistical/computational models are purely based on 

historically observed records. Moreover, the Empirical 

calibration of these physical models can be resource-

intensive and requires detailed information on several 

building-specific parameters. Whilst purely physical 

models can provide a very approximate estimation of 

building energy use which can also (through, for example, 

stock modelling (Hughes, Pope, Palmer, & Armitage, 

2016; Cambridge Housing Model and user guide , 2010) 

be further upscaled to larger geographical regions, they 

are not suitable for estimating high-resolution demand 

characteristics of buildings (such as load factor, and 

magnitude/timing of peak demands).  

However, individual electricity demand profiles at high 

resolution (e.g. 5 min and below) can be statistically 

analysed to understand the dynamics of the energy 

demand of a building that would not be discernible 

through the use of purely physical modelling. In this 

context, the paper presents an efficient data-driven 

modelling schematic that can account for the 

instantaneous high-demand activities (specifically, 

response to climatic features) occurring at a specific time 

across a large number of buildings and the impact of such 

activities on the community-level demand curve. The 

work presented in this paper aims to capture the various 

piece of model development/upgrades that occurred over 

the last five years. These work have been presented in 

pieces elsewhere (Patidar, Jenkins, Peacock, & McCallum, 

A hybrid system of data-driven approaches for simulating 

residential energy demand profiles, 2021) (Patidar, 

Jenkins, & Peacock, Projecting impacts of uncertain 

climate change on future energy demand, 2021)  

Auroville (Case-study community) 

The paper will utilise the extensive dataset collected for 

an experimental township “Auroville”, located in south 

India, at the intersection of the State of Tamil Nadu with 

some parts in the State of Puducherry (Auroville in Brief, 

2017). The case study community also referred to as “The 

City of Dawn” is founded in 1968 and presently is home 

to around 3300 inhabitants (with a planned population 

estimation of 50,000) from around the world 

(approximately 60 different nationalities). The township 

is organised into four zones - north (industrial), northeast 

(cultural), south/southwest (residential), and west 

(international), and is surrounded by a Green Belt 

consisting of forested areas, farms, and sanctuaries 
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(Figure 1) and embraces environmental sustainability 

with a strong focus on education, research, self-reflection 

and meditation.  

 

Figure 1: Auroville (Source: 

https://files.auroville.org/auroville-org/63741d23-822f-

48b7-9859-de08b4d37cab.jpg). 

The Community Energy Demand Reduction in India 

(CEDRI) project, facilitates a large volume of high-

resolution electricity demand dataset collection, recorded 

at a temporal resolution of 1 - 15 minutes during 23 

November 2020 – 09 October 2021 for 664 buildings 

located in Auroville. Metered electricity demand data 

(EDD) were collected using a 1-phase blink meter for 591 

sites and a non-blink (smart gram power) meter for 73 

sites. For 73 sites with non-blink meters, 42 sites have 3 

phase meters (that measure EDD at a 15-minute 

resolution) and 31 sites have 1 phase meter (measuring 

EDD at a 5-minute resolution).  

A blink meter measures the alternating current (AC) static 

energy (Wh) consumption of the household, using an 

external light-emitting diode (LED) which “blinks” each 

time a certain amount of energy is consumed (Debnath, 

Jenkins, Patidar, & Peacock, 2020). Depending on the in-

build specification, an observed blink depends on the 

amount of electricity consumed. One of the key issues 

with such series is they are not equally spaced in time. For 

any form of advanced time series model development data 

are required to be equispaced. The present study will be 

focused on the blink meter dataset only which was first 

processed using an algorithm developed by authors to 

retain an equidistance time series of electricity 

consumption at a temporal resolution of 1-minute. The 

key underpinning idea is that the algorithm replaces any 

repeated values and as an aggregated load and time 

instances with no consumptions are assigned as missing 

values coded as “NA”.  

Table 1: Organisation of electricity demand data for 591 

sites with blink meter using two months block and 

percentage ranges of missing values. 

Sites with 

missing 

values  

 less 

than 

35%  

36 to 

50%  

51 to 

70%  

Over 

70%  

23/11/20  

to  

31/01/21 

 

115 

 

50 

 

115 

 

311 

01/02/21  

to  

31/03/21 

 

121 

 

100 

 

127 

 

243 

01/04/21  

to  

31/05/21 

 

80 

 

45 

 

179 

 

287 

01/06/21  

to  

31/07/21 

 

176 

 

83 

 

67 

 

265 

01/08/21  

to  

30/09/21 

 

62 

 

103 

 

116 

 

310 

As a second step entire dataset was thoroughly scanned 

for the detection of missing values. A preliminary analysis 

suggested grouping of the dataset in five blocks of 

approximately two months for retaining good quality 

dataset essential for further data analytics and model 

development. Table 1 displays the organisation of data 

across these five blocks and presents the distribution of 

sites across four ranges of the percentage of missing 

values. 

Climate dataset 

The observed weather dataset for Auroville is available 

from the Meteoblue database (www.metoblue.com) at a 

temporal resolution of 1 hour for the observed period of 

demand dataset. The key weather variable used in the 

development of the ‘climate module’ are observed:  i) 

Temperature (𝑇); ii) Relative Humidity (𝑅𝐻); iii) Dew 

Point (𝐷𝑒𝑤_𝑃); iv) Sunshine radiation (𝑆𝑜𝑙_𝑅); v) Wind 

Direction (𝑊𝐷) ; and vi) Wind Speed (𝑊𝑆) . Future 

climate datasets were collated from IESVE for Auroville 

for 2040-2069. 

Missing data Infilling 

A close inspection of the distribution of missing values 

across all 591 sites in Table 1 suggests that more than 

three-quarters of sites have more than 35% of missing 

data. To ensure the reliability and robustness of any data-

driven modelling schematics it is highly essential that 

underlying datasets are of good quality and if any data 

infilling strategy is applied then it should be capable of 

not just retaining the key statistical features of the original 

dataset but also underlying dynamics of the temporal 

patterns. To develop an efficient data-infilling schematic, 

the paper will use sites with less than 35% missing values. 

There are no specific criteria used for selecting 35% as a 

cutting point, other than the principle of equality. We 

assigned sites under three categories for the number of 

missing values, with less than 35% as low, 35-70% as 
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medium and over 70% as high. Table 1, present the 

number of sites across each category, with medium 

category further divided into 36-50% and 50-70%. The 

work will be demonstrated for the block 1st February – 31st 

March 2021 which consists of 121 sites. To illustrate the 

distribution of missing values, 121 sites were organised 

into three subgroups: i) Low percent missing – consisting 

of 41 sites with the missing percentage ranging from 10.8 

– 22.8%; ii) Mid percent missing – consisting of the next 

41 sites with 22.9-31.5% missing; and iii) High percent 

missing - consisting of top 40 sites with 31.7 – 35% 

missing.  

A matrix plot is created to display the distribution of 

missing values for all three groups in Figure 2. There were 

approximately 84960 points in each site and thus 

corresponding to 41 sites in the top and middle panel, the 

matrix plot displayed 84960 x 41 cells, and for 40 sites in 

the bottom panel, the matrix plot displays 84960 x 40 cells. 

The matrix plot is generated using the ‘matrixplot’ 

function from R-package ‘VIM’ (Templ, et al., 2021). 

Missing values are displayed using a dark line. Thus, a 

visual inspection of the matrix plot reveals there is a 

pattern in missing values across the sites. Notably, it is 

interesting to see consistently large bands of missing 

values across all sites in all three groups during certain 

periods. These consistent bands of missing values could 

be attributed to a range of technical issues, e.g., server 

issues, maintenance, feeder problems, etc. These types of 

issues are quite common with the community energy 

demand dataset and contribute to most of the missing 

values, whereas randomly missing values are 

considerably less in proportion.  

Considering the main objective is to develop efficient 

data-driven algorithms which could capture the temporal 

patterns in the electricity demand profiles, the author 

developed a logical algorithm for infilling the missing 

values. A preliminary version of the algorithm was 

presented in (Debnath, Jenkins, Patidar, & Peacock, 2020). 

To further optimise the performance of the algorithm for 

the present case some constraints were introduced and 

briefly discussed here. The underpinning idea is that the 

energy consumption patterns of a building remain mostly 

consistent over different weeks (due to a range of life and 

work-style-related factors). These patterns might show 

variations in different seasons but in a small period say 

within a month and across consecutive weeks should not 

change drastically. For example, energy consumption at a 

certain time of day says between 12:00 – 02:00 pm on a 

Monday should have a nearly similar statistical feature as 

for a Monday on the following or a previous week.  

The logical algorithm infill data as an iterative process by 

pooling missing data for the required period from the 

nearest available data for the same period in the preceding 

or succeeding week. The algorithm infill data with small 

gaps (e.g. up to three consecutive values using a simple 

interpolation approach) and for infilling large gaps adopt 

the following steps:  

Step 1: Scans data for week 1 and any missing values are 

infilled from values occurring at the same period in the 

following week. If the values are also missing in week 2, 

the next nearest subsequent week, i.e., week 3, will be 

scanned. The algorithm keeps scanning the data for up to 

3 subsequent weeks to ensure most of the missing values 

are infilled. It may be possible values are still missing at 

this stage. This could happen if values for the same 

periods are missing in more than three subsequent weeks. 

To handle such issues, step 5 of the algorithm facilitates 

the iterative application of the algorithm. 

Step 2: For infilling missing values in the week 2 

algorithm scan data for both the preceding and succeeding 

week, i.e., week 1 and week 3 respectively. If values are 

available in both weeks 1 and 3, values from the 

succeeding week will be prioritised for infilling. In rare 

case, if values are also missing in both week 1 and 3, the 

algorithm scan data for up to the next 3 succeeding weeks, 

i.e., week 4, 5, and 6 until most of the missing values are 

infilled in week 2.  

Step 3: For the final week in the dataset, the algorithm is 

designed to scan data in the backward direction and infill 

values from the nearest week. Step 4: The algorithm 

checks for a total number of missing values after step 4 

and stops if all missing values are infilled.  

Step 5: Repeating steps 2 – 4 iteratively, until all missing 

values are infilled. At each iteration, the algorithm checks 

the total number of missing data points and automatically 

stops if all missing values are infilled.  

In step 5 the algorithm is designed to run iteratively up to 

10 times. In most cases, this step infill all the missing 

values. In rare cases, if even after running the 10 iterations 

of the algorithm, missing values are not completely 

infilled then these values are dealt with individually and 

are infilled using values from nearby days in the week 

with similar statistics. To assess the efficiency of the 

Logical Algorithm a visual illustration of infilled data is 

presented in Figure 3 which displays a section of missing 

values (presented in the top panel) infilled using the 

Logical Algorithm (bottom panel). The Logical 

Algorithm is applied individually to all 121 sites that have 

less than 35% of missing values in block 1st February – 

31st March and successfully infilled all the missing values. 

                                                                                                                                             

 

 

Proceedings of the 18th IBPSA Conference                                                                                                                     

Shanghai, China, Sept. 4-6, 2023                                                                 

 

 

1241
https://doi.org/10.26868/25222708.2023.1673



 

 

Figure 3: Visualising a realization of randomly selected 

sites (Index 78) during a large gap of missing values 

(Top panel, black line). Infilled values are generated 

using Logical Algorithm (Bottom panel, violet lines). 

 

 

Figure 2: Matrix plot for displaying the distribution of 

missing values across three groups ‘Low percent 

missing’ (Top panel); ‘Mid percent missing’ (Middle 

panel) and ‘High percent missing’(Bottom panel). 

The authors developed a simple missing data in 
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Methodology Framework 

The innovative modelling framework is designed to be 

applied at the individual building level with the intention 

to facilitate a comprehensive analysis of raw electricity 

demand data collected for each site from the server to the 

generation of climate-perturbed electricity demand 

profiles. The data processing involves, missing data 

infilling, clustering, pre-processing of demand and 

climatic dataset using time series decomposition, 

development of the climatic module, stochastic model for 

demand simulation, fitting extreme value distribution for 

generating realistic high/low loads and final post-

processing of projected profiles using a novel percentile 

based bias correction algorithm. Generation of aggregated 

profiles for the community-level demand analytics 

involves the sampling of observed profiles and the 

application of a modelling framework for generating the 

required number of climate-perturbed simulated profiles 

to reflect the impacts of climate changes applied at 

individual building levels in the aggregated community-

level energy demand profiles. The proposed modelling 

framework integrated the response of individual buildings 

to climate change (depending on their personal demand 

usage pattern, building physics, thermal behaviour, 

occupancy, size, and lifestyle of building users). A 

workflow diagram of the methodological framework is 

presented in Figure 4.  

 

Figure 4: Framework of data-driven modelling 

framework. 

We briefly discuss various statistical and analytical 

approaches used in the development of the purpose 

methodological framework. The methodological 

framework is applied for each site separately to generate 

𝑛 (an integer) numbers of simulated (synthetic) demand 

series. The climatic module is calibrated using a baseline 

(observed) climate dataset for each site.  

Step 1: Log transformation – All the time series datasets 

for energy demand series and observed climate variables 

were log-transformed to transform multiplicative time 

series into additive time series. This step is essential as the 

STL-based time series decomposition procedure applied 

in step 2 below is mainly suitable for additive time series 

only. 

Step 2 Time Series Decomposition 

The modelling procedure involves the application of a 

robust STL (a Seasonal-Trend decomposition procedure 

based on Loess) based time-series decomposition 

techniques (Cleveland, Cleveland, McRae, & Terpenning, 

1990). A time series, 𝑋(𝑡), is usually comprised of three 

key components: (i) Long-term trends, 𝑇(𝑡); (ii) Seasonal 

movements, 𝑆(𝑡); and (iii) Residual/random variations, 

𝑅(𝑡) . The STL procedure is intended to segregate the 

deterministic feature of the time series (trend and seasonal) 

from the random elements. Thus, a time series 

decomposition facilitates the decomposition of 𝑋(𝑡) as  

𝑋(𝑡) = 𝑇(𝑡) + 𝑆(𝑡) + 𝑅(𝑡). 

 

Figure 5: STL-decomposition of a time series (top panel) 

decomposes an additive time series into Trend, Seasonal 

and Random components. 

We applied STL-based time series decomposition to the 

electricity demand series and corresponding observed 

weather variables. For generating future climate morphed 

demand series, we also applied STL-decomposition to 

future weather variables. Figure 5 illustrates the 

application of the time-series decomposition procedure to 

a typical time series. It is interesting to see the observed 

time series clearly appears non-stationary (i.e., key 

statistical characteristics such as mean, variance and auto-

correlation changes with time). Application of STL 

decomposition extracts deterministic trend and seasonal 

components and provides random components (which 

appear to be stationary). Most of the time series models 

are designed to perform well with stationary series. In the 

next step, we applied a Hidden Markov model to the 

random component only. The seasonal component is 

untouched in the modelling procedure and the trend 

component is used for the calibrating climatic module 

(discussed later). 

                                                                                                                                             

 

 

Proceedings of the 18th IBPSA Conference                                                                                                                     

Shanghai, China, Sept. 4-6, 2023                                                                 

 

 

1243
https://doi.org/10.26868/25222708.2023.1673



Hidden Markov Model (HMM) 

HMM, is one of the widely applied statistical modelling 

schematics suitable for a  highlight Markov process (i.e. 

probability of the system evolving from one state to 

another depending on the previous state of the system) 

with an underlying hidden state. For an electricity demand 

series, it can be fairly assumed that system evolves from 

one state to another in a probabilistic pattern. Fitting of an 

HMM involves training of the random component using a 

Baum-Welch algorithm (involves expectation 

maximisation). The modelling procedure requires 

generating five structural components of HMM 

(illustrated in Figure 6). These are:  

i) Defining a set of observed states 𝑶𝒔, in this case, we 

performed a percentile analysis of observed random 

component and defined 11 states  𝐴, 𝐵, 𝐶 … . 𝐾 ; where 

state 𝐴 is a value between 0th – 10th percentile; State 𝐵 is 

a value between 11st – 20th  percentile; … State 𝐾 is a 

value between 91st – 100th percentile. 

ii) Creating a state transitional matrix [𝑻] , It is an 

11 ×  11 matrix that records the probability of transition 

of one state to another, i.e. an element 𝑇𝑖𝑗  represent the 

probability of the system in state 𝑖 at time 𝑡 and evolving 

to state 𝑗 at time 𝑡 + 1.  

iii) Defining a set of unobserved (hidden) states 𝑼𝒔 , 

involves defining intermittent values in each of the 11 

states. For example, if state A represents a demand value 

between 0.1 to 0.9 then taking an intermittent value in this 

range, i.e. 0.2, 0.3, … 0.8 is defined as an unobserved state. 

iv) Creating an Emission probability matrix [𝑬], that 

records the probability of a value being in state A and 

evolving from an unobserved state. In simple words, it is 

the probability of taking a value say 0.2, 0.3 … so on.  

v) Estimating initial probability matrix [𝐼], for each 

state for initialising the simulation process.  

 

Figure 6: Fitting random component of electricity 

demand series within the framework of HMM. 

Once the HMM model is fitted to the observed random 

component, 𝑛  random components can be generated 

which can be combined with the trend and seasonal 

component of the observed series to generate an n-

simulated/synthetic electricity demand series. To generate 

climate morphed series, the trend generated from the 

climatic module which interfaces the trend of electricity 

trend with the weather variables is used.  

Extreme Value Distribution 

In HMM extreme values were controlled by the observed 

data, i.e. if the observed series has 𝑚 distinct peak values 

(say value over the 95th percentile), then the simulated 

series will sample peak values from these finite sets of 

observed peak values only. Thus, for an effective 

simulation of extreme values, the modelling framework 

fits a Generalised Pareto (GP) distribution to a set of 

observed peak demand values, specifically in the range of 

95th - 99.9th percentile using R package ‘ismev’ 

(Heffernan & Stephenson, 2018), See Figure 7. 

Synthetically simulated series (obtained in the previous 

stage) are then post-processed to resampled peak demand 

values from the fitted GP distribution. This procedure 

allows the sampling of extreme values from a continuous 

distribution rather than a few discrete values and thus 

facilitates the integration of realistically possible peak 

values from a wider pool in the synthetic series. Further 

theoretical details on the statistical modelling of extreme 

values can be referred to elsewhere (Coles, An 

Introduction to Statistical Modeling of Extreme Values, 

2001; Coles). 

 

 

Figure 7: Fitting an extreme value Generalised Pareto 

(GP) distribution to a sample of m observed peak 

demand values. 

Bias Correction (Using percentiles) 

The entire modelling procedure which is initiated with a 

log-transformation of data followed through intensive 

data processing such as STL decomposition, HMM 

simulation, and fitting of a GP distribution, can introduce 

a bias in the simulated/predicted values. There are several 

studies conducted in past that highlighted the possible 

introduction of model bias and provided some simple 

approaches for bias correction. To effectively address the 

bias introduced as part of the intensive modelling 

procedure presented in this paper author developed a 

novel bias-correction scheme. The key step of the bias 

correction schematic is: 
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1. Estimate all percentiles from 0𝑡ℎ 𝑡𝑜 100𝑡ℎ  at a unit 

step for both observed and synthetic series, 

i.e. 𝑃𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥) and 𝑃𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑥), respectively for 

𝑥 ∈ 0, … , 100.  

2. Calculate the difference, 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑥) =

𝑃𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑥) − 𝑃𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑥) for  𝑥 ∈ 1, … , 100. 

3. Each predicted demand value 𝐸(𝑡) depending on the 

percentile range they fall in, i.e. following the 

condition: 𝑃𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑥 − 1) <  𝐸(𝑡) ≤

𝑃𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑥) for  𝑥 ∈ 1, … , 100, are biased corrected 

using the respective percentile-based biased 

correction difference term, i.e. as 𝐸(𝑡) +

 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑥). 

Climate module 

The ‘climate module’ is calibrated using the first six 

weeks of the dataset and then rigorously tested using the 

remaining 2 weeks of the dataset. As a first step a 

preliminary correlation analysis is conducted for the trend 

component of energy demand with the six key weather 

variables and is presented in Figure 8. 

 

Figure 8: A correlation matrix for the trend components 

of energy demand with six weather variables available 

for the observed dataset.    

The correlation analysis suggested almost all-weather 

variables are correlated with each other and also some 

extent with the trends of energy demand. The trend of 

electricity demand data is identified as an output variable 

and six weather variables along with their two lags were 

identified as an input variables. Thus, in total 18 input 

variables are used to estimate the trend of energy demand 

using a partial least square regression (plsr) technique. 

The R-package ‘pls’ is used to train and test the regression 

model (Mevik & Wehrens, 2022). The ‘pls’ algorithm 

establishes a simple statistical relationship using a 

multiple regression approach that also integrates a 

principal component analysis (PCA). The PCA 

transforms correlated weather variables into uncorrelated 

(independent) components, which are used as input in the 

model (as seen in Figure 8). Six weeks of dataset starting 

from 1st February – 14th March 2021 are used for model 

calibration and the remaining two weeks of dataset 15th – 

28th March is used for testing. The performance of the 

climatic module in simulating the climate-morphed 

energy demand trend is presented in Figure 9.  

 

Figure 9: Comparing observed (in solid black line) 

versus predicted (in dashed orange lines) hourly trend 

component for electricity demand profiles over the six 

weeks (1st February – 14 March 2021) on the training 

dataset (Top panel) and two weeks (15th – 28th March 

2021) test dataset (Bottom panel). 

Demonstration  

The performance of a novel modelling framework is 

demonstrated for generating aggregated demand profiles 

for the Auroville community during the observed period 

(2021) and for future climate change scenarios (2040-

2069). For each of the 122 observed energy demand series, 

the proposed data-driven modelling framework is applied 

to generate 5 synthetic profiles and two extra to create 612 

synthetic profiles. The modelling framework utilised 

Trends generated by the ‘climatic module’ for observed 

weather variables and for future project weather variables. 

Results are presented in Figure 10 and are intended to 

illustrate the potential of the proposed modelling 

framework in capturing the temporal dynamics and 

patterns of aggregated demand. A direct comparison of 

122 aggregated observed profiles versus 612 aggregated 

synthetic profiles for 2021, illustrates the potential of the 
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proposed modelling framework in effectively generating 

community-level demand profiles. 

 

Figure 10 Comparison of the realisation for 122 

aggregated observed electricity demand profiles with 

612 synthetic aggregated demand profiles generated by 

the proposed data-driven modelling framework for 

baseline climate.  

The climatic module is then applied to generate the trend 

of electricity demand profiles for all 122 buildings for a 

set of projected future weather variables, available from 

the IESVE pTRY file for the Auroville (2040-2069). The 

climate-morphed trends were then combined to generate 

612 synthetic climate-morphed electricity demand 

profiles within the proposed modelling framework. Figure 

11, demonstrates the potential of the proposed modelling 

scheme in projecting future climate-morphed community 

energy demand profiles.  

 

Figure 11 Comparison of 612 synthetic aggregated 

profiles for community electricity demand in 2020 with a 

future climate change scenario of 2040-69.  

With the onset of a warm climate in March it is 

interesting to notice a significant rise in the community 

energy demand for future climate change.  

Conclusion 

This paper has shown the potential of a novel data-driven 

modelling framework for analysing, simulating and 

predicting community-level energy demand profiles. The 

modelling scheme is novel and integrates selective data 

analytics approaches for a systematic and comprehensive 

analysis of raw high-resolution electricity demand data. 

One of the key features of the modelling schematics is that 

it can be used even if a small accessible sample of high-

resolution electricity demand profiles is available at the 

individual building level. In the present case, we have 

only 20% of the observed dataset available and those 

datasets are not of optimum quality. With limited 

information available modelling, the scheme utilised a 

logical algorithm for infilling missing values and then 

upscaling approaches are ensured to capture the statistical 

dynamics of demand profiles from the individual level up 

to the community level. The modelling work is still in 

progress and there is potential to assess the widely appled 

machine learning algorithms for climate module. In 

addition, authors are processing datasets from other 

blocks of the year to analyse the full impact of future 

climate change on the community energy demand. 
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