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Abstract: The resolution of small near-wall eddies encountered in high-Reynolds number flows using
large eddy simulation (LES) requires very fine meshes that may be computationally prohibitive. As a
result, the use of wall-modeled LES as an alternative is becoming more popular. In this paper, the near-
wall domain decomposition (NDD) approach that was originally developed for Reynolds-averaged
Navier–Stokes simulations (RANSs) is extended to the hybrid RANS/LES zonal decomposition.
The algorithm is implemented in two stages. First, the solution is computed everywhere with LES
on a coarse grid using a new non-local slip boundary condition for the instantaneous velocity at
the wall. The solution is then recomputed in the near-wall region with RANS. The slip boundary
conditions used in the first stage guarantee that the composite solution is smooth at the inner/outer
region interface. Another advantage of the model is that the turbulent viscosity in the inner region is
computed based on the corresponding RANS velocity. This shows improvement over those hybrid
models that have only one velocity field in the whole domain obtained from LES. The model is
realized in the open source code OpenFOAM with different approximations of turbulent viscosity
and is applied to the planar channel flow at frictional Reynolds numbers of Reτ = 950, 2000, and
4200. Mean streamwise velocity and Reynolds stress intensities are predicted reasonably well in
comparison to the solutions obtained with unresolved LES and available DNS benchmarks. No
additional forcing at the interface is required, while the log–layer mismatch is essentially reduced in
all cases.

Keywords: hybrid RANS/LES; turbulence; channel flow; log–layer mismatch; implicit near-wall
domain decomposition

MSC: 76F65

1. Introduction

Numerical simulation of turbulent flows has been widely used over recent decades
thanks to the advancement of computational power and resources. The direct numerical
simulation (DNS) for large-Reynolds-number flows is still limited to simple geometries due
to the very large number of grid points required to capture all eddies up to the Kolmogorov
scale [1]. In DNS, the grid size required to resolve all structures varies as N ≈ O(Re2.64) [2].
In the large eddy simulation (LES) of free-streaming flows, the required grid density
increases only modestly with the growth of Re as N ≈ O(Re0.4) [3]. Therefore, LES has
evolved as an advanced engineering tool in the analysis of turbulent flows.

The so-called resolved LES, i.e., direct resolution of all energetic scales, is a powerful
tool for free shear flows such as jets, mixing layers, and wakes. However, its application to
wall-bounded flows is still limited due to the presence of fine eddies encountered in the
near-wall area, which necessitates the use of fine meshes for LES [4]. In close proximity to
walls, the length scale of dynamically important motions decreases, and energetic eddies
are not large any more [5]. It is shown in [2] that the grid resolution requirement for a
resolved LES in the boundary layer flows is proportional to Re1.85, which is almost as costly

Mathematics 2023, 11, 4340. https://doi.org/10.3390/math11204340 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11204340
https://doi.org/10.3390/math11204340
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4391-5430
https://orcid.org/0000-0002-6906-6695
https://doi.org/10.3390/math11204340
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11204340?type=check_update&version=1


Mathematics 2023, 11, 4340 2 of 18

as DNS. For a moderate frictional Reynolds number of Reτ = 2000, Temmerman et al. [6]
showed that the unresolved LES produces a large discrepancy of around 40% from the DNS
benchmark and that only resolved LES with a grid more than an order of magnitude finer
in each direction can produce acceptable results. Such fine meshes are still a significant
computational burden for real engineering applications.

In recent years, the use of wall-modelled LES (WMLES) [7] instead of resolved LES has
received more attention. WMLES employs near-wall approximations that permit a much
coarser resolution to be used close to the walls without a significant loss of accuracy. The
idea is to model the near-wall turbulent structures rather than to resolve them. In WMLES,
two approaches are widely used: wall-stress and RANS/LES models. It should be noted
that the classification and names of the methods in the literature may vary.

The wall-stress models (WSMs) can be classified as equilibrium or non-equilibrium
models [8]. The equilibrium WSM approximates the wall-shear stress (WSS) based on the
logarithmic law or power law and applies this approximation in the form of a Neumann
velocity boundary condition to the wall. The use of equilibrium WSMs dates back to the
papers by Deardorff [9] and Schumann [10]. This approximation disregards convection and
pressure-gradient terms in the boundary layer and is therefore primarily valid for simple
configurations but is inaccurate with separated flows or recirculating zones. The deficiency
of wall laws and the importance of streamwise grid resolution in predicting separation
zones are already addressed by Temmerman et al. [11].

In the two-layer WSM (non-equilibrium), an auxiliary fine one-dimensional (1D) grid
is embedded between an LES grid point and the wall. Then, a simplified set of the Reynolds-
averaged Navier–Stokes equations (RANS) based on the thin boundary layer equations
(TBLEs) is solved on the embedded mesh [12–15]. The outer-layer LES provides the velocity
boundary condition for the inner-layer RANS model. In return, the inner-layer wall-model
predicts the wall shear stress required by the LES at the wall. Non-equilibrium effects, such
as unsteady advection and pressure gradient, can be accounted for using the TBLE model.
Nonetheless, the coupling between the LES and RANS models is rather weak and only
occurs through the boundary conditions at the wall (y = 0) and the interface boundary
(y = yint). Cabot and Moin [14] demonstrated the importance of the pressure gradient and
advection terms in the simulation of a backward-facing step. Several modifications have
been made to the model over the course of recent years (see, e.g., [8,16,17]).

In the other approach, often referred to as hybrid RANS/LES models, RANS and LES
solutions are usually (although not always) blended [7,18,19]. For this purpose, a blending
function is introduced [20] for the modeled turbulent viscosity [7] or the length scale as in
detached eddy simulations (DESs) [21–23]. DES has shown very good efficacy for separated
flows but not for attached flows [22]. In addition, blending RANS and LES models always
has an intermediate region where the blended model is not justified.

In the user-defined-interface hybrid methods, the inner region is covered by RANS and
separated from the LES area by an interface. The influence of near-wall turbulent structures
is modeled by RANS. In this way, the near-wall RANS region can be superimposed onto the
LES domain [6,24]. Then, the boundary conditions (BCs) for RANS are obtained from LES.
Alternatively, switching from LES to RANS can be undertaken by selecting the turbulent
viscosity νT and kinetic energy k from either LES or RANS models [25,26]. A detailed
description of BCs at the RANS/LES interface is provided in [27]. In all cases, attention is
needed to maintain turbulence during the transition between RANS and LES.

Despite recent advancements in hybrid RANS/LES methods, there are still issues that
must be resolved. This is a result of the difficulties associated with managing interface
boundary conditions (IBCs). LES equations predict fluctuations, whereas RANS equations
do not. The addition of artificial fluctuations introduces its own uncertainties [18]. The log–
layer mismatch (LLM) is another significant issue in hybrid RANS/LES simulations. This
is evident even in planar channel flow simulations [20,28,29] and leads to overestimation
or underestimation of the skin friction. The formation of an artificial buffer layer and
consequently unrealistic physical structures can contaminate the LES area.



Mathematics 2023, 11, 4340 3 of 18

To avoid the LLM, Keating and Piomelli [30] recommend stochastic forcing at the
interface area. This can expedite the formation of resolved eddies and lead to improved
outcomes. Hamba [20] introduces additional filtering. Zhong and Tucker [31] use the k− l
method to approximate the eddy viscosity. Davidson and Peng [25] utilize the k−ω for
their eddy viscosity model in the RANS region. Davidson and Dahlström [32] increase the
resolved shear stress by introducing fluctuations at the interface. Temmerman et al. [6]
determine the eddy viscosity in the RANS region using the k− l or k−ω method; the
eddy viscosity of the RANS interface is matched with the LES subgrid viscosity. Davidson
and Billson [26] add fluctuations at the interface to increase the resolved shear stress.
Larsson et al. [5] use additional forcing to induce resolved motions in the LES region. They
discuss that matching the turbulent viscosity at the interface has a minimal effect on the
final solution.

However, these solutions require additional data from a preliminary benchmark
solution or contain user-defined parameters (such as the forcing amplitude) to increase
resolved turbulent fluctuations at the interface. The model accuracy varies considerably
based on the values of these free parameters, and robust selection criteria for the forcing-
method parameters are unavailable, to the best of our knowledge. Consequently, LLM
still occurs for the majority of channel flow simulations when hybrid RANS/LES models
are used. This illustrates the importance of accurate enough modeling the inner region
and the connection between the inner and outer regions. According to Piomelli [7], the
RANS/LES methods are least accurate when applied to attached and thin shear layers.
They are seemingly better suited for separated flows over curved surfaces and with adverse
pressure gradients.

Even with a near-wall model, the grid resolution in the outer LES region should be
good enough. Kawai and Larsson [33] highlight the importance of grid independence stud-
ies in WSMs or hybrid models with an auxiliary RANS model. LES must be well-resolved
at the interface point to provide accurate enough information to the RANS model. They
also show that the auxiliary RANS model should not necessarily be located between the
first off-wall grid point and the wall because the LES model is under-resolved in the near-
wall region and is therefore contaminated by truncation and subgrid-scale (SGS) model
errors [34]. The effect of decreasing the interface boundary height on reducing accuracy
also occurs in [28]. Keating and Piomelli [30] obtain better results by setting the interface
far enough after the buffer region. This helps them generate the RANS logarithmic layer
before the start of the LES region.

The near-wall domain decomposition (NDD) was first developed for high-Reynolds
RANS [35–37]. The original approach to NDD presumes the computation domain to be split
into the inner and outer regions. In the inner region, a simplified locally one-dimensional
TBLE model with a prescribed turbulent viscosity can be used [38]. For the outer region, the
effect of the inner region is replaced by nonlocal IBCs, which are obtained by the transfer of
the original BCs from the wall to the interface boundary [37]. As demonstrated in [39], the
NDD can be realized with the full set of RANS equations, although this affects the rate of
convergence. A principally new approach called the implicit NDD is proposed in [40]. In
this case, the problem can be solved on a relatively coarse grid in the entire region with
specially derived computational slip BCs at the wall. Then, the solution is recomputed in
the inner region with the use of the TBLE model. The derived slip BCs at the wall guarantee
that the composite solution is smooth up to the first derivative. A significant advantage of
this approach is that it does not require any explicit split of the computational domain into
two sub-domains.

In the current paper, the implicit NDD (INDD) [40] is extended to the RANS/LES
zonal decomposition. As a result, in the first (predictor) stage, only LES is used with the
slip BCs at the wall. Then, in the second (corrector) stage, the solution in the inner region
is recomputed. In this way, the RANS region is embedded onto the LES domain. The
computing time needed for the RANS solution is almost negligible since a one-dimensional
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(TBLE) model is considered in the inner region. In this work, in contrast to the original
NDD, the turbulent viscosity is determined from the k− l model rather than prescribed.

The remainder of this paper is structured as follows. Section 2 describes the model
used in the inner region, including the slip BCs. Then, in Section 3, the INDD algorithm
is provided. In turn, the configuration and characteristics of the channel flow test case
are described in Section 4. The obtained results are presented there and compared with
other approaches, including DNS, unresolved LES, and conventional hybrid methods.
Finally, conclusions are drawn, and recommendations and future prospects are discussed
in Section 5.

2. Near-Wall Model
2.1. Slip Boundary Conditions

In the implicit NDD, the solution is initially obtained on a relatively coarse mesh
using LES and slip BCs at the wall. Then, a TBLE is solved in the inner region on a one-
dimensional mesh to obtain the velocity with the no-slip BC at the wall and the velocity
taken from the LES at the opposite end. In this way, the grid used for RANS is independent
from the grid used for LES. At the end, the complete solution consists of the RANS solution
in the inner region and the LES solution beyond the interface (see Figure 1). The red dashed
line represents the preliminary velocity profile in the inner region resulting from the slip
boundary condition. The slip BCs for LES guarantee that the composite time-averaged
solution is smooth at the interface. The same procedure is applied to both tangential
components of the velocity.

Let us consider a one-dimensional RANS region embedded into the LES mesh between
y = 0 and y = y∗ and follow the TBLE format of the boundary-layer equation:

∂

∂y

(
µ

∂u
∂y

)
= Ru(y), (1)

where u is the streamwise (wall-parallel) velocity, µ(y) is the total viscosity as the sum of
the laminar (µl) and turbulent (µT) viscosities, and Ru(y) includes non-equilibrium terms
such as the pressure gradient and convective terms. As shown in [40], for a small enough
y∗ the convective terms can be neglected with low effect on the accuracy. Thus, in the
current study, Ru corresponds to the inverse pressure gradient along the wall taken at y∗.

For Equation (1), the Dirichlet BCs are set:{
u = 0 at y = 0,
u = u∗ at y = y∗.

According to [35–37], the BC can be exactly transferred from the wall y = 0 to the
interface boundary y = y∗:

u(y∗) = f1
du
dy

∣∣∣∣
y∗
− f̃2, (2)

where

f1 =
∫ y∗

0

µ(y∗)
µ(y)

dy, f̃2 =
∫ y∗

0

1
µ(y)

(∫ y∗

y
Rudξ

)
dy. (3)

It is worth noting that (2) cannot be obtained by double-integrating the governing Equation (1)
from the wall since the derivative of the solution at the wall is unknown.

For the outer region, Equation (2) is fully equivalent to the governing Equation (1) and
the no-slip BC at the wall [36]. To simplify the decomposition algorithm, at the implicit
NDD [40] it is proposed to transfer the IBC (2) back to the wall with µ and Ru taken at y∗.
This leads to the computational slip BC at the wall [40]:

u(0) = fw1
du
dy

∣∣∣∣
y=0

+ fw2, (4)
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with

fw1 = f1 − y∗, and fw2 = f̃2 +
y∗R∗u

µ∗

(
f1 −

y∗

2

)
, (5)

where symbol ∗ corresponds to the values taken at y∗.
The aim of the slip BC (4) is two-fold. It allows the LES solution to be formally obtained

up to the wall on a relatively coarse grid. In addition, it guarantees that the time-averaged
composite RANS/LES solution is smooth up to the first derivative [40]. The solution
obtained in the preliminary (LES) stage is schematically shown in the inner region by the
red curve in Figure 1.

y0

u

u(0)

y*

u*

Figure 1. Sketch of the implicit NDD.

As soon as the LES solution with the slip BC has been obtained, the RANS solution in
the inner region can be updated. To update the shear stress (τw), Equation (1) is integrated
twice using the velocity at y∗ (already known from LES) which leads to

τw =

u(y∗)−
∫ y∗

0

∫ y
0 Rudξ

µ
dy∫ y∗

0
dy
µ

. (6)

It is to be noted here that u(y∗) corresponds to an instantaneous velocity from LES.
Next, the RANS velocity in the entire inner region is updated from the exact solution of the
governing Equation (1):

u(yi) = τw

∫ yi

0

dy
µ

+
∫ yi

0

∫ y
0 Rudξ

µ
dy. (7)

2.2. Turbulent Viscosity Estimation

In the aforementioned equations, the turbulent viscosity must be evaluated. It can be
estimated from algebraic correlations or from k-based methods. In this work, we examine
three approaches, namely the mixing length model, the k − ω method, and the k − l
method by Wolfshtein [41,42]. In further consideration, by default, we imply the Cartesian
coordinate system and Einstein notation for repeated indices, which are supposed to vary
from 1 to 3.

Model 1: The mixing length model by Cabot [43] including a damping function is
used to estimate the turbulent viscosity:

νT = κyuτ D2, D = 1− exp(−yuτ/νA+), (8)

where κ = 0.41 , A+ = 19, uτ =
√
|τw|/ρ, and νT = µT/ρ.
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Model 2: We use the two-equation k−ω model by Wilcox [44]. The k equation in this
model is given by

∂k
∂t

+
∂ujk
∂xj

=
∂

∂xj

[
(νl + σkνT)

(
∂k
∂xj

)]
+ Pk − β∗kω, (9)

where σk = 1/2 is the diffusion Prandtl number, β∗ = 0.09, and uj is the RANS velocity,
while Pk is the turbulence production term that reads

Pk = τturb
ij

∂ui
∂xj

. (10)

Here, τturb
ij corresponds to the Reynolds stress tensor:

τturb
ij =

νT
2

(
∂ui
∂xj

+
∂ui
∂xj

)
, (i, j = 1, 2, 3).

The transport equation for ω reads

∂ω

∂t
+

∂ujω

∂xj
=

∂

∂xj

[
(νl + σωνT)

∂ω

∂xj

]
+ Pω − βω2. (11)

Here, β = 3/40, σω = 1/2, ε = β∗ωk and the production term Pω reads

Pω = α
ω

k
τturb

ij
∂ui
∂xj

, (12)

where α = 5/9. Turbulent viscosity is then evaluated as

νT =
k
ω

. (13)

As discussed below, k and ω equations are solved in the approximation of TBLE.
Model 3: We also adapt the k − l method [45] based on the transport of turbulent

kinetic energy. In this case, we have a slightly different form of the k equation:

∂k
∂t

+
∂ujk
∂xj

=
∂

∂xj

[(
νl +

νT
σk

)
∂k
∂xj

]
+ Pk − ε. (14)

Here, σk = 1. The boundary value for k at the interface (y∗) is equal to k∗ = kres + ksgs,
where kres is the time-averaged resolved and dominant part of the turbulent kinetic en-
ergy in LES, and ksgs is its sub-grid scale part; kres = 0.5u′iu

′
i, where u′i (i = 1, 2, 3) are

turbulent pulsations.
Under the TBLE assumption, Equation (14) can be rewritten in the 1D form along the

wall normal direction (y) as

∂

∂y

[(
νl +

νT
σk

)
∂k
∂y

]
+ νT

(
∂u
∂y

)2
− ε = 0. (15)

This is a reasonable approximation for a low enough y. As noted in [24], low-Re
RANS models often yield acceptable solutions when the normal to the wall direction is
predominant. Therefore, high aspect ratio cells (order of 100–1000) can be used in the wall
vicinity. This gives a superiority over resolved LESs, where fine streamwise meshes are
required. It is worth noting that the embedded mesh for any fixed coordinate x along the
wall is entirely local. In the aforementioned k− l equation, we have

ε = Cεk3/2/lε, (16)



Mathematics 2023, 11, 4340 7 of 18

and turbulent viscosity is evaluated through

νT = Cµlµk1/2, (17)

where Cε = 1 and Cµ = 0.09. The length scales in this RANS model are defined as

lε = 2.4y
(
1− exp(−0.263y×)

)
, (18)

lµ = 2.4y
(
1− exp(−0.016y×)

)
, (19)

where y× = yρk1/2/µ.
It is clear that the k− l method is computationally less expensive than the k−ω model.

We use the k− l model in all cases, unless otherwise stated.

3. Implicit Near-Wall Domain Decomposition
3.1. Algorithm

To summarize, the implicit NDD algorithm for the zonal RANS/LES model is imple-
mented as follows:

1. Initialize the coarse grid for LES.
2. Initialize the interface boundary y∗ and a sub-grid for RANS.
3. Initialize the flow fields for both the unresolved LES grid and RANS sub-grid.
4. Compute the turbulent viscosity.
5. Compute f1 and f̃2 (Equation (3)) based on the chosen turbulent viscosity model of

Section 2.2.
6. Compute the coefficients fw1 and fw2 (Equation (5)) to impose the slip boundary

condition at the wall.
7. Solve the LES governing equations on the coarse grid with the slip boundary condition

(Equation (4)).
8. Transfer the LES streamwise velocity and turbulent kinetic energy at y∗ (i.e., u∗ and

k∗tot) to the embedded RANS model.
9. Compute the wall shear stress in the inner region using u∗ value (Equation (6)).
10. Compute the RANS velocity solution in the inner region (Equation (7)) with the

updated τw.
11. Compute the turbulent kinetic energy (Equation (14)), if needed.
12. Repeat the procedure from step 4.

3.2. Discussion

The INDD effectively combines the zonal and wall-stress approaches and has some
advantages over conventional methods, as discussed below.

(I) The solution at the interface is smooth because the slip boundary condition is
transferred to the wall. In addition, the composite time-averaged solution is also smooth.
This follows from the design of the computational slip BCs [40].

(II) Since we use RANS equations in the inner region, we avoid the issues regarding
the selection of a proper k∗ value as a BC for the RANS region (see, e.g., [6]). If uLES is used
in the inner region for the evaluation of k from Equation (14), the contribution of resolved
turbulent kinetic energy (kres) into the inner region is already taken into account; therefore,
k∗ should only include the modeled part, i.e., ksgs. However, Temmerman et al. [6] argued
that the issue is not that simple and other assumptions are needed regarding the correct
k∗ value. In the current work, we take k∗ = ksgs + kres at the boundary of the RANS region
because uRANS is used in the inner region to predict k.

(III) In the current approach, since both the RANS velocity and turbulent kinetic energy
are obtained on a fine 1D mesh in the inner region, the grid independence of the RANS
solution can be easily ensured. Moreover, using u from the RANS solution in the inner
region can help prevent the formation of an “artificial buffer layer”, that is, a transition
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zone between modeled and resolved turbulence. Larsson et al. [5] discussed that the
artificial buffer layer is an effect of the merging of two different modeling regions. We
additionally show that the current algorithm does not need any enforcement of external
force or synthetic turbulence at the interface.

(IV) In comparison to WSMs, according to Larsson et al. [8], while LESs can impart
flow structures onto the wall-model, it is problematic for the flow structures in the wall-
model to penetrate into the LES region. Therefore, in WSMs, the RANS/LES coupling is
rather weak. In the INDD, this coupling is enhanced via the RANS solution in the entire
inner region and non-local IBCs.

(V) One shortcoming of the current approach against WSMs is that it is computationally
more expensive.

4. Test Cases
4.1. Setup

Simulations are carried out with the open source and finite-volume-based CFD soft-
ware OpenFOAM distributed by the OpenFOAM Foundation [46]. Planar channel flow at
three frictional Reynolds numbers, namely Reτ = 950, 2000, and 4200, is considered, where
the friction Reynolds number is defined as

Reτ =
uτh

ν
. (20)

Here, h is the half channel height, ν is the fluid kinematic viscosity, and uτ =
√
|τw|/ρ

is the friction velocity.
Domain size, grid resolution, and the interface location y∗ are listed in Table 1, where x,

y, and z represent the streamwise, wall-normal, and spanwise directions, respectively. The
streamwise and spanwise directions have periodic boundary conditions. At the wall, y = 0,
we originally set the no-flux and no-slip BCs. The channel half-height is h = 1 m. The
channel flow is driven by a driving force determined from the DNS-computed bulk velocity.

Table 1. Characteristics of studied test cases.

Case Reτ Lx × Ly × Lz Resolution ∆x+ ∆y+ ∆z+ ∆yj+1/∆yj y∗/h y∗+

C950 950 2πh× 2h× πh 40× 64× 36 148 1.57→ 126 83 1.15 0.063 60
C2000 2000 2πh× 2h× πh 40× 72× 36 312 1.78→ 267 174 1.15 0.065 129
C4200 4200 3πh× 2h× πh 60× 84× 42 659 1.82→ 547 314 1.15 0.0476 200

The mesh is uniform in the x and z directions, and refined in the y direction with
a specified stretch factor. In the inner region, the embedded mesh usually consists of
20−30 nodes.

The results of different approaches, including unresolved LES, implicit NDD, and
benchmark DNS are compared. The first two models are implemented in the current study
and compared to the available benchmark DNS data. In each test case, all studied models
(except for DNS) have identical time and space resolutions. In addition, the effects of three
turbulent viscosity models of Section 2.2 are compared with each other.

The WALE model [47] is used for the subgrid-scale stress modeling in the LES. The
model is originally implemented in OpenFOAM. Each simulation starts with a fully de-
veloped turbulent channel flow and allows for enough running time before capturing the
output values.

The interface boundary in the simulations is situated at 0.05h . y∗ . 0.1h as recom-
mended in [30], where h is the channel half-height.

4.2. Simulation Results

In this section, the simulation results for the mean streamwise velocity and Reynolds
normal stress intensities obtained by INDD are compared to DNS and unresolved LES
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(i.e., LES computed on a relatively coarse grid without any special near-wall modeling). In
the inner region, the k− l eddy viscosity model is used.

The normalised mean streamwise velocity u+ = u/uτ for Reτ = 950 is plotted in
Figure 2 against the normalised distance from the wall y+ = yuτ/ν and compared to the
DNS data from Hoyas and Jiménez [48]. It is evident that the unresolved LES simulation
significantly overestimates the mean streamwise velocity. The unresolved LES can only
predict well enough the velocity profile near the viscous sub-layer (y+ < 10), whereas in the
logarithmic region the velocity exhibits a strong upward lift. This situation is substantially
improved by using the INDD, as the agreement with DNS in both the inner and outer
regions is satisfactory. Here and further, the location of the interface is indicated by a
vertical dashed line. Intriguingly, no LLM occurs with the current approach, despite
avoiding additional force terms in the momentum equation. That can be attributed to the
appropriate exchange of flow physics between the RANS and LES regions. With the TBLE
approximation and focus on the wall-normal gradients, we are able to use wall-parallel
cells, which are much coarser than the local eddies. They cannot be appropriately resolved
with the conventional SGS models.

10−1 100 101 102 103
0

10

20

30

y+

u
+

Unresolved LES
DNS-950
INDD

Figure 2. Mean streamwise velocity for C950 compared to DNS [48].

The normalised Reynolds stress intensities (u′u′
+

, v′v′
+

, and w′w′
+

) for Reτ = 950
are depicted in Figure 3. In turn, Figure 4 illustrates the normalized Reynolds shear stress
for C950. The overall agreement with the DNS is rather good. It is to be noted that the
prediction of the Reynolds stress intensities with INDD in the inner region is rather formal.
It corresponds to LES with the slip boundary conditions in the preliminary stage. The
LES is not intended to be resolved in this region. The overall prediction of INDD is rather
accurate, with the exception of the interface region. Near the RANS region, we cannot
expect a high accurate prediction of the Reynolds stress intensities. A similar issue also
occurs in other works related to RANS/LES models (see, e.g., [30]). This happens because
RANS cannot predict turbulent velocity fluctuations. As a result, the Reynolds stresses in
the interface area cannot be well predicted.

The results for the mean streamwise velocity at Reτ = 2000 are displayed in Figure 5.
They are compared to DNS, unresolved LES, and those from Davidson and Dahlström [32]
(shown as DD2005) both without and with a force term. The mean velocity of the unresolved
LES is significantly overpredicted, which is due to the substantial underprediction of the
friction velocity (around 40%). Without incorporating additional force terms into the
momentum equation, the results obtained with INDD are in a rather good agreement
with the DNS data. Our prediction almost coincides with that obtained by Davidson and
Dahlström [32] when they included a force term. However, the nature and magnitude of
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the added force term can change their profile considerably. As depicted in the figure, when
no forcing is applied in [32], a large deviation from the DNS data occurs.
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Figure 3. Reynolds normal stress intensities for C950. lines: DNS [48]; circles: INDD.
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Figure 4. Reynolds shear stress for C950. Red line: DNS [48]; blue circles: INDD.
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Figure 5. Mean streamwise velocity for C2000 compared to DNS [48] and hybrid LES-RANS
(DD2005) [32].
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The Reynolds normal stress intensities for Reτ = 2000 are shown in Figure 6. The
INDD results correspond to y∗+ = 129, while y∗+ = 62 in [32]. Again, away from the
interface, the agreement of INDD with the DNS data is rather good. Despite taking a larger
y∗ value than DD2005, INDD demonstrates superior agreement with the benchmark data
for all components. The velocity fluctuations at y∗+ = 129 are not available in [32] but we
anticipate for DD2005 a larger shift to the right and, thus, a greater difference from DNS in
this case. In turn, Figure 7 shows the relative values of INDD−DNS. The main difference
is near the interface area and it fades away when approaching the channel center. The
hybrid model predicts the maximum normal stress to be at the interface, while in DNS it
is essentially closer to the wall. This happens because LES is under-resolved in the inner
region. As a result, the pulsations u′ sharply drop there.
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′ iu
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Figure 6. Reynolds normal stress intensities for C2000. Lines: DNS [48]; circles: INDD with y∗+ = 129;
diamonds: DD2005 from Ref. [32] with y∗+ = 62, without forcing.
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Figure 7. Relative Reynolds normal stress intensities for C2000.

The shear stress profile is plotted in Figure 8. Considering the coarse mesh used here
and the deficiency of the RANS model in predicting fluctuations, the overall agreement
with DNS is reasonably good. The hybrid model predicts the maximum point close to
the interface.
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Figure 8. Reynolds shear stress for C2000. Red line: DNS [48]; blue circles: INDD.

Figure 9 demonstrates the results obtained with the INDD and our conventional
hybrid RANS/LES simulation without forcing (like [5]) on the same mesh. With the hybrid
approach, the LES solution is computed in the entire region in such a way that, in the
inner region, the subgrid eddy viscosity is replaced by the eddy viscosity predicted from
Model 3. It can be seen that a mismatch at the interface is reproduced with this approach.
As noted in [49], the implementation of a blending function for the eddy viscosity is able to
reduce the mismatch at the interface, although it does not remove it beyond the interface.
In contrast, the INDD profile is more in line with the DNS benchmark, and the velocity
profile is smoother even without the use of any blending function. INDD significantly
mitigates the LLM and does not have a velocity jump.

10−1 100 101 102 103
0

10

20

y+

u
+

DNS-2000
Conventional hybrid
INDD

Figure 9. Mean streamwise velocity for C2000. Comparison of INDD (blue triangles) and conventional
hybrid methods without a blending function (green squares).

The mean streamwise velocity for Reτ = 4200 is illustrated in Figure 10. Overall, the
agreement between the current study and the DNS [50] for both inner and outer regions is
rather good. The results of Keating and Piomelli [30] (shown as KP2006), when no forcing is
applied, are overpredicted. The addition of the force term improves the KP2006 results, but
it requires the selection of free forcing parameters that are not known a priori. This issue is
addressed in a recent review by Larsson et al. [8]. They note that the log–layer mismatch
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is a linear function of the forcing amplitude. Finally, it is concluded that, since there is no
robust general method to determine the forcing amplitude, the concept of adding force
terms to initiate the transition from RANS to LES is not a comprehensive strategy.

10−1 100 101 102 103
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30

y+

u
+
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KP2006 w/o forcing
DNS-4200
INDD

Figure 10. Mean streamwise velocity for C4200 compared to DNS [50] and hybrid LES-RANS
(KP2006) [30].

As shown in Figure 11, the Reynolds stress intensities predicted by INDD are closer
to the benchmark data with the increase in the distance from the interface. Specifically
with regard to the streamwise component, the prediction with the INDD is comparable
with that of KP2006, where a force term is used. The result of INDD for the shear stress in
Figure 12 shows a reasonable agreement with the benchmark data considering the coarse
mesh utilized in the current study.
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Figure 11. Reynolds normal stress intensities for C4200. Lines: DNS [50]; circles: INDD; diamonds:
Ref. [30] (KP2006) with forcing.
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Figure 12. Reynolds shear stress intensities for C4200. Red line: DNS [50]; blue circles: INDD.

As known, the LLM results in streak-like areas in the regions in the vicinity of the
interface [30,51]. This is different from the low-speed streaks that trigger the turbulence
generation cycle. Figure 13 depicts a snapshot of the streamwise velocity at y/H = 0.04.
Clearly, the “super-streaks” that are distinct to the LLM in the conventional RANS/LES
model are not observed here.

Figure 13. Contours of instantaneous streamwise velocity on a x− z plane at y/h = 0.04 for C4200.

Overall, for all Reynolds numbers considered, either minor or negligible LLM has
been observed in cases where INDD is used.

4.3. Effect of Eddy Viscosity Model

Next, the influence of the eddy viscosity model on the mean velocity profile for
Reτ = 4200 is studied. Comparisons are made in Figure 14. The results obtained with the
k− l method, k− ω, and mixing length models are compared against the DNS data. As
can be seen, the k− l model has a clear superiority. The mixing length and k−ω models
significantly underestimate the mean velocity in the core region. This result is consistent
with the statement by Temmerman et al. [6], who argue that unresolved LES cannot provide
a reliable prediction for ε or ω because the appropriate evaluation of the dissipation rate
requires a fine-enough mesh as dissipation occurs at small scales.
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Figure 14. Effect of eddy viscosity model on mean streamwise velocity for C4200.

5. Conclusions

In this paper, the implicit near-wall domain decomposition approach has been ex-
tended to hybrid RANS/LES simulations. In the approach, the solution is obtained in
two stages. First, an LES solution is computed for the entire region with specially derived
non-local slip boundary conditions at the wall. Then, in the second stage, the solution is
recomputed in an inner region near the wall based on a TBLE approximation. The slip BCs
at the wall guarantee that the time-averaged composite solution is smooth. To evaluate the
eddy viscosity in the inner region, it is recommended to use the k− l turbulence model. The
obtained results demonstrate that the approach is able to provide rather accurate predic-
tions in a wide range of Reynolds numbers without the implementation of any additional
forcing term at the interface. The velocity profile corresponds to the DNS data reasonably
well, such that the LLM effect is practically negligible. The conventional hybrid models
often suffer from a large LLM. They may include extra force terms or synthetic turbulence
fluctuations at the interface. The amplitude of the force term is case-dependent and there is
not a universal approach to determine it. In contrast, INDD does not need any additional
force term. In the current study, we applied the model to frictional Reynolds numbers of
950, 2000, and 4200. In all cases, the mean velocity profile is well predicted. However, better
results are obtained for higher Reynolds numbers. The current work demonstrates that the
developed approach can be successfully used to reduce or eliminate LLM. In future work,
the approach will be tested on flows around complex geometries.
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Nomenclature
The following abbreviations are used in this manuscript:

Roman symbols
t time (s)
uτ friction velocity (m/s)
k turbulent kinetic energy (m2/s2)
Re Reynolds number (-)
u flow velocity (m/s]
Cµ model constant = 0.09 (-)
x streamwise direction (-)
y wall-normal direction (-)
z spanwise direction (-)
D damping function (-)
P turbulence production term
Greek symbols
τw wall shear stress (N/m2)
ρ density (kg/m3)
µ dynamic viscosity (Pa·s)
ν kinematic viscosity (Pa·s)
ε turbulent kinetic energy dissipation (m2/s3)
ω specific dissipation rate (1/s)
α model constant (-)
β model constant (-)
σ model constant (-)
Subscripts and superscripts
res resolved
sgs subgrid scale
u velocity
l laminar
T turbulent
int interface
* interface location
w wall
τ friction-related parameter
Abbreviations
LES large eddy simulation
WMLES wall-modeled LES
DNS direct numerical simulation
TBLE thin boundary layer equation
RANS Reynolds-averaged Navier–Stokes
WSM wall-stress model
LLM log–layer mismatch
DES detached eddy simulation
NDD near-wall domain decomposition
BC boundary condition
IBC interface boundary condition
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