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A B S T R A C T

Feature selection plays a vital role in improving the efficiency and accuracy of condition monitoring by
constructing sparse but effective models. In this study, an advanced feature selection algorithm named the
local regularization assisted split augmented Lagrangian shrinkage algorithm (LR-SALSA) is proposed. The
feature selection is realized by solving a 𝑙1-norm optimization problem, which usually selects more sparse and
representative features at less computational costs. The proposed algorithm operates in two stages, namely
variable selection and coefficient estimation. In the stage of variable selection, the primal problem is converted
into three subproblems which can be solved separately. Then individual penalty parameters are applied to every
coefficient of the model when dealing with the first subproblem. Under the Bayesian evidence framework, an
iterative algorithm is derived to optimize these hyperparameters. During the optimization process, redundant
variables will be pruned to guarantee model sparsity and improve computational efficiency at the same time.
In the second stage, the coefficients for the selected model terms are determined using the least squares
technique. The superior performance and efficiency of the proposed LR-SALSA method are validated through
two numerical examples and a real-world cutting tool wear prediction case study. Compared with the existing
methods, the proposed method can generate a sparse model and ensure a good trade-off between estimation
accuracy and computational efficiency.
1. Introduction

Data-driven condition monitoring techniques have been extensively
applied in complex industrial systems to ensure process safety and
economic efficiency (Kong, Dyer, Payne, Hamerton, & Weaver, 2023;
Zhu, Li, & Zhang, 2020). The conditions of a system are usually
evaluated by analyzing a large number of process variables (Yang,
Karimi and Pawelczyk, 2023). When the dimension of available data
or features becomes extremely high, a critical issue known as the curse
of dimensionality arises, leading to overfitting and huge computational
costs (Yang, Wang et al., 2023). Besides, it is common that multiple
sensors measure similar aspects of the process, bringing about the
problem of multicollinearity. The estimation of model coefficients could
be very unstable, making the model less robust to noise in the data. To
build an accurate condition monitoring model, it is essential to develop
an effective and efficient feature selection method to select a subset of
important features and address the challenges mentioned above.

Feature selection has shown necessity and benefits in a wide range
of areas including machine learning, pattern recognition, multimedia,
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and condition monitoring (Ardakani et al., 2016; Yang, Ma, Haupt-
mann, & Sebe, 2013). Its main objective is to select the most im-
portant features from all candidates such that a simpler and more
comprehensible model is built and the data-mining performance is
improved (Zhang, Cao, Sun, & Su, 2023). In literature, feature selection
methods can be broadly categorized as filter, wrapper, and embedded
methods (Li et al., 2018). Filter methods are independent of the subse-
quent learning stage. These methods assess the importance of features
relying on some criteria such as feature similarity (Zhao, Wang, Liu, &
Ye, 2013), mutual information (Lucke, Mei, Stief, Chioua, & Thornhill,
2019), and relative contribution (Mei, Yuan, Cui, Dong, & Zhao, 2022).
For example, in Zhu, Hong, and Wong (2008), the Fisher’s discriminant
ratio was used to score the features’ discriminability of cutting tool
wear phases in advanced machining. In Tang, Bo, Liu, Sun and Wei
(2018), the affinity propagation clustering and RReliefF algorithms
were combined to build an unsupervised feature selection method,
which selected significant features related to the health status of rolling
bearings. Although filter methods are computationally efficient, the
vailable online 22 March 2024
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selected features may not be optimal for the target learning algorithms
due to the lack of guidance from a specific learning algorithm. Wrapper
methods evaluate the quality of features based on the predictive per-
formance of a predefined learning algorithm. The feature subset that
yields the best predictive performance is used as the selected ones.
However, the size of the search space increases exponentially as the
feature candidates increase (Zhang, Nie, Li, & Wei, 2019). The existing
searching strategies such as genetic algorithm and particle swarm op-
timization cannot fundamentally overcome this challenge (Dameshghi
& Refan, 2019; Tang, Chai, Yu, & Zhao, 2012). As a result, wrapper
methods are seldom used in practice. Embedded methods are a trade-off
between filter and wrapper methods, which embed the feature selection
into model learning. Firstly, the introduction of learning algorithms
improves the performance of selected features. Besides, compared with
wrapper methods, they are far more efficient as the repeated feature
evaluation procedure is no longer needed.

The regularization technique is a representative embedded feature
selection method that aims to build a sparse model by minimizing
the fitting errors and forcing model coefficients to be small enough at
the same time (Li et al., 2018). To achieve this, the 𝑙𝑝-norm penalty
term is added on a machine learning model, where 0 ≤ 𝑝 ≤ 1. When
𝑝 = 0, the 𝑙0-norm penalizes the number of non-zero entries of the
coefficient vector. Such an integer programming problem is usually
difficult to solve. Therefore, the 𝑙1-norm regularization is usually used
as a relaxation of the 𝑙0-norm. In this case, many feature coefficients
become smaller but not exactly zero. The 𝑙1-norm regularized feature
selection method has attracted lots of attention in recent years (Dai,
2023). Furthermore, to cope with feature selection requirements in
multi-class classification or multivariate regression problems, the regu-
larization method is improved by adding the 𝑙𝑝,𝑞-norm penalty term,

here 𝑝 > 1 and 0 ≤ 𝑝 ≤ 1. Different settings of 𝑝 and 𝑞 provide
ine adjustments of the regularization effect (Li, Nie, Bian, Wu and Li,
021; Quattoni, Carreras, Collins, & Darrell, 2009). Researchers have
lso proposed some feature selection methods for specific models, for
xample, the orthogonal forward selection (OFR) method is usually
xploited in linear regression problems (Chen, Billings, & Luo, 1989)
nd the automatic relevance determination kernel functions are often
sed in feature selection of Bayesian regression problems (Li, Chen,
hao and Wang, 2021).

As mentioned above, the 𝑙1-norm optimization method is an at-
ractive topic in feature selection and sparse model estimation. These
ethods aim to minimize not only the prediction error but also the sum

f the absolute values of the model coefficients (Tang, Zhang, & Wang,
019). One of the most popular 𝑙1-norm optimization algorithms is the
east absolute shrinkage and selection operator (LASSO), which can be
sed to prune redundant features for condition monitoring. However,
xtensive research shows that LASSO often produces an insufficiently
parse model leading prediction results to be inaccurate (Tang et al.,
019). To achieve a more sparse and accurate solution, the split aug-
ented Lagrangian shrinkage algorithm (SALSA) is proposed. SALSA

onverts the 𝑙1-norm optimization problem into several subproblems,
hich can be addressed separately without the need for a third-party

olver (Afonso, Bioucas-Dias, & Figueiredo, 2010). Based on SALSA,
ecently, a new approach called sparse augmented Lagrangian (SAL)
as been developed to build more compact models (Tang et al., 2019).
AL combines the random subsampling technique with the SALSA
ethod to produce intermediate models. Then, the highly selected

erms from these intermediate models are added to the final model.
inally, SALSA is applied again to estimate the model coefficients.
his leads to a better performance in model sparsity compared with
ASSO and SALSA. In Qin, Huang, Wang, Tang, and Liu (2022), the
AL method was used to select the significant features for tool wear
rediction in machining. However, SAL suffers from low computational
fficiency due to the application of the random subsampling tech-
ique, which involves conducting numerous repetitions of the SALSA
2

lgorithm. In Pan, Yuan, Gonçalves, and Stan (2016), the authors
roposed a re-weighted 𝑙1-minimization algorithm under the sparse
ayesian learning (SBL) framework. Nevertheless, the solution has to be
alculated using a third-party solver. To cope with this limitation, the
ayesian augmented Lagrangian (BAL) algorithm is developed (Tang,
hang, & Li, 2018), which solves the 𝑙1-minimization problem in SBL
sing the SALSA method. Even though the computation efficiency has
een improved, BAL still takes much longer time than LASSO and
ALSA algorithms. From the aforementioned, it is still an open question
f developing a 𝑙1-norm optimization-based feature selection method
ith high sparsity, fast computation speed, and high model accuracy.

To fundamentally address the challenges, this paper proposes a
ovel algorithm referred to as local regularization assisted SALSA (LR-
ALSA). The key idea is to embed a local regularization strategy into
he framework of SALSA. Firstly, the 𝑙1-minimization problem is con-
erted to three subproblems that can be solved separately. The first
ubproblem is a ridge regression problem, which does not involve the
runing of redundant terms originally. In LR-SALSA, the local regular-
zation strategy is employed to solve the first subproblem, which means
hat each candidate term has an associated individual regularization
arameter. During the optimization process, many of these penalty
arameters are driven to large values, resulting in successive removal
f corresponding terms from the pool of candidate terms. This strategy
mproves the computational efficiency and enhances the sparsity of
he final model by applying SALSA only once. After determining the
mportant terms, the model coefficients are re-estimated using the least
quares method. As a result, the main contributions of this study are as
ollows,

1. The LR-SALSA method is proposed under the Bayesian evidence
framework, introducing an individual penalty parameter for ev-
ery coefficient of the model. An iterative algorithm is derived
to optimize these hyperparameters relying on the dataset only
based on the Bayesian evidence framework (MacKay, 1992). This
optimization process shows a quicker convergence in practice.

2. The optimization of local regularization hyperparameters is em-
bedded into the iterative algorithm of SALSA. At each step,
according to the values of the penalty parameters, redundant
variables can be pruned in time, which significantly reduces the
overall computing complexity. As a result, LR-SALSA exhibits
better model sparsity and higher computational efficiency when
compared to existing 𝑙1-norm optimization algorithms, such as
SAL and BAL.

To validate the performance of LR-SALSA, both simulation and
xperimental studies were conducted. The results of these studies show
hat LR-SALSA successfully produces a more compact model while
aintaining a high level of prediction accuracy and fast computa-

ion speed. This demonstrates the effectiveness and practicality of the
roposed feature selection method in real-world condition monitoring
pplications.

. Preliminary

.1. Problem description

Consider the following 𝑙1-norm optimization problem

min
∈R𝑀

𝑓1(𝜽) + 𝑓2(𝜽) (1)

ith 𝑓1(𝜽) =
1
2‖𝒚 − 𝐏𝜽‖22 and 𝑓2(𝜽) = 𝜆‖𝜽‖1, where 𝒚 ∈ R𝑁 ,𝐏 ∈ R𝑁×𝑀

epresent the output and regression matrix composed of multivariate
nputs, respectively. 𝜆 denotes the 𝑙1 regularization parameter. To
onvert the original problem to a constrained problem, the coefficient
ector 𝜽 in function 𝑓2 is replaced with a new variable 𝝂, which gives

min
,𝝂∈R𝑀

𝑓1(𝜽) + 𝑓2(𝝂)
(2)
s.t. 𝜽 = 𝝂
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In order to find the optimal solution to this problem, the Lagrangian
function can be defined as

𝐿(𝜽, 𝝂, 𝝋) = 𝑓1(𝜽) + 𝑓2(𝝂) + 𝝋𝑇 (𝜽 − 𝝂) (3)

where 𝝋 ∈ R𝑀 is the Lagrangian multiplier. The solution to Eq. (2) is
always a saddle point of 𝐿(𝜽, 𝝂, 𝝋) in (3).

Typically, the dual ascent algorithm can be used to optimize the
primal and dual problems, respectively. However, this algorithm may
not always converge, especially when applied to non-convex or non-
smooth optimization problems. So the Augmented Lagrangian method
(ALM) is introduced by incorporating a penalty term

𝐿𝜇(𝜽, 𝝂, 𝝋) = 𝑓1(𝜽) + 𝑓2(𝝂) + 𝝋𝑇 (𝜽 − 𝝂) + 𝜇
2
‖𝜽 − 𝝂‖22 (4)

where 𝜇 ≥ 0 denotes the penalty parameter. The penalty term helps to
enforce the constraints, leading to a more stable and efficient algorithm.
Compared with the dual ascent method, the convergence is guaranteed
without assumptions like strict convexity of objective functions.

Then, considering sometimes the objective function is separable, the
alternating direction method of multipliers (ADMM) algorithm (Boyd,
2010) is proposed. The primal variable optimization step can be further
split into subproblems that can be solved in parallel. Let 𝒅 = 𝝋∕𝜇, with
ADMM algorithm, problem (4) is solved by optimizing the following
subproblems,

�̂�𝑘+1 = argmin
𝜽

𝑓1(𝜽) +
𝜇
2
‖𝜽 − 𝝂𝑘 + 𝒅𝑘‖

2
2 (5)

𝝂𝑘+1 = argmin
𝝂

𝑓2(𝝂) +
𝜇
2
‖�̂�𝑘+1 − 𝝂 + 𝒅𝑘‖

2
2 (6)

𝒅𝑘+1 = 𝒅𝑘 + (�̂�𝑘+1 − 𝝂𝑘+1) (7)

2.2. SALSA method

The SALSA algorithm can be regarded as an application of the
ADMM algorithm to the 𝑙1-norm regularized linear regression problem
1). It converts the original problem into several subproblems as shown
n (5)–(7). Then these problems are addressed separately as shown in
lgorithm 1. To elaborate further:

• For (5), �̂�𝑘+1 can be calculated by taking the derivative of the cost
function with respect to 𝜽 to be zero.

• Concerning (6), the update for 𝝂𝑘+1 incorporates the utilization
of the soft thresholding operator (Pan, Sootla, & Stan, 2014)
𝑆𝜆∕𝜇(𝑧) = max(0, 𝑧− 𝜆∕𝜇) − max(0,−𝑧− 𝜆∕𝜇), where 𝑧 = �̂�𝑘+1 + 𝒅𝑘.

• At each iteration, the sum-of-squares error is evaluated through
𝑒𝑘+1 = (𝒚 − 𝐏�̂�𝑘+1)𝑇 (𝒚 − 𝐏�̂�𝑘+1). The iteration stops when the
sequence of errors converges.

Algorithm 1 SALSA
Require: Predefine 𝜇, 𝜆 and 𝛿𝑒.
Ensure: 𝝂𝟎 = 𝒅𝟎 = 𝟎
1: repeat
2: �̂�𝑘+1 = (𝐏𝑇𝐏 + 𝜇𝐈)−1(𝐏𝑇 𝒚 + 𝜇(𝝂𝑘 − 𝒅𝑘))
3: 𝝂𝒌+𝟏 = max(0, �̂�𝑘+1 + 𝒅𝑘 − 𝜆∕𝜇) − max(0,−(�̂�𝑘+1 + 𝒅𝑘)

−𝜆∕𝜇)
4: 𝒅𝑘+1 = 𝒅𝑘 + (�̂�𝑘+1 − 𝝂𝑘+1)
5: 𝑒𝑘+1 = (𝒚 − 𝐏�̂�𝑘+1)𝑇 (𝒚 − 𝐏�̂�𝑘+1)
6: 𝑘 ← 𝑘 + 1
7: until stopping criterion |

|

𝑒𝑘+1 − 𝑒𝑘|| ≤ 𝛿𝑒 is satisfied

2.3. SAL method

The SAL method, inspired by SALSA, aims to construct a parsimo-
nious model. This approach encompasses two main stages: variable
selection and parameter estimation.
3

p

• During the variable selection stage, the random subsampling
technique is used to randomly generate a variety of datasets, each
comprising system output 𝒚𝑗 and input �̃�𝑗 . For each subsampled
dataset, SALSA executes the procedure outlined in Algorithm 1,
resulting in an intermediate model. The terms that are present
frequently in all intermediate models will be selected as the
dominant terms.

• Subsequently, in the parameter estimation stage, SALSA will be
run again, but on a subsampled dataset that only contains the
previously selected primary terms. This step determines the co-
efficients of the final model.

Within this algorithm, both pruning and stability selection play vital
roles in ensuring model sparsity. While the pruning process removes
terms with minimal impact on model performance based on the sub-
sampling dataset, stability selection discards redundant terms. The
comprehensive procedure of the SAL method is presented in Algorithm
2.

Algorithm 2 SAL
Variable selection stage:
Require: Predefine 𝜇, 𝜆, 𝛿𝜃 and 𝛿𝑡ℎ𝑟
Ensure: 𝝂𝟎 = 𝒅𝟎 = 𝟎
1: for 𝑗 = 1 to 𝑛: do
2: Random subsampling → 𝒚𝑗 and �̃�𝑗
3: Run SALSA and stop when 𝑠𝑖𝑔𝑛(�̂�𝑘+1) = 𝑠𝑖𝑔𝑛(�̂�𝑘)
4: if �̂�2𝑖 ∕‖�̂�‖

2
2 ≤ 𝛿𝜃 then

5: Term 𝒑𝑖 is removed
6: end if
7: Record the selected terms of the intermediate model
8: end for
9: if 𝑠𝑝(𝒑𝑖)∕𝑛 ≥ 𝛿𝑡ℎ𝑟 where 𝑠𝑝(𝒑𝑖) is the occurrences of 𝒑𝑖, then
0: Term 𝒑𝑖 is selected
1: end if
2: Choose the highly selected terms as the final model
arameter estimation stage:
1: Random subsampling → 𝒚 and �̃�𝑠
2: Run SALSA and stop when 𝑠𝑖𝑔𝑛(�̂�𝑘+1) = 𝑠𝑖𝑔𝑛(�̂�𝑘)
3: Determine the coefficients in the final model

3. Local regularization assisted SALSA

3.1. Solving the subproblems

The original 𝑙1-norm optimization problem (1), is converted to sub-
problems (5)–(7) using the ADMM framework. In solving subproblem
(5), a local regularization strategy is employed to penalize each element
of 𝜽 for the purpose of producing a more compact model. Let 𝒆 =
𝒚 − 𝐏𝜽, 𝜼 = 𝝂 − 𝒅, the new cost function is written as

𝑅(𝜽) = 𝒆𝑇 𝒆 +
𝑀
∑

𝑖=1
𝜇𝑖

(

𝜃𝑖 − 𝜂𝑖
)2 (8)

here 𝜇𝑖 ≥ 0 is the penalty parameter of element 𝜃𝑖 in 𝜽. Compared with
he ‘global’ regularization method, where a uniform intensity of penalty
s applied to all elements in 𝜽 in SALSA and SAL, this novel design of
local’ regularization assisted SALSA allows independent and flexible
ontrol of the penalty intensity of every coefficient in the optimization
roblem. Thus the function (8) consists of the sum-of-squares error
unction and a so-called locally quadratic regularization term.

The Bayesian evidence approximation can be used to optimize the
egularization parameters 𝜇𝑖 automatically. From the Bayesian view-
oint, a regularization parameter is equivalent to the ratio of the
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coefficient precision and the noise precision (MacKay, 1992). In this
sense, 𝐽𝑅(𝜽) is equivalent to the following cost function,

𝐵(𝜽) = 𝛽𝒆𝑇 𝒆 +
𝑀
∑

𝑖=1
𝛼𝑖
(

𝜃𝑖 − 𝜂𝑖
)2 = 𝛽𝒆𝑇 𝒆 + (𝜽 − 𝜼)𝑇𝐀(𝜽 − 𝜼) (9)

where 𝛽 and 𝛼𝑖 govern the precision parameters of noise and 𝜃𝑖, and 𝐀 =
diag{𝛼1, 𝛼2,… , 𝛼𝑀} denotes the precision matrix. The regularization
arameter in (8) holds the relationship with the hyperparameters as
𝑖 = 𝛼𝑖∕𝛽.

Using the evidence approximation framework (Tipping, 2001), the
nknown parameters 𝜶 and 𝛽 are determined by maximizing the log
arginal likelihood function

n 𝑝(𝒚|𝐏, 𝜼,𝜶, 𝛽) =𝑁
2

ln
𝛽
2𝜋

+ 1
2

𝑀
∑

𝑖=1
ln 𝛼𝑖 −

1
2
𝛽𝒚𝑇 𝒚

− 1
2
𝜼𝑇𝐀𝜼 + 1

2
𝒎𝑇 𝐒−1𝒎 + 1

2
ln |𝐒|

(10)

where 𝒎 and 𝐒 define the mean and covariance matrix of the posterior
istribution for 𝜽, and are given by

𝒎 = 𝐒(𝐀𝜼 + 𝛽𝐏𝑇 𝒚) (11)

𝐒 = (𝐀 + 𝛽𝐏𝑇𝐏)−1 (12)

Taking the derivatives of ln 𝑝(𝒚|𝐏, 𝜼,𝜶, 𝛽) with respect to 𝜶 and 𝛽 to
be zero yields the updating formulas for 𝜶 and 𝛽, respectively.

𝛼new𝑖 =
𝛾𝑖

(𝑚𝑖 − 𝜂𝑖)2
(13)

𝛽new)−1 =
‖𝒚 − 𝐏𝒎‖

2
2

𝑁 −
∑𝑀

𝑖=1 𝛾𝑖
(14)

where 𝛾𝑖 = 1−𝛼𝑖𝑆𝑖𝑖, 𝑆𝑖𝑖 is the 𝑖th diagonal component of 𝐒. The detailed
derivation of (13) and (14) is presented in Appendices A–D.

The optimization begins by setting initial values for 𝜶 and 𝛽. Using
these initial values, the posterior mean and covariance are computed
according to (11) and (12), respectively. Subsequently, the hyperpa-
rameters are re-estimated using (13) and (14); and re-estimating the
posterior mean and covariance, using (11) and (12), until a suitable
convergence criterion is satisfied. It is worth mentioning that the
optimization results in a proportion of 𝛼𝑖 that are close to large values,
and so the coefficients 𝜃𝑖 corresponding to these hyperparameters have
posterior distributions with a mean of 𝜂𝑖 and variance of zero. Thus
those variables are removed from the model and a sparse structure is
found.

Giving values 𝜶∗
𝑘 and 𝛽∗𝑘 for the hyperparameters that maximize the

marginal likelihood and solutions of 𝝂𝑘 and 𝒅𝑘, at the (𝑘+1)th iteration,
𝜶∗
𝑘 and 𝛽∗𝑘 are set as the initial values, and 𝜼𝑘 = 𝝂𝑘 − 𝒅𝑘. Running

the optimization procedure yields optimal values 𝜶∗
𝑘+1 and 𝛽∗𝑘+1. At the

same time, �̂�𝑘+1 and 𝝁𝑘+1 are updated

�̂�𝑘+1 = (𝐀∗
𝑘+1 + 𝛽∗𝑘+1𝐏

𝑇𝐏)−1(𝐀∗
𝑘+1𝜼 + 𝛽∗𝑘+1𝐏

𝑇 𝒚) (15)

𝜇𝑖,𝑘+1 = 𝛼𝑖,𝑘+1∕𝛽𝑘+1 (16)

Similar to SALSA, the subproblem (6) is also solved using the soft
thresholding operator 𝑆𝜆∕𝜇(𝑧). Each element of the variable 𝝂𝑘+1 is
updated as

𝜈𝑖,𝑘+1 =max(0, �̂�𝑖,𝑘+1 + 𝑑𝑖,𝑘 − 𝜆∕𝜇𝑖,𝑘+1)

− max(0,−�̂�𝑖,𝑘+1 − 𝑑𝑖,𝑘 − 𝜆∕𝜇𝑖,𝑘+1)
(17)

With �̂�𝑘+1 and 𝝂𝑘+1, 𝒅𝑘+1 can be calculated by

𝒅𝑘+1 = 𝒅𝑘 + (�̂�𝑘+1 − 𝝂𝑘+1) (18)

In terms of the stopping criterion, the sum-of-squares error is com-
puted by 𝑒𝑘+1 = (𝒚 − 𝐏�̂�𝑘+1)𝑇 (𝒚 − 𝐏�̂�𝑘+1) and the iteration stops when
|𝑒 − 𝑒 | ≤ 𝛿 , where 𝛿 denotes the convergence tolerance.
4

| 𝑘+1 𝑘| 𝑒 𝑒
3.2. Variable selection

The pruning of variables is carried out at each iterative step. Ini-
tially, 𝜼 equals zero, so the terms that have very small estimated
coefficients, i.e., �̂�𝑖 → 0, will be removed. This is because corresponding
hyperparameters 𝛼𝑖 tend to become extremely large. At the (𝑘 + 1)th
iteration, if the estimated coefficients are close to 𝜼𝑘, i.e., �̂�𝑖,𝑘+1 → 𝜂𝑖,𝑘,
the corresponding terms will be removed. This operation can guarantee
the convergence of optimizing hyperparameters 𝜶𝑘+1 and 𝛽𝑘+1. Besides,
pruning helps to build a sparse model. Intuitively, the terms with
coefficients that converge to 𝜼𝑘 will not be selected. Substituting 𝝂𝑘
in the expression of 𝜼𝑘 with (17), the following equation holds

𝜂𝑖,𝑘 =

⎧

⎪

⎨

⎪

⎩

�̂�𝑖,𝑘 + 𝑑𝑖,𝑘−1 − 2𝜆∕𝜇𝑖,𝑘, �̂�𝑖,𝑘 + 𝑑𝑖,𝑘−1 > 𝜆∕𝜇𝑖,𝑘
− �̂�𝑖,𝑘 − 𝑑𝑖,𝑘−1, |�̂�𝑖,𝑘 + 𝑑𝑖,𝑘−1| ≤ 𝜆∕𝜇𝑖,𝑘
�̂�𝑖,𝑘 + 𝑑𝑖,𝑘−1 + 2𝜆∕𝜇𝑖,𝑘, �̂�𝑖,𝑘 + 𝑑𝑖,𝑘−1 < −𝜆∕𝜇𝑖,𝑘

(19)

In principle, if |�̂�𝑖,𝑘 + 𝑑𝑖,𝑘−1| is too large relative to 𝜆∕𝜇𝑖,𝑘, 𝜂𝑖,𝑘 tends
to take a value that is close to �̂�𝑖,𝑘. At the (𝑘 + 1)th step, �̂�𝑖,𝑘+1 remains
unchanged as �̂�𝑖,𝑘, driving 𝛼𝑖,𝑘+1 to a large value, which further reduces
𝜆∕𝜇𝑖,𝑘+1. As a result, the 𝑖th variable will be discarded. Thus the selected
terms should be those meeting convergence requirements and also
contributing significantly to the prediction accuracy.

Suppose that 𝑀 ′ variables remain with estimated coefficients �̂�𝑖, 𝑖 =
1, 2,… ,𝑀 ′ when the iteration converges. Some coefficients might be
very small compared with others, i.e., �̂�2𝑖 ≪ ‖�̂�‖22. In this case, those
small weights lower than a threshold will be further pruned to obtain
a compact model.

3.3. Coefficients estimation

The coefficients of the selected variables will be re-estimated. Let
ST = {𝑠𝑡1,… , 𝑠𝑡𝑀 ′′} denotes the set of indices of selected terms. These
terms form a new candidate matrix 𝐏ST = [𝒑𝑠𝑡1 ,…, 𝒑𝑠𝑡𝑀′′ ] ∈ R𝑁×𝑀 ′′ .
Related coefficients are 𝜽ST = [𝜃𝑠𝑡1 ,… , 𝜃𝑠𝑡𝑀′′ ]

𝑇 ∈ R𝑀 ′′ . Now the
regression model becomes 𝒚 = 𝐏ST𝜽ST + 𝒆, where 𝒚 denotes system
output and 𝒆 denotes the residual. Using the ordinary least squares
estimator, the model coefficients are given by

�̂�ST = (𝐏𝑇
ST𝐏ST)−1𝐏𝑇

ST𝒚 (20)

To improve the generalizability of the final model, ridge regression
needs to be utilized. The model parameter estimation becomes

�̂�ST = (𝐏𝑇
ST𝐏ST + 𝜅𝐈)−1𝐏𝑇

ST𝒚 (21)

where 𝜅 is the penalty parameter.
Note that the identifiability of the estimation algorithm is guaran-

teed by the variable selection step. Firstly, the introduction of 𝑙1-norm
penalty term forces many of the model coefficients to zero, leaving
only the important ones. This can be explained by the diamond-shaped
constraint region in the space of coefficients. The corners represent
situations in which other coefficients are exactly zero. Secondly, when
multicollinearity exists in the candidate terms, the optimization algo-
rithm tends to choose one variable that provides unique information
and set the parameters of others that have similar information to zero,
which means the redundant variables no longer exist in 𝐏ST (Herawati,
Nisa, Setiawan, Nusyirwan, & Tiryono, 2018). After the variable se-
lection step, the matrix 𝐏ST has full column rank. Hence, the model
coefficients can be uniquely determined by the least squares algorithm.

3.4. The implemented algorithm

The proposed approach consists of two stages, namely variable
selection and coefficient estimation. To obtain a sparse model structure,
local regularization is introduced to solve the subproblem (5). In each
iterative step, the evidence framework runs in a nested loop, estimating

the coefficients 𝜽 and optimal local regularization parameters 𝝁. Within
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this loop, terms corresponding to large 𝜇𝑖 are removed. After that,
variables 𝝂, 𝒅 and 𝜼 are sequentially updated. The iteration stops when
the prediction error converges. After the iteration, terms with small
coefficients are pruned, resulting in a more compact model.

In the coefficient estimation stage, the coefficients are re-estimated
using the system output and input of the selected terms. The complete
procedure is outlined in Algorithm 3.
Algorithm 3 LR-SALSA
Variable selection stage:
Require: Predefine 𝜶0, 𝛽0, 𝜆, 𝑡𝑜𝑙𝛼 , 𝛿𝛼 , 𝛿𝑒 and 𝛿𝜃
nsure: 𝝂𝟎 = 𝒅𝟎 = 𝜼𝟎 = 𝟎
1: for 𝑘 = 1 to 𝑛: do
2: repeat
3: Update 𝒎 and 𝐒 by (11) and (12)
4: Update 𝜶 and 𝛽 by (13) and (14)
5: if |𝛼𝑖| ≥ 𝑡𝑜𝑙𝛼 then
6: Term 𝒑𝑖 is removed
7: end if
8: until max{𝛼𝑙𝑎𝑠𝑡𝑖 − 𝛼𝑛𝑒𝑤𝑖 } ≤ 𝛿𝛼
9: �̂�𝑘 = 𝒎, 𝝁 = 𝜶∕𝛽
0: 𝝂𝒌 = max(0, �̂�𝑘 + 𝒅𝑘−1 − 𝜆∕𝝁) − max(0,−(�̂�𝑘 + 𝒅𝑘−1)

−𝜆∕𝝁)
1: 𝒅𝑘 = 𝒅𝑘−1 + (�̂�𝑘 − 𝝂𝑘)
2: 𝜼𝑘 = 𝝂𝑘 − 𝒅𝑘
3: 𝑒𝑘 = (𝒚 − 𝐏�̂�𝑘)𝑇 (𝒚 − 𝐏�̂�𝑘)
4: if |

|

𝑒𝑘 − 𝑒𝑘−1|| ≤ 𝛿𝑒 then
5: break
6: end if
7: end for
8: if �̂�2𝑖 ∕‖�̂�‖

2
2 ≤ 𝛿𝜃 then

9: Term 𝒑𝑖 is removed
20: end if
21: Determine the terms of the final model
Coefficient estimation stage:
1: Select the variables 𝒚 and 𝐏ST
2: Determine the coefficients by (21)

The complexity of the proposed method is discussed here. In each
teration of the LR-SALSA algorithm, solving the first subproblem (5)
akes most of the computing time, and the other two subproblems (6)
nd (7) are solved directly. For (5), the update rules for the hyper-
arameters 𝜶 and 𝛽 depend on computing the posterior mean 𝒎 and
ovariance matrix 𝐒 of 𝜽. The computation of 𝒎 only involves matrix

multiplications, whose amount is 𝑂(𝑀2+𝑀2+𝑀𝑁). The computation
of 𝐒 requires an inverse operation of order 𝑂(𝑀3) complexity and
𝑂(𝑀2) memory storage. The computational complexity of 𝜶 and 𝛽 is
𝑂(𝑀) and 𝑂(𝑀𝑁), respectively. Therefore, the dominant cost in one
iteration of hyperparameter updating should be 𝑂(𝑀3).

In practice, the convergence is usually achieved in about tens of
iterations. Even though there is a nested loop in the LR-SALSA algo-
rithm, the solution can be obtained quickly as the pruning operation at
each step rapidly reduces 𝑀 to a very limited size. The computational
efficiency improved by timely discarding redundant terms will be more
significant when the initial value of 𝑀 is very large. Based on the
analysis above, the whole algorithm needs several times the cost of
a standard SALSA algorithm, which is much less compared with the
SAL method that needs about 25 times SALSA (Tang et al., 2019). The
complexity of the proposed algorithm is lower than the BAL method as
well. In BAL, the computational complexity is 𝑂(𝑁3) and the pruning
procedure does not improve the efficiency (Tang et al., 2018).

3.5. The convergence

The convergence of the proposed LR-SALSA algorithm can be ana-
lyzed under the framework of SALSA.
5

Theorem 1 (Eckstein & Bertsekas, 1992). Consider problem (1), where 𝑓1
and 𝑓2 are closed, proper, convex functions. Consider arbitrary 𝜇 > 0 and
𝝂0,𝒅0 ∈ R𝑀 . Let {𝑎𝑘 ≥ 0, 𝑘 = 0, 1,… ,∞} and {𝑏𝑘 ≥ 0, 𝑘 = 0, 1,… ,∞} be
two sequences such that
∞
∑

𝑘=0
𝑎𝑘 < ∞ and

∞
∑

𝑘=0
𝑏𝑘 < ∞ (22)

Consider three sequences {�̂�𝑘 ∈ R𝑀 , 𝑘 = 0, 1,…}, {𝝂𝑘 ∈ R𝑀 , 𝑘 = 0, 1,…},
nd {𝒅𝑘 ∈ R𝑀 , 𝑘 = 0, 1,…} that satisfy

𝑘 ≥
‖

‖

‖

‖

�̂�𝑘+1 − argmin
𝜽

{

𝑓1(𝜽) +
𝜇
2
‖

‖

𝜽 − 𝝂𝑘 + 𝒅𝑘
‖

‖

2
2

}

‖

‖

‖

‖

(23)

𝑏𝑘 ≥
‖

‖

‖

‖

𝝂𝑘+1 − argmin
𝝂

{

𝑓2(𝝂) +
𝜇
2
‖�̂�𝑘+1 − 𝝂 + 𝒅𝑘‖

2
2

}

‖

‖

‖

‖

(24)

𝒅𝑘+1 = 𝒅𝑘 + (�̂�𝑘+1 − 𝝂𝑘+1) (25)

f (1) has a solution, the sequence {�̂�𝑘} converges, �̂�𝑘 → 𝜽∗, where 𝜽∗ is a
olution of (1). However, if (1) does not have a solution, then at least one
f the sequences {𝝂𝑘} or {𝒅𝑘} diverges.

This theorem shows that if the subproblems (5) and (6) can be
olved exactly, or the sequence of errors is absolutely summable, con-
ergence is guaranteed. As shown in Afonso et al. (2010), the objective
unction of (5) in SALSA is a strictly convex quadratic function, leading
o the following solution:

̂ 𝑘+1 = (𝐏𝑇𝐏 + 𝜇𝐈)−1(𝐏𝑇 𝒚 + 𝜇(𝝂𝑘 − 𝒅𝑘)) (26)

hich can be solved exactly in many cases. Because in a number of
roblems of interest, the term (𝐏𝑇𝐏 + 𝜇𝐈) is invertible. For subproblem
6), it can be exactly solved by introducing the soft thresholding
perator. Therefore, SALSA is guaranteed to converge.

Notice that (26) is formally similar to the maximum a posterior
MAP) estimate of 𝜽, from observations 𝒚 = 𝐏𝜽 + 𝒏, where 𝒏 is white
aussian noise of variance 1∕𝜇 and 𝜽 has a Gaussian prior  (𝝂𝑘−𝒅𝑘, 𝐈).

n LR-SALSA, the local regularization can apply individual penalty pa-
ameters on each element of 𝜽. From Bayesian viewpoint, the Gaussian
rior becomes  (𝝂𝑘 − 𝒅𝑘,𝐀−1), where 𝐀 = diag{𝛼1, 𝛼2,… , 𝛼𝑀}. In
his case, the estimate of 𝜽 is 𝒎 at the convergence of 𝜶-optimization,
ssentially taking the similar form to (26). Hence, the subproblem (5)
n LR-SALSA can be exactly solved as long as 𝜶-optimization converges.

As shown in Appendix A, an implicit solution for 𝜶 is derived by
irectly maximizing the marginal likelihood function ln 𝑝(𝒚|𝐏). The re-
stimation procedure will converge at a point where ln 𝑝(𝒚|𝐏) reaches
stationary point. During the process of re-estimation, many of the

𝑖 tend to infinity, implying that 𝑝(𝜃𝑖|𝒚,𝜶, 𝛽) becomes highly peaked
t zero (Tipping, 2001). Then these 𝛼𝑖 are discarded from the next
teration and the corresponding terms can be pruned. As illustrated
n MacKay (1992), at the optimum value of 𝜶, the effective total
umber of well-determined parameters is also ensured. Therefore, the
hole LR-SALSA algorithm is guaranteed to converge.

. Simulation study

In this section, two nonlinear examples represented by Nonlinear
utoRegressive with eXogenous inputs (NARX) models are employed to
valuate the sparsity, accuracy, and computation speed of the feature
election methods. A comprehensive introduction to NARX models can
e found in Billings (2013), which will not be repeated here. The
tilization of the NARX model for this simulation study is based on
he assumption that the accurate selection of NARX model terms and
ccurate prediction of model parameters can be used as a reliable
ndicator of the capability of the feature selection method in generating
epresentative features and making accurate predictions.

For this simulation study, except for LR-SALSA, many algorithms
ncluding OFR, LASSO, SAL, SBL, and BAL are implemented for the sake
f comprehensive comparison. To ensure a fair evaluation, each algo-
ithm has been executed multiple times with different random seeds.
oth the best result and statistical analysis of performance indices after
epeated executions are presented in this section.
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Table 1
The simulation results of Example 1.
Terms Coefficient LR-SALSA OFR LASSO SAL SBL BAL

𝑧(𝑡 − 2) −0.5 −0.498 −0.5014 −0.4967 −0.5021 −0.4981 −0.5002
𝑧(𝑡 − 1)𝑢(𝑡 − 1) 0.7 0.6954 0.698 0.6866 0.6901 0.7039 0.7024
𝑢2(𝑡 − 2) 0.6 0.5992 0.5997 0.5898 0.5967 0.6018 0.5994
𝑧3(𝑡 − 1) 0.2 0.2008 0.2018 0.1911 0.2005 0.1986 0.1976
𝑧(𝑡 − 2)𝑢2(𝑡 − 2) −0.7 −0.7064 −0.6992 −0.6575 −0.6884 −0.6952 −0.7009
𝑧(𝑡 − 4) – – – 0.0011 – – –
𝑢2(𝑡 − 1) – – – 0.0008 – – –
𝑢(𝑡 − 1)𝑢2(𝑡 − 3) – – – 0.002 – – –
𝑧(𝑡 − 4)𝑢2(𝑡 − 2) – – −0.0022 – – – –
MAE𝜃 – 0.0029 0.0012 0.0157 0.0055 0.0028 0.0013
n
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4.1. Example 1

First, consider the benchmark nonlinear system (Tang et al., 2019):

𝑧(𝑡) = − 0.5𝑧(𝑡 − 2) + 0.7𝑧(𝑡 − 1)𝑢(𝑡 − 1) + 0.6𝑢2(𝑡 − 2)

+ 0.2𝑧3(𝑡 − 1) − 0.7𝑧(𝑡 − 2)𝑢2(𝑡 − 2)

𝑦(𝑡) =𝑧(𝑡) + 𝑒(𝑡)

(27)

where 𝑢(𝑡) and 𝑧(𝑡) denote the system input and output at time 𝑡,
respectively. 𝑢(𝑡) is a uniformly distributed white noise within the range
of [−1, 1]. 𝑧(𝑡) is the output of the system that is excited by 𝑢(𝑡). An
external Gaussian noise sequence 𝑒(𝑡) is added to 𝑧(𝑡). The signal-to-
noise ratio (SNR) is set to 15 dB. The maximum lags for input and
output are selected as 3 and 4, respectively. The linear candidate terms
are 𝑧(𝑡 − 1), 𝑧(𝑡 − 2), 𝑧(𝑡 − 3), 𝑧(𝑡 − 4), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2) and 𝑢(𝑡 − 3). In
terms of nonlinearity, the maximum polynomial degree is selected as
3. As a result, based on the dictionary generation equations introduced
in Billings (2013), the total number of candidate terms is 119. In
this example, 3000 input and output samples are generated for model
learning. Thus, the dimension of matrix 𝐏 is 3000 × 119. The mean
absolute error (MAE) of the estimated coefficients is used to evaluate
the model performance

MAE𝜃 = 1
𝑀

𝑀
∑

𝑖=1
|𝜃𝑖 − �̂�𝑖| (28)

In the implementation of the proposed LR-SALSA algorithm, some
parameters need to be determined in advance. The tolerance 𝑡𝑜𝑙𝛼 and
top criterion 𝛿𝛼 used in local regularization parameter learning were
et to 1𝑒5 and 1𝑒−5, respectively, according to the suggestions in Tipping
2001). The stopping criteria 𝛿𝑒 and 𝛿𝜃 for variable selection were 1𝑒−5

nd 0.01, which were reasonably small (Tang et al., 2019). The 𝑙1-norm
arameter 𝜆 was set to 1. In the OFR algorithm, the important terms
ere selected according to the error reduction ratio criterion, which
as carefully tuned and set to 0.05 in this study (Tang et al., 2018).

n other algorithms, the 𝑙1-norm parameter 𝜆 was critical to model
erformance. The cross-validation method was adopted to select a value
hat results in the smallest standard error (Li, Wang and Kruger, 2021).
he selected parameters for these methods were: 𝜆LASSO = 7.2𝑒−4,
SAL = 1, 𝜆SBL = 0.4, and 𝜆BAL = 0.1. Additionally, in SAL, the
ubsampling was repeated 10 times and 𝛿𝑡ℎ𝑟 = 0.7. In SBL, the CVX
olver was used to address the optimization problem and the number
f repeated steps was 5 (Pan et al., 2016).

Table 1 presents the best results obtained in this case. It can be
een that all methods can produce sparse models. OFR estimates the
odel coefficients with the highest accuracy, but a redundant term
(𝑡−4)𝑢2(𝑡−2) is also selected. LASSO selects more redundant terms and
he coefficients of the correct terms are less accurate than others. The
ther four methods accurately choose the correct terms and estimate
oefficients at a similar level of precision. Among them, BAL stands
ut with a MAE𝜃 of 0.0013.

To evaluate the stability of these methods, 100 simulation exe-
utions were conducted using different random seeds and recorded
6

he resulting performance indices. Fig. 1 shows the box plots for the a
umber of selected terms, MAE𝜃 , and computation time. As can be
een in Fig. 1(a), the LR-SALSA and SBL algorithms consistently identify
he correct terms. The SAL and BAL methods choose redundant terms
ccasionally. In contrast, the OFR and LASSO algorithms tend to select
dditional terms. In terms of estimation accuracy, as shown in Fig. 1(b),
FR has the lowest and highest MAE𝜃 , showing worse stability. The
roposed LR-SALSA outperforms LASSO and SAL and achieves similar
stimation accuracy to SBL and BAL. However, as shown in Fig. 1(c),
R-SALSA takes the least amount of time to construct a model com-
ared with other methods except for OFR. It takes an extremely long
ime for feature selection using the SBL algorithm, which indicates
he limitation of using the third-party solver. As a result, compared
ith the other methods, the proposed LR-SALSA method offers a su-
erior accuracy in generating sparse models meanwhile ensuring fast
omputation.

.2. Example 2

Consider another nonlinear system (Tang et al., 2019):

(𝑡) =𝑢(𝑡 − 1) − 0.3𝑢(𝑡 − 2) − 0.4𝑢(𝑡 − 3)

+ 0.25𝑢(𝑡 − 1)𝑢(𝑡 − 2) − 0.2𝑢(𝑡 − 2)𝑢(𝑡 − 3)

− 0.3𝑢3(𝑡 − 1) + 0.24𝑢3(𝑡 − 2) + 0.8𝑧(𝑡 − 1)

𝑦(𝑡) =𝑧(𝑡) + 𝑒(𝑡)

(29)

here 𝑢(𝑡) denotes the system input and 𝑧(𝑡) denotes the output at time
. A white noise 𝑢(𝑡) ∈ [−1, 1] sampled from the uniform distribution is
sed as the system input. For the Gaussian noise sequence 𝑒(𝑡), the SNR
s set to 15 dB. In this example, the maximum lags for input and output
re selected as 2 and 3. The maximum polynomial degree is selected as
. Therefore, these delayed inputs and outputs can form a model term
andidate pool with 55 linear and nonlinear terms (Billings, 2013). In
otal, 3500 samples are generated. The size of 𝐏 is 3500 × 55. The MAE𝜃
s also used to test the model performance.

The parameter settings for the proposed algorithm were consistent
ith those in Example 1. Nevertheless, key parameters used in other
ethods have changed. In the OFR algorithm, the stopping criterion
as set to 0.033. In the other four algorithms, the 𝑙1-norm parameters
ere selected as the following values: 𝜆LASSO = 3.5𝑒−4, 𝜆SAL = 0.01,
SBL = 0.03, and 𝜆BAL = 0.05. The best simulation results are presented
n Table 2. Similar to the results in Example 1, the LR-SALSA, SBL,
nd BAL algorithms can estimate the coefficients of correct terms more
ccurately. Even though SBL yields the lowest MAE𝜃 of 0.0044, 6
edundant terms are included in the final model, making the result
nreliable. LASSO also produces a redundant model comprising 14
erms and neglects the essential term 𝑢(𝑡 − 2). The OFR and SAL
lgorithms have selected the true terms but have not estimated the
oefficients as accurately as the proposed LR-SALSA algorithm.

The stability test has been conducted in this example as well, and
ig. 2 shows the box plots resulting from 100 simulation executions
ith different random seeds. As can be seen in Fig. 2(a), the average
umbers of selected terms of LR-SALSA and BAL are approximately 8,

ligning with the true model term number in Eq. (29). The OFR, LASSO,
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Fig. 1. Box plots of the results produced by LR-SALSA and other common algorithms in example 1: (a) number of selected terms, (b) MAE𝜃 , and (c) computation time.
Table 2
The simulation results of Example 2.
Terms Coefficient LR-SALSA OFR LASSO SAL SBL BAL

𝑧(𝑡 − 1) 0.8 0.7917 0.8959 0.5157 0.7475 0.8045 0.7847
𝑢(𝑡 − 1) 1 0.9942 0.9942 0.9769 1.009 0.9978 1.0038
𝑢(𝑡 − 2) −0.3 −0.2808 −0.3871 – −0.2581 −0.2995 −0.2835
𝑢(𝑡 − 3) −0.4 −0.3977 −0.4456 −0.2477 −0.3733 −0.459 −0.3983
𝑢(𝑡 − 2)𝑢(𝑡 − 2) 0.25 0.2484 0.2557 0.2473 0.2401 0.2565 0.249
𝑢(𝑡 − 2)𝑢(𝑡 − 3) −0.2 −0.2035 −0.2269 −0.1238 −0.1848 −0.2056 −0.2025
𝑢3(𝑡 − 1) −0.3 −0.2918 −0.2917 −0.2699 −0.3101 −0.3002 −0.3155
𝑢3(𝑡 − 2) 0.24 0.2332 0.2571 0.1301 0.2453 0.2301 0.2316
𝑧2(𝑡 − 1) – – – −0.0061 – – –
𝑧(𝑡 − 1)𝑢(𝑡 − 1) – – – 0.0057 – – –
𝑧(𝑡 − 2)𝑢(𝑡 − 3) – – – 0.0122 – – –
𝑧3(𝑡 − 2) – – – −0.0107 – – –
𝑢2(𝑡 − 1)𝑢(𝑡 − 3) – – – −0.0017 – – –
𝑢(𝑡 − 1)𝑢2(𝑡 − 2) – – – −0.0091 – – –
𝑢2(𝑡 − 2)𝑢(𝑡 − 3) – – – −0.0003 – – –
𝑧(𝑡 − 1)𝑢(𝑡 − 3) – – – – – 0.0041 –
𝑢(𝑡 − 1)𝑢(𝑡 − 3) – – – – – 0.0058 –
𝑧(𝑡 − 1)𝑢(𝑡 − 1)𝑢(𝑡 − 2) – – – – – −0.0051 –
𝑧(𝑡 − 1)𝑢(𝑡 − 1)𝑢(𝑡 − 3) – – – – – −0.0033 –
𝑧(𝑡 − 2)𝑢2(𝑡 − 2) – – – – – 0.0053 –
𝑢(𝑡 − 2)𝑢2(𝑡 − 3) – – – – – −0.102 –
MAE𝜃 – 0.0070 0.0366 0.1223 0.0213 0.0044 0.0080
Fig. 2. Box plots of the results produced by LR-SALSA and other common algorithms in example 2: (a) number of selected terms, (b) MAE𝜃 , and (c) computation time.
and SAL algorithms tend to estimate an over-sparse model, consistently
selecting fewer than 6 terms. This indicates that some important terms
may be ignored. On the contrary, SBL usually yields a model with
redundant terms. Fig. 3 shows the occurrences of true terms in 100
executions. It can be found that terms like 𝑢(𝑡 − 1), 𝑢(𝑡 − 1)𝑢(𝑡 − 2), and
𝑢3(𝑡 − 1) are consistently chosen by all six algorithms nearly in every
execution. However, other important terms are selected in a higher
occurrence only by using LR-SALSA, SBL, and BAL methods. Compared
with SBL and BAL, LR-SALSA exhibits superior estimation accuracy and
efficiency as can be seen in Fig. 2(b) and (c). Furthermore, in this
example, even though OFR and LASSO take less computation time but
also produce higher estimation errors. The results in both Examples 1
7

and 2 demonstrate that LR-SALSA is able to build compact and accurate
models, and significantly reduce the computational burden at the same
time.

5. Experimental study

To validate the effectiveness of the proposed feature selection
method in real-world applications, the datasets obtained from a face
milling experiment were employed to develop a model for tool wear
prediction. Similar to the simulation study, as a comparison, other
common 𝑙 -norm-based feature selection methods were applied to
1
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Fig. 3. The occurrences of all true terms in 100 executions with different random seeds
in Example 2.

Fig. 4. (a) Experimental setup, (b) the measurements of tool wear.

select important signal features. The model performance was evaluated
in terms of sparsity, accuracy, and efficiency.

5.1. Experimental setup

The dataset applied to this case study is sourced from the 2010
Prognostics and Health Management Data Challenge (Li et al., 2009).
Fig. 4(a) shows the experimental setup where the milling process was
conducted on a high-speed milling machine (Roders Tech RFM 760).
The surface of an Inconel 718 workpiece is machined layer by layer
using a three-flute ball end mill with a slope of 60◦. The machining
parameters were set as follows: the spindle speed of the cutter was
10 400 RPM; feed rate was 1555 mm/min; radial cutting depth was
0.125 mm; axial cutting depth was 0.2 mm. During the milling process,
tri-axial force, tri-axial vibration, and acoustic emission (AE) signals
were collected using dynamometers, accelerometers, and AE sensors,
respectively. The sampling frequency was set to 50 kHz. The flank wear
of each flute was measured using a microscope after each cut. Fig. 4(b)
presents the tool wear measurements for three cutters, namely C1, C4,
and C6. The dataset of one cutter included 315 samples corresponding
to 315 cuts. It is worth mentioning that the datasets from C2, C3 and
C5 were not used in this study because the tool wear measurements
were not available for these three cutters.

5.2. Algorithm implementation

In this experiment, six channels of signals, including tri-axial force
and vibration, were utilized to construct a tool wear prediction model.
The AE signal was not used because the dominant frequency range
was too high compared with the tooth passing frequency (Qin et al.,
2022). A total of 13 time and frequency domain features, as listed in
Table 3, were extracted from each signal. Thus the number of candidate
features was 78 (= 13 × 6) for each sample. The datasets from any
two cutters among C1, C4, and C6, comprising 630 samples, were
allocated for training and validation. Among them, 90% (567 samples)
were randomly designated as the training set, and the remaining 10%
8

Table 3
List of the extracted features.

Features

Time domain

Mean
Variance
Skewness
Kurtosis
Root mean square
Peak-to-peak value
Crest factor

Frequency domain

Mean
Variance
Skewness
Kurtosis
Peak-to-peak value
Harmonics

(63 samples) were for validation purposes. The dataset from the other
cutter (315 samples) was used for testing. Considering the features
were directly used as inputs, the dimensions of the training, validation,
and testing feature matrices were 567 × 78, 63 × 78, and 315 × 78,
respectively.

After the feature dictionary was generated, each column was nor-
malized using the training set, ensuring that all variables were adjusted
to the same scale. Subsequently, the feature selection algorithms were
applied to build sparse regression models for tool wear prediction. The
prediction accuracy was evaluated on the testing set using two indices:
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE),
which are defined below.

MAE = 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖|

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2

(30)

where 𝑦𝑖 and �̂�𝑖 denote the true and predicted tool wear of the 𝑖th
cutting pass, respectively.

Here the tuning of key parameters is introduced briefly. Most of
the parameters in LR-SALSA shared the same values as the simulation
study, except that the iteration stopping criterion 𝛿𝑒 was changed to
1𝑒−3 considering the range of target values and the parameter 𝜆 was
selected by cross-validation. It should be noted that in the second
stage of LR-SALSA, ridge regression with a penalty coefficient of 2 was
employed to estimate model coefficients to further avoid overfitting. In
the SAL method, the number of subsampling rounds was 10 and 𝛿𝑡ℎ𝑟
was 0.6. In SBL, the number of total steps was 10. Additionally, cross-
validation was utilized to determine the error reduction ratio in OFR
and the regularization parameter 𝜆 in other methods.

5.3. Experimental results

Fig. 5 shows the tool wear prediction results for all cutters using
different feature selection methods. The number of selected features,
prediction accuracy, and execution time are summarized in Table 4.
It should be noted that all the tests were conducted on a laptop with
an Intel(R) Core(TM) i7-7700HQ CPU and 16 GB memory. As can be
observed, the proposed LR-SALSA selected 8, 7, and 4 features for C1,
C4, and C6. While the number of features selected by LASSO varies
from 19 to 49. The other methods produced sparse models with 4 to
14 features. This indicates that LR-SALSA can achieve better model
sparsity.

From the prediction results, it can be found LR-SALSA method
shows better fitting performance, especially for C1 and C6. The other
methods can also make accurate predictions in several cases, for ex-
ample, the result of C6 using SBL. MAE and RMSE can quantify the
prediction accuracy. In the LR-SALSA method, these two indices vary
from 8.38 to 10.58 and from 9.97 to 13.92, respectively. However, the



Control Engineering Practice 147 (2024) 105923Y. Gui et al.
Fig. 5. Tool wear prediction results, from top to bottom: for cutters C1, C4 and C6; from left to right: using LR-SALSA, OFR, LASSO, SAL, SBL, and BAL methods (the maximum
polynomial degree: 1).
Table 4
The testing results of C1, C4, and C6 in the milling experiment (the maximum
polynomial degree: 1).

Algorithms LR-SALSA OFR LASSO SAL SBL BAL

Number of
features

C1 8 14 19 8 8 12
C4 7 8 49 10 14 5
C6 4 4 45 11 12 8

MAE
C1 8.52 20.95 24.02 27.35 16.77 18.41
C4 10.58 19.18 17.38 16.92 18.35 14.41
C6 8.38 31.14 48.82 24.13 16.17 23.5

RMSE
C1 11.27 24.68 28.98 39.15 18.7 20.44
C4 13.92 21.16 20.05 18.65 20.73 19.34
C6 9.97 35.26 50.33 25.7 17.57 26.69

Execution
time (s)

C1 2.21 0.34 2.52 6.82 6.41 3.4
C4 1.97 0.21 2.65 6.56 6.07 3.81
C6 2.33 0.13 2.93 7.11 5.7 3.34

other methods yield larger MAE and RMSE values. Even though the
predicted result of SBL fits the actual tool wear well, the indices are
twice as large as the proposed method.

In terms of computational efficiency, OFR takes the least time of less
than 1 s in all three cases. LR-SALSA takes about 2 s, which is close
to LASSO and BAL. While SAL and SBL take the longest time due to
the use of subsampling and the third-party solver. Thus the conclusion
obtained in the simulation study that LR-SALSA has a computational
advantage over SAL, SBL, and BAL still holds. In this experimental
study, the results demonstrate the benefits of LR-SALSA in selecting less
but representative features and ensuring fast computation with high
prediction accuracy.

5.4. The influence of maximum polynomial degree

The construction of dictionary matrix 𝐏 plays an important role in
the feature selection problem. In the simulation study, the maximum
lags and polynomial degrees are selected directly, which are not known
in most cases. The experimental results mentioned above are from 78
linear terms of raw signal features. However, the polynomial expansion
can enrich the extracted information, which may improve the model
accuracy (Billings, 2013). Hence, it is necessary to investigate the
performance of the feature selection methods with more complicated
9

inputs. The second-degree terms are generated by combining different
features (for instance, X-vibration Mean×Y-vibration Variance), leading
to 3159 (= 78 + 78 × 79 ÷ 2) candidate terms in total. After the data
splitting, the dimensions of the training, validation, and testing feature
matrices become 567 × 3159, 63 × 3159, and 315 × 3159, respectively.

All the feature selection methods are applied to the new matrices.
The parameters are determined in the same way as aforementioned. Ta-
ble 5 shows the testing performance for all cutters. It can be found that,
except for SAL, most methods tend to select more important features
when the second-degree terms are included in the dictionary matrix.
However, the feature selection still works as the remaining features
are significantly less than the candidates. Contrary to expectations, the
prediction accuracy decreases compared with Table 4 in most cases.
While the proposed LR-SALSA always achieves the lowest fitting errors.
Its advantage becomes more obvious given the fact SAL, SBL, and BAL
take dozens of times longer in feature selection. However, OFR still
completes the task rapidly owing to the characteristics of the forward
selection algorithm.

This case study further demonstrates that the proposed LR-SALSA
is able to achieve a good trade-off in model sparsity, accuracy and
computational efficiency. Its high execution speed is more significant in
many scenarios involving complicated datasets. However, it should be
acknowledged that sometimes more candidate terms do not necessarily
bring about more accurate models. Too many redundant features make
it difficult to identify the truly important features. Therefore, how
to select an appropriate polynomial degree to construct the feature
dictionary deserves more study.

6. Discussion

To better explain the advantages of the proposed LR-SALSA-based
feature selection approach in condition monitoring, some discussions
are summarized as follows.

• Scope of application: The proposed algorithm can be applied to
obtain a linear-in-the-parameter model, where the relationship
between the response 𝑦 and the parameters 𝜽 is linear. How-
ever, a model being linear-in-the-parameter may also represent
a nonlinear relationship between the input and output variables.
Because the input variables can be transformed or combined in
non-linear ways to construct the dictionary matrix 𝐏, for example,
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Table 5
The testing results of C1, C4, and C6 in the milling experiment (the maximum
polynomial degree: 2).

Algorithms LR-SALSA OFR LASSO SAL SBL BAL

Number of
features

C1 12 16 116 8 34 5
C4 13 19 63 4 15 15
C6 9 3 136 7 9 5

MAE
C1 13.71 19.64 17.03 14.5 19.31 16.1
C4 12.19 20.23 20.49 25.97 15.4 14.48
C6 13.1 33.51 89.29 28.92 22.77 20.18

RMSE
C1 17.23 24.65 19.9 18.16 27.01 20.2
C4 14.38 22.07 22.97 34.31 19.01 17.7
C6 16.36 36.69 97.9 30.56 23.93 21.84

Execution
time (s)

C1 10.31 0.92 45.41 472.72 286.07 309.95
C4 10.58 1.23 44.89 623.94 130.64 216.98
C6 9.51 0.07 18.2 1267.74 57.58 212.75

the polynomial-expansion models (27) and (29). Linear-in-the-
parameter models are widely applied across various fields due
to their simplicity, interpretability, and computational efficiency.
As the original set of available terms may be very large, feature
selection is a crucial step when building a linear-in-the-parameter
model. The proposed LR-SALSA algorithm can be applied to both
linear and nonlinear models by choosing a subset of important
terms and producing a sparse model.

• Sparsity and accuracy : From both simulation and experimental
studies, it is observed that conventional OFR and LASSO methods
often select over-sparse or redundant features, reducing the accu-
racy of model predictions. SAL and SBL methods have achieved
better estimation accuracy but cannot always choose the right
terms. Only LR-SALSA and BAL can build sparse models accu-
rately. The unique contribution of this work is that the proposed
LR-SALSA algorithm can automatically select the most repre-
sentative features, which originates from a straightforward local
regularization strategy. The regularization parameters are directly
related to the contribution of candidate features. As a result, the
proposed method can provide a more compact model, addressing
the difficulties of over-sparsity and redundancy.

• Computational speed: It can be found from the simulation and
experimental studies that, the proposed LR-SALSA method ex-
hibits higher computational efficiency when compared with the
modern SAL, SBL, and BAL methods. The improved efficiency of
LR-SALSA is attributed to its design, which conducts the SALSA
algorithm only once compared with SAL, avoids the use of third-
party solvers compared with SBL, and requires less computation
burden compared with BAL.

• Limitations: The number of tuning parameters of LR-SALSA, at this
stage, is greater than some of the established methods. Their set-
tings have been introduced in both simulation and experimental
studies, which are summarized as follows.

𝑡𝑜𝑙𝛼 : it is used as a threshold to determine which terms should be
removed in the learning of local regularization parameters.
Increasing 𝑡𝑜𝑙𝛼 will increase the execution time. It should be
reasonably large and is fixed as 1𝑒5 in this study according
to Tipping (2001).

𝛿𝛼 : it is used to determine when the learning of local regular-
ization parameters converges. Increasing 𝛿𝛼 will reduce the
execution time. It should be reasonably small and is fixed
as 1𝑒−5 in this study according to Tipping (2001).

𝛿𝑒: it is used to determine when the whole algorithm converges.
Increasing 𝛿𝑒 will reduce the execution time and increase
the number of selected features. It should be determined
according to the range of target values and is set to 1𝑒−5

−3
10

and 1𝑒 in simulation and experiment study, respectively.
𝛿𝜃 : it is used as a threshold to determine which terms should
be further removed after the iteration process. Increasing 𝛿𝜃
will reduce the number of selected features. It is set to 0.01
as used in Tang et al. (2019).

𝜆: it is the 𝑙1-norm regularization parameter. Increasing 𝜆 usu-
ally results in more selected features. It is determined auto-
matically through cross-validation.

From the analysis above, it is found that most parameters can
be determined according to empirical knowledge. However, in
specific applications, fine-tuning of the parameters is unavoid-
able. A systematic analysis is needed to guide the setting of key
parameters and enhance the applicability of LR-SALSA. This will
be a focal point of future research endeavors.

. Conclusion

This article introduces the Local Regularization Assisted Split Aug-
ented Lagrangian Shrinkage Algorithm (LR-SALSA) as a solution to

he feature selection problem in condition monitoring. The objective
s to solve a 𝑙1-norm optimization problem where the problem is de-
omposed into three subproblems that can be solved separately. In the
irst subproblem, individual penalty parameters are introduced to every
oefficient such that redundant terms are removed efficiently. An iter-
tive algorithm, based on the Bayesian evidence framework, is derived
o optimize the local regularization hyperparameters automatically
nd guarantee model sparsity. After the important terms are deter-
ined, model coefficients are re-estimated by the least squares method.
onsequently, the feature selection problem is resolved in a single
ALSA iteration, significantly reducing computational expenses. The
omplexity and convergence of the proposed algorithm are presented.
he effectiveness of the proposed approach is demonstrated through
wo simulation studies and a milling experiment. The results show that
nly LR-SALSA has a good trade-off among model sparsity, estimation
ccuracy, and computational efficiency in comparison to five existing
eature selection methods. Future research will focus on simplifying the
mplementation of the algorithm to facilitate its practical applications.
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ppendix A. The evidence framework

In the Bayesian evidence framework, the following prior distribu-
ions of 𝒚 and 𝜽 are first introduced

(𝒚|𝐏,𝜽, 𝛽) = 
(

𝒚|𝐏𝜽, 𝛽−1𝐈
)

(A.1)

(𝜽|𝜼,𝜶) =  (𝜽|𝜼,𝐀−1) (A.2)

here 𝛽 and 𝛼𝑖 govern the precision parameters of noise and 𝜃𝑖, and
= diag{𝛼1, 𝛼2,… , 𝛼𝑀} denotes the precision matrix.
Since 𝑝(𝜽|𝒚,𝐏, 𝜼,𝜶, 𝛽) ∝ 𝑝(𝒚|𝐏,𝜽, 𝛽)𝑝(𝜽|𝜼,𝜶), the posterior distribu-

ion for 𝜽 is Gaussian and takes the form

(𝜽|𝒚,𝐏, 𝜼,𝜶, 𝛽) =  (𝜽|𝒎,𝐒) (A.3)
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where the mean and covariance matrix are given by

𝒎 = 𝐒(𝐀𝜼 + 𝛽𝐏𝑇 𝒚) (A.4)

𝐒 = (𝐀 + 𝛽𝐏𝑇𝐏)−1 (A.5)

The unknown parameters 𝜶 and 𝛽 are determined by evaluat-
ing the evidence function (Tipping, 2001). The target is to maximize
the marginal likelihood function 𝑝(𝒚|𝐏, 𝜼,𝜶, 𝛽) by integrating over the
weight vector 𝜽

𝑝(𝒚|𝐏, 𝜼,𝜶, 𝛽) = ∫ 𝑝(𝒚|𝐏,𝜽, 𝛽)𝑝(𝜽|𝜼,𝜶) 𝑑𝜽

=
(

𝛽
2𝜋

)
𝑁
2 ( 1

2𝜋

)

𝑀
2

𝑀
∏

𝑖=1
𝛼

1
2
𝑖 ∫ exp {−𝐸(𝜽)} 𝑑𝜽

(A.6)

where

𝐸(𝜽) = 𝛽
2
𝒆𝑇 𝒆 + 1

2
(𝜽 − 𝜼)𝑇𝐀(𝜽 − 𝜼)

=𝐸(𝒚, 𝜼) + 1
2
(𝜽 −𝒎)𝑇 𝐒−1(𝜽 −𝒎)

(A.7)

𝐸(𝒚, 𝜼) = 1
2
(𝛽𝒚𝑇 𝒚 + 𝜼𝑇𝐀𝜼 −𝒎𝑇 𝐒−1𝒎) (A.8)

The derivation of (A.7) is given in Appendix B.
As can be seen, the second term in Eq. (A.7) is the power expo-

nent term of the posterior distribution  (𝜽|𝒎,𝐒). The log marginal
likelihood is simply written in the form

ln 𝑝(𝒚|𝐏, 𝜼,𝜶, 𝛽) =𝑁
2

ln 𝛽 + 1
2

𝑀
∑

𝑖=1
ln 𝛼𝑖 − 𝐸(𝒚, 𝜼)

+ 1
2
ln |𝐒| − 𝑁

2
ln 2𝜋

(A.9)

To maximize the marginal likelihood function, its derivative with
espect to 𝜶 and 𝛽 is computed, respectively.
𝜕
𝜕𝛼𝑖

ln 𝑝(𝒚|𝐏) = 1
2𝛼𝑖

− 1
2
(𝑚𝑖 − 𝜂𝑖)2 −

1
2
𝑆𝑖𝑖 (A.10)

𝜕
𝜕𝛽

ln 𝑝(𝒚|𝐏) = 1
2𝛽

[

𝑁 −
𝑀
∑

𝑖=1
(1 − 𝛼𝑖𝑆𝑖𝑖)

]

− 1
2
‖𝒚 − 𝐏𝒎‖

2
2 (A.11)

The derivation of (A.10) and (A.11) is given in Appendices C and D,
respectively.

The maximum is obtained when Eqs. (A.10) and (A.11) are both
equivalent to zero, which gives

𝛼𝑖 =
𝛾𝑖

(𝑚𝑖 − 𝜂𝑖)2
(A.12)

𝛽−1 =
‖𝒚 − 𝐏𝒎‖

2
2

𝑁 −
∑𝑀

𝑖=1 𝛾𝑖
(A.13)

where 𝛾𝑖 = 1− 𝛼𝑖𝑆𝑖𝑖. Therefore, the regularization parameter in (8) can
be given as

𝜇𝑖 =
𝛼𝑖
𝛽

=
𝛾𝑖

𝑁 −
∑𝑀

𝑖=1 𝛾𝑖

‖𝒚 − 𝐏𝒎‖

2
2

(𝑚𝑖 − 𝜂𝑖)2
(A.14)

Appendix B. Derivation of (A.7)

𝐸(𝜽) in (A.7) is re-written as,

𝐸(𝜽) = 𝛽
2
𝒆𝑇 𝒆 + 1

2
(𝜽 − 𝜼)𝑇𝐀(𝜽 − 𝜼)

=1
2
[

𝛽𝒚𝑇 𝒚 − 2𝛽𝜽𝑇𝐏𝑇 𝒚 + 𝛽𝜽𝑇𝐏𝑇𝐏𝜽+ 𝜽𝑇𝐀𝜽 − 2𝜽𝑇𝐀𝜼 + 𝜼𝑇𝐀𝜼
]

=1
2
[

𝛽𝒚𝑇 𝒚 + 𝜼𝑇𝐀𝜼 + 𝜽𝑇 (𝐀 + 𝛽𝐏𝑇𝐏)𝜽− 2𝜽𝑇 (𝐀𝜼 + 𝛽𝐏𝑇 𝒚)
]

=1
2
[

𝛽𝒚𝑇 𝒚 + 𝜼𝑇𝐀𝜼 −𝒎𝑇 𝐒−1𝒎+ (𝜽 −𝒎)𝑇 𝐒−1(𝜽 −𝒎)
]

=𝐸(𝒚, 𝜼) + 1 (𝜽 −𝒎)𝑇 𝐒−1(𝜽 −𝒎)

(B.1)
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Appendix C. Derivation of (A.10)

The derivative of 𝐸(𝒚, 𝜼) with respect to 𝛼𝑖 is given by
𝜕
𝜕𝛼𝑖

𝐸(𝒚, 𝜼) =1
2

𝜕
𝜕𝛼𝑖

(𝜼𝑇𝐀𝜼) − 1
2

𝜕
𝜕𝛼𝑖

(𝒎𝑇 𝐒−1𝒎)

=1
2
𝜂2𝑖 −

1
2

𝜕
𝜕𝛼𝑖

(𝛽2𝒚𝑇𝐏𝐒𝐏𝑇 𝒚)

− 1
2

𝜕
𝜕𝛼𝑖

(𝜼𝑇𝐀𝑇 𝐒𝐀𝜼) − 𝜕
𝜕𝛼𝑖

(𝛽𝒚𝑇𝐏𝐒𝐀𝜼)

(C.1)

The derivatives of last three terms in (C.1) with respect to 𝛼𝑖 are
computed respectively as follows,

𝜕
𝜕𝛼𝑖

(𝛽2𝒚𝑇𝐏𝐒𝐏𝑇 𝒚) =Tr
[

𝜕
𝜕𝐒−1

(𝛽2𝒚𝑇𝐏𝐒𝐏𝑇 𝒚) 𝜕𝐒
−1

𝜕𝛼𝑖

]

= − Tr
[

𝐒(𝛽𝐏𝑇 𝒚)(𝛽𝐏𝑇 𝒚)𝑇 𝐒𝐈𝑖
]

(C.2)

𝜕
𝜕𝛼𝑖

(𝜼𝑇𝐀𝑇 𝐒𝐀𝜼) =2𝜼𝑇 𝜕𝐀𝑇

𝜕𝛼𝑖
𝐒𝐀𝜼 + 𝜼𝑇𝐀𝑇 𝜕𝐒

𝜕𝛼𝑖
𝐀𝜼

=2𝜂𝑖𝟏𝑇𝑖 𝐒𝐀𝜼 + 𝜼𝑇𝐀𝑇 (−𝐒𝐈𝑖𝐒)𝐀𝜼
(C.3)

where 𝟏𝑖 = [0...1...0]𝑇 denotes a vector whose 𝑖th element is 1 and others
re 0.
𝜕
𝜕𝛼𝑖

(𝛽𝒚𝑇𝐏𝐒𝐀𝜼) =𝛽𝒚𝑇𝐏 𝜕𝐒
𝜕𝛼𝑖

𝐀𝜼 + 𝛽𝒚𝑇𝐏𝐒 𝜕𝐀
𝜕𝛼𝑖

𝜼

=𝛽𝒚𝑇𝐏(−𝐒𝐈𝑖𝐒)𝐀𝜼 + 𝛽𝒚𝑇𝐏𝐒𝜂𝑖𝟏
(C.4)

Let 𝜻 = 𝐒𝐀𝜼, the derivative of 𝐸(𝒚, 𝜼) with respect to 𝛼𝑖 is written
as,
𝜕
𝜕𝛼𝑖

𝐸(𝒚, 𝜼) =1
2
𝜂2𝑖 +

1
2
Tr

[

(𝒎 − 𝜻)(𝒎 − 𝜻)𝑇 𝐈𝑖
]

−𝒎𝑇 𝜂𝑖𝟏

+ 1
2
(2𝒎 − 𝜻)𝑇 𝐈𝑖𝜻

=1
2
𝜂2𝑖 +

1
2
(𝑚𝑖 − 𝜁𝑖)2 − 𝑚𝑖𝜂𝑖 +

1
2
(2𝑚𝑖 − 𝜁𝑖)𝜁𝑖

=1
2
(𝑚𝑖 − 𝜂𝑖)2

(C.5)

Given that
𝜕
𝜕𝛼𝑖

ln |𝐒| = Tr
[

𝐒−1 𝜕𝐒
𝜕𝛼𝑖

]

= Tr
[

− 𝜕𝐒−1
𝜕𝛼𝑖

𝐒
]

= −𝑆𝑖𝑖 (C.6)

he derivative of ln 𝑝(𝒚|𝐏) with respect to 𝛼𝑖 is obtained as follows,
𝜕
𝜕𝛼𝑖

ln 𝑝(𝒚|𝐏) = 1
2𝛼𝑖

− 1
2
(𝑚𝑖 − 𝜂𝑖)2 −

1
2
𝑆𝑖𝑖 (C.7)

Appendix D. Derivation of (A.11)

The derivative of 𝐸(𝒚, 𝜼) with respect to 𝛽 is given by
𝜕
𝜕𝛽

𝐸(𝒚, 𝜼) =1
2
𝒚𝑇 𝒚 − 1

2
𝜕
𝜕𝛽

(𝒎𝑇 𝐒−1𝒎)

=1
2
𝒚𝑇 𝒚 − 1

2
𝜕
𝜕𝛽

(𝛽2𝒚𝑇𝐏𝐒𝐏𝑇 𝒚)

− 1
2

𝜕
𝜕𝛽

(𝜼𝑇𝐀𝑇 𝐒𝐀𝜼) − 𝜕
𝜕𝛽

(𝛽𝒚𝑇𝐏𝐒𝐀𝜼)

(D.1)

The derivatives of last three terms in (D.1) with respect to 𝛽 are
computed respectively as follows,
𝜕
𝜕𝛽

(𝛽2𝒚𝑇𝐏𝐒𝐏𝑇 𝒚) =2𝛽𝒚𝑇𝐏𝐒𝐏𝑇 𝒚 + 𝛽2 𝜕
𝜕𝛽

(𝒚𝑇𝐏𝐒𝐏𝑇 𝒚)

=2𝛽𝒚𝑇𝐏𝐒𝐏𝑇 𝒚 − 𝛽2𝒚𝑇𝐏 𝜕𝐒
𝜕𝛽

𝐏𝑇 𝒚
(D.2)

𝜕
𝜕𝛽

(𝜼𝑇𝐀𝑇 𝐒𝐀𝜼) = 𝜼𝑇𝐀𝑇 𝜕𝐒
𝜕𝛽

𝐀𝜼 (D.3)

𝜕
𝜕𝛽

(𝛽𝒚𝑇𝐏𝐒𝐀𝜼) = 𝒚𝑇𝐏𝐒𝐀𝜼 + 𝛽𝒚𝑇𝐏 𝜕𝐒
𝜕𝛽

𝐀𝜼 (D.4)

As 𝜕𝐒∕𝜕𝛽 = −𝐒𝐏𝑇𝐏𝐒, the derivative of 𝐸(𝒚, 𝜼) with respect to 𝛽 is
ritten as
𝜕
𝜕𝛽

𝐸(𝒚, 𝜼) =1
2
𝒚𝑇 𝒚 − 𝒚𝑇𝐏𝒎 + 1

2
𝒎𝑇𝐏𝑇𝐏𝒎

=1
‖𝒚 − 𝐏𝒎‖

2
(D.5)
2 2
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Given that
𝜕
𝜕𝛽

ln |𝐒| =Tr
[

𝐒−1 𝜕𝐒
𝜕𝛽

]

= Tr
[

− 𝜕𝐒−1
𝜕𝛽

𝐒
]

= − Tr
[

𝐏𝑇𝐏𝐒
]

= −𝛽−1(𝐈 − 𝐀𝐒)
(D.6)

he derivative of ln 𝑝(𝒚|𝐏) with respect to 𝛽 is obtained as follows,

𝜕
𝜕𝛽

ln 𝑝(𝒚|𝐏) = 1
2𝛽

[

𝑁 −
𝑀
∑

𝑖=1
(1 − 𝛼𝑖𝑆𝑖𝑖)

]

− 1
2
‖𝒚 − 𝐏𝒎‖

2
2 (D.7)
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