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1  |  INTRODUC TION

The United Nations General Assembly (UNGA) passed resolutions 
that require regional fishery management organisations (RFMOs) 
to prevent significant adverse impacts (SAIs) on Vulnerable Marine 
Ecosystems (VMEs) (UNGA, 2006, 2009, 2011). SAIs are impacts 
that compromise an ecosystem's structure or function, such as a 
significant loss of species richness, habitat, or community types 
on more than a temporary basis (FAO, 2009). VMEs are ecosys-
tems susceptible to substantial alteration from acute or chronic 
disturbance due to inherent characteristics such as slow growth 
rates, longevity, late maturity, and fragility of component species 

(FAO, 2009). Based on these characteristics, RFMOs have identi-
fied VME indicator taxa that represent species or broader taxo-
nomic groups considered to be vulnerable to fishing impacts, to 
have ecological significance, and to be readily identified in trawl 
or longline catches (e.g., Parker & Bowden, 2010). The pres-
ence of VME indicator taxa as fishing bycatch is used to inform 
VME encounter protocols (so- called move- on rules) (e.g., Parker 
et al., 2009), and to design and implement spatial management 
measures (e.g., Durán Muñoz et al., 2012), both of which are in-
tended to help prevent SAIs to VMEs (Ardron et al., 2014). To de-
sign spatial management measures, available VME indicator taxa 
data for areas under the jurisdiction of RFMOs are assembled and 
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In the high seas, regional fishery management organisations are required to imple-
ment measures to prevent significant adverse impacts on vulnerable marine ecosys-
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modelling. Evaluation of habitat suitability models using withheld data indicated high 
mean True Skill Statistic scores of 0.44–0.64. Most habitat suitability models per-
formed adequately when assessed with independent data on taxon presence and ab-
sence but were poor surrogates for abundance. We therefore advocate caution when 
using presence- only models for spatial management and call for more systematically 
collected data to develop abundance models.
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analysed, and where site- specific information is lacking or limited, 
some form of spatial model prediction is typically used to infer 
‘the likely presence of vulnerable populations, communities, and 
habitats’ (FAO, 2009).

Currently, no specific density thresholds define a VME, but den-
sity is key for the formation of structurally complex habitats and 
ecosystem functioning (Thurber et al., 2014). Recent attempts to 
develop consensus on what constitutes a VME, however, show this 
is not a simple task because some VMEs can be identified by a single 
image (e.g., scleractinian reefs), while a single coral colony providing 
habitat for other taxa in an image presents a greater challenge (Baco 
et al., 2023). Broadscale density information would provide addi-
tional context surrounding single images to enable informed density 
threshold determination across large geographic scales [e.g., fol-
lowing methodology suggested by Rowden et al. (2020)]. However, 
available imagery data in many regions does not currently permit 
this approach, and spatially explicit estimates of VME indicator 
taxa distribution are not suitable for this task (Bowden et al., 2021). 
Nevertheless, spatial estimates of occurrence can provide useful 
information for management in the absence of density estimates 
(Stephenson et al., 2021). Habitat suitability models are statistical 
models that predict the distribution of broadly suitable environmen-
tal ranges for species in relation to available environmental variables 
(Guisan & Zimmermann, 2000). Such models are seen as useful for 
marine ecosystem management (Reiss et al., 2014) and particularly 
for predicting the distribution of suitable habitat (and therefore the 
likely species distribution) for VMEs in the deep sea, where field sur-
veys are logistically difficult, expensive, and not feasible to directly 
observe an entire area of interest (Vierod et al., 2014).

Spatial management areas were established in the west-
ern portion of the South Pacific Regional Fisheries Management 
Organisation Convention Area (hereafter referred to as the 
‘SPRFMO area’) in 2019 (SPRFMO, 2023a) with an aim to protect 
suitable habitat for VME indicator taxa while providing access for 
sustainable use of fisheries resources. The size and configuration of 
spatial management areas were based on habitat suitability mod-
els for 6 of 13 VME indicator taxa defined for the SPRFMO area 
(in Annex 5 of CMM- 03- 2022; Anderson et al., 2016; Georgian 
et al., 2019; Stephenson et al., 2021) using presence- only modelling 
(i.e., presence point- sample locations were combined with informed 
pseudo- absences to estimate environmental ranges of species). 
Porifera and Scleractinia were represented by more than one taxon 
(i.e., more than one habitat suitability model). The Order Scleractinia 
was represented in the SPRFMO area by four species with individ-
ual habitat suitability models: Enallopsammia rostrata, Madrepora 
oculata, Solenosmilia variabilis, and Goniocorella dumosa. The phylum 
Porifera was represented by separate habitat suitability models for 
the classes Demospongiae and Hexactinellida.

Ten habitat suitability models were developed for the SPRFMO- 
evaluated area (Anderson et al., 2016; Georgian et al., 2019; 
Stephenson et al., 2021) and were statistically evaluated using in-
dependent (presence- only) evaluation data from seafloor imagery 
(Stephenson et al., 2021). This independent evaluation (i.e., testing of 

the model's predictive power with independent samples) indicated 
that the models had high predictive power, including parts of the 
study area where previously there were few records (Stephenson 
et al., 2021). Despite these promising results, the results of presence- 
only models must be interpreted carefully because sample data are 
known to suffer from spatial bias (Wadoux et al., 2021), and there-
fore data used in the evaluation of a model may also suffer from 
bias, even if they are independent, thereby resulting in overly opti-
mistic model evaluation metrics (Valavi et al., 2019). Where possible, 
habitat suitability models should be validated using independent, 
well- stratified (non- spatially biased) data (Bowden et al., 2019, 2021; 
Howell et al., 2022).

Since the early 2000s, quantitative information on seafloor taxa 
has been collected using non- destructive photographic methods 
in New Zealand and Australia (e.g., Althaus et al., 2009; Bowden 
et al., 2020; Clark & Rowden, 2009). In New Zealand, imagery data 
has been collected since 2006 using a towed camera, the Deep- 
Towed Imaging System (DTIS, Bowden & Jones, 2016; Hill, 2009). 
These data are quantitative, so they provide the opportunity to gen-
erate spatial estimates of the probability of a taxon being present, 
rather than simply habitat suitability derived from presence- only 
models, and to model taxon abundance, thereby moving beyond 
simply predicting occurrences. Additionally, these data have been 
collected independently of fisheries and have not been used in 
earlier modelling, so they can also be used for independent assess-
ment of existing and new models generated using conventional data 
from bycatch and museum records, including presence- only models 
(Bowden et al., 2019).

The seven SPRFMO VME indicator taxa that have not previously 
been modelled are Actiniaria (anemones), Alcyonacea (soft corals), 
Zoantharia (hexacorals), Hydrozoa, Bryozoa, Brisingida (armless 
seastars), and Crinoidea (sea lilies and feather stars). It should be 
noted that habitat suitability models were generated for Brisingida 
and Crinoidea by Anderson et al. (2016) but were not updated for 
Georgian et al. (2019) or Stephenson et al. (2021) since these were 
not considered good VME indicators for use in developing the spatial 
management measures at the time. The absence of habitat suitabil-
ity models (or updated models) for these seven VME indicator taxa 
limits the development and evaluation of the performance of spatial 
management measures and the encounter protocol for protecting 
these taxa. Therefore, our objective was to generate habitat suit-
ability models for VME indicator taxa not previously modelled and 
evaluate the predictive power of habitat suitability models for VME 
indicator taxa. To achieve our objective, we: (1) developed models 
for seven more VME indicator taxa to provide a full complement 
of habitat suitability models for all 13 VME indicator taxa listed in 
Annex 5 of the SPRFMO Convention CMM- 03- 2022; and (2) used a 
well- stratified independent dataset with robust absences and high- 
quality seafloor imagery data that became available after the mod-
els were developed to evaluate the full suite of habitat suitability 
models, including all 17 habitat suitability models developed for all 
13 VME indicator taxa, to provide a more objective view of the pre-
dictive power of the models.

 13652400, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/fm

e.12700 by N
ew

castle U
niversity, W

iley O
nline L

ibrary on [02/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.sprfmo.int/assets/Fisheries/Conservation-and-Management-Measures/2022-CMMs/CMM-03-2022-Bottom-Fishing-7Mar22.pdf
https://www.sprfmo.int/assets/Fisheries/Conservation-and-Management-Measures/2022-CMMs/CMM-03-2022-Bottom-Fishing-7Mar22.pdf


    |  3 of 14BENNION et al.

2  |  METHODS

Habitat suitability models (presence- only) were created as de-
scribed by Stephenson et al. (2021), and closely followed methods 
used in spatial modelling studies for New Zealand waters (Anderson, 
Stephenson, & Behrens, 2020; Stephenson et al., 2020). Ensemble 
models were created based on predictions from boosted regression 
tree (BRT, Elith et al., 2006), random forest (RF, Breiman, 2001), and 
maximum entropy (MaxEnt, Phillips et al., 2006).

2.1  |  Study area

The SPRFMO Convention Area encompasses southern parts of the 
Pacific Ocean beyond areas of national jurisdiction (i.e., in the high 
seas),	from	10° N	to	60° S	and	120° E	to	67° W	(SPRFMO,	2022). 
Models of VME indicator taxa distributions were constrained to 
an area encompassing the southwestern part of the SPRFMO 
Convention Area, much of the New Zealand Exclusive Economic 
Zone (EEZ), and parts of the EEZs of Australia, New Caledonia, 
Fiji,	 and	 Tonga	 in	 depths	 of	 200–3000 m	 (hereafter	 referred	 to	
as the study area, see Figure 1). This study area included parts 
of the SPRFMO Convention Area where spatial management 
measures have been implemented, including Louisville Seamount 
Chain, Lord Howe Rise, and West Norfolk Ridge (Figure 1). High- 
resolution	 (1 km × 1 km	 grid)	 environmental	 data	 available	 for	
modelling the study area and depth range represented the ap-
proximate combined bathymetric range of all modelled taxa 
(Stephenson et al., 2021).

2.2  |  Occurrence data

Biological data used to train habitat suitability models included taxon 
occurrences (presence- only) from New Zealand and Australian mu-
seum and collection records, fisheries research databases, and on-
line biodiversity datasets (Geange et al., 2020). Records spanned 
from the early 1900s to 2020. Data were groomed before modelling, 
including assigning taxonomy, correcting positional (latitude and lon-
gitude) errors (where impossible, records were removed), removing 
records	outside	the	study	area	depth	range	(200–3000 m),	and	re-
moving duplicate records.

Habitat suitability modelling required presence and absence 
data for modelled taxa. The presence- only models developed here 
employed the same approach used by Stephenson et al. (2021). 
Briefly, absence records were not available across the study area 
at the scale and quantity required for modelling, so target- group 
background data were used (Phillips et al., 2009). This approach 
maintained that grid cells with presence records for other taxa in 
the dataset from the same broad biological group as a modelled 
taxon, collected using similar methods with the same sampling bi-
ases, were treated as absences of the taxon being modelled. This 
assumes that if a modelled taxon was present in a grid cell where 
another taxon was present, a record would also have been obtained 
for the modelled taxon. Absence of a modelled taxon is not a guar-
antee when using this approach, but absences were more likely to be 
real than randomly generated pseudo- absences (Phillips et al., 2009; 
Stephenson et al., 2020, 2021). Target- group background absences 
within the same grid cell as presences for a modelled taxon were 
excluded, and absences were only retained if the sampling gear of 

F I G U R E  1 Study	area	(modelled	extent	indicated	by	bathymetry)	for	developing	habitat	suitability	models	for	vulnerable	marine	
ecosystem indicator taxa in the South Pacific Regional Fisheries Management Organisation (SPRFMO) Convention Area, New Zealand, 
and Australia. The black line in the main map and the hatched area in the inset indicate the extent of the SPRFMO Convention Area. The 
SPRFMO area refers to the western portion of the SPRMFO Convention Area (the extent of the SPRFMO Convention Area encompassed 
within the brown bounding box).
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a given target- group background absence was represented in the 
presence dataset. The number of target- group background absences 
used in model training was equal to the number of presences for 
the boosted regression tree and random forest models up to a fixed 
10,000 records for Maximum Entropy models (see below and in 
Stephenson et al., 2021).

The dataset used for training models consisted of 13,825 oc-
currence records for Actiniaria, Brisingida, Bryozoa, Crinoidea, 
Hydrozoa, and Zoantharia, combined with the groomed dataset 
used to train the ten presence- only models for six VME indicator 
taxa (10 modelled taxa) created by Stephenson et al. (2021), which 
included Alcyonacea (non- Gorgonians). The final dataset included 
23,728 presence point- sample location records for VME indicator 
taxa for training models (Table 1). The Alcyonacea group was mod-
elled without occurrence records for Actiniaria, Brisingida, Bryozoa, 
Crinoidea, Hydrozoa, and Zoantharia because it was modelled at an 
earlier date, before additional data were available. The location of 
presences and target- group background data were mapped for each 
modelled taxon (Appendix S1: Figures S1–S7).

2.3  |  Environmental data

Environmental variables used in presence- only models were the 
same as those used by Georgian et al. (2019), with an updated ver-
sion of particulate organic carbon export to the seafloor used by 
Stephenson et al. (2021) (Table 2). Environmental variables used 
for all taxa included ruggedness, slope (SD), bathymetric position 
index (broad), seamounts, dissolved oxygen and temperature at 
depth, and particulate organic carbon export. Calcite saturation 
was used for Alcyonacea, Brisingida, Crinoidea, and Bryozoa. 
Either percent mud or percent gravel was used for each taxon, 
and the choice of substrate variable included in each taxon- 
specific model was selected using a single random forest model 
(Stephenson, Brough, et al., 2023), implemented using the ex-
tendedForest package in R (Liaw & Wiener, 2002), that retained 
the substrate variable that contributed the most to the model 
(Appendix S1: Table S1).

2.4  |  Ensemble modelling and internal evaluation

BRT, RF, and MaxEnt models were bootstrapped by resampling a 
single dataset to generate sampled distributions 100 times for each 
VME indicator taxon. For each bootstrap, the dataset was split into 
two parts: (1) training and (2) evaluation. To create the training set, 
random samples were taken with a sample size equal to the number 
of presence records (sampled with replacement). An equal number of 
randomly selected target- group background data or absence records 
were then taken, also with replacement. For internal evaluation, an 
evaluation dataset was then generated by randomly sampling from 
the remaining data (i.e., data not included in the training dataset) 
using the same procedure (i.e., random sampling with replacement). 

Due to the use of replacement when randomly sampling training and 
evaluation datasets, the proportion of unique records used for train-
ing, and withheld for evaluation was different for each bootstrap. 
Models were trained with the training set within each bootstrap, 
and spatial predictions were evaluated using the iteratively withheld 
evaluation dataset (and the training set).

For each bootstrap, geographic distributions were predicted 
using	predictor	 variables	 to	 a	1 km × 1 km	grid	 cell.	On	 completion	
of bootstrapping, mean spatial predictions of habitat suitability (as a 
Habitat Suitability Index or HSI from 0 to 1) were calculated, along 
with standard deviation (SD). Predictions from the three model types 
were ensembled using weighting strategies described by Stephenson 
et al. (2021) and Anderson, Stephenson, and Behrens (2020). Briefly, 
the procedure derives a two- part weighting (W1 and W2) for each 
component (BRT, RF, and MaxEnt) of the ensemble model, by tak-
ing equal contributions from overall model performance (W1; based 
on the iteratively withheld evaluation data) and uncertainty in each 
cell (W2; SD). The area under the Receiver Operating Characteristic 
curve (AUC) performance metric and SD were used within the 
weighting procedure for the ensemble (Appendix S1).

Model performance was assessed using the AUC and true skill 
statistic (TSS) (Allouche et al., 2006; Hosmer et al., 2013; Komac 
et al., 2016).	The	TSS	ranges	from	−1	to	1,	where	1	indicates	perfect	
agreement,	−1	is	equal	to	random	chance,	and	a	value	>0.6 is consid-
ered adequate (Allouche et al., 2006). The AUC metric ranges from 
0 to 1, where 0.5 indicates model performance is equal to random 
chance, >0.7 indicates adequate performance, and >0.80 indicates 
excellent performance (Hosmer et al., 2013). AUC and TSS scores 
were derived for BRT, RF, and MaxEnt models for each bootstrap 
using training and evaluation data. All statistical analyses were done 
in R (R Core Team, 2022) using the dismo (Hijmans et al., 2017), gbm 
(Ridgeway, 2007), and raster (Hijmans et al., 2015) packages.

2.5  |  Environmental coverage

When predicting into unsampled space, it is important to consider 
how well the training data used captures the environmental vari-
ables in the projected space (Elith et al., 2010), that is, how simi-
lar environmental conditions are in data- rich areas compared to 
data- poor areas (Bridges et al., 2023). Training dataset coverage of 
environmental space was estimated for presence- only models, as 
described by Stephenson et al. (2020, 2021) and others (Pinkerton 
et al., 2010; Smith et al., 2013). In short, environmental coverage 
was estimated as the extent to which the environmental space (the 
multidimensional space that considers all environmental variables 
in sympatry) was captured by the training data. Environmental cov-
erage approaching 1 is considered to be well captured by training 
data (more confidence in modelled relationships and predictions), 
whereas environmental coverage approaching 0 is considered to be 
less well captured by training data, so modelled relationships and 
predictions are less reliable and should be interpreted with greater 
caution (Pinkerton et al., 2010; Smith et al., 2013).
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To estimate environmental coverage, all grid cells with a sam-
ple were considered ‘presences’ (=1), and an equal number of back-
ground samples were obtained randomly from unsampled space (all 
grid	 cells	 without	 a	 sample	 within	 their	 bounds,	 1 km × 1 km	 grid)	
as ‘absences’ (=0). A single BRT model was then used to model the 
relationship between the 12 environmental variables used in the 
VME indicator taxa distributions (environmental space) and sam-
pling density. The model settings used were the same as Stephenson 
et al. (2021); BRT models were fitted using a Bernoulli error distri-
bution, a learning rate that yielded 2000 trees, and an interaction 
depth of 2 (so that only pair- wise combinations of environmental 
variables were considered).

2.6  |  Independent model evaluation

An independent image- based dataset, derived from analyses of 
seafloor photographic transects (video and stills) collected with 
the Deepwater Towed Video System (DTIS) during 20 surveys in 
the waters around New Zealand from 2007 to 2020, was used to 
evaluate models, including those by Stephenson et al. (2021). The 
DTIS dataset was originally developed by Bowden et al. (2019) 
and Anderson, Pallentin, et al. (2020) and has since been added 
to photographic analyses from multiple other voyages (Anderson 
et al., 2023). Like occurrence data used for training habitat suit-
ability	 models,	 image-	based	 data	 was	 limited	 to	 200–3000 m	

Group Taxon

Training data sample size

Presences Target- group background absences

Actiniaria Sea anemones 8540 2446

Alcyonacea Soft corals 515 7424a

Brisingida ‘Armless’ stars 931 9567

Bryozoa Bryozoans 725 10,173

Crinoidea Sea lilies and feather stars 793 10,102

Hydrozoa Hydroids 1159 9860

Zoantharia Hexacorals 1016 9600

aTarget group background data for the Alcyonacea model did not contain records for Actiniaria, 
Brisingida, Crinoidea, Hydrozoa, or Zoantharia. Instead, target group background data only 
comprised point- sample locations of taxa modelled in Stephenson et al. (2021) from the same 
dataset used therein.

TA B L E  1 Vulnerable	marine	ecosystem	
(VME) indicator taxon, sample size 
(number of presences), and target 
group background data available for 
developing habitat suitability models 
for VME indicator taxa in the South 
Pacific Regional Fisheries Management 
Organisation Convention Area, New 
Zealand, and Australia.

Variable Units
Native 
resolution Source

Seafloor characteristics

Percent gravel % 1 km2 Bostock et al. (2019)

Percent mud % 1 km2 Bostock et al. (2019)

Ruggednessa 1 km2 Derived from bathymetry 
(Mackay et al., 2015)

Slope SDa 1 km2 Derived from bathymetry 
(Mackay et al., 2015)

Bathymetric position 
index—broad

1 km2 Derived from bathymetry 
(Mackay et al., 2015)

Seamounts Rowden et al. (2008) and 
Yesson et al. (2011)

Water chemistry

Calcite saturation at depth 0.5° Bostock et al. (2013)

Dissolved oxygen at depth mL L−1 1° Garcia et al. (2013)

Temperature at depth °C 0.25° Locarnini et al. (2013)

Productivity

Particulate organic carbon 
export

mg C m−2 d−1 0.08° Stephenson et al. (2021)

Note: Variables are listed, along with units (if applicable), and references are provided based on 
source	of	data.	All	environmental	variables	were	sampled	at	a	grid	size	of	1 km × 1 km.
aTerrain	metrics	calculated	using	window	sizes	of	five	cells	(1 km × 1 km).

TA B L E  2 Environmental	variables	used	
for habitat suitability models of vulnerable 
marine ecosystem indicator taxa in 
the South Pacific Regional Fisheries 
Management Organisation Convention 
Area, New Zealand, and Australia.
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depths within the study area. For evaluating habitat suitability 
models, 832 sites were available (785 unique locations or grid 
cells). The full dataset included abundance estimates for 74 taxa, 
but the dataset was reduced to include only modelled taxa (17 
total; 13 VME indicator taxa). For each taxon, abundance infor-
mation was converted into binary presence- absence depending 
on whether any abundance of a taxon was recorded within a grid 
cell	 (1 km × 1 km).	 Various	 fit	 metrics	 were	 derived	 using	 image-	
based presence- absence data, and the full suite of 17 VME indi-
cator taxa habitat suitability models. AUC, TSS, sensitivity (true 
positive rate), and specificity (true negative rate) were calculated 
using the pROC package in R (Robin et al., 2011). The relationship 
between	 habitat	 suitability	 and	 abundance	 (log(abundance + 1),	
where	 abundance = individuals	 per	 1000 m2) in the independent 
image- based dataset was evaluated with scatter plots [ggplot2 in 
R; Wickham (2011)] and a coefficient of determination (R2).

Some of the data were used to train the Stephenson et al. (2021) 
models, including 173 unique presence point- sample locations pro-
vided to the training dataset for those previous models by this ‘inde-
pendent’ dataset. For six models, <50 point samples were provided 
for training; for four models, 50–100 point- samples were provided; 
and for Demospongiae, 112 point- samples were provided. At least 
720 of the point samples in the evaluation dataset were ‘new’, so 
image- based data accounted for <2.5% of the data available for 
the Stephenson et al. (2021) models. Therefore, we refer to the 

image- based dataset as independent, while acknowledging that 
some data were not strictly independent.

3  |  RESULTS

3.1  |  Environmental coverage

Taxon models for the Chatham Rise, Louisville Seamount Chain, and 
shallower areas within New Zealand's and Australia's EEZ were pre-
dicted with high environmental coverage (approaching 1). Areas of 
moderate environmental coverage (~0.4–0.6) were predicted across 
much of the Campbell Plateau, Challenger Plateau, and much of the 
northwest space in the study area (Figure 2). Areas of low environ-
mental coverage (approaching 0) were predicted primarily in deeper 
portions of the study area, north of the Chatham Rise, and in much 
of the northwest portion of the study area within and between the 
EEZs of New Zealand and Australia (Figure 2).

3.2  |  Habitat suitability models

Presence- only models for seven VME indicator taxa not previously 
modelled (Figures 3 and 4; Appendix S1: Figures S8–S19) yielded 
good to excellent model performance scores based on iteratively 

F I G U R E  2 Environmental	coverage	(0–1)	between	200	and	3000 m	depth,	where	habitat	suitability	models	were	developed	for	
vulnerable marine ecosystem indicator taxa in the South Pacific Regional Fisheries Management Organisation Convention Area, New 
Zealand, and Australia. Low values of environmental coverage (purple) indicate parts of the environmental space that contained few 
samples, meaning greater caution should be placed on the predictions. Environmental coverage is generated using the training data used to 
create the habitat suitability models.
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withheld (internal) evaluation data. AUC scores ranged from 0.79 to 
0.99, and TSS scores ranged from 0.44 to 0.91 (Table 3). The stand-
ard deviation of AUC and TSS scores ranging between 0.002 and 
0.04 indicated that models consistently performed across boot-
strap samples (Table 3). All three models in the ensemble (RF, BRT, 
and MaxEnt) performed well, though the RF model (mean AUC/
TSS = 0.89/0.65)	 performed	 slightly	 better	 than	 the	 BRT	 model	
(mean	AUC/TSS = 0.85/0.56)	and	 the	MaxEnt	model	 (mean	AUC/
TSS = 0.82/0.53).	 The	 ensemble	 spatial	 prediction	 for	 Crinoidea	
(sea lilies and feather stars, Figure 3), as an example, indicated high 
habitat suitability (0.8–1.0) along much of the continental shelf 
breaks (including the northwest part of the Challenger Plateau in 
the SPRFMO area), seamounts (including the Louisville Seamount 
Chain in the SPRFMO area), the Macquarie, Kermadec, and West 
Norfolk ridges (the latter is in the SPRFMO area), and parts of the 
Chatham, Lord Howe, and South Tasman rises (the latter two fea-
tures are in the SPRFMO area). Moderate habitat suitability (HSI 
~0.5) was predicted within some shallower areas of the study area 

(<1000 m),	 including	 parts	 of	 the	 central	 Challenger	 Plateau	 and	
Chatham Rise in the New Zealand EEZ and parts of the Lord Howe 
and South Tasman rises and West Norfolk Ridge in the SPRFMO 
area. Conversely, moderate habitat suitability (HSI ~0.5) was also 
predicted in some of the deepest areas of the study area (>2500 m),	
including north of the Chatham Rise. Low habitat suitability (HSI 
<0.2) was predicted across much of the Campbell Plateau and parts 
of the Challenger Plateau, and the deepest areas (>1500 m)	were	in	
the EEZs and SPRFMO area. Low uncertainty (low SD) associated 
with the spatial prediction of habitat suitability for Crinoidea is 
mapped across most of the Campbell Plateau (Figure 4), moderate- 
high uncertainty (>0.15, SD) is mapped along much of the northern 
area of the Chatham Rise in the New Zealand EEZ and along the 
Louisville Seamount Chain and central Challenger Plateau in the 
SPRFMO area, and moderate uncertainty (0.1–0.15, SD) is mapped 
within many of the moderately deeper areas of the SPRFMO area 
(>2500 m)	 along	 the	 western	 edge	 of	 West	 Norfolk	 Ridge	 and	
South Tasman Rise.

F I G U R E  3 Mean	predicted	habitat	suitability	index	(HSI)	for	Crinoidea	in	the	South	Pacific	Regional	Fisheries	Management	Organisation	
(SPRFMO) Convention Area, New Zealand, and Australia. Black lines indicate the boundary of the SPRFMO area (area outside of exclusive 
economic zones; see Figure 1). (a–h) Insets are provided for various fisheries management areas (FMAs) within the SPRFMO area.

(a)

(e)

(g) (h)

(b) (c) (d)

(f)
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8 of 14  |     BENNION et al.

F I G U R E  4 Mean	predicted	ensemble	model	uncertainty	(SD:	standard	deviation)	for	Crinoidea	in	the	South	Pacific	Regional	Fisheries	
Management Organisation (SPRFMO) Convention Area, New Zealand, and Australia. Black lines indicate the boundary of the SPRFMO area 
(area outside of exclusive economic zones; see Figure 1). (a–h) Insets are provided for various fisheries management areas (FMAs) within the 
SPRFMO area.

(a) (b) (c) (d)

(f)

(h)(g)

(e)

TA B L E  3 Performance	metrics	for	habitat	suitability	models	of	vulnerable	marine	ecosystem	indicator	taxa	in	the	South	Pacific	Regional	
Fisheries Management Organisation Convention Area, New Zealand, and Australia.

Group

HSI model fit metrics (mean AUC and TSS)

BRT RF MaxEnt

AUC TSS AUC TSS AUC TSS

Actiniaria 0.86 (0.01) 0.58 (0.02) 0.89 (0.01) 0.64 (0.02) 0.84 (0.01) 0.56 (0.02)

Alcyonacea 0.83 (0.01) 0.51 (0.02) 0.99 (0.002) 0.91 (0.01) 0.82 (0.01) 0.50 (0.02)

Brisingida 0.85 (0.02) 0.58 (0.03) 0.88 (0.01) 0.61 (0.03) 0.82 (0.02) 0.55 (0.03)

Bryozoa 0.83 (0.02) 0.54 (0.03) 0.86 (0.02) 0.57 (0.03) 0.80 (0.02) 0.48 (0.04)

Crinoidea 0.86 (0.02) 0.60 (0.03) 0.88 (0.01) 0.63 (0.03) 0.83 (0.01) 0.54 (0.03)

Hydrozoa 0.82 (0.01) 0.51 (0.02) 0.85 (0.01) 0.56 (0.03) 0.79 (0.01) 0.44 (0.02)

Zoantharia 0.88 (0.01) 0.62 (0.03) 0.89 (0.01) 0.63 (0.03) 0.87 (0.01) 0.63 (0.03)

Note: Values provide means (and standard deviation) from 100 bootstraps based on iteratively withheld evaluation data. For habitat suitability 
models, fits are provided for the boosted regression tree (BRT), random forest (RF), and MaxEnt (MaxEnt) models. Fits provided are based on 
binomial sensitivity and specificity, the area under curve (AUC), and the true skill statistic (TSS).
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3.3  |  Independent evaluation

The performance of our seven models and 10 models by Stephenson 
et al. (2021) varied from adequate or excellent to poor, depending 
on taxon and performance metric (Table 4). AUC and TSS ranged 
from	very	poor	(AUC = 0.52	and	TSS = 0.05)	for	Hydrozoa	to	excel-
lent	(AUC = 0.97	and	TSS = 0.86)	for	S. variabilis. The mean AUC for 
all	17	VME	indicator	taxa	was	0.75	(SD = 0.14)	and	the	mean	TSS	was	
0.42	(SD = 0.24).	For	13	of	17	models,	AUC	>0.65, and for 8 of 17 
models, TSS >0.4. Sensitivity and specificity measures highlighted 
taxon- specific false- negative and false- positive effects (Table 4). 
For example, for Pennatulacea, specificity was high (0.8), but sen-
sitivity was very poor (0.427). In contrast, for Antipatharia sensitiv-
ity was high (0.86), but specificity was poor (0.619). For seven taxa, 
specificity >0.8, including Pennatulacea, Demospongiae, G. dumosa, 
Stylasteridae, E. rostrata, M. oculata, and S. variabilis. In contrast, 
for four taxa, sensitivity >0.8, including Stylasteridae, S. variabilis, 
E. rostrata, and Antipatharia. The relationship between observed 
abundance and HSI for the full set of 17 VME indicator taxa mod-
els was taxon- specific (Appendix S1: Figure S20). Three of the four 
Scleractinia (stony coral) models and the Stylasteridae model had R2 
>0.2, models for M. oculata, Crinoidea, and Antipatharia had R2 val-
ues >0.1, and models of all other taxa (n = 10)	had	R2 <0.1 (Table 4).

4  |  DISCUSSION

Here, we generated habitat suitability models for seven VME in-
dicator taxa in the western portion of the SPRFMO Convention 
Area that were not previously modelled (Stephenson et al., 2021). 
Together, this modelling effort has resulted in the availability of habi-
tat suitability models for all VME indicator taxa currently identified 
by SPRFMO (2022). The development of additional models meant 
that SPRFMO was able to fully complete its evaluation of the effec-
tiveness of spatial closures implemented in 2019 (SPRFMO, 2023b). 
Without habitat suitability models for all VME indicator taxa, the 
effectiveness of these measures was uncertain. The latest evalua-
tion of the effectiveness of recent adjustments to spatial closures 
indicated that at least 70% of suitable habitat (HSI values above a re-
ceiver operating characteristic determined threshold; generally, HSI 
>0.45) for all VME indicator taxa was protected within the Fishery 
Management Areas (SPRFMO, 2023b).

Previous efforts produced models for some of the VME indicator 
taxa modelled herein, including Brisingida and Crinoidea (Anderson 
et al., 2016). Despite somewhat differing datasets, the habitat suit-
ability maps we produced were visually similar to those by Anderson 
et al. (2016). For instance, for both Crinoidea and Brisingida, low 
habitat suitability (<0.2) was predicted across much of the Campbell 
Plateau and Chatham Rise, and high habitat suitability (>0.8) was pre-
dicted in the Bounty Trough and on Lord Howe Rise. Furthermore, 
several areas of high habitat suitability (>0.8) common to many VME 
indicator taxa we modelled matched those of other VME indicator 
taxa previously modelled, including high habitat suitability along the 

Kermadec and Macquarie ridges for Stylasteridae and Hexactinellida 
(Anderson et al., 2016; Georgian et al., 2019) and Brisingida, 
Hydrozoa, Crinoidea, and Bryozoa (this study). Finally, while habi-
tat suitability for Actiniaria was visually dissimilar to other modelled 
VME indicator taxa (this study), some patterns were similar to habi-
tat suitability for Hexactinellida; for instance, areas of the Chatham 
Rise, Challenger Plateau, and large areas of the Campbell Plateau 
were predicted to have moderate (>0.6) to high (>0.8) habitat suit-
ability, and areas along the North Chatham Rise and Bounty Trough 
were predicted to have low habitat suitability (<0.4) by Georgian 
et al. (2019) and Stephenson et al. (2021). Reliability of predicted 
distributions from presence- only models depends on the quality 
of available response data, the quality and ecological relevance of 
predictors, and how the models were constructed. Many issues 
identified with habitat suitability models require attention if such 
models can be confidently and routinely used in decision- making 
for the management of marine resources (Stephenson et al., 2021; 
Winship et al., 2020). Therefore, the accuracy of habitat suitability 
model predictions must be evaluated and improved to support the 
design and implementation of existing spatial management mea-
sures (Bowden et al., 2021).

We used spatially independent evaluation data to build on an 
earlier evaluation of habitat suitability models using independent 
data, which had the same spatial biases as the data used to de-
velop the models (Stephenson et al., 2021). Importantly, the towed 
video surveys used as the independent dataset purposefully tar-
geted unfished areas, compared to the model fitting dataset that 
was somewhat biased towards fished areas. Validation metrics for 
both the model- fitting dataset and the independent dataset pro-
vide context about model performance. In contrast to an earlier 
study, we found that model predictive power was generally lower 
and more variable among taxa when assessed using independent, 
well stratified, presence- absence data (Stephenson et al., 2021). 
Contrary to expectations of presence- only models, presence was 
not more consistently classified than absence (i.e., higher sen-
sitivity compared to specificity) when assessing model fits with 
presence- absence data, similar to another study, where compa-
rably poor sensitivity was ascribed to under- representation of as-
pects of a taxon's ecological niche in the dataset used to build the 
model (Howell et al., 2022). Despite lower predictive power, we 
found that most habitat suitability models performed adequately, 
with only two VME indicator taxa (Hydrozoa and Bryozoa) consid-
ered to be performing poorly (AUC <0.55), although both models 
were at class and phylum taxonomic levels, and therefore com-
prise many different (hundreds in the study area) species. Coarse 
taxonomic resolution means that many species, with different 
life- histories and environmental requirements, are included under 
a single nominal taxon, so models may not accurately represent 
a niche (Winship et al., 2020). Mixed- species models of VME in-
dicator taxa might therefore overly predict broad distributions 
regardless of whether they are developed using presence- only, 
presence- absence, or abundance data, because interspecific envi-
ronmental niches are conflated in the model.

 13652400, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/fm

e.12700 by N
ew

castle U
niversity, W

iley O
nline L

ibrary on [02/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11 of 14BENNION et al.

Habitat suitability models predict relative habitat suitability 
of a taxon (i.e., the likely distribution of the taxon), rather than 
expected abundance of a taxon. In the absence of abundance 
models, habitat suitability models provide best estimates of distri-
butions of modelled VME indicator taxa in an environment that is 
data- limited in faunal distributions and physical habitat character-
istics. However, knowledge of spatial variation in taxon abundance 
is of greater value for informing the management of VMEs (Ardron 
et al., 2014). For example, the functional significance of the pres-
ence of a single stony coral colony at a site will be different from 
the functional significance of a high density of stony coral colonies 
that provide complex physical structures upon which other taxa 
and ecological processes are highly dependent (sensu the defini-
tion of VMEs in paragraph 42 of the FAO International Guidelines 
for the Management of Deep- sea Fisheries in the High Seas, 
FAO, 2009). Although several studies have assessed whether hab-
itat suitability models can be used as surrogates for abundance 
distributions (Pitcher et al., 2019; Rullens et al., 2021), our findings 
and Bowden et al. (2021) illustrated that they do not provide ac-
curate proxies for abundance for many models produced here and 
by Stephenson et al. (2021). Some taxa were exceptions, notably 
S. variabilis, likely because a species- level model was used for a 
taxon with a comparatively narrow environmental niche (typically 
present on seamounts) in the study area. In contrast, phylum-  and 
class- level models for Bryozoa and Hydrozoa were poor. Some 
relationships between predicted habitat suitability and abun-
dance may be non- linear (Monnier- Corbel et al., 2023; Vanderwal 
et al., 2009). We found that habitat suitability for some taxa corre-
sponded well with the upper limit of abundance, while mean abun-
dance was less well indicated.

Despite our success in developing habitat suitability mod-
els for VME indicator taxa for the SPRFMO area and the use of 
those models for evaluating the effectiveness of spatial manage-
ment measures implemented to prevent SAIs in VMEs, abundance 
models are now needed for these taxa (Stephenson et al., 2021). 
Similar sentiments have been voiced by scientists mapping VME 
distributions in the northeast Atlantic, given that habitat suit-
ability models do not predict aggregations (Howell et al., 2022). 
Though taxon- specific, density is central to the VME concept 
(Baco et al., 2023), because density of habitat for species is in-
nately linked to assemblage diversity, functionality, and structural 
complexity (de la Torriente et al., 2020). Where systematically 
collected data are available, more useful models can be devel-
oped to predict abundance of VME indicator taxa (Piechaud & 
Howell, 2022; Rowden et al., 2017) and also to relate to one or 
more of the FAO (2009) functional definitions of what constitutes 
a VME (e.g., Baco et al., 2023; Rowden et al., 2020) or translated 
into maps for VME indices (Stephenson, Bowden, et al., 2023). 
Outputs from abundance models, even if geographically limited, 
can be used to fine- tune boundaries of spatial closures that have 
been based on information from presence- only models, to provide 
more reliable management for specific areas or taxa.

5  |  CONCLUSION

Our findings complement previous studies that produced habi-
tat suitability models for the study area, thereby contributing to a 
full suite of models for VME indicator taxa identified by SPRFMO 
in Annex 5 of CMM- 03- 2022. Past studies have shown that these 
types of models ‘have reached their predictive limit’ (Stephenson 
et al., 2021) or were not suitable proxies for abundance (Bowden 
et al., 2021). Our findings were similar, with the seven new mod-
els performing well when evaluated with independent data of taxon 
presence and absence but were poor surrogates for abundance. 
Given that density is central to the VME concept, abundance infor-
mation is required to identify and locate them. While this study was 
based in the South Pacific high seas, New Zealand, and Australia, the 
results also have implications for modelling efforts aiming to con-
serve biodiversity beyond national jurisdictions elsewhere. Future 
efforts must strive for spatial datasets of abundance, as only they 
can provide the information needed to identify and test VME den-
sity thresholds and thereby enable more effective spatial manage-
ment of extractive activities such as fishing (Gros et al., 2022).
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