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Abstract

Current tools for estimating the substitution distance between two related sequences strug-

gle to remain accurate at a high divergence. Difficulties at distant homologies, such as false

seeding and over-alignment, create a high barrier for the development of a stable estimator.

This is especially true for viral genomes, which carry a high rate of mutation, small size, and

sparse taxonomy. Developing an accurate substitution distance measure would help to elu-

cidate the relationship between highly divergent sequences, interrogate their evolutionary

history, and better facilitate the discovery of new viral genomes. To tackle these problems,

we propose an approach that uses short-read mappers to create whole-genome maps, and

gradient descent to isolate the homologous fraction and calculate the final distance value.

We implement this approach as Mottle. With the use of simulated and biological sequences,

Mottle was able to remain stable to 0.66–0.96 substitutions per base pair and identify viral

outgroup genomes with 95% accuracy at the family-order level. Our results indicate that

Mottle performs as well as existing programs in identifying taxonomic relationships, with

more accurate numerical estimation of genomic distance over greater divergences. By con-

trast, one limitation is a reduced numerical accuracy at low divergences, and on genomes

where insertions and deletions are uncommon, when compared to alternative approaches.

We propose that Mottle may therefore be of particular interest in the study of viruses, viral

relationships, and notably for viral discovery platforms, helping in benchmarking of homol-

ogy search tools and defining the limits of taxonomic classification methods. The code for

Mottle is available at https://github.com/tphoward/Mottle_Repo.

Introduction

Pairwise nucleotide substitution distance is widely used in bioinformatic analyses. Pairwise

comparisons within collections of genomes are commonly integrated to establish phylogenies,

providing insight into their shared evolutionary history. They are similarly used to position
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novel genomes within an established phylogeny [1]. Substitution distances can also be con-

verted to genome-wide percentage identity to define taxonomic demarcations, such as the dis-

tance a novel genome must be from known genomes to establish it as a new species [2].

Comparing the distances of discrete genetic molecules such as chromosomes, plasmids, plas-

tids, and segments can find differences in their evolutionary histories, elucidating how genetic

material has been exchanged between organisms or populations. Finding the most distinct or

representative sequences in a set is used to create a compressed database for homology search

and taxonomic classification [3]. A high substitution distance can however be a large barrier

for sequence discovery [4]. Being able to accurately define this distance allows improved

benchmarking of homology search and taxonomic classification tools to find their limits,

allowing accurate estimates of what may pass through the silicon sieve of de novo sequencing-

based discovery and diagnostics.

Despite the considerable number of approaches available for pairwise genome comparison

[5], many do not produce a biologically relevant substitution distance, and from those that do,

there are few that are suitable for highly divergent sequences, i.e., those that have had many

substitutions per site between them. This is for two main reasons–work has focused on creat-

ing faster and more efficient tools that work well at low divergences [6–11], combined with the

inherent difficulties found when making comparisons at high divergences. The largest of these

difficulties are false seeding and over-alignment. Seeding is the process of finding small sub-

sequences, often in the tens of bases, that are identical or near identical in two sequences and

can be extended to larger regions of homology. Finding seeds at non-homologous locations,

i.e., false seeding, may add regions that otherwise have little similarity into the distance calcula-

tion, artificially inflating it. At low divergences a large seed size may be used as there would be

few mutations between homologous regions. At increasing divergence, a smaller seed size is

needed to find such regions, generating many seeding locations that are spurious, eventually

overwhelming the limited number of truly homologous seed sites. Finding seed locations that

have true homology while avoiding or removing false ones becomes a critical task at distant

homologies. While false seeding can make sequences appear more divergent than they truly

are, over-alignment can make them appear more similar. Alignment is usually done after seed-

ing, inserting gaps into either sequence to match up homologous nucleotides that were shifted

due to insertions and deletions (indels). This presents the danger of over-correcting for indels,

falsely pairing matching nucleotides that are non-homologous, such as mistaking adjacent sub-

stitution events for an insertion, and therefore not contributing to the substitution distance.

Avoiding over-alignment while still correctly aligning regions can be difficult at a low diver-

gence, but at a high divergence, where multiple different mutation events may have occurred

at the same nucleotide position, it may not be possible.

These difficulties appear especially often when studying viral genomes, due to their high

rate of mutation, small size, lack of universal marker genes, and the low proportion of known

viruses [12,13]. Viral replication machinery, especially those of single-stranded RNA based

viruses, are known to introduce many substitutions every generation. Combined with a short

generation time, these viruses can quickly diverge from their progenitor genome. Additionally,

the ratio of indel event to substitution events is extremely high in these genomes [14], which

makes finding true seeds more difficult and over-alignment more likely. The usually small size

of viral genomes further reduces the number of possible seeding sites. Finally, the number of

viral species that have been documented is a small proportion of the total estimated number of

viral species [15], with estimates of the proportion of characterised orthornaviran RNA viruses

being estimated as low as 0.006% [16], and environmental sampling projects discovering many

previously unobserved viral genomes with each sequencing experiment [17]. The effect of

sparse taxonomic coverage is that many viral genomes are highly diverged from any known
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viruses, making it difficult to study their relationship to other viruses. To this end, viral

genome analysis is the field that may benefit the most from improvements in pairwise

sequence distance accuracy at high divergences.

In the face of these difficulties, current tools attempt to alleviate parts of the false seeding or

over-alignment problems: some programs attempt to find non-exact matches for seeding,

finding longer seeds which are more likely to be true seeds [18]. Others, such as Hachiya et al.

[19], have sophisticated algorithms for distinguishing between true and false seeds. Programs

that do not use any alignment step, known as alignment-free programs, are able to completely

avoid the problem of over-alignment, instead using statistical information from across a

sequence that is correlated to substitution distance–e.g., proportion of shared k-mers [20],

shortest unique substrings [21], average common substring [22], or sequence embeddings

[23]. This creates a separate issue–as sequence divergences increase, the correlation between

these global statistical data and the local nucleotide substitutions they estimate can become

increasingly decoupled. A new approach is needed, one which creates high-quality seeds and

avoids over-alignment while incorporating direct nucleotide-level information.

Short-read mappers (henceforth referred to as mappers) are tools used to map short

sequence fragments of ~50-300bp, produced from High Throughput Sequencing runs, to ref-

erence genomes. These mappers already employ sophisticated seeding algorithms, give many

parameters to tune mapping sensitivity, can use arbitrary queries and references, and are

designed to handle thousands to millions of fragments. Sequence fragments created in silico
can therefore be used as inputs to these mappers, finding the optimal homologous location for

each fragment on another sequence, and allowing downstream processing to calculate substi-

tution distance. This approach of running mappers on in silico fragments has been successfully

utilised in other bioinformatic applications–for generating multiple sequence alignments in

ViralMSA [24], and for constructing phylogenies in REALPHY [25]. In this paper we explore

the application of these mappers for estimating pairwise nucleotide substitution distance, how

careful use of their outputs can avoid false seeding and over-alignment and describe the imple-

mentation of Mottle—a tool for more accurate distance calculation between two highly diver-

gent sequences. The tests carried out within this paper are based on consensus sequences of

full viral genomes or RNA family sequences, but Mottle can be applied to any pair of DNA or

RNA sequence files to give an estimated substitution distance.

Design and implementation

Mottle takes two arbitrary nucleotide sequences of unknown relation, and outputs an esti-

mated substitution distance between them. This can make use of any mapping software that

aligns short fragments to larger sequences. Additionally, we have implemented a bespoke frag-

ment mapping algorithm for this process, Mottle-map, which guarantees that each fragment is

mapped but is not scalable to large sequences. Both algorithms are described in the subsections

below.

Mottle: Calculating pairwise sequence distance from mapped fragments

The main Mottle program can be split into three stages–fragment generation, alignment pro-

cessing, and alignment clustering, presented in Fig 1A to c respectively and described in the

following sections. Briefly, for each position, p, in query genome, Q, we set the nucleotide at

that position, Qp, as the origin nucleotide. The set of flanking regions either side, Q[p+1..p+n]

and Q[p-1..p-n] for a specified flank size n, of each origin nucleotide are mapped using a short-

read mapper to a similar set of flanking regions in the target genome. For each mapping, we

calculate flank alignments, and gather a set of statistics: the alignment identity, the indel rate of
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the alignment, and a binary value representing whether the corresponding origin nucleotides

match or mismatch. We represent mappings as points defined by identity and indel statistics,

labelled by match state, from which we can calculate a match probability that acts as an estima-

tor for true identity without alignment bias. These points are clustered into two sets to separate

homologous mappings from spurious ones, and genomic distance is estimated from the

homologous set.

(a) Fragment generation. Flank fragmentation. Each sequence can be separated into a

discrete set of subsequences, each defined by a unique combination of origin nucleotide, sub-

sequence size, and relative orientation. Each nucleotide in the full-length sequence can act as

Fig 1. Overview of Mottle’s sequence distance estimation algorithm. (a) Generating fragment alignments from input sequences. Each sequence is

fragmented in silico. The origin nucleotide is excluded from each fragment sequence. Fragments are mapped onto the reciprocal sequence via a mapper, with

each mapped fragment’s origin being paired. Origin pairs carry a binary state (match or mismatch). Fragment sequences are then fully aligned. (b) Truncating

alignments on identity change. For each alignment, a sliding window calculates percentage identity. If a window’s identity diverges from the initial window’s,

all nucleotides from that point onwards are discarded. (c) Fragment clustering and substitution distance estimation. For each alignment, identity and indel

percentage statistics are calculated. These are fed into a Gradient Boosted Decision Tree (GBDT), which is trained to predict origin pair match state. This gives

a predicted match probability on each alignment that can be interpreted as a bias-free identity. These three statistics are used for gradient-descent clustering, to

find a cluster of alignments that were generated due to shared homology, and a cluster for those due to chance. Once both fractions are obtained, a mean origin

identity is calculated for the homology cluster, which is used to derive the final substitution distance between the two sequences.

https://doi.org/10.1371/journal.pone.0298834.g001
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an origin—the first nucleotide of a subsequence—of multiple subsequences. But the possible

sizes and relative orientations of these subsequences are restricted depending on the origin

nucleotide’s location. If subsequence size is kept fixed, each nucleotide is an origin for up to

two subsequences, for each of the forward and reverse complement orientations. The portion

of each subsequence that does not contain the origin nucleotide is termed a fragment, and the

two possible fragments for each origin are termed the forward and reverse flank fragments of

the origin. Considering the origin nucleotide separately from the fragments is integral in esti-

mating true identity in the later stages of the algorithm.

Reciprocal fragment mapping. This step takes the two full-length input sequences, their gen-

erated fragments, and a mapper program, to create a mapping between each fragment and a

homologous area in the sequence of comparison. To allow the use of a variety of mapping algo-

rithms, there are multiple modes of input depending on what the mapper accepts–sequence

and fragments, fragments and fragments, or sequence and sequence. The mappings are done

reciprocally–one sequence is used as the query with the other acting as the reference, and vice

versa. The output of a mapper is a series of possibly homologous regions between the two

inputs. This must either contain fragment names or sequence locations to allow identification

of origin nucleotide, query location, and mapped location for each region. In cases where a

mapper returns multiple regions for a query, all mapping is kept. The mapped region sequence

pairs and corresponding origin nucleotides are extracted for use in later steps.

Mapped region alignment. While some mappers output a full alignment between mapped

regions, many do not. To get consistent and well-defined alignments, Needleman-Wunsch

global alignment is carried out between region sequences independent of mapper. This is

because a representative region of homology adjacent to the origin nucleotide is desired,

which Needleman-Wunsch global alignment maximises. Aligned regions that contain gaps in

the first N bases are discarded, where N is a parameter of Mottle, as these gaps may shift the

aligned region of homology and therefore the origin nucleotide.

(b) Alignment processing. Alignment truncation. Not all alignments will contain a consis-

tent homology throughout. Some may begin with a high degree of similarity, but with a geno-

mic rearrangement or large indel creating a discontinuity that suddenly reduces similarity.

This non-homologous section would change alignment properties, adding noise to statistics

calculations, and confounding downstream clustering. To remove these discontinuities, a slid-

ing window is moved through the alignment. The length and identity, the proportion of

aligned nucleotides that match, of the first window is used to estimate a binomial distribution

for match/mismatch states. Where a later window’s identity is above or below that which

would be expected by chance of this distribution, the alignment is clipped, discarding proceed-

ing nucleotides. Clipped alignment shorter than a minimum size are additionally discarded.

The window size, two-tailed binomial test p-value, and minimum clipped alignment size are

configurable parameters.

Alignment statistics calculation. To distinguish homologous from non-homologous align-

ments, a set of statistics is calculated for each of the non-discarded windows produced during

truncation. Alignment identity is the fraction of matches in non-gap positions, corrected for

the GC composition of the alignment. The fraction of gap positions in the window could be

used as another such statistic, where homologous alignments would contain fewer gaps at the

same identity. This would, though, not inform us of the probability that the origin nucleotide

is shifted by an Indel event, as each event can insert or delete multiple nucleotides in a row.

The number of Indel events in a row between non-gap positions can be approximated by a

geometric distribution with PMF,

PðL ¼ lÞ ¼ pl � ð1 � pÞ
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where l is the number of adjacent indel events between two non-gap positions regardless of the

size of each event, P(L = l) is the probability of finding this number of events between two arbi-

trary sites in the sequence, and p is the fraction of indel events per site. p is directly related to

the probability of no indel events having occurred between two adjacent homologous nucleo-

tides via P(L = 0) = 1—p, which can be estimated from the fraction of adjacent aligned nucleo-

tides that do not have gaps, q, in an observed sequence, (p = 1 –q). This produces a set of

identities and indel fractions for each alignment—one for every fixed-size window within it.

After this step, the alignments themselves are discarded, with only these statistics and the ori-

gin nucleotide match state being kept for the final steps.

(c) Alignment clustering. GBDT estimation of true identity. Identity and indel fraction

can greatly vary between and within homologous alignments. For clustering to be effective, a

more stable statistic needs to be calculated. For this purpose, we train a Gradient-Boosted

Decision Tree (GBDT) to estimate a ’true identity’ for each window over the space defined by

the previous statistics (Fig 1C, ’GBDT estimation’). This treats each window as a single point

of data, with parameters identity and indel fraction, and with prediction value being origin

nucleotide match state (1 = match, 0 = mismatch). The output of a GBDT can be thought of as

a stepwise surface embedded within the input parameter space, which we enforce to be mono-

tonically increasing with window identity and decreasing with indel fraction. This estimates

the proportion of origin nucleotides that match within each area of parameter combinations,

which we term the true identity estimate. As a wide area can have the same value estimated,

similar alignments are likely to have windows that share similar true identities, making cluster-

ing more stable.

Gradient-descent clustering. The final step in Mottle is to isolate the homologous fraction of

alignments through clustering. This approach involves the estimation of two cluster centres,

one for homologous alignments (homologous cluster) and one for non-homologous align-

ments (null cluster), within the three-dimensional space defined by Alignment Identity, indel

Fraction, and True Identity statistics. For every alignment, a set of windowed statistics had

been generated from during alignment processing, meaning that each alignment contains a

distribution of these statistics. Similar to how we approximated runs of indel events with a geo-

metric distributions, we approximate these alignment statistics with a Binomial distribution.

Clustering using these statistics directly would be difficult, as the expected variance of Binomi-

ally distributed values greatly decreases when the probability approaches zero or one. To rec-

tify this, we utilise the following variance stabilising transformation,

sin� 1 2 �
maxðp;lÞ� l

1� l � 1
� �

2p

where p is equal to the value of the statistic, and l is equal to the expected lower bound of the

statistic, i.e. 0.25 for GC-corrected nucleic acid sequences and 0 for indels. We then define a

normalised distance to each cluster centre as,

dist ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

meanI
varI

� �2

þ
meanD
varD

� �2

þ
meanT
varT

� �2
s

With meanI and varI equal to the mean and variance of the windowed set of stabilised align-

ment identities. Similarly, meanD and varD are generated from the set of indel fractions and

meanT and varT from estimated true identities. The centre of the null cluster is initialised so

that its True Identity is equal to the expected proportion of matches if it was due to chance,

i.e., -1 after the stabilising transformation. To initialise the Alignment Identity and indel frac-

tion, we choose the values of the alignment with the mean True Identity closest to this value.
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The centre of the Homologous cluster is initialised to the values of the alignment at the 90th

percentile of mean True Identities. Once initialised, the cluster centres are shifted via gradient

descent, with exception of the True identity of the null cluster which always remains at the

expected null value, to reduce normalised distances between alignments and centres. The loss

function for this process is as follows,

loss ¼
PN

i¼0

PS
j¼0
ðdistij � weightijÞ

PN
i¼0

PS
j¼0
ðweightijÞ

where dist is equal to the distance between the alignment i and the cluster centre j, N is equal

to the total number of alignments, and S is equal to the number of clusters, which is set to two

corresponding to the null and homologous clusters. Additionally, weight is defined as follows.

weight ¼
1

maxðdist; epsÞ

� � 1
binpow

where binpow and eps are program parameters. A BFGS optimiser [30] is used to find the loca-

tions that give the minimum loss values. Alignments are then each assigned to the cluster with

the closest centre. The final distance value, D returned by Mottle is obtained from the origin

match proportion of alignments in the homology cluster, corrected for GC-content, and trans-

formed to an estimate of substitution distance via the Jukes-Cantor (JC) model [26],

D ¼ �
3

4
ln 1 �

4

3
ð1 � IÞ

� �

With I being equal to mean true identity of the homologous cluster.

Mottle-map: Bespoke fragment mapping algorithm

While Mottle may use any short-read mapper for fragment mapping, a bespoke algorithm was

developed to ensure that each position in a sequence is mapped even at large divergences. Mot-
tle-map achieves this by transforming each fragment to a high-dimensional embedding via the

Fast Fourier Transform (FFT) and subsequently finding the nearest neighbour in the recipro-

cal sequence. This is similar to the approach Satsuma takes for synteny detection [27]. To

allow the FFT transformation of fragments, their values must first be mapped to the complex

number plane. For this we use the same embeddings as MAFFT [28], with each base placed at

axis-aligned unit lengths and bonding pairs placed in opposite sides of the origin G! + 1, C

! - 1, A! + i, T/U! - i. If each position in the fragment is treated as an embedding dimen-

sion, then two sequences that are more similar will have a smaller Euclidean distance between

embedding, if there are no indels, that give a mid-sequence shift that would misalign the

embedding. Shifting this embedding into frequency space via the FFT allows a Euclidean dis-

tance calculation while allowing for indels. Before transformation, we divide the real and imag-

inary axes by the mean of their absolute values, to correct for GC-content. Afterwards, the

frequency embeddings are normalised to unit L2-norm. These steps can be represented mathe-

matically as follows,

corrected ¼
Re½E� � L
PL

i¼0
Re½Ei�

þ i �
Im½E� � L
PL

i¼0
Im½Ei�

where, E is the set of embedded nucleotides of a sequence, and L is the length of the sequence,
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and

normed ¼
F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL

i¼0
F2
i

q

Where F is the set of values generated from GC-corrected embeddings after transformation by

FFT, and L is the length of the transformed sequence. Since Euclidean distance between frequency

embeddings can be used as a dissimilarity metric between fragments, a nearest-neighbour search

can be used between two sets of embeddings to find similar fragments. Since Mottle-map is made

for small and highly-divergent sequences, we use a simple many-to-many comparison where the

distance between each embedding vector is computed. The top N nearest-neighbour mappings

for each fragment in two fragment sets are returned by Mottle-map, where N is a parameter.

Implementation and availability

Mottle and Mottle-map are implemented in Python 3.9 and both are available at https://github.

com/tphoward/Mottle\_Repo. Gradient-Boosted Decision Trees are calculated by LightGBM

[29], gradient-descent clustering by Tensorflow-probability [30], and nearest neighbour search

by Faiss [31]. Parameters used within testing were as follows, ntrees: 100, nleaves: 32, learn_-

rate: 0.1, subsamp: 1.0, binpow: 64, learn_mult: 0.001, reltol: 1.00E-20, maxiter: 100, binthres:

0.75, and prior_size: 10.

Results and discussion

To evaluate the performance of Mottle, we run a set of benchmarks where exact or approxi-

mate relationships between sequences are known. We run Mottle with either Mottle-map or

BWA-MEM2 as the mapper. As a comparison, we include four other programs that are used

for substitution distance calculation—Co-phylog which utilises micro-alignments between

sequences [32], Mash which calculates distances based on shared k-mers [33], Slope-SpaM that

uses spaced-word matches [34], and Swipe that calculates Smith-Waterman local alignments

between sequences, utilising scores based on Karlin-Altschul statistics [35]. For the programs

that output identities or alignments, a JC model is used to convert to substitution distances. A

summary of the results of all benchmark tests can be seen in Table 1.

Simple sequence evolution

Our first goal was to test how well Mottle performed in comparison to other programs

designed to calculate pairwise substitution distances, in the absence of confounding factors.

Table 1. Summary of benchmarking results.

Tool Name Sub Rfam Gen-fam Fam-ord Ord-class

Slope-spam 0.52 0.22 0.92 0.70 0.37

Co-Phylog 0.28 0.12 0.82 0.38 0.12

Mash 0.44 0.18 0.98 0.85 0.70

Swipe 0.36 0.28 0.89 0.69 0.33

BWA-MEM2* 0.92 0.24 0.94 0.71 0.61

Mottle(-map) 0.96 0.66 0.95 0.95 0.75

Sub: Maximum stable distance of each program when tested on a simple in silico sequence evolution benchmark (section, Simple sequence evolution). Rfam: Maximum

stable distance on concatenated RNA family alignments (section, Known family alignments). Gen-fam, Fam-ord and Ord-class: Proportion of correctly assigned

outgroup genomes when comparing genomes in the same Genus/Family, Family/Order and Order/Class respectively (section, Known genome taxonomies). Scores in

bold represent the best performing program in a benchmark test. *Here, Mottle was executed with BWA-MEM2 as the mapping software.

https://doi.org/10.1371/journal.pone.0298834.t001
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Specifically, we tested programs against the Tobacco mosaic virus genome, with several substi-

tutions introduced in silico to a set substitution distance and monitored their effectiveness at

estimating this distance over increasing divergence. To do this, we used the genomic sequence

of Tobacco mosaic virus (RefSeq accession NC_001367.1), and introduced a set number, Nsub,

of random substitution events in silico, following Nsub = Nnuc�Dsub, with Nnuc being equal to the

size of the full sequence and Dsub being the desired substitution distance. Multiple substitution

events were allowed to occur at each site. We then ran each substitution distance program on

the original and modified genomes to find a calculated distance. This was run for every 0.02

substitution per base-pair (sub/bp) distance between 0 and 1 inclusive, giving a total sample

size of 51 sequences. To have a measure of when the outputs of a program begin to consistently

diverge from the true distance, that is independent of the number of trials, we calculated a run-

ning Mean Absolute Error (MAE) from the true distance as,

error ¼
XN

K¼0

jTk � Pkj

N

where error is the calculated MAE, Tk being equal to the target substitution distance of a speci-

fied trial, Pk the output of a substitution distance program within this trial, and N increasing

with the number of trials completed. As a threshold, we use an MAE value of 0.05 sub/bp,

where the furthest distance a program’s output is within the MAE threshold is its maximum

stable distance. The results indicated that many of the tools struggled to calculate the true dis-

tance between 0.25 and 0.35 substitutions per nucleotide base (Fig 2A, Table 1). Erratic behav-

iour was seen in many as they passed a critical threshold, set at 5% MAE from the true identity

(Fig 2B). Swipe and Mash however tended to significantly underestimate true distance past this

point. Interestingly, the results for Mash were incredibly stable after much deviation from the

true distance (Fig 2A). The results indicated that Mottle, implemented with either Mottle-map
or BWA-MEM2 as the mapper, was able to accurately calculate the true distance over nearly all

the sequence divergences tested, only reaching the 5% threshold towards the upper end of the

testing space (Fig 2B, Table 1). Noticeable but non-critical deviations were observed in BWA--
MEM2 and Mottle throughout the testing space (Fig 2), such that a stricter threshold would

have been surpassed at a lower divergence. The results for existing tools were surprising, and it

was expected that they would perform reliably over a greater distance. It should be noted, how-

ever, that the divergence tested here (up to 1 substitution per base) would be considered high

for many non-viral scenarios. These programs were not designed and tested with the high

mutation rates observed in viruses in mind.

Known family alignments

Having established that Mottle could successfully be used to predict true distance over a large

sequence divergence space–albeit in a simplified system—we next wanted to test Mottle against

real viral sequences. However, it was important to maintain knowledge of the true distance

between sequences. A database that allows us to do this is the RNA families (Rfam) database

[36]. Rfam catalogues homologous RNA sequences as families and holds multiple sequence

alignments of them. In addition, while a simple substitution model can give an upper bound

on the maximum stable distance for each program, indels are a common feature in biological

sequences, especially those of viruses. To test how well Mottle can handle indels, we endeav-

oured to create a benchmark that incorporates in vivo substitutions and indels, while allowing

us to know the ground truth in terms of substitution distance and giving a large range of such

distances. This benchmark therefore assesses Mottle against both real viral sequences and

sequences containing indels. To do this, we extracted all pairwise alignments in each family
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where both sequences are of viral origin and calculated a JC distance from their identities. To

increase the length of these alignments and make them more comparable to a small RNA viral

genome, alignments of similar divergence were concatenated until they reach the size of a

small viral genome (>4 kb). For a given target distance, we find the alignment with the closest

JC distance. We then calculate the current JC distance of the artificial genome, if below the tar-

get distance we add the closest alignment that is above the target distance and vice versa. This

process is repeated without replacement until either the target length is reached, or we run out

of valid candidate alignments. This created a more realistic dataset to test the six programs

against. We run this benchmark on the same distances as previously (Simple sequence evolu-

tion, a total of 51 pairs of sequences with increasing substitution distance) and calculate MAEs

in the same process.

For all tools, predictive performance was degraded compared to the previous test (Fig 3).

For many programs, calculating distance was effective initially, but soon diverged from the

true value. For most, distance was difficult to calculate beyond 0.25 substitutions per base (Fig

3A). Co-Phylog, Swipe and Mash tended towards underestimating sequence divergence from

the true distance past this point, while Slope-Spam and BWA-MEM2 displayed more erratic

behaviour. By contrast, Mottle was able to track the true distance for longer, deviating only

when reaching approximately 0.66 substitutions per base. All programs, except Mottle, had

crossed the 5% cumulative deviation threshold by 0.3 substitutions per base (Fig 3B, Table 1).

Fig 2. Accuracy of substitution distance prediction tools on a simple in silico substitution model of sequence

evolution. (a) Program predictions vs true distance between sequences. Values are clipped to the range [0,1]. Vertical

lines indicate the maximum stable distance. (b) Mean value of the cumulative deviation of each tool from the true

distance. The maximum tolerable deviation is set to 0.05 sub/bp. The point at which curves cross tolerable levels

defines the maximum stable distance. Curves are cut whenever NaN values are produced.

https://doi.org/10.1371/journal.pone.0298834.g002
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In contrast to Fig 2, all programs displayed similar deviation at low divergences. Taken

together with the previous test, we conclude that Mottle is an effective tool for predicting true

distance between highly divergent sequences, as may be found within viral populations.

Known genome taxonomies

We next wished to test the performance of these programs in identifying the relationship

between genomes in the known viral taxonomy. We assembled a test set of viral genomes com-

posed of three different genomes at two different taxonomic ranks (i.e., genus, order, family,

class), as defined by the International Committee on Taxonomy of Viruses [37]. We used this

dataset to assess how well each tool could identify outgroup genomes as the taxonomic rank-

ings were increased. Briefly, each program was required to calculate the distance between one

reference genome and two others, one that shares a chosen taxonomic ranking (comparator)

Fig 3. Accuracy of substitution distance prediction tools on a concatenated family alignment dataset. Formatted as Fig 2. (a) Program predictions vs true

distance between sequences. (b) Mean cumulative deviation of each tool from the true distance.

https://doi.org/10.1371/journal.pone.0298834.g003
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and another that only shares the rank above (outgroup, Fig 4A). A correct identification gives

the outgroup a higher distance to the reference. To carry out this benchmark, we select refer-

ence, comparator, and outgroup genomes randomly from the e NCBI taxonomy database [38]

that exhibit this rank structure. On these, we run each program twice—once to calculate refer-

ence/comparator distance and once for reference/outgroup. If the distance to the outgroup is

larger than to the comparator, this is recorded as a correct output, if smaller then incorrect,

and if the output is the same for both then it is recorded as ambiguous. Some programs return

NaN values or error codes if they are unable to find any homologous sites to calculate a dis-

tance from. In this case, the values are recorded as the maximal distance, which we store as

infinity, and carry out the comparisons as before. The rank comparisons we used were Genus-

Family, Family-Order, Order-Class. A total of 100 pairs of sequences were used within each

rank of comparison.

Unsurprisingly, most of the programs were able to identify which genome shared the same

Genus as the other, and which were only in the same Family (Fig 4B). Mash performed the

best under these conditions, followed by Mottle and then BWA-MEM2. Co-Phylog, which was

created with the genomes of cellular organisms in mind, did return several ambiguous results,

perhaps a result of the instability of the output, even at low divergence, as seen in Fig 4B. In the

next test, the reference genome was compared to genomes in the same Family or Order. Here,

all programs performed less well than in the previous test, with Mottle performing the best, fol-

lowed by Mash and then Swipe. Again, Co-Phylog struggled to unambiguously place genomes

correctly at this taxonomic distance. In the final test, the reference genome was compared with

ones sharing an Order and Class. This test was far more challenging. Once again, Mash, Mottle
and BWA-MEM2 were the most effective, showing mainly correct placements with few ambig-

uous results. The other tools demonstrated high levels of ambiguity in this challenge, being

unable to find any regions of homology to calculate a stable distance. Mottle, Mash and BWA--
MEM2 are therefore useful tools for placing test genomes within known taxonomies, even at

large taxonomic distances.

Fig 4. Accuracy of substitution distance prediction tools for identifying taxonomic outgroup genomes. (a) Taxonomic relationship between query,

comparator and outgroup genomes. (b) Proportion of assignments that were correct (outgroup more distant than comparator genome), incorrect (outgroup

less distant), or ambiguous (identical distances) for each tool when comparing genomes in the same Genus or same Family, in the same Family or same Order,

and in the same Order or same Class, respectively.

https://doi.org/10.1371/journal.pone.0298834.g004
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Conclusions

Pairwise substitution distance has a wide set of applications, from building phylogenies to cre-

ating reduced databases. Finding a novel approach in this field can find utilisations in any of

these areas, giving opportunities for further refinement specific to certain applications. Mottle
represents an additional tool in this endeavour. It performs as well as existing programs in cor-

rectly identifying taxonomic relationships but comes with the added advantage of provided an

accurate numerical estimation of genomic distance over a greater sequence divergence. A limi-

tation of its use, though, is a reduced numerical accuracy, compared to alternative approaches,

at low divergences on genomes that behave similarly to a simple substitution model, i.e., where

insertions and deletions are uncommon. Mottle may therefore be of particular interest to the

study of viruses, viral relationships, and viral discovery platforms, where available sequences

for reference may be sparse, sequence diversity is high, and insertions/deletions occur at a high

rate. The algorithms behind Mottle can be applied using any Short-Read mapper, Gradient-

Boosted Decision Tree generator, Gradient-Descent software, and Nearest-Neighbour finder.

This means that any advancements in such software would give increased efficiency or accu-

racy to new implementations. Further extensions to the algorithm could include support for

amino acid input, simultaneous multiple sequence distance calculation and isolating sub-

alignments of continuous homology. In conclusion, Mottle is an invaluable, novel approach in

substitution distance estimation, with significant performance benefits compared to other

algorithms.
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