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Abstract: The current outdoor thermal comfort index assessment is either based on thermal sensation
votes collected through field surveys/questionnaires or using equations fundamentally backed
by thermodynamics, such as the widely used UTCI and PET indices. The predictive ability of all
methods suffers from discrepancies as multi-sensory attributes, cultural, emotional, and psychological
cognition factors are ignored. These factors are proven to influence the thermal sensation and duration
people spend outdoors, and are equally prominent factors as air temperature, solar radiation, and
relative humidity. The studies that adopted machine learning models, such as Artificial Neural
Networks (ANNs), concentrated on improving the predictive capability of PET, thereby making the
field of Artificial Intelligence (AI) domain underexplored. Furthermore, universally adopted outdoor
thermal comfort indices under-predict a neutral thermal range, for a reason that is linked to the fact
that all indices were validated on European/American subjects living in temperate, cold regions.
The review highlighted gaps and challenges in outdoor thermal comfort prediction accuracy by
comparing traditional methods and Industry 4.0. Additionally, a further recommendation to improve
prediction accuracy by exploiting Industry 4.0 (machine learning, artificial reality, brain–computer
interface, geo-spatial digital twin) is examined through Knowledge Translation.

Keywords: outdoor thermal comfort index; industry 4.0; digital twin; brain–computer interface;
extended reality

1. Introduction

Thermal comfort provision is a priority design consideration to provide comfortable
indoor living space and reduce CO2 emissions from inefficient dependency on HVAC
systems while promoting the productivity and wellness of occupants [1]. People spending
more than 90% indoors further accentuates the significance of designing and controlling all
the variables linked with indoor thermal comfort [2]. However, research evidence strongly
advises spending at least 30 min outdoors or in open spaces daily to enable occupants
to optimize their physical and mental wellness [3]. It is reported that obesity, suicide
rates, anxiety, and depression rates have increased since the information age’s plethoric
advancement, which became a key reason for triggering people, including children, to
spend additional time indoors [4]. This will also increase the economic burden of major
depressive disorder (MDD) among US adults, increasing from USD 236 billion in 2010
to USD 326 billion in 2018 [5]. Besides concerns related to wellness and rising electricity
consumption, continuous exposure to air conditioners can cause cancer and respiratory
illnesses as cooling/heating systems release negative ions in the indoor environment [6].
Similarly, paints, sealants, cleansers, and coatings continuously emit Volatile Organic
Compounds (VOCs), which may induce a myriad of diseases like skin irritation and
damage to the kidney, liver, and central nervous system [7].
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Unlike indoor thermal comfort, which is related to providing a comfortable indoor
space, outdoor thermal comfort estimation can generate decisions for general public health
awareness, public health services, and promoting tourism to alert necessary stakeholders
about outdoor thermal conditions. However, most currently used outdoor thermal comfort
indices are the same as the indoor thermal comfort ones [8]. Even indices developed
exclusively for outdoor thermal comforts like Universal Thermal Climate Index (UTCI) and
Urban Canopy Models (UCMs) are derived from experimental data conducted in indoor
climate chambers [9,10].

Moreover, validation for commonly used thermal comfort indices (indoor and outdoor)
was for European/American subjects living in a colder climate [10]. A disparity occurred
in the result of these indices while predicting the thermal neutral stress for people staying
in a warmer climate [10]. In the past decade, numerous researchers worked on improving
the simple heat-balance equation for predicting outdoor thermal comfort to reflect the
complex dynamics in outdoor conditions using bio-meteorological parameters to more
multi-modal or multi-segmental [11]. However, all Outdoor Thermal Comfort Indices
(OTCIs) ignore influential variables like genetics, psychological cognition, and multi-
sensory dimensions that play a significant role in determining thermal comfort experienced
by urban dwellers [12]; a primary reason why all thermal comfort indices, indoor or outdoor,
have poor predictive power (around 30–40%). A plausible secondary reason is due to the
nature of research method used to estimate Thermal Sensation Vote (TSV)—surveys and
questionnaires [13]. Some researchers have explicitly pointed out participants’ difficulty in
casting sensation votes, especially around neutral thermal stress [11,14].

Besides all the aforementioned concerns related to the inaccuracy existing with the
traditional paradigm of evaluation of thermal comfort index, some researchers highlight
the need for developing regional OTCIs [15,16] rather than universally applicable ones
as generic climatic conditions, clothing insulation, outdoor space design varies region-
ally, not globally. However, developing a region-specific outdoor thermal comfort index
(OTCI), based on the traditional method of only measuring meteorological parameters and
assuming clothing insulation, will not yield the required accuracy either.

As an alternative to the traditional approach of estimating OTCI, a few researchers
have recently used machine learning models such as ANNs and random forest to improve
the predictive accuracy of the thermal comfort index [17,18]. Other studies employing
non-traditional approaches include multi-sensory design with walkability and outdoor
thermal comfort [19], estimating real-time OTCI and Physiological Equivalent Temperature
(PET) using IoT devices, and applying digital twins and Geographic Information Systems
(GIS) to predict OTCI [12]. Overall, the studies that use an OTCI still need to be more
accurate, while most studies that use Machine learning (ML) or Internet of Things (IoT)
mostly try only to improve the existing OTCI [20,21] thereby making the two approaches
fragmented. This incongruence forms the rationale behind this review paper that aims to
assess factors, besides meteorological, in influencing the prediction accuracy of OTCIs so
that both traditional paradigms and Industry 4.0 [22] can be combined to create a notable
and reliable region-specific OTCI using ‘Knowledge Translation’.

There are various definitions and terminologies associated with Industry 4.0 which
is an umbrella term referring to the fourth industrial revolution. However, the definition
proposed in this paper to describe Industry 4.0, in relation to human—machine interaction,
refers to integration and collaboration between humans and machines. This concept
emphasizes the interaction and cooperation between humans and intelligent machines,
where both parties contribute their unique capabilities to achieve higher efficiency, such
as AI, Internet of Things (IoT), and Virtual and Augmented reality (VR/AR). Table 1
below summarizes the most commonly used Industry 4.0 applications for outdoor thermal
comfort studies. Thus, Industry 4.0 in the context of outdoor thermal comfort will guide in
assimilation of information from digital twin, GIS, ML, VR, MR, and IoT simultaneously to
develop an OTCI with high prediction accuracy. The objectives of this study are:
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• To determine significant factors that influence the accuracy of outdoor thermal comfort
indices;

• To explore new, improved tools and techniques from Industry 4.0 to increase the
prediction accuracy of existing indices and generate region-specific ones through
knowledge translation.

Table 1. Brief overview of Industry 4.0 and its application for outdoor thermal comfort studies.

Technology Description

Deep learning techniques

The deep learning technique is a specialized form of machine learning, and the crux behind
Artificial Intelligence is making computational systems or machines learn the way humans do,
mainly by example; thus, it is data-oriented. Some of the commonly used neural networks include
Convolution Neural Network (CNN), Long-Term Short-Term Memory Network (LTST), and
Recurrent Neural Network (RNN). In the context of applying deep learning techniques to determine
thermal comfort modeling, these data-driven models can be applied as a stand-alone model as
indicated by research work carried indoors, or in combination with a conventional OTCI to improve
the estimated accuracy by the addition of psychological or behavioral aspects.

Brain–Computer Interface

Applying neuro-technology/BCI for cognitive monitoring of thermal sensation/preference of
subjects relates to the real-time measurement of a specific mental activity like attention, emotions,
and preferences towards interactive surroundings [23]. In the context of applying neuro-technology
for cognitive monitoring of thermal sensation/preference of subjects, BCI relates to the real-time
measurement of a specific mental activity like attention, emotions, and preferences towards
interactive surroundings [23]. When combined with other sensory modalities like physiological or
behavioral monitoring, EEG measurement helps create a complete mobile brain-/body imaging
(MoBI) to understand embodied cognition further. Thus, the evaluation of the required cognitive
metric can be estimated based on the study’s objective [24]. Scanlon et al. (2019) assessed participants’
attention-related metrics while walking, standing, and running on a treadmill. Typically, target
cognitive metrics are attention, interest, and memory as responses to an auditory stimulus, for
instance, attention to a speaker [25]. Banaei et al. (2017) estimated participants’ perception and
emotional experiences while walking around different architectural spaces in virtual reality [26],
which also pinpoints the most crucial application of this neuro-adaptive technology, which is the
possibility of testing the perception of participants towards any simulated environment other than a
real audio/visual/motor-related stimulus.

Multi-sensory and
multi-mediated reality

Artificial realities are computer-generated simulation experiences of a virtual world replacing
the real-world environment [27]. Virtual, augmented, mixed, mediated, and multi-mediated reality
are the different realities developed to date [28]. Virtual reality completely blocks out the real world
and provides an immersive virtual environment, for example, Google Street View with Earth VR [28].
Augmented reality does not block the real world like VR [29]. Instead, it supplements the experience
with an embodied mix of real and virtual worlds by superimposing models in the virtual scene,
thereby giving the illusion that these artificially generated models exist in the real world [29]. Mixed
reality blends both real and virtual experiences and alters them in different proportions through an
axis called the virtuality axis (XR) or extended reality (e.g., Sony’s X-Reality). The multi-sensory
effect can be applied to AR and MR, known as multi-sensory augmented reality or multi-sensory
mixed reality [27].
Hence, multi-sensory MR can completely portray real-world weather and climatic variations [28].
The effectiveness of the aforementioned simulated realities lies in the fact that human brains do not
differentiate between actual and imagined events as the same neural pathways are evoked for both,
as confirmed by neuro-experimental studies [30]. Hence, this indifference of the brain is leverage for
researchers to simulate any climatic scenario they choose to study. Using neuroscience reality as a
leverage, end-users’ neural activity can be recorded (using a BCI headset) to interpret the
participant’s emotional or even unconscious and complex feelings and thoughts about a built
environment in a simulation chamber rather than outdoors [3].
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Table 1. Cont.

Technology Description

Geo-spatial digital twins

The digital twin of buildings or cities is the integration of IoT and models extracted from
Building Information Modeling (BIM) (3D/4D/5D/6D) to obtain real-time operation of the buildings
or even a whole city to monitor and estimate big data for efficient functioning and to optimize all
physical entities (e.g., people, objects, vehicles, trees), thereby behaving as a conduit for data transfer
between the real and virtual worlds. Apart from providing a better quality of life for city dwellers
indoors and outdoors, the digital twin stores geo-spaced information of all services and
infrastructure existing in a city, thus allowing one to verify different simulation scenarios before
applying any changes to an actual building or open space in a city [31]. Geo-spatial digital twins refer
to a digital twin with an additional level of data, i.e., GIS [32].

Internet of Things

The term ‘Internet of Things’ was coined in 1999 by Austin; these devices operate on
internet-based technology connecting physical and virtual worlds excluding computers and mobile
phones. IoT is the crux behind making devices/gadgets or cities/industries ‘smart’, enabling them to
be interoperable using Information and Communication Technologies (ICT). IoT also becomes an
essential part of the digital twin of smart buildings and smart cities as it gathers data continuously
for big data analytics, which modulates to control these smart buildings’ functioning via cloud
services. Primarily, IoT-enabled devices or gadgets collect information from their surroundings based
on sensor(s) embodied in them, which is relayed to data analytics using cloud computing. After data
pass through the communication model conduit, users and service providers can analyze the big data
aggregation for predictive analytics in necessary domains.
Applying the concept of IoT is relatively new, and research publications are scarce, and to the best of
the authors’ knowledge, the published works have mainly focused on indoor thermal comfort [33].
However, utilizing this concept is useful for predicting outdoor thermal comfort index, particularly
in collecting weather parameters, as monitoring meteorological parameters is a critical step in using a
thermal comfort index, whether the index is empirical or simulation-based [33].

This paper’s originality lies in exploring the potential of using advanced technolo-
gies and methods to improve the accuracy and applicability of outdoor thermal comfort
predictions. In this context, the paper critically reviews outdoor thermal comfort studies
including common evaluation techniques, along with the methodology used, to identify
the prediction accuracy they provide. In parallel, elements of Industry 4.0 that are sparsely
used in existing research analysis are also explored to accentuate the research gap. This,
followed by the proposal of a theoretical framework, demonstrates how knowledge trans-
lation, uncovered through the review process, can be applied. This framework aims to
incorporate elements of Industry 4.0 for each influencing factor to address all the gaps.

2. Thermal Comfort: Development of Thermal Indices

Thermal comfort refers to the subjective state of satisfaction with the surrounding
environment, encompassing both physiological and psychological aspects. Researchers
have highlighted that thermal sensations can vary among individuals occupying the same
space, influenced by factors such as mindset, culture, and social perceptions [22]. However,
despite acknowledging these psychological influences, the examination of thermal comfort
has predominantly focused on its physical aspects [34].

Since the 1900s, studies have been conducted to develop a simple index correlating
how humans respond to different thermal environment. Subsequently, personal factors
such as physical activity and clothing choice were also taken into account. Examples of
these indices include the effective temperature index (ET), predicted mean vote (PMV),
physiological equivalent temperature (PET), universal thermal climate index (UTCI), and
the COMFA outdoor thermal comfort model.

Currently, two different approaches to determining thermal comfort exist: the steady-
state and non-steady-state approaches, each with their own limitations and opportunities.
The steady-state approach relies on data obtained from controlled climate chambers and is
most notably associated with the work of Fanger (1970). On the other hand, the non-steady-
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state approach is based on information gathered from real-life observations of individuals
in different spaces.

The Steady-State Evaluation is a set of improved indices focusing on heat balance equa-
tions which gave rise to human thermoregulatory models (HTMs), later known as rational
thermal comfort indices [35]. HTMs consider two systems to predict heat transfer between
the body and environment—passive (controlled) and active (controlling) systems [36]. A
passive system evaluates the transfer of heat exchange between the body and surroundings
via convection, conduction, and radiation based on metabolic processes occurring through
different body areas through blood circulation [37]. The active systems of the models
organize the body’s thermoregulation by simulation of typical thermoregulatory responses
of vasoconstriction, vasodilation, shivering, and sweating [38].

Based on the number of segments used for calculation, HTMs can be single-node,
multi-node, or multi-element models [11]. The infamous Predicted Mean Vote (PMV) is a
one-node HTM and an empirical one derived from Fanger’s method, which defines the
body’s thermal balance as heat generated through metabolism and heat exchange from the
body to the environment through the skin, respiration, and sweating [39]. The applicability
of PMV is restricted to steady-state and uniform thermal conditions and is found to be
unreliable for outdoor thermal comfort prediction [40]. To overcome PMV’s inability to
describe the thermoregulatory response of a subject, two-node HTMs were developed,
which consider the human body to be subdivided into two concentric layers—core and
skin—and uses two energy balance equations, one for each node [41]; e.g., New Standard
Effective Temperature (SET*) and PET use two-node HTMs [11]. In 1999, SET was modified
to predict outdoor thermal comfort conditions, known as OUT_SET*, by adding mean
radiant temperature, while PET is the commonly used thermal index worldwide [42].

The thermal comfort models and indices mentioned above have low prediction capa-
bility as they fail to accurately capture human response to thermal variations, a function of
cognitive processes including physical, psychological, emotional, and physiological [43,44].
Adaption toward thermal comfort refers to the gradual decline of the human body’s
negative response to continuous exposure to environmental thermal stimulation [13]. Re-
searchers have noted that demographics (gender, age, economic status), thermal context
(season, climate, building morphology, street layout, semantics), and cognition (attitude,
behavior, expectations, emotions) all can potentially contribute to one’s thermal adap-
tion [16,45]. Therefore, it has to be combined with the non-steady-state, also known as
the adaptive, approach. These models were developed based on the understanding that
humans actively adapt to their environment to achieve comfort, considering behavioral
adjustments, as well as physiological and psychological factors. The adaptive approach
was introduced in field studies to provide a more realistic assessment of comfort levels in
the thermal environment, taking into account specific contexts, occupant behavior, and
expectations. This approach helps explain the significant variations in comfort temperature
ranges observed between cities with similar climates, and sometimes even between differ-
ent zones within the same city. These variations highlight the importance of conducting
on-site questionnaires and participant observation research to gather data on outdoor users’
perceptions, including their subjective experiences of the urban environment.

Numerous researchers have acknowledged the impracticality of developing univer-
sally applicable rating systems for heat stress due to the complexity and multitude of
interconnected factors involved. Some argue that outdoor thermal comfort models should
be region-specific, capturing the unique thermal environmental characteristics of a particu-
lar area, rather than relying on universally applied models like PET and UTCI. In recent
years, scholars such as [8,46–48] have recommended conducting field studies alongside
laboratory studies to provide a more comprehensive understanding of urban comfort and
the influence of cultural and habitual variables [49–54].
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3. Assessment of OTC Studies Linking Conventional Methodology and Industry 4.0

This review paper focuses on determining the predictive ability of outdoor thermal
comfort indices presently available from both traditional and Industry 4.0 perspectives.
This assessment tabulates the predictive capability of outdoor thermal comfort indices
from studies conducted worldwide covering different climatic scenarios. The majority of
studies estimated TSV from field surveys to evaluate the effectiveness of indices. Since the
advanced universally applicable bio-climatic OTCI, UTCI, was well-researched from 2010
and the first publication on machine learning, a structural equation model that considers
multi-sensory and subjective assessment of participants’ response, occurred around 2015,
the time frame for this review analysis was from 2015–2023. Figure 1 demonstrates the
number of publications within the selected time frame. The years 2016–2019 had the
maximum number of publications.
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Figure 1. Frequency of number of publications.

To align with the purpose of this assessment, i.e., inclusiveness of primary modalities
and methodology, while seeking to examine the addition of findings brought by Indus-
try 4.0, research articles were retrieved from three main databases—ScienceDirect, Web
of Science, and Scopus. Initial search keywords included ‘Outdoor thermal comfort in-
dex’ OR ‘prediction accuracy’ OR ‘Thermal Sensation Votes’ which sufficed for around
700 articles. Refinement of keywords including ‘Outdoor thermal comfort index’ AND
‘Machine learning’ AND/OR ‘Internet of things’ OR ‘GIS’ helped to remove more than
600 articles. Inclusion criteria ensured the screening of only peer-reviewed journal ar-
ticles and conferences within the selected timeframe. The articles were scrutinized to
verify the methodology and results they presented. The selected articles included experi-
mental/survey and simulation methods to give 50 articles. Table 2 summarizes climatic
classification, research techniques, indices used, and timeframe of studies.
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Table 2. Summary of different studies for assessing prediction accuracy of outdoor thermal comfort indices. The analysis spanned from 2015 to 2023, coinciding with
the development of bio-climatic OTCIs since 2010, and the introduction of the first publication on machine learning, structural equation models, and subjective
assessments around 2015.

Ref Year of
Publication

Place of
Study

Köppen–Geiger
Classification

Research Methodol-
ogy/Modification

Technique
Indices Used Season and Time

of Experiment Scale Used Timeframe of
Study Summary Findings

[53] 2010 Szeged,
Hungary Dfb ARC GIS view, field

survey (6775) PET
Summer, spring,

autumn,
12 noon–3 p.m.

- 14 days

• The detected usage is a function of
subjective thermal conditions
more than meteorological
parameters;

• 65% stayed in warm and hot
areas during spring
(PET > 29 ◦C), whereas 76%
stayed in springtime. Only 43.4%
stayed under sun in autumn time.

[55] 2013 Athens,
Greece Csa Field questionnaire

survey (287) UTCI
Summer,

8 a.m.–12 p.m.,
2 p.m.–7 p.m.

9-point thermal
sensation scale 3 months

• Participants preferred warmer
temperature and associated with
outdoor thermal comfort;

• TSV showed divergent results on
UTCI scale, i.e., lower limit of
neutral thermal sensation
(17.4 ◦C) was much higher than
that predicted by UTCI (9 ◦C).

[54] 2013 Isparta,
Turkey Csa ARC GIS - - - -

• Thermal perception maps are
generated with the help of
climate data and GIS tool;

• Using these thermal maps,
regions or zones are delineated to
make suitable measurements.

[56] 2014 Athens,
Greece Csa

Meteorological
measurements,
questionnaires

(1706),

STI, UTCI, ASV
Summer,

9 a.m.–12 p.m.,
1 p.m.–7:30 p.m.

ISO 16 days

• ASV, STI, and UTCI were calibrated
by three methods, linear and cubic
regression and probit analysis, and
revealed better accuracy;

• ASV’s performance was better
than STI and UTCI (lowest) after
calibration and closest to TSV.
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Table 2. Cont.

Ref Year of
Publication

Place of
Study

Köppen–Geiger
Classification

Research Methodol-
ogy/Modification

Technique
Indices Used Season and Time

of Experiment Scale Used Timeframe of
Study Summary Findings

[57] 2015 Hong Kong,
China Cwa PET - ASHRAE 2 days

• Data analysis showed that
different thermal comfort zones
exist in the precinct within a span
of 200 m;

• Compared to open space and
basement, semi-open space below
an elevated building is better at
inducing thermal comfort
conditions.

[58] 2015 Dhaka,
Bangladesh Aw

Questionnaire
survey (700), field

measurement
UTCI Summer,

9 a.m.–6 p.m. ISO 1 week

• Building orientation in the E-W
direction caused 1–3.8 ◦C more
heat than traditional
building layout;

• Uniform building heights and
patterns caused more thermal
discomfort for pedestrians.

[59] 2015 Mendoza,
Argentina Cfa Field survey (622),

multiple regression ASV Summer,
9 a.m.–5 p.m. ISO 6 days

• Predictive ability of commonly
used thermal comfort indices are
below 25%;

• Thermal comfort index for Arid
zones developed from multiple
regression showed a predictive
ability of 73% with independent
variables—air temperature,
relative humidity, wind speed.

[60] 2015 Netherlands Cfb Field measurements,
ENVI-met PET - 16 days

Among the tested orientations (both
singular and linear) north-south,
east-west, and courtyard, the latter
proved to be most effective in brining
outdoor thermal comfort.

[61] 2016 Wuhan, China Cfa

Field observations
(23,164),

questionnaires,
measurement

UTCI

Summer and
winter,

7:00–12 p.m.,
3 p.m.−9 p.m.

ASHRAE 4 years

• Demographic factors influence
behavioral response to outdoor
thermal comfort.;

• A causal relationship was found
between outdoor thermal
environment and activity type
as 80%.



Buildings 2024, 14, 879 9 of 31

Table 2. Cont.

Ref Year of
Publication

Place of
Study

Köppen–Geiger
Classification

Research Methodol-
ogy/Modification

Technique
Indices Used Season and Time

of Experiment Scale Used Timeframe of
Study Summary Findings

[20] 2016 Isfahan, Iran
(Bsk) Bsk

Microclimatic field
measurement,

simulation
PET, PMV

Summer and
winter,

10 a.m.–6 p.m.
ASHRAE 2 weeks

• Prediction results underestimated
neutral and slightly warm
sensation while it gave
reasonable accuracy for cool
sensations;

• Extreme machine learning
(ELM—93.54%) outperformed
ANN (91.96) and GP (91.99) in
terms of prediction ability;

PET prediction was poorer than PMV
prediction results for 3 ML approaches.

[45] 2016 Cairo, Egypt Bwh
Questionnaire

survey (320), field
measurement

PET
Summer and

winter, 8–10 a.m.,
1–3 p.m., 6–9 p.m.

ASHRAE 1 week

• Preferred temperature was 29 ◦C
PET in summer and 24.5 ◦C PET
in winter;

• Thermal neural stress values
were higher than that of a
temperate climate;

• Analysis of behavioral adaptation
showed men more than women
preferred to move to a shaded
place to overcome excess
outdoor heat.

[62] 2016 Rome, Italy Csa
Questionnaire

survey (1000), field
measurement

PET
Fall, spring,

summer, winter,
8 a.m.–9 p.m.

McIntyre and
ASHRAE 1 year

• PET neutral values for hot and
cold season were 26.9 ◦C and
24.9 ◦C, respectively;

• Probit function preferred values
for hot and cold season were
24.8 ◦C and 22.5 ◦C, respectively;

• By comparing TSV with modified
PET, neutral thermal range was
between 21.1–29.2 ◦C.
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Table 2. Cont.

Ref Year of
Publication

Place of
Study

Köppen–Geiger
Classification

Research Methodol-
ogy/Modification

Technique
Indices Used Season and Time

of Experiment Scale Used Timeframe of
Study Summary Findings

[16] 2016 Campo
Grande, Brazil Aw Field survey (428) PET, UTCI, PMV,

YDS, TEP Spring and winter ISO 4 days

• PET, UTCI, PMV, Sense of
Thermal Comfort (YDS), and
Perceived Equivalent
Temperature (TEP) had very low
predictive capability (19–54%);

• After calibration from thermal
sensation votes, comfort neutral
range from PMV was 21–27 ◦C;

• Modified scale improved the
predictive ability to 63%.

[43] 2016 Guangzhou,
China Cfa Field survey (1582),

logistic regression TSV, ASV, PTV Summer,
9 a.m. −6 p.m.

ASHRAE, 3-point
Mclntyre 3 months

• The acceptable thermal comfort is
28.54 ◦C, which is higher than
theoretical neutral temperature
set by SET*;

• New thermal comfort model was
developed from ASV and
meteorological variables.

[63] 2016 Camagüey,
Cuba Aw Simulation

(RayMan) PET - -

• Extremely high temperature
pockets occur along north-south
and east-west street orientations;

• Optimum street configuration is
north-south with aspect ratio
between 1 and 1.5 for both
summer and winter.

[64] 2016 Rome, Italy Csa
Field survey

(previous data),
ENVI-met

PMV Summer - 1 day

• PMV was compared with field
survey that had an average
deviation of 0.76 units;

• Open type of ENVI-met showed
reliable results among the
different lateral boundary
conditions.

[65] 2016 Morocco Csa Total Energy Balance
Model (TEB) PMV -

For increasing thermal comfort, it is
preferred to have medium aspect ratio
between 1.2 and 2.5.
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Table 2. Cont.

Ref Year of
Publication

Place of
Study

Köppen–Geiger
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[66] 2017 Rome, Italy Csa

Experimental field
survey (used

previous research
data)

GOCI, PMV, PET,
UTCI ASHRAE 1 year

GOCI (27.8%) outperforms in
predictive ability when compared to
PMV (27.7%), PET (25.4%), and UTCI
(23%) but underperforms compared to
(MOCI (32.3%).

[67] 2017 Hong Kong,
China Cwa

Microclimatic
measurements, PET
and UTCI indices

PET, UTCI Summer ASHRAE 3 days

• The mean daytime and nighttime
temperature provided by trees is
higher than concrete shelters;

• For mean daytime and nighttime
cooling, cooling effects provided
by trees are: 0.6 ◦C air
temperature, 3.9 ◦C PET, and
2.5 ◦C UTCI;

• Thermal stress by PET and UTCI
on the warmer side were
statistically different with UTCI
giving better accuracy.

[68] 2017
Rio

de Janeiro,
Brazil

Aw Questionnaires
(1015) UTCI, DTS Spring and

summer ISO 10 days

• Thermal sensation (TSV) was
developed as a function of DTS;

• Females reported slightly warmer
thermal sensation than males,
with an average increase of
0.04 TSV;

• Elderly sub-groups were found to
have lower TSV by 0.3 than
younger samples;

• BMI difference were negligence
except between normal and obese
at 0.05 TS;

• Darker skin colored people had
an increase of 0.35 TSV for
DTS = +1;

• Moreover, negligible differences
were noted between mixed skin
color and darker skin color.
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[69] 2017
Rio

de Janeiro,
Brazil

Aw
Questionnaire

survey (985), field
measurement

PET, UTCI Summer,
10 a.m.–3 p.m. ISO 3 years

• To a large extent, PET and UTCI
can explain thermal sensations
of people;

• Under moderate heat stress,
increase in SVF increases warm
thermal sensation;

• Under high heat stress, thermal
sensation depends on
meteorological conditions more
than SVF.

[70] 2017 Tehran, Iran Csa Field survey (410),
multiple regression TSV Winter,

9 a.m.–5 p.m. ASHRAE 5 days

• The acceptable neutral
temperature for winter was
14.2 ◦C;

• Using multiple regression, it was
found demographic factors like
age and gender are as significant
as climatic factors with R2
ranging between 26 to 48%.

[71] 2017 Isfahan, Iran Bsk
Field survey

(previous research
data), ENVI-met

PET Summer,
5 p.m.–8 p.m. ASHRAE scale 10 days Neutral thermal comfort ranged

between 23.06 to 29.73 ◦C PET.

[72] 2017 Umeå,
Sweden Dfc

Structured
interviews,

questionnaires (525)
PMV, PET, UTCI Summer,

10 a.m.–4 p.m. ASHRAE 1 month

• High solar radiation is preferred
by 49% of local people even with
‘slightly warm’ TSV;

• Local people can tolerate a wider
range of climatic variation than
non-local people.

[73] 2018 Hong Kong,
China Cwa Field survey (1706) PET, UTCI Summer, autumn,

8:30 a.m.–6:30 p.m. ASHRAE 3 months

• When operative temperature is
less than 32 ◦C, only air velocity
showed a positive and linear
relationship with PET. An
exponential relationship with
PET was found at operative
temperature more than 32 ◦C;

• Clothing insulation was indirectly
proportional to air temperature.
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[9] 2018 Hong Kong,
China Cwa Field

experiment (25) UCM Summer, winter,
autumn ASHRAE 25 days

• Participants were more sensitive
to wind conditions than solar
radiation when the latter was low,
which was not captured by the
UCM model;

• Subjects were more tolerant of
high air temperature than
predicted by the model, thus,
over-predicting TSV;

• Under very hot temperatures,
UCM and onsite measurements
both showed higher sensitivity
towards wind.

[74] 2018 Xi’an, China Bsk
Questionnaire

survey (1008), field
measurement

UTCI, PET Winter,
9:30 a.m.–5: 30 p.m. ASHRAE 2 days

• Solar radiation was the preferred
factor for thermal comfort
followed by air temperature,
wind speed;

• UTCI (14.9–23.2 ◦C) predicted
better than PET (13.3–23.6 ◦C) for
neutral thermal stress.

[75] 2018 Hong Kong,
China Cwa

Field survey (1107),
logistic regression of

sun and wind
desirability

UTCI
Summer, autumn,

winter,
8 a.m.–5 p.m.

ASHRAE 23 days

• For temperatures below 26 ◦C,
wind plays a bigger role in
determining thermal comfort,
while above 26◦C, solar strength
exerts a bigger influence;

• Evaluated neutral thermal stress
UTCI 16.5–35.0 ◦C (solar
desirability) and 18.5–32.5 ◦C
(wind desirability).

[76] 2018 Arizona, US Bwh Simulation, SET SET - 1 day

• OTC3D uses spatial and temporal
variation for modeling and uses
SET as OTCI;

• When urban density is high,
λ = 0.44, surface temperature
distribution becomes more
critical than building with
uniform density.
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[77] 2018 Guayaquil,
Ecuador Aw Field survey (544) PET, SET* Rainy season,

11 a.m.–6 p.m. ISO 3 months

• For dry season, neutral and
upper thermal comfort values
were lower for both PET and
SET* compared to rainy season;

• Preferred neutral value through
subjective evaluation reveals that
it is above the theoretical value
produced by PET and SET* for
both seasons.

[78] 2018 Bhopal, India Csa
Field survey,

inferential statistics,
structured interview

ASV, PET Summer,
12:30 p.m.–4 p.m. ASHRAE 7 days

• PET in urban parks was higher
than theoretical control limit PET
(<30 ◦C);

• Statistical analysis confirmed tree
canopy density and globe
temperature influenced
subjective perception.

[79] 2019 Guangzhou,
China Cfa

Questionnaire
survey (644), field

measurement

MTSV, PET,
WBGT, SET*,
UTCI, PMV

Summer,
8:30 a.m.–6:30 p.m. ASHRAE 1 month

• Different indices like PET, WBGT,
SET*, UTCI, Tmrt, and PMV
showed a very high correlation
(correlation coefficient of 0.9)
with operative temperature;

• Relationship between MTSV and
indices is not clear when
operative temperature becomes
higher than 34 ◦C.

[80] 2019 Hong Kong,
China Cwa

Questionnaire
survey (1600), field

measurement, probit
analysis, and logistic

regression

- Summer Extended 7-point
ASHRAE 2 years

• Summer season had the
narrowest neutral thermal stress
and transitional offered broader
range of neutral thermal stress;

• Effect of wind tend to offset
thermal sensation of air
temperature when it was less
than 31 ◦C;

• Participants tended to vote
correctly as temperature shifted
away from neutrality.
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[81] 2019 Iran Csa Data analysis PT, SET*, UTCI - -

• Low and high threshold
temperature value for
PET-18.9–22.5 ◦C for Bwh;

• PET: 15.1–19.1 ◦C for Cfa,

SET*: 20.5–25.5 ◦C for Bwh,
UTCI:18.5–25 ◦C for Csb.

[82] 2019 - - OWA, GIS-MCDA - - - -

• As sensation increases towards
optimum (subjective thermal
assessment), sensitivity towards
favorable and unfavorable
categories decreases;

• Increasing brightness leads to
improved thermal sensation in
urban areas.

[83] 2019 West Bengal,
India Cwa Field survey (250),

GIS
Discomfort Index

(DI), PET Summer, winter - -

• Built-up areas experience
uncomfortable cold and hot
sensations during winter and
summer seasons;

• During cold stress period, 58.78%
areas had PET (9–11 ◦C) and
periods of heat stress, 82.41% of
areas experienced extreme heat.

[84] 2019 Hong Kong,
China Cwa - PET, UTCI - 9-point modified

ASHRAE scale 1 year

• 1-hour acceptable temperature
range (acceptability by 80%):
PET—17.0–31.9 ◦C;
UTCI—19.0–33.0 ◦C; air
temperature—22.6–25.4 ◦C;

• Transient acceptable temperature
range: PET—5.8–45.7 ◦C;
UTCI—4.4–42.4 ◦C; Air
temperature—7.4–34.9 ◦C.
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[48] 2020 Hong Kong,
China Cwa

Field measurements
and questionnaire

(1638)
UTCI, SWI (new)

Summer, autumn,
winter,

1 p.m.–3 p.m.

ASHRAE, 3-point
scale for solar and
wind desirability

1 year

• Newly developed sun and wind
index (SWI) was voted by more
than 50% of participants;

• When solar conditions were
stronger than wind, preferred
ambient temperature was ≤26 ◦C,
and >26 ◦C where wind condition
was stronger than solar.

[18] 2020 - -
Simulations—

Neural
network

PET - - -

The proposed algorithm to predict PET
one hour ahead using cross-over
operator of genetic algorithm (GA) and
cuckoo optimization algorithm (COA)
proved to show 93% effectiveness
compared to traditional COA and GA.

[17] 2020

Tianjin, China
(Bsk), and

West Lafayette
USA (Dfa)

Bsk, Dfa

Simulation—
Support Vector
Machine (SVM),
experiment and
questionnaire

- - - 8 months

• Prediction accuracy of outdoor
thermal comfort was 66–72%
from exposed body parts and
42–58% from abdomen or thorax;

• It was noted that skin
temperature of one body part and
two body parts improved the
model’s accuracy by 1–5% and
4–7%, respectively.

[85] 2020 Nanjing,
Singapore Af Simulation,

ENVI-met PET - -

• East-west orientations have the
warmest temperature build-up;

• As aspect ratio increases, Tmrt
decreases;

• Aspect ratio should not be less
than 3, 6, and 8.

[10] 2021 Tehran, Iran Csa
Questionnaire

survey (289), field
measurement

WBGT, ET,
Humidex, Teq

UTCI, PET, SET*,
WCT, STI

Summer, winter
ASHREA and

McIntyre 3-point
scale

79 days

• Low percentage (30% on average)
of prediction was noted for TSV
vs. original scale of indices;

• Especially in the neutral class,
UTCI and PET’s modified scale
using probit analysis and PPD’s
diagram-fitted curve correlated
better with TSV (on an average it
improved to around 50%).
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[86] 2021 Singapore Af Simulation,
ENVI-met PET - -

• The best street orientation is
north-south with an aspect ratio
of 1.5–3.5.;

• The study recommends
region-specific urban geometry to
improve outdoor thermal comfort
than a universal one.

[87] 2021 Serbia Cfa - UTCI Summer, spring - -

• Temperature anomalies showed
an increasing trend during
summer and spring;

• There is also temporal variation
in UTCI threshold value.

[21] 2022 Seoul, South
Korea (Dwa) Dwa

PET (from previous
studies), ML

(Decision Tree,
Random Forest, XG

Boost, Ada Boost,
Bayesian Ridge),

simulations
(RayMan Pro)

PET - ASHRAE 14 years

• Prediction accuracy reached up to
90% after hyperparameter tuning;

• Among the five ML approaches
tested, random forest gave the
highest prediction accuracy
95.11% compared to other
ML models.

[12] 2022 Imola, Italy Cfa

Simulations
(Rhinoceros,
Energy Plus,
Honeybee,
Ladybug)

Real-time PET - - 1 day Simulation of green pedestrian network
can reduce temperature up to 3 ◦C.

[19] 2022 Xiamen,
China Cwa

Questionnaire
(1032), structural
equation model

- Summer,
8 a.m.–6 p.m. ASHRAE 3 days

• A unit increase in psychological
cognition led to an increase of
0.601 units of outdoor
thermal comfort;

• Multi-sensory modalities have a
strong influence on
thermal comfort.

[88] 2022 Gwalior, India Csa ANN PET, UTCI - 6 months

• Two ANN models had R2 more
than 90%;

• UTCI provided better accuracy
than PET, about 6–8% more.
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[89] 2022 Gwalior, India Csa Simulation
(ENVI-met) PET - 2 months

ANN for predicting PET had R2 value
of 99% when all important
meteorological variables were
considered and 93% when only air
temperature was given as
meteorological input for ANN

[90] 2022 Perugia, Italy Cfb Questionnaires (27) mPET Summer,
12 p.m.–3 p.m. 1 day

• Two solar awnings were
compared, one with aluminized
polyester film—low thermal
emissivity, and another with
textile awning—high thermal
emissivity;

• The optimized solar awning can
reduce mPET value by 1.6 ◦C.
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Figure 2 shows the Köppen–Geiger climatic classification of the studies. A total of
25% of the studies were conducted in Hot-summer Mediterranean climate (Csa), 19% in
Monsoon-influenced humid subtropical climate (Cwa), followed by Tropical savanna, wet
(Aw), Humid subtropical climate (Cfa), and Cold semi-arid (steppe) climate (Bsk), 10%
each. Thus, most of the study types had warm-to-hot climatic types as opposed to the
cold ones used for developing the indices. Figure 3 reveals indices for developing neutral
thermal comfort or estimating prediction accuracy. Though bio-climatic UTCI is considered
better than PET as the former can calculate dynamic activity levels, 28 studies used PET
as the main index, and UTCI was applied by 18. TSV was evaluated by most studies (24)
to compare with the prediction accuracy of the index. Several studies also used multiple
indices simultaneously to determine the accuracy.
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4. Examining the Accuracy of OTC: Methods and Limitations

The summary results of the studies, in Table 2, were analyzed to determine the factors
influencing the prediction accuracy of outdoor thermal comfort studies besides the bio-
meteorological ones generally explored by the indices. A critical examination allowed us to
highlight the main factors and gaps the current methodology possessed, as explained in
the sub-sections below.
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4.1. Significant Predictor Variables

Traditional outdoor thermal comfort indices involve the calculation of meteorological
and a few personal factors such as gender, height, and weight to derive an index. Most
commonly used OTCIs like PMV, PET, and UCTI consider predictor variables exclusive
of psychological or emotional cognition. Summary results from the studies indicate that
these indices provided a low predictive capability. Few studies tried to overcome this
shortcoming by incorporating more variables either by regression equations or altering
the weightage of meteorological factors through an empirical equation. A study in Hong
Kong considered solar and wind preference to be the most significant factors compared to
other generic climate parameters and, based on field survey and reexamination of UTCI,
developed a new OTCI called SWI [48]. Analysis of the result indicates that regions with
temperate climatic types prefer solar radiation as the most influencing factor for thermal
comfort [74,75,90]. Another empirically developed index was MOCI for Mediterranean
climates, based on Tmrt, air temperature, relative humidity, and clothing insulation. How-
ever, it was provided with different weightage for coefficient terms compared to PET or
UTCI to predict a region-specific index that is more accurate [62]. Other studies replicated
field surveys and compared them with TSV, to determine more prominent factors among
the common factors [55].

Few studies also confirmed a non-linear relationship between OTCI and operative
air temperature [73]. Besides meteorological factors, some studies tested and confirmed
the hypothesis that building orientation and street layout are prominent factors affecting
outdoor thermal comfort [58,63]. Only one study directly evaluated the effect of direct
psychological cognition (multi-sensory modalities) on thermal comfort using the struc-
tural equation method (SEM) [19]. Using regression techniques, Kruger and Drach (2017)
assessed multiple factors like ethnicity, skin color, body mass index (BMI), and age for
estimating the thermal neutral range [68]. Generally, survey reporting on comfortability
was not duration-oriented, i.e., time spent outdoors by a respondent was ignored, and tran-
sient comfortability was taken as the overall comfortability experienced by the participant.
Contrary to this traditional method of assessment, Cheung and Jim (2019) pointed out
that the duration that a person spends outdoors determines comfortability by calculating
the 1-h duration acceptable range, and prediction results of PET and UTCI based on their
hypothesis showed very high accuracy [84]. Overall, all studies that tested the hypothesis
of whether demographic and personal factors were prominent confirmed that they are
significant along with meteorological factors [9,19,45,48,53,61,68,74,77,82].

4.2. Predictive Ability of OTCIs

The existing OTCIs were developed based on experimental studies conducted in a
climatic chamber with subjects from Europe/America living in colder climates, thereby
making the classification of different thermal ranges biased towards them. It was generally
found that the predictive ability of OTCIs is low (30–50%) on average [10,59]. For instance,
MOCI, an index developed for the Mediterranean region, gave a better accuracy rate
(32.3%) than PET, PMV, UTCI, and GOCI. Another reason stated by researchers for the
low predictive ability is because the thermal comfort captured by these indices is generic
instead of region-specific, as results indicate that thermal comfort perceived by people will
vary according to age, gender, activity level, occupation, and ethnicity. Several studies
recalculated the relationship between thermal comfort and influencing factors, as explained
in Section 4.1, to improve the predictive capability of OTCIs.

The prediction accuracy rate also varied among different OTCIs and the climatic
regions they applied to. For example, in Csa climatic regions, typically, UTCI provided
better accuracy prediction than PET or PMV [88]; contrary to this, some studies noted that
actual sensation vote (ASV) or thermal sensation vote (TSV) provides better prediction
than UCTI or PET [56]. Prediction results tend to underestimate neutral and warm thermal
sensations for Bsk [20]. Some studies modified the existing indices to improve the accuracy,
like Liu et al. (2020) who estimated and correlated skin temperature with outdoor thermal
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comfort to improve the forecast of UTCI by 4–7% [17]. Probit analysis and cubic regression
enhanced the accuracy of ASV and UTCI to around 50% [10,56,73] in Csa climates and
around 63% in Aw climatic regions. Machine learning techniques like ANN, GA, and ELM
were employed for the improved predictive accuracy of PET [20]. Jeong et al. (2022) applied
Bayesian hyperparameter tuning to machine learning models and found that random forest
could increase prediction accuracy to 90–95% [21].

4.3. Field Survey and Accuracy of Participants’ Response

The field survey was the standard method of determining participants’ direct thermal
sensations for all the studies in Table 2. The number of participants ranged from 300 to
1000 for survey responses. Some studies also carried out semi-structured or structured
interviews to gain more information before allowing participants to vote on their current
thermal sensation. ASHRAE’s 7-point scale was the most commonly used one, followed
by ISO questionnaires. Some studies used two scales, for example, ASHRAE 7-point and
McIntyre 3-point scales [10,43,62]. A few others added more voting scales to existing
ASHRAE or ISO voting scales [56,84]. Generally, field surveys included participants either
spending time performing outdoor activities like walking, standing, and sitting [66,73], or
allotting time to spend outdoors around 10–15 min [9,56,78,83]. All studies also evaluated
meteorological measurements ranging from a day to a few covering transitional seasons [10]
or a few days every month [80]. Outdoor field surveys were sometimes carried out in
different locations, including gardens and open streets, to draw a comparison among
the trends [58,59,68,78]. Researchers often had to eliminate some survey responses, and
a few authors noted that participants showed a general difficulty in voting for slightly
warm/warm and slightly cool/cold, thus allowing the possibility for the results to be
arbitrary [72,74,80].

4.4. Thermal Neutral Stress Range

Multiple studies focused on thermal neutral stress as it is helpful in public awareness,
the tourism industry, and urban design. The majority of studies, mainly from tropical
and temperate regions, had thermal neutral stress significantly higher than the neutral
stress of UTCI or PET [43,55,66,71]. As noted in Section 4.1, all indices were developed for
people in cold regions; thus, TSV often revealed divergent results compared to standard
OTCIs [45,55]. Studies also noted that UTCI often predicted a neutral thermal range better
than PET or PMV [74]. To overcome this shortcoming, a few researchers also evaluated
neutral thermal range from modified PET or PMV by logistic or probit analysis [62] or
machine learning techniques like ANN [20,21]. It was found that the thermal neutral range
was also a function of seasonal variation [45,70] and the existing climatic zone [81]. The
variation of clothing insulation in different seasons made participants perceive higher
summer and lower winter temperatures to be around the neutral range.

4.5. Methodology for Estimation of OTCIs

Out of 98% of studies that compared field survey results (TSV/ASV) with universally
applied OTCIs like PET or UTCI, none indicated that they generated similar results. Several
indices were modified, and regression or machine learning techniques were often applied
to correct the divergent results. Often, researchers concluded that the inherent error is due
to improper estimation of survey results or lack of accuracy produced by the OTCI as it
ignored subjective perception. One study correlated thermal comfort as a direct result of
skin temperature of body parts and cross-validated it with a questionnaire survey [17].
Other studies used a hybrid method, i.e., combining machine learning techniques such
as Ada Boost, Bayesian bridge, and random forest to improve PET results. It was found
that the hybrid model increased the prediction accuracy to 95% [21]. Simulation methods
were employed as an alternative to the traditional method for evaluating outdoor thermal
comfort, outdoor space usage, and to test the influence of any demographic and social
factors using fuzzy logic [91], a multi-agent system [18], or ENVI-met [71,76,85,89,92]. A
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few studies also tested GIS outdoor thermal comfort simulation software to yield a better
map to zone out different outdoor spaces as per their daily and seasonal usage while
assessing various meteorological and personal factors [53,54,82,83].

4.6. Seasonal Variation

Typically, all empirical/rational-based OTCIs and TSV assume that outdoor thermal
comfort range or thermal neutrality based on any particular day corresponds to thermal
sensation throughout the year and remains unchanged. However, the majority of studies
evaluated OTCIs and TSV for multiple seasons, including the transitional period, some
for more than one year. Overall, the results across multiple studies confirm that people
are more tolerant of higher temperatures during summer than in winter [9,48,62,73]. The
reason is attributed to people’s psychological conditioning of expecting higher summer
temperatures than in winter, making warmer temperatures more tolerable. Pantavou (2013)
considered seasonal and activity types as crucial personal factors for the perception of
thermal conditions [55]. Xie et al. (2019) noted that the summer season was revealed to
have the narrowest neutral thermal stress range compared to other seasons [80]. Compared
to the rainy season, the dry season’s neutral and upper thermal comfort were much lower,
as determined by PET and SET* [77]. GIS view tools showed that 76% of people stayed
outdoors in springtime compared to 65% in summer. Studies also noted that built-up areas
produced an environment with more thermal stress for both summer and winter [83].

Besides the main factors influencing the prediction accuracy of OTCIs, the review also
found that age is considered for RayMan model calculations; the only study that assessed
the effect of age as a primary factor reported that elderly sub-groups had a lower TSV by
0.3 units compared to the younger population [68]. This study also tested various other
factors like skin color, BMI, and gender with the help of the Structural Equation Model
(SEM). Another study [72] mentioned that local people can tolerate a broader range of
climatic variations than non-local, but generally, ethnicity was never tested as a primary
factor by the studies analyzed. A few researchers studied the street layout, building
orientations, and building heights and proposed appropriate directions to improve thermal
comfort [85,86]. Xu et al. (2018) studied landscape features, especially visual landscape,
and concluded that these features improved thermal comfort [74]. Lastly, Acero et al. (2021)
argued for a region-specific index rather than a generic one due to the complexity involved
with predictive accurateness [86].

Overall, the existing common approaches to outdoor thermal comfort fail to fully
explain thermal satisfaction [43,75]. These approaches are based on the thermodynamic
principle and do not consider psychological or behavioral aspects in dealing with outdoor
thermal conditions. In contrast, Industry 4.0 provides tools and techniques that can be
integrated or used independently to develop OTCIs with enhanced and reliable prediction
accuracy, accounting for the potential influences of psychological, gender, or behavioral
attributes. Therefore, in the following section this paper discusses the process of ‘Knowl-
edge Translation’ and how to better integrate elements of Industry 4.0, which are currently
underutilized in published research.

5. ‘Knowledge Translation’ of Industry 4.0 to Fulfill Gaps in the Current Thermal
Comfort Index Approach: Deriving Both ‘Generic’ and ‘Specific’ TSV

Traditional methods of estimating thermal comfort indices are generally confined
to using ambiguous thermodynamic principles. However, by applying the process of
‘knowledge translation’ permitted by interdisciplinary analysis, the elements of Industry
4.0 can be leveraged to address the shortcomings of these methods. This is exemplified in
the proposed approach, as shown in Figure 4, which is based on the comprehensive interop-
erability of four different levels of assessment: physical, physiological, psychological, and
social/behavioral [8]. The current gaps in conventional methods are identified at each level,
and the proposed development is presented based on the theoretical exploration of Industry
4.0. In this way, the framework overcomes common study limitations and, more impor-
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tantly, enables the identification of overall human outdoor thermal comfort by proposing
guidelines and suggesting tools or instruments for each phase. This approach has the
potential to enhance the urban planners and designers’ interpretation and understanding
of the microclimate and outdoor thermal comfort. Accordingly, the proposed framework is
systematically composed of four different levels of assessment in one structure (Figure 4), as
well as four methodology phases: preliminary data collection, on-site field measurements,
a social survey, and micro-urban performance simulation.
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5.1. Phase One

It is essential to gather background information on a specific urban environment.
This can be achieved through activities such as site observation, walk-throughs, reviewing
meteorological profiles and weather reports, conducting surveys of existing building
structures and their urban morphology, and studying the types of vegetation present. This
initial phase is crucial as it helps classify the characteristics of the site, requiring site-specific
sampling strategies. According to the World Meteorological Organization (WMO) guide
to Meteorological Instruments and Methods of Observation (WMO No. 8, 2008) [83], a
site’s urban form can be simplified and categorized based on factors such as roughness
length, aspect ratio of urban canyons (height-to-width ratio), and the percentage of built or
hard surfaces.

However, it is very limited to a specific timeframe, time-consuming in large sites, and
not every site can be simplified. This leads to the inability of traditional methods to conduct
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detailed studies on the effect of street layout, building orientation, or urban development
on urban thermal comfort. To overcome these shortcomings, IoT, as an essential part
of the digital twin of smart buildings and smart cities, gathers data continuously for
big data analytics. Primarily, IoT-enabled devices or gadgets collect information from
surroundings based on sensor(s) embodied in them, which is relayed to data analytics
using cloud computing. After data pass through the communication model conduit, users
and service providers can analyze the big data aggregation for predictive analytics in
necessary domains.

Applying the concept of IoT is relatively new, and research publications are scarce,
and to the best of the authors’ knowledge, the published work has mainly focused on
indoor thermal comfort [33]. However, utilizing this concept is useful for predicting
the outdoor thermal comfort index, particularly in collecting weather parameters, as
monitoring meteorological parameters is a critical step in using a thermal comfort index,
whether the index is empirical or simulation-based [33].

5.2. Phase Two

The primary objective of conducting in situ field measurements is to capture the urban
geometry and materials and their impact on the local climate within the urban canopy layer
(UCL). This information cannot be obtained solely from meteorological weather data. A
physical site survey is essential to identify specific locations for measuring microclimatic
variations within the urban canyon. To ensure human thermal comfort, certain microclimate
parameters must be measured, including air temperature, solar radiation, relative humidity,
wind velocity, and globe temperature [72]. These data can then be compared with local
weather station data to assess the site urban heat island (UHI) condition and microclimate
conditions within the urban canopy layer. The survey also helps in understanding how
urban geometry factors, such as aspect ratio, vegetation, and sky view factor, affect the
local climate. It is worth noting that while the accuracy of instruments and measurement
methods is crucial, many recent studies on outdoor thermal comfort and microclimate fail
to provide sufficient information about the equipment used, its accuracy, and response
time [81]. This leads to the inability of traditional methods to conduct detailed studies on
the effect of street layout, building orientation, or urban development on urban thermal
comfort. To overcome these shortcomings, multiple studies in Table 1 used GIS to study
different influencing factors, such as street layout and building orientation, behind thermal
comfort and to estimate TSV. Using artificial realities, implementing a digital twin that
can act as an exact replica of the real city, will help to study an entire cityscape’s influence
rather than the few buildings currently possible with standalone GIS [91]. Juxtaposition of
a geo-spatially-supported digital twin with alternate reality can further help to evaluate
thermal sensation and thermal comfort ranges of any existing urban place or even an entire
city based on physical factors such as age, gender, occupancy length, activity level, and
clothing type. TSVs can be specially developed covering different psychological cognition
categories as well.

5.3. Phase Three

During the third phase, it is important to simultaneously implement questionnaires
and observations alongside physical measurements. This allows for an investigation into
the influence of the microclimate within urban spaces on the duration and usage of these
spaces. Additionally, it helps in gaining a local understanding of adaptive behaviors that
can be adopted to mitigate heat stress [20,25]. However, one of the drawbacks of the
adaptive approach is that there is no advice on how to perform or design the field survey
regarding the required number of subjects, appropriate time of the day, and minimum
duration for each survey. Moreover, as pointed out in Section 4, accurately gauging people’s
thermal sensation remains a challenge with the traditional approach of using surveys and
questionnaires. One of the main limitations of survey studies was the researchers’ inability
to truly study the amount of time or activity type of participants in the field. Additionally,
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carrying out field studies on extreme weather conditions for a long duration is futile
as participants may not cooperate. Almost all studies had participants spend 5–15 min
outdoors during the field survey before perception was recorded. This method of assessing
the sensation of thermal comfort can lead to erroneous results, as shown by Cheung and
Jim (2019) [84]. Thus, to assess a TSV, employing better and more accurate methods may
produce favorable outcomes, for example, using electroencephalography (EEG) hardware,
which acts as a Brain—Computer Interface (BCI) that can record natural brain states and
emotions towards an environment while providing real-time brain performance metrics [49].
Furthermore, the development of SEM-ANN for deriving OTCI prediction equations can
be studied with the help of artificial realities in a multi-mediated simulation chamber, in
case of extreme weathers, which is also a component of Industry 4.0.

At this level, the use of Brain–Computer Interfaces or wearable devices equipped with
sensors can gather physiological data from individuals participating in outdoor thermal
comfort studies. These data, combined with environmental data obtained from previous
levels, can provide insights into personal comfort levels and help evaluate the effectiveness
of different interventions or design strategies. For improved accuracy, the analysis could
incorporate Artificial Neural Network (ANN) analysis in combination with Structural
Equation Modeling (SEM). ANN is a computational model inspired by the structure and
functioning of biological neural networks in the human brain. It is a type of machine
learning algorithm trained to recognize and learn patterns from input data. Through
backpropagation, the network adjusts the strength of connections between neurons to
enhance its performance in tasks such as classification, regression, or pattern recognition.
On the other hand, SEM is a statistical modeling technique used to analyze the relationships
between observed and latent variables. It is widely employed in social sciences, economics,
and other fields to test and validate complex theoretical models. SEM combines factor
analysis and path analysis to estimate the relationships between variables and assess the
goodness-of-fit of the model to the observed data. It enables researchers to determine the
direct and indirect effects of variables on each other, evaluate the overall model fit, and
examine the significance of relationships. SEM is particularly valuable for studying complex
causal relationships and understanding latent constructs that cannot be directly measured.

Another gap identified was the need to determine zonal OTCIs or develop both
generic and region-specific OTCIs to enhance thermal comfort. One of the main reasons for
evaluating the outdoor thermal comfort index is to optimize the time people spend outdoors
to improve their health and wellness. People’s emotional and physiological parameters
are directly linked to their activity and time expended outdoors [50,51]; therefore, factors
promoting one person to spend time outdoors may not suit another. In indoor thermal
comfort modeling, attention was given to deriving a personal comfort model or one for a
particular group of people using ML models and IoT devices since results of traditional
modeling or surveys typically refer to most of the population (assuming these surveys
were carried out by random sampling) [52]. To resolve the aforementioned problem, the
concept of synergizing an alternate reality with geo-spatial digital twin while measuring
the experiencer’s cognition and emotion via a BCI can be applied to determine both generic
and specific (personal/particular category) TSVs.

A generic TSV, thus developed from random sampling in an indoor simulation cham-
ber, can be used to design or redesign outdoor space which people of different ages, ethnic
groups, activity levels, or gender may occupy. On the other hand, similar to personal
thermal comfort for an indoor built environment, a specific TSV can be utilized for the
design of outdoor spaces occupied by a person (open space designed for a villa) or group of
people having shared physiological or psychological cognition (e.g., a school playground
used by children of particular age group). Thus, specific TSVs can be employed for the
design or redevelopment of places as per the attributes of people who may use them most
of the time.
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5.4. Phase Four

In the last phase, it is important to acknowledge that an individual’s subjective per-
ception and response to outdoor spaces can vary based on the specific context and local
cultures. However, parametric environmental performance simulation analysis offers valu-
able comparative analytical tools to evaluate different design proposals and their impact
on human well-being. Many scholars have emphasized the pressing need to enhance the
development of dependable outdoor environmental predictive tools. These tools can assist
in evaluating modifications in outdoor microclimates during the design phase [18,80,81,88].
However, these predictive micro-urban performance simulations, such as ENVI-met, Com-
putational Fluid Dynamics (CFD), RayMan, and SOLWEIG, etc., are ignoring the human
dimension in the process using steady-state thermal indices and time consuming when it
comes to create several scenarios. These can be addressed through employing Industry 4.0
technologies, such as simulation and virtual reality (VR), can be utilized to create virtual
outdoor environments as a solution for the last two gaps. Researchers can simulate different
weather conditions and virtually test the thermal comfort of users, enabling controlled
experiments and rapid prototyping of designs. Additionally, smart infrastructure and
adaptive systems can contribute to the development of infrastructure and systems that
dynamically respond to changing environmental conditions. For example, automated
shading systems or intelligent ventilation systems can be implemented to optimize thermal
comfort in outdoor spaces.

In Figure 4, the proposed framework demonstrates how knowledge translation, un-
covered through the review process, can be applied. This framework aims to incorporate
elements of Industry 4.0 for each influencing factor. To address all the gaps, it is important
to effectively measure and model the physical and physiological characteristics to provide
microclimatic knowledge. Simultaneously, the psychological and social or behavioral
characteristics should be clearly identified and analyzed to provide grounded theory for
assessing and designing habitable outdoor spaces.

6. Conclusions

The primary gap lies in the fact that OTC is an interdisciplinary study that encom-
passes various phenomena, including meteorology, urban structure, psychology, and social
behavior [8]. However, none of the reviewed approaches successfully conducted a compre-
hensive analysis, and they overlooked several key factors that have been widely recognized
as the main cause of their low predictive accuracy. The few studies that tested machine
learning methods (a subset of Industry 4.0) like ANN and SEM showed that accuracy can
be improved even up to 90% compared to 30% for current OTCIs.

The review analysis informs that the predictive accuracy of traditional methods of
assessing outdoor thermal comfort indices is generally lower than 40%. The discrepancy in
the neutral thermal stress is significantly higher for warmer regions as all indices currently
used for research were developed based on temperate climates with European/American
subjects. Research evidence from both the traditional paradigm and Industry 4.0 concludes
that subjective perception of outdoor thermal comfort, duration spent outdoors before cast-
ing survey votes, ethnicity, gender, and age are all prominent factors besides meteorological
ones. Thermodynamically backed outdoor thermal comfort indices cannot capture these
multi-sensory modalities, psychological and emotional cognition, a plausible reason for
their low predictive accuracy. Though few studies tried to improve indices or estimate out-
door thermal comfort by leveraging Industry 4.0 (machine learning techniques, advanced
GIS), the review found that Industry 4.0 is less explored in outdoor studies than indoor
ones. This study also identified four main gaps existing in the current outdoor thermal
comfort studies: (1) demographic/personal/multi-sensory modality factors not being fully
considered; (2) field survey and indices being inaccurate; (3) lack of consideration of urban
features on a city level; and (4) a generic index like UTCI or PET being unable to capture
regional variations. The study theoretically further explored Industry 4.0 to develop im-
proved tools and techniques to improve the prediction accuracy of indices. Therefore, to
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derive highly accurate generic and region-specific indices, exploitation of Industry 4.0 is
recommended: demographic/multi-sensory modalities can be determined through BCIs;
field survey can be replaced with BCIs and multi-mediated reality; geo-spatial digital twins
with IoT can provide capture urban features; and, finally, machine learning techniques like
SEM-ANN can aid to develop regional indices. In addition to the ease and the ability of
Industry 4.0 in to instantly share and compare results with other studies that have utilized
similar techniques, thus establishing a platform for outdoor thermal comfort studies and
generating new knowledge, this knowledge can then guide the design and methodology of
data collection and interpretation, leading to a better understanding of the true relationship
between the various factors influencing thermal satisfaction [43].

In conclusion, further investigations are still required to explore the development
of advanced data analytics techniques and modeling approaches for analyzing data and
deriving meaningful insights. Despite the limited application thus far, future studies on
outdoor thermal comfort using Industry 4.0 present an exciting avenue for research. These
studies offer opportunities for more data-driven, adaptive, and personalized approaches to
enhance outdoor comfort in urban environments.
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Nomenclature

AI Artificial Intelligence
ANN Artificial Neural Network
AR Augmented Reality
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
ASV Actual Sensation Vote
BCI Brain–Computer Interface
BIM Building Information Modeling
BMI Body Mass Index
CFD Computational Fluid Dynamics
CO2 Carbon Emissions
CNN Convolution Neural Network
DTS Dynamic Thermal Sensation
EGG Electroencephalography
ELM Extreme Learning Machines
ET Effective Temperature Index
GIS Geographic Information Systems
GA Genetic Algorithm
GOCI Global Outdoor Comfort Index
HTMs Human Thermoregulatory Models
HVAC Heating, Ventilation, and Air Conditioning
ICT Information and Communication Technologies
IoT Internet of Things
ISO International Organization for Standardization
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LTST Long Term Short Term
MDD Major Depressive Disorder
MTSV Mean Thermal Sensation Vote
ML Machine Learning
MoBI Mobile Brain/Body Imaging
MOCI Mediterranean Outdoor Comfort Index
mPET Modified Physiological Equivalent Temperature
MR Multi-sensory and multi-mediated Reality
OTC Outdoor Thermal Comfort
OTCI Outdoor Thermal Comfort Index
PET Physiological Equivalent Temperature
PMV Predicted Mean Vote
PTV Preference Thermal Vote
RNN Recurrent Neural Network
SET* Standard Effective Temperature
STI Subjective Temperature Index
SWI Sun and Wind Index
SEM Structural Equation Method
SVF Sky View Factor
TEP Perceived Equivalent Temperature
Teq Equivalent Temperature
Tmrt Mean Radiant Temperature
TSV Thermal Sensation Vote
UCL Urban Canopy Layer
UCM Urban Canopy Models
UHI Urban Heat Island
UTCI Universal Thermal Climate Index
VOC Volatile Organic Compounds
WCT Wind Chill Temperature
WMO World Meteorological Organization
XR Virtuality axis
YDS Sense of Thermal Comfort
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