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Abstract
We employ the Gross–Pitaevskii theory to model a quantized vortex depinning from 
a small obstacle in a two-dimensional superfluid due to an imposed background 
superfluid flow. We find that, when the flow’s velocity exceeds a critical value, 
the vortex drifts orthogonally to the flow before subsequently moving parallel to 
it away from the pinning site. The motion of the vortex around the pinning site is 
also accompanied by an emission of a spiral-shaped sound pulse. Through simula-
tions, we present a phase diagram of the critical flow velocity for vortex depinning 
together with an empirical formula that illustrates how the critical velocity increases 
with the height and width of the pinning site. By employing a variety of choices of 
initial and boundary conditions, we are able to obtain lower and upper bounds on the 
critical velocity and demonstrate the robustness of these results.
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1  Introduction

The interaction between topological defects and their environment is responsible 
for a host of fascinating phenomena in physical and biological systems. One of 
the most important examples thereof is the pinning of topological defects, e.g. 
rotating waves in cardiac muscles [1–3], vortices in active matter [4] and nematic 
defects in liquid crystals [5, 6]. In quantum fluids, such as superfluids and super-
conductors, the nucleation and motion of quantized vortices play crucial roles. 
For instance, in superfluid He-II, the presence of vortices can lead to dissipation 
of the superflow [7]. Additionally, vortices can be readily pinned to obstacles with 
a length scale comparable to the superfluid healing length [8], such as bumps in 
a superfluid container and defects in superconductors. Furthermore, vortex pin-
ning results in a correction to the Berezinskii–Kosterlitz–Thouless transition in 
thin-film He-II [9–11], holding magnetic flux in type-II superconductors [12–14], 
an increase in critical counterflow velocity [5]. Vortex pinning can also be imple-
mented in order to manipulate atomtronic devices [15–17].

Quantum fluids are also thought to be present in cosmological and astrophysi-
cal systems such as dark matter and neutron stars. In the ultra-light dark matter 
model [18–21], vortices are found to be unstable in the central region of dark mat-
ter halos [22–24] but are associated with the granule size with a turbulence-like 
characteristics in the outer regions [25]. In the interior of a neutron star, both neu-
trons and protons can be in the superfluid phase [26]. The neutron fluid typically 
contains of order 1018 vortices, which can pin to the nuclear lattice in the star’s 
outer crust [27, 28] and to magnetic flux tubes in the star’s core [29, 30]. In this 
system, vortex pinning prevents the superfluid from spinning down at the same 
rate as the crust, thereby creating a rotational lag. It is believed that, when this lag 
reaches a critical value, the vortices depin and transfer angular momentum from 
the superfluid to the crust, resulting in a sudden increase in the observed rota-
tional frequency known as a glitch. The exact process by which a glitch occurs 
is not fully understood but may involve an avalanche of millions of vortices that 
depin and thereby trigger further depinning [31]. Given the complexity of the 
mechanism underlying these spindown glitches, it is pertinent to first study the 
dynamics of a small number of vortices and thereby understand the conditions 
under which they depin, which is the aim of the present work.

From the perspective of a pinned vortex, the rotational lag in the neutron star 
crust manifests as an ambient superflow, which exerts a lateral Magnus force on 
the vortex [32]. Above a critical superfluid velocity, this force causes the vortex 
to depin, after which it moves with essentially the same velocity as the ambient 
flow. This critical velocity was first studied numerically by Schwarz [33] using 
the vortex filament method (in which a vortex is modelled as a one-dimensional 
line); in this model, the pinning site was a hemispherical ‘bump’ on the bound-
ary of the superfluid. Subsequently, [8] demonstrated that multiple vortices can 
be trapped on the same bump. More recently, [34] investigated a related prob-
lem—the scattering of a superfluid vortex by an obstacle. For an obstacle of large 
width, they found that the critical velocity for pinning could be predicted using 
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the equation of motion for a vortex under the small-displacement approximation 
[35].

Despite this, the depinning process of a vortex subjected to a background superflow 
still lacks a detailed theoretical investigation. Thus, we carefully study the depinning 
dynamics of an initially pinned vortex due to the presence of a background super-
flow in a two-dimensional superfluid, as illustrated in Fig. 1. The superfluid system is 
modelled by the Gross–Pitaevskii equation with a phenomenological dissipation. The 
phase diagram of the critical depinning velocity is explored in terms of the height and 
width of the pinning potential, using an energetic argument to understand the transition 
between the pinned and free vortex states. A complementary set of simulations is also 
conducted in a different numerical setup with a different boundary condition to validate 
our finding.

This work is structured as follows. In Sect. 2, we describe our model and discuss the 
effects of dissipation on the vortex motion. We then proceed to address the numerical 
setup of simulating the dynamics of depinning and the results of these simulations in 
Sect. 3. Subsequently, in Sect. 4, we propose a phase diagram for the critical depinning 
velocity and an energy landscape for vortex depinning alongside a validation check of 
the depinning simulations employing quasiperiodic boundary conditions (QPBCs). 
Finally, we summarize and discuss our findings in Sect. 5.

2 � Theoretical Formalism

2.1 � Gross–Pitaevskii Theory

We model a two-dimensional superfluid using the damped Gross–Pitaevskii equation 
(dGPE) [36–41],

(1)i�
𝜕

𝜕t
𝜓(r, t) = (1 − i𝛾)

(
ĤGP − 𝜇

)
𝜓(r, t)

Fig. 1   Schematic plots of a vortex (red dot) subjected to a pinning site of width w and a background 
superflow vs = −vyŷ . Initially (a), the vortex is trapped within the pinning site but (b) depins when vy 
exceeds a critical value vc . The vortex trajectory is marked by a long triangle with a colour gradient. The 
colour gradient indicates the vortex positions at different times, and the width of the triangle is the veloc-
ity of the vortex



	 Journal of Low Temperature Physics

1 3

where � is the order parameter for superfluid particles with mass m, � is the chemi-
cal potential and

The superfluid number density and velocity are related to � by |�(r, t)|2 and 
vs = (ℏ∕m)∇arg[�(r, t)] , respectively. The parameter g > 0 describes the self-repul-
sion of the superfluid and is related to the s-wave interaction strength [42]. For the 
pinning potential, Vpin(r) , we assume a Gaussian profile [43, 44],

with height V0 and width w. The dimensionless parameter � in Eq.  (1) represents 
dissipation arising from the interaction between superfluid and normal compo-
nents1. In the context of Bose–Einstein condensates, � is proportional to temperature 
and is usually considered to be spatially constant with a numerical value of ≲ 10−3 
[45–47]. However, for reasons described in Sect. 2.2, our model includes a spatially 
dependent �(r) that suppresses waves and other dynamics far from the pinning site.

As described later, we choose the value of � in all of our simulations such that 
a constant density, |�|2 = n0 , is maintained at large distances from the pinning 
site. The system then has a characteristic length scale given by the healing length, 
�0 = ℏ∕

√
mgn0 , and a characteristic time scale t0 = ℏ∕gn0 . The ratio of these deter-

mines the speed of sound in the superfluid, c0 =
√
gn0∕m [42]. Provided that 𝛾 ≪ 1 , 

dissipation only plays a role on a much longer time scale, �0 = t0∕� [48, 49].
In this work, we theoretically investigate the critical depinning velocity of a vor-

tex initially pinned by a pinning potential in a superfluid with a background flow 
vs = −vyŷ . The width of the pinning potential, w, is chosen to be of the same order 
as the healing length, �0 , which is the relevant parameter regime for the neutron star 
crust. Unlike several previous works that assume a wide obstacle, we cannot use 
either the vortex filament or the Thomas–Fermi (TF) approximation in this regime. 
Instead, we use the dGPE model to determine the critical velocity. For later conveni-
ence, we introduce the following notation to represent different possible states of the 
system: 

(i)	 �0,vy
=
√
n0e

−imvyy∕ℏ : a homogeneous density solution with a background flow;
(ii)	 �v,vy

 : a single vortex state subjected to a background flow;
(iii)	 �ps,vy

 : a vortex-free state with a pinning site subjected to a background flow;
(iv)	 �pv,vy

 : a pinned vortex state subjected to a background flow.
(v)	 �fv,vy

 : a free (depinned) vortex state subjected to a background flow far away 
from the pinning site.

(2)ĤGP = −
�2∇2

2m
+ Vpin(r) + g|𝜓(r, t)|2.

(3)Vpin(r) = V0e
−(x2+y2)∕2w2

,

1  Note that we work in the frame of the pinning site and we assume that the normal component is at rest 
in this frame. In the context of a neutron star, this corresponds to working in the frame of the star’s crust.



1 3

Journal of Low Temperature Physics	

States (ii)–(v) cannot be fully described analytically, and instead, we study them 
numerically, focusing on the dynamics in Sect. 3 and the energetics in Sect. 4.2.

2.2 � Numerical Setup

We solve Eq.  (1) using a Fourier pseudospectral method and a 4th-order 
Runge–Kutta scheme with a time step of Δt = 10−3t0 . The computational domain 
is a square box of width Lx = Ly = 256�0 with Nx = Ny = 512 grid points, thereby 
giving a grid spacing of �0∕2 . The pinning site, when present, is located at the 
centre of the box.

The use of Fourier transforms requires periodic boundary conditions in both 
x and y, and thereby imposes a vanishing net circulation around the boundary 
of the domain [50]. Although we are only interested in the dynamics of a single 
vortex, it is, therefore, necessary to simulate an alternating lattice of vortices and 
anti-vortices as illustrated in Fig.  2a. Given the size of the domain, we expect 
the effect of these additional vortices to be small, and we minimize their effect 
further by introducing a sponge layer via a spatially dependent dissipation [40, 
51, 52]. We adopt a smooth, rounded-rectangular sponge as plotted in Fig. 2a by 
defining

Fig. 2   a A schematic plot of the initialized states with the positions of vortices and anti-vortices 
marked in red and blue, respectively. The targeted vortex sits at the centre while the remaining 
three vortices (one vortex and two anti-vortices) are generated by the phase frustration at the edges 
due to the periodic boundary condition. The sponge layer, Eq.  (4), is represented by the round 
rectangular contours for x10 + y10 = R10

s
 (grey dashed line), x10 + y10 = (Rs − wabs)

10 (grey dotted 
line) and x10 + y10 = (Rs + wabs)

10 (grey dashed-dotted line). b Density profiles corresponding to 
the numerical solutions in the absence of a background superflow for a free vortex ( n = |�v∕pv,vy=0|

2  , 
V0 = w = 0 ) and a pinned vortex ( n = |�v∕pv,vy=0

|2 , V0 = 2E0 and w = {�0, 2�0, 3�0} ). The grey 
dashed line is the density profile of the analytical ansatz, Eq.  (17), for the free vortex while the 
dotted lines are the numerical solutions for �ps,vy=0

 . The hollow circles mark the Thomas–Fermi 
radius RTF = w ln(V0∕E0) where the density vanishes for r < RTF under the TF approximation, sug-
gesting that the vortex density profiles are poorly described by the TF solution
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where �0 is the dissipation induced by the interaction between superfluid and nor-
mal components. The strong dissipation set by �abs at the boundaries of the domain 
damps any sound waves, thereby isolating the central vortex from its periodic neigh-
bours. However, this dissipation also induces a transverse motion of the vortices 
near the edge of the domain, with a velocity −𝛾𝜅vyx̂ [17, 35]. Fortunately, this trans-
verse motion ends once the vortices reach the edge of the sponge layer. Thus, for a 
simulation domain large enough that the sponge layer is sufficiently distant from the 
central vortex, the effects of the edge vortices are marginal. Here, we set �abs = 1 , 
Rs = 98�0 and wabs = 10�0.

Another consequence of our periodic boundary conditions is that the imposed 
superflow velocity, vy , must be an integer multiple of Δv = 2�c0�0∕Ly ≈ 0.025c0 . 
This is because the phase of the order parameter, arg� , must also be periodic, and it 
is the gradient of the phase that determines the superflow. This restriction limits the 
precision with which the critical velocity can be determined but, given the size of 
the domain, this does not represent a significant limitation of our methodology.

2.3 � Initialization

As noted earlier, we specify the value of the chemical potential � in order to fix 
the (background) density to n0 . The correct choice is not only dependent on g and 
n0 but also on the background superflow velocity vs = −vyŷ . In the dGPE simula-
tion, the dissipative term ultimately drives the system towards a state satisfying 
(ĤGP − 𝜇)𝜓 ≈ 0 , and so we must choose the value of � such that in this steady state, 
the density is equal to n0 far from the pinning site. To determine the appropriate 
value, we consider the grand-canonical energy of the system,

where A is the domain area, g is the s-wave interaction strength and 
NA = ∫

A
d2r|�(r)|2 is the particle number in the domain. The damped 

Gross–Pitaevskii Eq.  (1) can be expressed as iℏ�t� = (1 − i�)�F∕��∗ , and the 
steady state corresponds to a minimum of the the functional F. In the absence of any 
vortex or pinning site, we expect the steady state to be � = �0,vy

=
√
n0e

−imvyy∕ℏ , 
and this is a minimum of Eq. (5) provided that

with a background energy E0 = gn0 . Therefore, � is set to the value given by Eq. (6) 
in our simulations.

(4)�(r) = �0 +
�abs

2

[
1 + tanh

{(
x10 + y10

)1∕10
− Rs

wabs

}]

(5)F = ∫A

d2r�∗(r)

[
−
ℏ2∇2

2m
+ Vpin(r) +

g

2
|�(r)|2

]
�(r) − �NA

(6)� = �0,vy
=

mv2
y

2
+ E0,
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To initialize the system with a vortex (with or without a pinning site), we first 
set vy = 0 and imprint a phase winding by setting � =

√
n0e

i� , where � is the polar 
angle relative to the centre of the domain. The GPE is then solved in imaginary time 
(i.e. with (1 − i�) in Eq. (1) replaced by -1), with � = E0 , until the quantity

converges to within 10−7 of E0 . This converged state is then used as the initial con-
dition for the dGPE. As mentioned earlier, because of the periodic boundary con-
ditions, this state actually features a lattice of vortices and anti-vortices but, for a 
sufficiently large domain, the central vortex is essentially independent of the others.

As examples of the solutions of Eq. (1), in Fig. 2b, we plot the density profiles of 
the free ( �v,vy=0

(r) ) and pinned ( �pv,vy=0
 ) vortices (both represented by solid lines), 

as well as the vortex-free state subject to the pinning potential ( �ps,vy=0
 , represented 

by dotted lines), for V0 = 2E0 with different pinning widths w. The vortex solutions 
show a density depletion with a width similar to the pinning site but it is also evident 
that they do not agree well with the Thomas–Fermi density,

as the radii within which the densities are strongly depleted are not in agreement 
with the TF radii, {RTF} , which we have presented in Fig. 2b as hollow circles. This 
suggests that the pinning potential height and width we have specified are too small 
for a vortex to be in the TF regime [34].

3 � Depinning Dynamics

With the initial state prepared, we impose a background flow by introducing a phase 
gradient

where vy must be an integer multiple of Δv = 2�c0�0∕Ly , for reasons explained ear-
lier. At the same time, we update the value of � to � = E0 + mv2

y
∕2 so that the sys-

tem remains in a steady state far from the vortices and pinning site. The simulations 
are performed with three values of dissipation: �0 = 0 , 5 × 10−4 and 5 × 10−3 . We 
find that the value of �0 has very little effect on the dynamics, including the depin-
ning process, except that after depinning the vortex drifts with respect to the ambi-
ent superflow by an amount proportional to �0 . This transverse drift is expected for 
reasons mentioned in Sect. 2.2. Although the total energy and momentum are not 
conserved quantities due to the presence of dissipation, in the simulations, we find 
that they only vary by a few per cent.

(7)
1

NA
∫A

d2r𝜓∗ĤGP𝜓

(8)nTF(r) =n0[1 − Vpin(r)∕E0]Θ(|r| − RTF),

(9)RTF =w
√
lnV0∕E0,

(10)�pv,vy
(r, t = 0) = �pv,vy=0

(r)e−imvyy∕ℏ,
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Three types of dynamics are found in our simulation: (1) If vy is sufficiently 
small, then the vortex is displaced a small distance from the centre of the pinning 
site, but remains pinned; (2) if vy exceeds a critical value, vc , the vortex depins and 
is carried away by the ambient superflow and (3) if vy is a significant fraction of the 
sound speed, c0 , additional vortices nucleate at the pinning site. However, the pre-
sent work is not concerned with regime (3), which has been studied in detail by oth-
ers, e.g. Refs. [43, 44]. Figure 3a illustrates typical vortex trajectories in regimes (1) 
and (2) for V0 = 2E0 and w =

√
2�0 . The vortex position in the figure is determined 

by locating the phase defect and density minimum in the wavefunction, after inter-
polating to the sub-grid level, and the trajectory is subsequently tracked by link-
ing timeframes using the Hungarian algorithm. In Fig. 3, the orange–black colour 
transition of the trajectories tracks the evolution of the vortex position from t = 0 
to 200t0 . It is evident that, in regime (1), the vortex follows a spiral trajectory and 
eventually reaches an equilibrium position to the left of the pinning site centre. In 
this new equilibrium, the pinning force ∝ x̂ balances the Magnus force ∝ ẑ × (−vyŷ) 
[32, 35]. The maximum spiral radius increases with vy , as shown in Fig. 3a (i) and 
(ii) for vy ≈ 0.172c0 and 0.196c0 , respectively. Conversely, if vy > vc ≈ 0.221c0 the 
system is in regime (2); the vortex initially follows a similar trajectory but moves 
far enough from the pinning site centre that it escapes and ultimately drifts with the 
ambient superflow.

In both regimes  (1) and (2), the motion of the vortex excites sound waves that 
carry energy away from the vortex. To illustrate this, in Fig. 3b–g, we plot the den-
sity fluctuation �n = [n(r, t) − nps(r)]∕n0 , where nps(r) = |�ps,vy=0

|2 is the density in 
the absence of a vortex or flow, together with the vortex trajectory for t∕t0 = 0 , 6, 
14, 40, 60 and 120. The plots show the case with �0 = 5 × 10−3 , but we observe very 
similar results for the other values of �0 considered. In these plots, the vortex loca-
tion is marked by a red circle, and the orange–black line is the trajectory up to time 
t. Similarly to the case of a vortex in a stirred condensate [53], while the vortex 
remains close to the pinning site, the sound waves form a dipolar pattern that spirals 
out from the vortex. For comparison, we have also performed a simulation with the 
same parameters but without a vortex; in that case, sound waves are still produced 
by the sudden imposition of a superflow past the pinning site at t = 0 , but these 
sound waves have a roughly circular pattern, and the density perturbations are 
smaller in magnitude by a factor of about 2.

The emission of sound waves becomes negligible in the later time dynamics 
whether the vortex remains pinned or depins, and those emitted at early times rap-
idly dissipate within the sponge layer around the domain boundary. We note that, 
as shown in Fig. 3g, density perturbations persist around the pinning site even after 
the vortex has depinned. This reflects the effect of the ambient flow on the pinning 
site. Furthermore, as mentioned earlier, at sufficiently high-flow velocities, vortices 
are nucleated in the pinning potential [43, 44]. If the pinning potential is too high 
( V0 ≥ 3.5E0 ) or too wide ( 

√
2w ≥ 3.5�0 ), then we find that this regime is reached 

before the superflow velocity reaches the critical depinning velocity vc . In this 
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regime, the depinning process is complicated by the involvement of multiple vortex 
interactions [34], and therefore, we only present data for pinning sites with smaller 
values of V0 and w.

Fig. 3   a Examples of vortex trajectories for V0 = 2E0 , w =
√
2�0 and �0 = 5 × 10−3 , with (i) 

vy ≈ 0.172c0 , (ii) vy ≈ 0.196c0 and (iii) vy ≈ 0.221c0 within the time span t ∈ (0, 200t0) . b–g The den-
sity fluctuations, measured by �n = [n(r, t) − nps(r)]∕n0 , are plotted when b t = 0 , c t = 6t0 , d t = 14t0 , e 
t = 40t0 , f t = 60t0 and g t = 120t0 , where it is evident that the radiated sound waves spiral out from the 
vortex. The vortex moves to the left of the pinning site due to the Magnus force but, once it escapes from 
the pinning site, it drifts downward with the superflow at a speed vy . The width of the pinning potential is 
indicated by the grey dashed circle. No significant difference between the dynamics for �0 = 0 , 5 × 10−4 
and 5 × 103 can be noted
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4 � Critical Depinning Velocity

4.1 � Phase Diagram of the Depinning Velocity

As illustrated in Sect. 3, if the imposed flow, vy , is not sufficient to depin the vortex, 
then it generally settles to a new equilibrium position within a duration of 200t0 . 
This new equilibrium is generally within a distance w of the pinning site centre. 
In our results, we, therefore, consider the vortex to be depinned if it is displaced 
by more than 1.5w from the pinning site within a duration of 200t0 , and we define 
vc to be the smallest value of vy for which depinning occurs. (We recall that our 
periodic boundary conditions only allow us to increase vy in steps of Δv ≈ 0.025c0 . 
Therefore, our results for vc may overestimate its true value by up to Δv .) In Fig. 4a, 
we show the values of vc obtained for V0∕E0 ∈ [0.5, 3.5] and w∕�0 ∈ [1, 3.5] . This 
figure shows the results in the cases �0 = 0 and �0 = 5 × 10−4 , which are identical; 
the results for �0 = 5 × 10−3 are nearly identical, except for the case V0 = 0.5E0 and 
w = �0 , where we find vc to be larger by Δv . This indicates that dissipation plays a 
negligible role in determining the critical velocity in our simulations.

From dimensional analysis, the value of vc∕c0 ought to depend only on V0∕E0 , 
w∕�0 and �0 . Thus, for sufficiently small �0 , we ought, therefore, to be able to fit 
our results to a function of the form vc∕c0 = f (V0∕E0,w∕�0) . Before performing this 
fitting, we first briefly review earlier work concerning the form of the function f. 
Stockdale et al. [34] used the equation of motion of a vortex under the small-dis-
placement approximation [35], in the absence of dissipation, to investigate the pin-
ning of a vortex in 2D with a circular top-hat barrier and a background flow. Making 
a Thomas–Fermi approximation for the density, they found that the vortex remains 
pinned if its equation of motion has a fixed point within the pinning site. In terms of 
our notation, the critical depinning velocity is then given by

(11)vc∕c0 =
�0

4�

(
2w + �

2w�

)V0

E0

Fig. 4   a Phase diagram of the critical velocity vc for �0 = 0 and 5 × 10−4 . b Comparison between the 
critical velocity and the empirical formula, Eq. (13). The lower errorbar indicates the possible range for 
vc given the velocity resolution, Δv ≈ 0.025c0
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where w is the radius of the obstacle, and � is a phenomenological screening param-
eter of order �0 . This result is only valid in the regime where w > 𝛿 and V0 < E0 , 
however, which is not the regime of interest of the present work.

Earlier, [33] used a vortex filament model to simulate a vortex pinned to a hemi-
spherical bump on the boundary of the domain. Here, the critical depinning velocity 
was found to be

where w is the radius of the obstacle, and D is the channel width of the superfluid 
container. Again, this result assumes w ≫ 𝜉0 and is intrinsically three-dimensional, 
and thus, it is not directly applicable to our results.

Motivated by the above literature, and by the results in Fig. 4a, we seek a fit of 
the critical velocity to the form

where the parameters a, b and c are assumed to be constant. Applying a least-squares 
fit to our data, we find

and for these coefficients, the empirical formula predicts vc to within 15% across our 
data set. In Fig. 4b, we plot vc as a function of w for three values of V0 , alongside 
our empirical formula. The result shows that in our considered range of parameters, 
the logarithmic trend is not strong, and it would be interesting to investigate a wider 
range of parameters to better constrain this fit. In particular, for larger values of w, 
we expect ghost vortices to be generated within the pinning site [34], which would 
provide a more stringent test of the formula.

4.2 � Vortex Energy

In our simulations, energy is injected into the system by a sudden increase in the 
superflow from 0 to vy . Part of this energy is converted into sound, and part may be 
used to depin the vortex. In general, we would not expect the vortex to depin unless 
doing so reduces the overall energy in the system, and this fact can potentially be 
used to determine a lower bound on the critical velocity vc . Specifically, we seek to 
determine the value of vy for which the energy of a pinned vortex state exceeds that 
of a depinned vortex state. This energy can be defined as the energy cost �� to create 
the targeted state from a relevant reference state, which is conventionally chosen to 
be the ground state of the free energy function given by Eq. (5). For a free vortex 
state, �v,vy

 , this is equivalent to the energy of a vortex state, subtracted by the vortex-
free state energy, for a fixed number of NA superfluid atoms in a domain of area A 
[54]. This complexity can be reduced by carrying out the calculation of the grand-
canonical energy, Eq. (5), at a fixed chemical potential instead [42, 55]. In this case,

(12)vc∕c0 ≈
�0

4�D
ln

w

�0

(13)vc∕c0 = f

(
V0

E0

,
w

�0

)
= a ln

[
1 +

(
b
w

�0
+ c

)
V0

E0

]

(14)a = 0.1039 ± 0.0175, b = 1.0721 ± 0.5736 and c = 1.188 ± 0.4880,
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where �a represents the target state, and �gs is a suitable reference groundstate. 
According to the aforementioned energetic argument, a lower bound on vc can be 
determined by finding the value of vy above which the excess energy of a free vortex 
state far away from the pinning site, �fv,vy = �v,vy + �ps,vy , is less than that of a pinned 
vortex, i.e. 

for vy ≥ vc . Here, we specifically consider A to be the area of a circular disc with 
radius R, giving A = �R2 , and a vortex or pinning potential is positioned at the cen-
tre of the disc.

The creation energy of a free vortex can be estimated by the required energy 
added into a homogeneous superfluid, namely �v,vy = F[�v,vy

] − F0 with 
F0 = (mv2

y
− E0)NA∕2 . The wavefunction of a free �-charged vortex can be well 

approximated by an analytical profile [42, 54, 56],

where r =
√
x2 + y2 and � is the radius of the vortex core. In the limit R ≫ 𝜉 , the 

leading order terms give

and the minimization of �v,vy with respect to � gives � = |�|�0 ,2. This solution, pre-
sented in Fig. 2b as a grey dashed line, agrees well with the corresponding numeri-
cal solution represented by the black unbroken line in the same figure. The free vor-
tex energy �v,vy can then be simplified as,3

For a singly-charged vortex, � = ±1 , the numerical result of �v,vy=0
 agrees well with 

this prediction as demonstrated in Fig. 6. We note, however, that the vy-dependent 
terms in this analytical calculation cancel each other out and cannot provide a fur-
ther prediction of vc . Furthermore, we reiterate that due to the healing length-sized 

(15)�a,vy = F[�a] − F[�gs]

(16)�fv,vy ≤ �pv,vy

(17)�v,vy
=

√
n0

r2∕�2

1 + r2∕�2
ei��e−imvyy∕ℏ

(18)�v,vy ≈
�ℏ2�2n0

m
ln

R

�
+

�ℏ2n0

4m
+

�gn2
0
�2

2
,

(19)�v,vy ≈
�ℏ2n0

m
ln 2.12

R

�0

2  From the Laplacian in cylindrical coordinates, �v0 ∝ r� , which may not be fully satisfied by this ansatz 
for 𝜅 > 1.
3  In Ref. [42, 54, 56], it is shown via the relation � = ℏ∕

√
2mgn0 that Eq. (18) can be rewritten as fol-

lows:�v,vy ≈ �ℏ2�2m ln(1.65R∕�)
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pinning potential, the Thomas–Fermi density profile is not a particularly good 
approximation for the vortex state as shown in Fig. 2b.

To evaluate the vortex energy with a background flow, we numerically obtain 
�pv,vy

(r) and �v,vy
(r) by propagating an initial trial vortex state, Eq. (17), in imagi-

nary time with � = 1 . When the flow amplitude is small, we found that |�num − �0,vy
| 

can reduce to less than 10−7 quickly. In contrast for large vy , the convergence is much 
slower, and the central and boundary-induced vortices would annihilate as � → ∞ . 
In addition, when vy is large enough, the vortex is detached from the pinning poten-
tial. Hence, we reduce the numerical tolerance so that imaginary time propagation is 
run until |𝜇num − 𝜇0,vy

| < 10−6 . We note, due to this relaxation of numerical toler-
ance, this state might be merely metastable. Indeed, even for vy > vc , it is possible to 
find pinned vortex states, and some of the vortices may remain pinned after we move 
to real-time evolution.

In Fig. 5, we illustrate the density profiles of �pv,vy
 for vy = 0 and 0.221c0 with 

V0 = 2E0 and w = 2�0 as well as that of �v,vy
 with vy ≈ 0.221c0 for the sake of 

comparison. When the superflow velocity is nonzero, the density becomes 
locally axially asymmetric about the vortex and pinning site for both �pv,vy

 and 
�ps,vy

 . The latter case can be observed in the plot of �n in Fig. 3g where a quad-
rupolar density fluctuation profile is evident.4 The combination of the back-
ground and vortex flows, and the interaction with the pinning potential locally 

Fig. 5   Condensate density profiles of �pv,vy
 for V0 = 2E0 and w =

√
2�0 with a vy = 0 and b vy = 0.221c0 

and c that of �v,vy
 for vy = 0.221c0 . Panel (i) presents the two-dimensional profile while panel (ii) shows 

density slices along the x and y axes with the green dashed lines in (i) and (ii) representing the pinning 
potential. These clearly depict an axial asymmetry of the density profiles due to the background flow. 
The width of the pinning potential is indicated by the green dashed circle and vertical dashed lines in (i) 
and (ii), respectively

4  We remind the reader that, in our numerical method, n0 is determined by Eq. (6).
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affects the density and has a maximum influence along the direction orthogonal 
to the flow. Therefore, this effect is minimized parallel to the flow in �pv,vy

 , as 
shown in Fig. 5b and c, where it is apparent that n(0, y) remains almost symmet-
ric along the y-axis. We note that during the propagation of Eq. (1) in real time 
over timescales comparable to the characteristic relaxation timescale, 
ℏ∕�gn0 = 200t0 , the stability of these vortex states is ambiguous even when 
vy > vc . This indicates that a depinning process requires additional energy or 
instabilities compared to those considered here.

We have also computed �� from the numerical simulations for a domain given 
by a disc, centred on the pinning site, with an area A = �R2 where R = 50�0 . In 
Fig.  6, we show the numerical results of �fv,vy and ��pv,vy

 together with �v,vy and 
�ps,vy for V0 = 2E0 and w = 2�0 as an example. Here, one can see that the pinned 
vortex energy �pv,vy is approximately constant while the free vortex energy shows 
a stronger dependence on vy and decreases monotonically as a function of vy . We 
also note that the value of �v,vy=0 agrees with the analytical calculation presented 
earlier. Given that 𝛼v,vy=0 > 𝛼pv,vy=0 and d𝛼v,vy∕dvy > d𝛼pv,vy∕dvy , there exists a 
value of vy where �fv,vy = �pv,vy , and Eq. (16) is satisfied. Above this velocity, we 
expect that it is energetically favourable for the vortex to depin, with the black 
vertical dotted line in Fig. 6 showing the estimated critical velocity for the set of 
parameters. However, what we observe is that the value of vc based on energetic 
considerations alone is found to be less than vc in the dGPE simulations of 
Sect.  3 by roughly 20% (note the grey vertical dot-dashed line in the figure). 
Such caveats notwithstanding, we argue that this estimate of vc based on purely 
energetic arguments offers a robust order of magnitude estimate. The small 

Fig. 6   The vortex energies for a pinned vortex �pv,vy and free vortex �fv,vy = �v,vy + �ps,vy as a function of 

vy for V0 = 2E0 and w =
√
2�0 . Here �v,vy and �ps,vy are the vortex energies in a homogeneous condensate 

without a pinning potential and the excess energy to create a flow in a condensate with a present of a 
barrier, respectively. The green dotted line plots the analytical result of a free vortex, Eq. (18). The verti-
cal dotted line marks the energetically preferred vc , and the grey dashed-dotted lines are the values of vc 
obtained from the dGPE simulation with a background superflow, while the dashed lines are the values 
of vc obtained from the complementary, quasiadiabatic advective simulations discussed in Sect. 4.3
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difference between the two values points to additional physics playing a role in 
the process of depinning, which could be the focus of future studies.

4.3 � Quasiadiabatic Advective Acceleration

For reasons explained in Sect. 2.2, the use of periodic boundary conditions has con-
sequences for our numerical simulations. For instance, as demonstrated in Fig. 2a, 
the requirement that � be circulation-free inside the computational cell results in a 
vortex lattice of alternating circulations when a vortex is imprinted during the imag-
inary time propagation of Eq. (1). Crucially, the periodicity of � also restricts the 
allowed values for the imposed flow velocity vy . To test the robustness of our results, 
we have, therefore, also taken a complementary approach, using a different numeri-
cal scheme to slowly accelerate the imposed flow from zero to a desired value, after 
which its value is held fixed. To do so, we first perform a Galilean transformation 
of the Gross–Pitaevskii equation into the frame moving with velocity vyŷ , hereafter 
referred to as the advective Gross–Pitaevskii equation (aGPE):

We solve this equation together with quasiperiodic boundary conditions (QPBCs),

that account for the phase winding arising from a single vortex within the domain. 
Initially introduced in the context of superfluid vortices in Ref. [57] and subse-
quently applied in Refs. [58–60], QPBCs have proven to be advantageous for the 
study of vortex configurations of nonzero net circulation in a homogeneously uni-
form background fluid. Because the velocity vy is slowly increased in this new setup, 
we anticipate that little sound will be produced, and therefore, we do not include any 
dissipation in the model. It is for this reason that we refer to this setup as “quasia-
diabatic,” in contrast with the instantaneous acceleration of the flow considered in 
Sect. 3.

Initially, we obtain the stationary state with a vortex at the origin by imprinting a 
superfluid phase 5 [61, 62]

(20)iℏ

(
�

�t
− vy

�

�y

)
�(r, t) =

[
−
ℏ2∇2

2m
+ Vpin(r) + g|�(r, t)|2 − �

]
�(r, t).

(21)�(x + Lx, y) = exp

[
i�

Ly

(
y +

Ly

2

)]
�(x, y),

(22)�(x, y + Ly) =�(x, y),

(23)arg

{
�3

[
i�

(
x

Ly
+

Lx

Ly

)
− �

(
y

Ly
+

1

2

)
;e

−�
(

Ly

Lx

)]}

5  �3(z;q) is the Jacobi theta function of z with nome q, whose argument is a suitable phase profile for an 
incompressible vortex in our chosen (Landau) gauge [59].
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and solve the aGPE in imaginary time to find the ground state. Subsequently, the 
dynamics of this vortex are simulated by propagating Eq. (20) forward in time with 
a slow acceleration of the advection as given by

where the final advection index nf ∈ ℤ sets up the advective flow after the accelera-
tion, and the same spatial grids and timestep used are the same as those in Sect. 4.1. 
The advective flow velocity takes 25nf t0 to reach the final value vy according to 
Eq. (24), a duration we believe to be sufficient for the vortex to adjust adiabatically 
to a finite advection. Subsequently, the aGPE is propagated up to t = 400t0 to allow 
time for the vortex to depin, à la Fig. 3. This numerical setup is designed to inject 
as little energy as possible into the system during the acceleration of the flow, and 
therefore, we expect the critical depinning velocity, vc , that we obtain to be an upper 
bound for vc in any other numerical setup.

Throughout the quasiadiabatic advective simulations, we use a plaquette-based 
subgrid interpolation method [63] to locate the vortex as precisely as possible and 
track the evolution of its position. In Fig. 7, the vortex trajectories of the aGPE sim-
ulation for V0 = 2E0 and w = 2�0 with nf = 7, 8, 9, 10 are shown. From this, we 
identify the lowest vy,f  that dislodges the initially pinned vortex as the critical veloc-
ity. Similar to the simulations presented in Sect. 3, we see that the vortex initially 
always drifts to the left of the pinning site centre as a consequence of the Magnus 
effect. Once vy reaches its final value, vy,f  , if this value is sufficiently small, then the 
vortex quickly inspirals to a new equilibrium position; this final equilibrium position 
is comparable to that in Sect. 3. However, if vy,f  exceeds a critical velocity, vc , then 
the vortex is able to escape the pinning potential, as illustrated in Fig. 7d. With this 
quasiadiabatic setup, we still observe the emission of a spiral pulse of sound waves, 
but their amplitude is about an order of magnitude smaller than in the instantane-
ously imposed flow simulations. The critical velocity obtained via this approach is 
comparable to that found in Sect. 3, but somewhat larger, as illustrated by the grey 
dashed vertical line in Fig. 6.

5 � Conclusion

In these proceedings, we have numerically simulated how an imposed superflow 
can detach a vortex that is initially pinned to an obstacle of size comparable to the 
superfluid healing length. We find that, below a critical velocity, the Magnus force 
causes the vortex to drift laterally with respect to the imposed flow before ultimately 
spiralling into a new equilibrium position. The motion of the vortex is responsible 
for the emission of a spiral of sound which contributes to the loss of energy and sta-
bilization of the vortex. If the imposed superflow exceeds a critical value, then the 
vortex escapes the pinning region and is carried away by this superflow. The critical 

(24)vy(t) =

⎧
⎪⎨⎪⎩

Δv

25t0
t t ≤ 25nf ,

vy,f = Δvnf , t > 25nf ,
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depinning velocities obtained from dGPE simulations are presented in a phase dia-
gram as a function of the height and width of the Gaussian potential which defines 
the pinning site. Inspired by theoretical predictions existing in the literature [33, 34], 
we propose a new empirical formula for the critical depinning velocity which is in 
quantitative agreement with our numerical findings. When the pinning potential is 
sufficiently high and wide, vortices can be nucleated in the pinning potential by the 
imposed flow.

We then provide an energetic argument for a vortex transitioning from a pinned state 
to a free (depinned) state by evaluating the vortex nucleation energy under different 
conditions. The free vortex energy can be analytically evaluated by an axially symmet-
ric trial solution, but the flow dependence in energy is not characterized in this Ansatz. 
Therefore, we utilize the imaginary time propagation method to search for pinned vortex 
states which are nonexistent when the flow is too rapid. The pinned states are asym-
metric, not only in the off-axis location of the vortex in the pinning potential but also a 

Fig. 7   Vortex trajectories of the aGPE simulation with a quasiadiabatic acceleration of vy(t) from zero till 
a final value a vy,f = 0.174c0 , b vy,f = 0.196c0 , c vy,f = 0.221c0 and d vy,f = 0.245c0 , followed by a dura-
tion of evolution at constant vy , for V0 = 2E0 and w =

√
2�0 . The hollow squares mark the vortex position 

at the end of the advective acceleration, and the red circle shows the position of vortex at t = 400t0 . The 
width of the pinning potential is indicated by the grey dashed circle
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flow-induced asymmetry of the density which is nonetheless small in magnitude. We 
find that these solutions are not always stationary over long periods of imaginary time 
propagation but still provide sensible estimations of the pinned states, suggesting that 
it might be prudent to consider improved numerical methods in future investigations 
[55, 64]. Proceeding to examine the energy landscape of free and pinned vortices, we 
observe that the energy of a vortex decreases monotonically as a function of superflow 
velocity. However, while the energy of a pinned vortex is lower than that of a free vor-
tex for low velocities, its rate of decrease as a function of the superflow velocity is also 
correspondingly lower. This results in a crossover superfluid velocity above which free 
vortices are energetically preferable, a velocity that is comparable to but generally lower 
than the critical velocities found by direct dGPE simulations with an imposed superflow.

Lastly, we verify our finding with a set of complementary simulations where qua-
siperiodic boundary conditions are employed to describe a vortex subject to a pinning 
site being accelerated almost adiabatically to the desired final value of the superflow 
velocity. These studies, conducted in the reference frame advected with the superflow, 
provide slightly higher estimates for the critical velocity. Together with our analysis of 
the energy landscape of pinned and free vortices, this suggests that vortex depinning 
requires additional energy or instabilities aside from effects arising at the boundaries.

In conclusion, this work develops new insights into the depinning dynamics in a 
pure 2D superfluid system from a narrow obstacle that is amenable to experimental 
investigations of superfluids and applicable to theoretical studies of neutron stars. 
This opens the door to combining studies of the influence of a background super-
flow with that of ambient sound waves in depinning a vortex from a pinning site. 
For instance, it has been proposed that the sound waves emitted by a moving vor-
tex around the pinning site can induce the depinning of vortices in its vicinity [65]. 
Thus, we believe that a natural direction for research in this field would be the study 
of the vortex–vortex and vortex–sound scattering processes in a system of multiple, 
initially pinned, vortices in the presence of superflow.
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