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a b s t r a c t 

In this paper, the nonlinear mechanical response of elastic cable structures under mechanical load is studied 

based on the discrete catenary theory. A cable net is discretized into multiple nodes and edges in our numerical 

approach, which is followed by an analytical formulation of the elastic energy and the associated Hessian matrix 

to realize the dynamic simulation. A fully implicit framework is proposed based on the discrete differential 

geometry (DDG) theory. The equilibrium configuration of a target object is derived by adding damping force into 

the system, known as the dynamic relaxation method. The mechanical response of a single suspended cable is 

investigated and compared with the analytical solution for cross-validation. A more intricate scenario is further 

discussed in detail, where a structure consisting of multiple slender cables is connected through joints. Utilizing 

the robustness and efficiency of our discrete numerical framework, a systematic parameter sweep is performed to 

quantify the force displacement relationships of nets with the different number of cables and different directions 

of fibers. Finally, an empirical scaling law is provided to account for the rigidity of elastic cable net in terms of 

its geometric properties, material characteristics, component numbers, and cable orientations. Our results would 

provide new insight in revealing the connections between flexible structures and tensegrity structures, and could 

motivate innovative designs in both mechanical and civil engineered equipment. 
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. Introduction 

As a type of highly flexible one-dimensional (1D) object, elastic ca-

les could provide an efficient and economical alternative for structures

hat cover a large space or span a long distance, such as cable-stay

ridges and suspension roofs [1] . Recent advancements in aeronautics

nd astronautics further address the requirement for a general mechan-

cal analysis on this type of highly flexible net-like objects, e.g., space

ebris capture with tether-net as a containment [2,3] . The cable net

an also be used as a major structural component of mesh reflector de-

loyable antennas [4] . 

The mathematical treatment of cable structures can date back to

he 17th century when the catenary problem appeared in finding the

quilibrium configuration of a flexible cable under its weight. In 1638,

alileo Galilei found that a chord under self-weight failed to maintain

ts originally rectilinear pattern unless some tension was applied at its

oundary points [5] . Then, in 1669, Joachim Jungius noticed that the

hape of a suspended chord was non-parabolic, while the exact mathe-
∗ Corresponding authors. 
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atical expression of the curve could not be found. It was later solved

y Christiaan Huygens through a purely geometric method and by Jo-

ann Bernoulli via an integral calculus, separately [6–8] , who, however,

gnored the extensibility and stretchability of elastic cables. Following

ooke’s law, Leonhard Paul Euler and Daniel Bernoulli developed a vari-

tional approach to formulate the governing differential equations for a

eformed cable system [9] . 

Although the analytical solutions for elastic catenary are available

nd well-known [10] , numerical methods would be preferred as a more

fficient tool, especially when a complex system that comprised multiple

oints-connected cables was considered. Moreover, as highly geometri-

ally nonlinear behaviors usually occur in this type of slender system,

he effects of flexibility and large deflections in cable and its network

hould be taken into account during the establishment of equilibrium

quations [11,12] , which addresses the need for a numerical approach.

lenty of prior works could be found on the numerical simulation of

lastic cable structures. A general two-dimensional (2D) nonlinear bar

lement was proposed by Kwan to provide a geometric nonlinear anal-
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Fig. 1. Discrete model. (a) Discrete diagram of an elastic cable structure. (b) 

Notations used in our numerical simulation. 
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sis of cable structures [11] ; Abad et al. developed a new type of three-

imensional (3D) element to investigate the cable structures under gen-

ral loadings [13] ; Thai et al. started from a traditional elastic catenary

heory and applied the incremental iterative-based method to numeri-

ally explore the nonlinear dynamics of cables [12] . Moving forward,

he linear elastic property of cable structures was extended to nonlinear

lasto-plastic and hyperelastic models by Chisalita and Valiente, respec-

ively [14,15] . Both geometric and material nonlinearities were taken

nto account by Gobat et al. to evaluate the nonlinear mechanical re-

ponse of a moving cable structure in a fluid environment [16] . For

he inverse design problem, Shimoda et al. adopted an optimization-

ased framework to program the form-finding process of cable net struc-

ures [17] . 

In this century, another type of discrete framework, DDG-based for-

ulation [18] , has been widely employed in computer graphics com-

unities to simulate the dynamics of thin elastic bodies, e.g., fur and

loth, due to its robustness and efficiency in handling the involved non-

inearity, collision, and frictional contact. In the DDG-based approach, a

mooth mechanical system is discretized into multiple nodes and edges,

ased on which the nonlinear elastic potentials are formulated. Previ-

us DDG-based methods have shown surprising success in simulating

he thin elastic structures, e.g. 1D rod [19–22] , 2D plate/shell [23–

5] , an intermediate form between 1D slender rod and 2D thin plate

named as ribbon [26,27] , and hollow gridshell [28–33] . However,

lmost all of those DDG-based simulations focused on the bending-

ominated deformations of thin elastic bodies. Elastic cable structure, on

he other side, can only undergo pure stretching as its transverse bend-

ng rigidity is assumed to be zero, which differs from the classical beam

r rod model that encompasses multiple modes, e.g., stretching, bend-

ng, and twisting [19,20] . From a mathematical point of view, when

 1D object is with length 𝐿 , stretching stiffness 𝐸𝐴 , bending stiffness

𝐼 , and under an external load 𝐹 , a beam model would be effective

f 𝐸𝐴 ≫ 𝐹 ∼ 𝐸𝐼∕ 𝐿 

2 , while a cable model should be considered in the

ase 𝐸𝐴 ∼ 𝐹 ≫ 𝐸𝐼∕ 𝐿 

2 . Whereas, when the intermediate circumstance

ppears, i.e., 𝐸𝐴 ≫ 𝐹 ≫ 𝐸𝐼∕ 𝐿 

2 , the configuration of a 1D structure is

erely governed by its geometric characteristics and boundary condi-

ions, and the problem becomes material-independent, e.g., an inexten-

ible catenary under its self-weight. 

In the current numerical investigation, we focus on the high ten-

ion range, 𝐸𝐴 ∼ 𝐹 ≫ 𝐸𝐼∕ 𝐿 

2 , and leverage a discrete catenary theory

o numerically evaluate the force displacement relation of elastic cable

tructures under mechanical loads. A continuous cable structure is dis-

retized into multiple nodes connected by edges, based on which the

lastic stretching potential and its Hessian matrix are evaluated explic-

tly through the DDG approach. Here, as the absolute nodal coordinate

ormulation is used within our numerical framework, the geometrically

onlinear deformations of cable structures can be captured automati-

ally, e.g., large deflections and large rotations. Moreover, compared

ith previous methods [34–36] , this type of discrete node-based formu-

ation could capture more general loading conditions, such as dynamic

oadings, and made it easier to handle contact, friction, collision, and

uid-structure interaction, which are necessary for real engineering use,

.g., dynamic simulation of soft robots [37,38] and capture of space

ebris [2,3] . The nonlinear dynamics of a cable net is later solved by

ntegrating the discrete equations of motion step by step. Its final equi-

ibrium configuration is obtained with the damping force added into

he dynamic system. The mechanics of a single catenary is analyzed,

ollowed by the discussion on the mechanical performances of a cable

et structure. It is found that the relative rigidity of a cable network

ould linearly augment as the number of cables increases. The depen-

ence of structural rigidity on the fiber orientation can be described with

 Cosine-like function. Finally, an empirical scaling law is provided to

on-dimensionally describe the force displacement relation of a cable

et with different cable numbers and different fiber orientations. In par-

llel with extensive numerical explorations, the analytical solutions for

 single cable system under mechanical loads are formulated for cross-
alidation. 

968 
This paper mainly contributes in the following aspects: (1) A fully

mplicit numerical framework for the simulation of cable structures is

erived based on DDG. (2) The analytical solution for a single cable sys-

em is formulated to validate our newly-introduced simulator. (3) The

eometrically nonlinear mechanics of a squared cable net is explored

umerically through our discrete model. 

The remaining paper is organized as follows. In Section 2 , the dis-

rete catenary method for the simulation of elastic cable structures un-

er mechanical loads is introduced, followed by a description of single

able structures and cable nets in Section 3 . What’s more, the analyti-

al solution for the mechanical response of a single cable system is de-

ived in parallel for the validation of our newly-introduced numerical

ramework. Finally, conclusive remarks and future research directions

re discussed in Section 4 . 

. Discrete numerical method 

In this section, we introduce a discrete model for the numerical simu-

ation of elastic nets under mechanical loads. The cable structure consid-

red here is assumed to be manufactured by an isotropic, linearly elastic

aterial with Young’s modulus 𝐸, Poisson’s ratio 𝜈, and circular cross-

ection with radius 𝑟 0 (and, therefore, cross-sectional area 𝐴 = 𝜋𝑟 2 0 ). Re-

erring to Fig. 1 a, a group of elastic cables is connected by multiple

oints, and the whole structure is discretized into 𝑁 nodes, resulting in

 3 𝑁 sized degrees of freedom (DOF) vector: 

 ≡ [ 𝐱 0 , 𝐱 1 , … , 𝐱 𝑖 , … , 𝐱 𝑁−1 ] 𝑇 , with 𝑖 ∈ [0 , 𝑁 − 1] (1)

he edge vector between the 𝑖 th and the 𝑗th node is denoted by: 

 

𝑖𝑗 = 𝐱 𝑖 − 𝐱 𝑗 (2)

s details can be found in Fig. 1 b. To follow the convention of discrete

odel, the subscripts are adopted for the quantities associated with

odes, and the superscripts are adopted for the quantities associated

ith edges. As the elastic cable can only experience uniaxial stretch-

ng, and the bending and twisting of cable centerline are forbidden, the

lastic potential of a cable net structure is given by 

 elastic = 

𝑁 edge ∑
𝑖𝑗 

1 
2 
𝐸𝐴 

(
𝜖𝑖𝑗 

)2 |�̄� 𝑖𝑗 | (3)

here 𝐸𝐴 is the stretching stiffness, 𝑁 edge is the total discrete edge num-

er, and the stretching strain of the ( 𝑖𝑗) th edge is 

𝑖𝑗 = 

|𝐞 𝑖𝑗 ||�̄� 𝑖𝑗 | − 1 (4)

ere, a bar on the top represents the quantities in an undeformed config-

ration, e.g., ̄𝐞 𝑖𝑗 is the undeformed length of the ( 𝑖𝑗) th edge. The Hessian

atrix (also known as tangential stiffness matrix) is the second variation

f total potentials: 

 = 

𝜕 2 𝐸 elastic 

𝜕𝐪 2 
(5)

pecifically, the Hessian associated with the ( 𝑖𝑗) th edge is 

𝜕 2 𝐸 elastic 
𝑖𝑗 𝑖𝑗 

= 

𝜕 2 𝐸 elastic 

𝜕 2 𝜖𝑖𝑗 
𝜕 𝜖𝑖𝑗 

𝜕𝐞 𝑖𝑗 
⊗

𝜕 𝜖𝑖𝑗 

𝜕𝐞 𝑖𝑗 
+ 

𝜕𝐸 elastic 
𝜕 𝜖𝑖𝑗 

𝜕 2 𝜖𝑖𝑗 

𝜕 𝐞 𝑖𝑗 𝜕 𝐞 𝑖𝑗 
(6)
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Fig. 2. Numerical investigations of a single cable structure. The boundary 

conditions and load conditions for (a) a suspended catenary and (b) a pin-pin 

cable under midpoint actuation. Undeformed and deformed configurations of 

(c) an inextensible catenary and (d) a stretchable cable. Normalized midpoint 

displacement, 𝛿∕ 𝐿 , as a function of (e) normalized uniaxial compression, Δ𝐿 ∕ 𝐿 , 
and (f) normalized external force, 𝐹 . 
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t  
here ⊗ is the tensor product. The formulations of material-related

erms are straightforward, i.e. 

𝜕𝐸 elastic 
𝜕 𝜖𝑖𝑗 

= 𝐸𝐴𝜖𝑖𝑗 |�̄� 𝑖𝑗 |
𝜕 2 𝐸 elastic 
𝜕 2 𝜖𝑖𝑗 

= 𝐸𝐴 |�̄� 𝑖𝑗 | (7) 

hile the geometry-related terms are procured on the basis of differen-

ial geometry [22] : 

𝜕 𝜖𝑖𝑗 

𝜕𝐞 𝑖𝑗 = 

1 |�̄� 𝑖𝑗 | 𝐭 𝑖𝑗 
𝜕 2 𝜖𝑖𝑗 

𝜕 𝐞 𝑖𝑗 𝜕 𝐞 𝑖𝑗 = 

1 |�̄� 𝑖𝑗 | ( 𝕀 3 − 𝐭 𝑖𝑗 ⊗𝐭 𝑖𝑗 ) |𝐞 𝑖𝑗 |
(8) 

here 𝕀 3 is a 3 × 3 identity matrix and 𝐭 𝑖𝑗 = 𝐞 𝑖𝑗 ∕ |𝐞 𝑖𝑗 | is the tangential

irection of ( 𝑖𝑗) th edge. Finally, the Hessian with respect to DOF vector,

 𝑖 , can be easily obtained based on the chain rule acquired in Eq. 2 . 

The equations of motion for a dynamic cable net system is given

y Huang and Jawed [39] : 

 ̈𝐪 + ℂ ̇𝐪 + 𝕂 𝐪 − 𝐅 ext = 𝟎 (9)

here 𝕄 is the diagonal mass matrix, ℂ is the damping matrix, and

 

ext is the external force. Here, the damping matrix is determined by

he damping coefficient, 𝜇. It is known that the damping coefficient is

ather important for the decay rate, while has no contribution to the final

tatic configuration. Here, the damping coefficient is set to be 𝜇 = 1 . 0 .
etails can be found in Appendix A . Euler method is used to update the

OF vector 𝐪 and its velocity (time derivative of DOF) 𝐯 = �̇� from time

tep 𝑡 𝑘 to 𝑡 𝑘 +1 = 𝑡 𝑘 + ℎ (here ℎ is the time step size): 

 ≡ 𝕄 

( 𝐪 𝑘 +1 − 𝐪 𝑘 
ℎ 2 

− 

𝐯 𝑘 
ℎ 

) 

+ ℂ 𝐯 𝑘 +1 + 𝕂 𝐪 𝑘 +1 − 𝐅 ext 
𝑘 +1 = 𝟎 (10a) 

 𝑘 +1 = 𝐪 𝑘 + Δ𝐪 𝑘 +1 (10b) 

 𝑘 +1 = 

1 
ℎ 
Δ𝐪 𝑘 +1 (10c) 

The Newton-Raphson method is applied to solve this set of nonlin-

ar equations of motion. At each time step 𝑡 𝑘 +1 , a new solution is first

uessed on the basis of the previous state, i.e. 

 

0 
𝑘 +1 = 𝐪 𝑘 + ℎ 𝐯 𝑘 (11)

hen, the solutions are optimized by gradient decent algorithm, such

hat the new solution at the ( 𝑚 + 1) th step is 

 

𝑚 +1 
𝑘 +1 = 𝐪 𝑚 

𝑘 +1 − 𝕁 𝑚 ∖ 𝐄 

𝑚 (12)

here 𝕁 is the Jacobian matrix associated with Eq. 10 : 

 = 

𝕄 

ℎ 2 
+ 

ℂ 

ℎ 
+ 𝕂 (13)

ere, the Jacobian associated with the external actuation forces is zeros.

he equations of motion is updated iteratively until the error in the

urrent time step decreases within the prescribed tolerance. Moreover,

ith damping forces added into the dynamic system, the equilibrium

onfigurations of elastic structures can be eventually derived through a

o-called dynamic relaxation method. The overall computational time

re provided in Appendix B . 

. Results 

In this section, a systematic investigation of the mechanical re-

ponses of elastic cable structures is presented in detail. A simple sin-

le cable system is analyzed firstly, and a more complex net-like object

omprised of multiple slender fibers is then discussed. In addition, the

nalytical solution of a single cable structure under mechanical loads is

erived for comparison. 
969 
.1. Mechanics of single cable structure 

Herein, two cases of a single cable system are considered. The elas-

ic cable is of length 𝐿 = 1 . 0 m, cross-section radius 𝑟 0 = 1 . 0 cm, and

oung’s modulus 𝐸 = 10 MPa. The effect of Poisson’s ratio is negligible

s the structure studied here can only experience uniaxial stretching. To

chieve a pin-pin-like boundary condition, the first node, 𝐱 0 , as well as

he last node, 𝐱 𝑁−1 , are fixed or constrained along a prescribed path. All

ther nodes are free to evolve based on the statement of force balance.

he number of vertexes is selected as 𝑁 = 100 after a convergence study.

s only equilibrium configuration is focused, the dynamic parameters

such as time step size and damping coefficient) are randomly chosen

or convenience. 

In Fig. 2 a, the topology of a suspended cable under gravity is pre-

ented. The gravitational potential is assumed to be much smaller com-

ared with the elastic stretching energy, 𝜌𝐴𝐿𝑔 ≪ 𝐸𝐴 , i.e., the cable is

nextensible and the influence of gravity is trivial so that the analytical

olution is obtainable. When the boundary distance is shrunk from 𝐿 to

 − Δ𝐿 , the pattern of a suspended cable is a catenary: 

 ( 𝑥 ) = 𝐴 cosh ( 𝑥 
𝐴 
) − 𝐴 cosh ( 𝐿 −Δ𝐿 2 𝐴 ) 

with 𝑥 ∈ [− 

𝐿 −Δ𝐿 
2 , 

𝐿 −Δ𝐿 
2 ] 

(14) 

here the coefficient 𝐴 can be derived by solving the following tran-

cendental equation: 

 𝐴 sinh ( 𝐿 − Δ𝐿 

2 𝐴 

) = 𝐿 (15)

n Fig. 2 c, the deformed configuration of a suspended catenary is shown

hen Δ𝐿 ∕ 𝐿 = 0 . 2 from both numerical simulation (symbols) and ana-

ytical approach (solid lines). The dependence of normalized structural

aximum deflection, 𝛿∕ 𝐿 , on its normalized compressive displacement,

𝐿 ∕ 𝐿 , is plotted in Fig. 2 e. Quantitative agreement between the numer-

cal simulation and the analytical solution indicates the accuracy of our

DG-based model. 

A stretchable cable under midpoint load is given in Fig. 2 b. In con-

rast to the well-known simply-supported beam that can bear a bending-
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[  

M  

t  

m  

i  

𝑁  

b  

c  

f  

F

𝛼

ype deformation, the cable structure can only experience pure stretch-

ng, and, as a result, a zigzag line is observed when a structure is loaded

nto its midpoint, referring to Fig. 2 d. The deformed pattern is a piece-

ise linear function: 

 ( 𝑥 ) = 

{ 

−2 𝛿
𝐿 
𝑥 − 𝛿when 𝑥 ∈ [− 

𝐿 

2 , 0] 
2 𝛿
𝐿 
𝑥 − 𝛿when 𝑥 ∈ [0 , 𝐿 2 ] 

(16)

here the midpoint displacement 𝛿 is obtained by solving the following

quilibrium equation, 

 = 2 𝐸𝐴 

[ √
𝛿2 + ( 𝐿 ∕2) 2 − 𝐿 ∕2 

𝐿 ∕2 

] 

𝛿√
𝛿2 + ( 𝐿 ∕2) 2 

(17)

he deformed configurations and the force displacement curves from

oth numerical solution (symbols) and analytical formulation (solid

ines) can be found in Fig. 2 d and f, respectively. Here, the maximum

niaxial stretching strain is within 5% to ensure the effectiveness of

he linear elasticity. It should be noted that the force is normalized by
̄
 = 𝐹 ∕ 𝐸𝐴 . 

.2. Mechanics of cable net structure 

Moving forward, a more complex object consisting of multiple con-

ected cables is considered. Referring to Fig. 3 , the geometric param-

ters of our cable net are: 𝐿 × 𝐿 = 1 m × 1 m , fiber orientation, 𝛼 ∈

a  

ig. 4. Deformed configurations of cable nets. The configurations of elastic nets w

= 0 ; (b) 𝑛 = 10 , 𝛼 = 𝜋∕6 ; (c) 𝑛 = 10 , 𝛼 = 𝜋∕4 ; (d) 𝑛 = 22 , 𝛼 = 0 ; (e) 𝑛 = 22 , 𝛼 = 𝜋∕6 ; (

970 
0 , 𝜋∕2] , and total cable number 𝑛 ∈ [10 , 34] . Young’s modulus is 𝐸 = 10
Pa, which is identical to the previous single cable scenario. The ex-

ernal distributed load is denoted as 𝑝 and the midpoint displacement is

easured by 𝛿. In our numerical framework, the discrete external force

s applied on the 𝑧 -DOF of each node and its magnitude is 𝑝𝐿 

2 ∕ 𝑁 , where

is the total nodal number. Similar to the previous case, a pin-pin

oundary condition is achieved by fixing two boundary nodes of each

able (red dots in Fig. 3 ). As the length of each cable would be different

rom each other, the discrete edge length |�̄� 𝑖𝑗 | = 1 cm is adopted after

 convergence study. In Fig. 4 , the deformed configurations of elastic
ith different numbers of cables and different orientations of fibers. (a) 𝑛 = 10 , 
f) 𝑛 = 22 , 𝛼 = 𝜋∕4 ; (g) 𝑛 = 34 , 𝛼 = 0 ; (h) 𝑛 = 34 , 𝛼 = 𝜋∕6 ; (i) 𝑛 = 34 , 𝛼 = 𝜋∕4 . 
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Fig. 5. Force-displacement curves for cable nets. Normalized force displacement curves of elastic nets with different numbers of cables, 𝑛 ∈ {10 , 18 , 26 , 34} . Here, 

the rotational angle is constrained as (a) 𝛼 = 0 . 0 and (b) 𝛼 = 𝜋∕4 . 

Fig. 6. Force-displacement curves for cable nets. Normalized force displacement curves of elastic nets with different rotational angles, 𝛼 ∈ {0 . 00 , 0 . 25 , 0 . 50 , 0 . 75} . 
Here, the total cable number is fixed as (a) 𝑛 = 10 and (b) 𝑛 = 34 . 
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g  
able nets with different fiber numbers and fiber orientations are pre-

ented. Here, the distributed load is 𝑝 = 100 Pa (resulting 𝐹 = 𝑝𝐿 

2 ∕ 𝐸𝐴 ≈
 . 032 ). It should be noted that in contrast to the global deformed config-

ration of bending-dominated gridshells [28,29,31–33] , the elastic ca-

le nets would deform locally, i.e., the catenary-like pattern is observed

etween two consecutive joints. 

For a quantitative understanding of the mechanics of cable nets un-

er mechanical loads, we first consider the influence of cable number on

ts force displacement curves. In Fig. 5 a, b, the rotational angle is fixed

s 𝛼 = 0 and 𝛼 = 𝜋∕4 , separately, and the force displacement curves are

lotted with respect to different cable numbers 𝑛 ∈ {10 , 18 , 26 , 34} . As ex-

ected, the rigidity of cable nets is enhanced with the increase of cable

umbers. To quantitatively reveal the dependence of structural rigidity

n its component number, Fig. 7 a gives the normalized displacement,

∕ 𝐿 , as a function of total cable number 𝑛 , with a fixed external load,

 = 10 Pa ( ̄𝐹 ≈ 0 . 0032 ). The maximum displacement almost linearly de-

reases when the cable number becomes larger. 

The effect of fiber orientation is further considered. In Fig. 6 , the nor-

alized force displacement curves of elastic cable nets are presented

ith different rotational angles, 𝛼 ∈ {0 . 00 , 0 . 25 , 0 . 50 , 0 . 75} . The cable

umber is fixed as 𝑛 = 10 in Fig. 6 a and 𝑛 = 34 in Fig. 6 b. Moreover,

he variation of normalized midpoint displacement, 𝛿∕ 𝐿 , on rotational
 F

971 
ngle, 𝛼, is presented in Fig. 7 b. It is found that the relative deflection

f the cable net follows a trigonometric (Sine/Cosine) trend when the

able orientation changes from 0 to 𝜋∕2 . 
After a systematical exploration of the relevant parameters of ca-

le nets, an empirical scaling law is provided to describe the dimen-

ionless mechanics of cable nets. Specifically, a nondimensional force-

isplacement relationship is focused. According to Buckingham-pi theo-

em, the normalized displacement, 𝛿 = 𝛿∕ 𝐿 , only depends on three non-

imensional groups: normalized distributed load, 𝐹 = 𝑝𝐿 

2 ∕ 𝐸𝐴 , number

f cables, 𝑛 , and fiber orientations, 𝛼. It is indicated by our numerical

ndings that the force-displacement relationship of a squared cable net

nder distributed load can be well described by 

̄∕ 𝑓 ( 𝛼) ∼ 𝐹 ∕ 𝑛 (18)

here the denominator on the left side is a trigonometric function: 

( 𝛼) = 

( 𝐷 − 1) 
2 

cos (4 𝛼 + 𝜋) + 

( 𝐷 + 1) 
2 

(19)

erein, the coefficient 𝐷 is approximate 1.31 after an empirical data

tting. Remarkably, the scaling law in Eq. 18 can capture all the data

enerated by our well-established numerical framework, as shown in

ig. 8 . 
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Fig. 7. Variations of geometric parameters. Normalized midpoint displacement, 𝛿 = 𝛿∕ 𝐿 , as a function of (a) cable number 𝑛 and (b) rotational angle 𝛼. Here, the 

external distributed load is selected as 𝑝 = 10 Pa, resulting 𝐹 = 𝑝𝐿 2 ∕ 𝐸𝐴 ≈ 0 . 0032 . 

Fig. 8. Scaling law. Scaling law between 𝛿∕ 𝑓 ( 𝛼) and 𝐹 ∕ 𝑛 . 
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with 𝑛 = 10 and 𝛼 = 0 . 0 is considered. 
. Conclusion 

In this paper, the mechanical response of cable nets was investigated

hrough a discrete catenary-based approach. A DDG-based numerical

ramework was employed to capture the geometrically nonlinear dy-

amics of 1D network, and its equilibrium configuration was derived

y utilizing the dynamic relaxation method. In addition to the exten-

ive numerical explorations, the solutions for a single cable system were

rocured analytically for cross-validation. Quantitative agreements be-

ween the numerical simulations and the analytical results indicated

he accuracy of our DDG-based formulation. Similar to the bending-

ominated elastic gridshells, it was found that the relative rigidity of

tretching-dominated cable nets was linearly enhanced as the structures

ecame denser. Moreover, the relevance between the structural rigidity

nd the fiber orientation can be accurately described by a Cosine-like

unction. Finally, a robust scaling law was proposed empirically to pro-

ide a nondimensional force-displacement relation of the catenary nets

ith respect to different cable numbers and fiber orientations. It should

e noted that the current numerical investigation is limited within a

mall stretching strain regime, e.g., 𝜖 ∼ 5% . In the case that the uniaxial

tretching strain of cable nets is no longer small, e.g., 𝜖 ≫ 10% , the naive

inear elastic model needs to be replaced by the nonlinear hyperelastic

heory, which can capture the material nonlinearity. Next, more atten-
972 
ions should be paid to the contact-based numerical framework of net

tructures, which is critical for the dynamic simulation of space debris

apture and removal. 
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ppendix A. Effect of damping coefficient 

In this section, we discuss the damping coefficient formulated in ℂ .

n Fig. A9 , we plot the midpoint deflection as a function of time for a ca-

le structure with 𝑛 = 10 and 𝛼 = 0 . 0 , which is identical to Fig. 4 a. Even

hough the dynamic process would be different for different damping

oefficients 𝜇, the final equilibrium configurations are uniform regard-

ess of 𝜇. 

ig. A.9. Dynamic simulations. The midpoint displacement as a function of

ime for different damping coefficient 𝜇 ∈ {0 . 10 , 1 . 00 , 10 . 0} . Here, a cable net

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100012226
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ppendix B. Computational time 

In this appendix, we focus on the computational efficiency of our

iscrete approach. In Fig. B10 , we found that the computational time

inearly scales with the time step size ℎ . The final results can be derived

ithin 20s even for a relatively dense net (with 𝑛 = 34 and total DOF

umber ∼ 13000 ). The simulations are performed on a single thread of

ntel Core i7-6600U Processor @3.4GHz. PARDISO is used when solving

 sparse linear system in our numerical experiments [40–42] . 

ig. B.10. Computational time. The ratio between computational time and

all-clock time as a function of time step size ℎ in different scenarios, 𝑛 ∈
10 , 22 , 34} . 
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