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Abstract
Purpose of Review Osteoarthritis is a complex and highly polygenic disease. Over 100 reported osteoarthritis risk variants 
fall in non-coding regions of the genome, ostensibly conferring functional effects through the disruption of regulatory ele-
ments impacting target gene expression. In this review, we summarise the progress that has advanced our knowledge of gene 
enhancers both within the field of osteoarthritis and more broadly in complex diseases.
Recent Findings Advances in technologies such as ATAC-seq have facilitated our understanding of chromatin states in spe-
cific cell types, bolstering the interpretation of GWAS and the identification of effector genes. Their application to osteoarthri-
tis research has revealed enhancers as the principal regulatory element driving disease-associated changes in gene expression. 
However, tissue-specific effects in gene regulatory mechanisms can contribute added complexity to biological interpretation.
Summary Understanding gene enhancers and their altered activity in specific cell and tissue types is the key to unlocking 
the genetic complexity of osteoarthritis. The use of single-cell technologies in osteoarthritis research is still in its infancy. 
However, such tools offer great promise in improving our functional interpretation of osteoarthritis GWAS and the identi-
fication of druggable targets. Large-scale collaborative efforts will be imperative to understand tissue and cell-type specific 
molecular mechanisms underlying enhancer function in disease.
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Osteoarthritis: A Complex Genetic Disease

Osteoarthritis is a degenerative disease of the articulating 
joint, most commonly the hip, knee, or hand. All joint tissues 
can be affected, resulting in synovial inflammation, subchon-
dral bone thickening, osteophyte formation and ligament 
degeneration, yet the disease is conventionally hallmarked 
by cartilage degradation [1]. Osteoarthritis is common, 
impacting the lives of approximately 40% of adults over 70 
[2], and is genetically complex. The proportion of osteoar-
thritis risk attributed to heritability has been estimated to be 
22.5% at any joint site (14.7% for knee; 51.9% for hip) [3]. 
To date, over 100 independent single nucleotide variants 
(SNVs) significantly associated with osteoarthritis have been 
reported through genome-wide association studies (GWAS), 

emphasising the highly polygenic nature of this disease [4, 
5•]. As with other complex diseases, most reported osteoar-
thritis GWAS variants reside within non-coding regions of 
the genome [6]. Therefore, these SNVs likely contribute to 
pathogenicity via modulation of enhancer activity, impacting 
the expression of a target (or disease effector) gene. Osteo-
arthritis risk SNVs individually exert modest effects (most 
with individual odds ratios < 1.5) [7] but the accumulation 
of multiple risk alleles can exceed the ‘liability threshold’ 
in which a tipping point is reached, subsequently leading to 
disease development and progression [8].

‘Enhanceropathy’ as a Disease Classification

Each cell within the human body shares an identical 
genome, yet individual populations exhibit strikingly dis-
tinct phenotypes to allow for their unique functional prop-
erties. The cellular plasticity that occurs throughout the life 
course is achieved by the stringent spatiotemporal expres-
sion of proteins. Underlying this expression are complex 
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gene regulatory networks (GRNs) [9]. GRNs encompass the 
interplay between a gene and its regulators, including cis-
regulatory elements (CREs), trans-acting transcription fac-
tors (TFs) and regulatory non-coding RNAs (ncRNAs) [10].

CREs are genomic regions that can be categorised as 
promoters (proximal to a gene’s transcriptional start site), 
repressors, insulators (which define topologically associating 
domains (TADs) within the 3D genome), or enhancers [11]. 
Enhancers typically reside within non-coding (intergenic 
and intronic) regions and consist of numerous transcription 
factor (TF) binding sites that facilitate gene regulation [12]. 
They can be up- or downstream of their target gene, within 
a gene body, or physically distal. Multiple models have been 
proposed for the mechanism of physical interaction between 
enhancers and promoters, yet the consensus is that enhancers 
are brought into physical proximity with a promoter through 
chromatin looping, amplifying the recruitment of RNA Pol 
II for transcription [13].

In 2014, Smith and Shilatifard coined the term 
‘enhanceropathies’ as a novel classification of disease [14•]. 
Such diseases encompass three distinct mechanisms by 
which altered enhancer function can underlie pathology: dis-
ruptions to enhancer-promoter interactions through chromo-
somal deletions or rearrangements (including β-thalassemia 
and Burkitt’s lymphoma [15, 16]), rare mutations within 
genes encoding regulators of enhancer activity (including 
P300 and KMT2D [17, 18]), and common polymorphism 
within enhancer sequences [19]. Human SNVs falling within 
gene enhancer regions can alter the binding affinity of tran-
scription factors, subsequently leading to changes in target 
gene expression (Fig. 1A) and contributing to phenotypic 
variation, including disease.

Epigenetic Influences upon Enhancer 
Function

The methylation of DNA (DNAm) at cytosine-guanine 
dinucleotides (CpGs) is the most widely studied epigenetic 
mark [20]. DNAm is intrinsically linked to transcriptional 
regulation, commonly gene repression, by preventing the 
binding of transcriptional activators to promoter regions 
and through the recruitment of repressive methyl-binding 
proteins. However, the relationship between DNAm and 
gene expression is far from straightforward, with gene body 
methylation often correlating with active transcription [21]. 
Generally, it is considered that DNAm within enhancers is 
repressive to the expression of a target gene [22], with the 
‘active’ enhancer histone modification, H3K27ac, negatively 
correlating with DNAm levels in multiple cell and tissue 
types [23]. However, traditional bulk analyses of enhancer 
states often fail to directly correlate methylation state with 
gene expression, potentially due to cell-type heterogeneity 

[24]. This has been confirmed most recently by Kreibich 
et al. who employed single molecule footprinting in mouse 
embryonic stem cells to demonstrate that CpGs with nega-
tive DNAm-chromatin accessibility (CA) correlations are 
most frequently located centrally within enhancers, where 
CA is the highest [25••]. They further identified that nega-
tive DNAm-CA correlations within enhancers are cell-type 
specific but, where such a relationship exists, the DNAm 
can directly modulate the recruitment of TFs to the CRE. 
This relationship is depicted in Fig. 1B.

Whilst environmental factors are traditionally considered 
to be the principal factor governing changes to the methy-
lome, a considerable proportion (10–20%) of DNAm is 
regulated in cis by genotype at a proximal SNV [26–29]. 
Co-localisation analysis, which tests whether a shared vari-
ant has a causal impact on both disease risk and DNAm, 
has identified that ~ 25% of osteoarthritis SNVs co-local-
ise with methylation Quantitative Trait Loci (mQTLs) in 
human adult articular cartilage [4]. This interplay between 
the genome and epigenome supports an important role for 
CpG methylation in the molecular mechanisms underlying 
osteoarthritis.

The integration of epigenetic datasets with GWAS sig-
nals has facilitated the statistical fine mapping of SNVs and 
the prioritisation of effector genes [5••]. This includes the 
identification of mQTLs falling within annotated CREs in 
relevant cell types. Of the 108 reported CpGs comprising car-
tilage osteoarthritis mQTLs (OA-mQTLs) [30, 31, 32•, 33, 
34], 23.1% fall within annotated chondrocyte enhancers and 
25% within promoters (Fig. 2). This corresponds to a signifi-
cant enrichment of osteoarthritis mQTLs in articular chon-
drocyte enhancers (P < 0.0001) and depletion in  promoters 
(P = 0.0123). The distribution of CpG sites on the Infinium 
HumanMethylation450 BeadChip array is heavily weighted 
towards promoters rather than enhancers [35]. This suggests 
that the current figures of OA-mQTLs may be an underrep-
resentation of the true number. Increasing epigenome cover-
age offered by the next generation of arrays including the 
HumanMethylationEPIC (EPIC) should provide more accu-
rate estimates. This is supported by a recent mQTL analysis 
of DNA from the infrapatellar fat pad, which utilised the 
EPIC array and identified co-localisation with 44% of tested 
osteoarthritis SNVs [36]. The identification of OA-mQTLs 
is integral in the prioritisation of putative disease enhancers.

In recent years, several studies have used epigenetic 
editing to functionally link OA-mQTLs and their enhanc-
ers to effector genes. These have included the expression of 
deactivated Cas9 (dCas9) fused to the epigenetic modula-
tors DNMT3a, a de novo DNA methyltransferase, and the 
de-methylating enzyme TET1, precisely editing chondro-
cyte DNAm in vitro. This functional fine-mapping approach 
has identified mechanistic links between mQTLs and fur-
ther confirmed COLGALT2 [37, 38, 39••], TGFB1 [40], 



Curr Rheumatol Rep 

RWDD2B [41] and, most recently, WWP2 [42] as osteoar-
thritis effector genes. WWP2 encodes an E3 ubiquitin ligase 
with multiple isoforms known to target different Smad sig-
nalling proteins [43]. Here, the osteoarthritis risk allele (G) 
at rs34195470 was shown to correlate with increased DNAm 
at 14 CpGs within the gene body in chondrocytes isolated 
from osteoarthritis cartilage [42]. Using dCas9-DNMT3a to 
increase DNAm levels at these CpGs in TC28a2 immortal-
ised chondrocytes, effectively recapitulating the observed 
mQTL effect, resulted in increased expression of full-length 
and N-terminus WWP2, confirming these isoforms as tar-
gets of osteoarthritis risk. This supported earlier reports of 
allelic expression imbalance of WWP2 in articular cartilage 
[44, 45] and uncovered the functional molecular mechanism 
underlying an osteoarthritis effector gene.

As both the DNA methylome and GRNs are heavily 
dependent upon cellular context, it is vital to investigate 
such effects in disease-relevant cell lines and tissues. 
This further complicates osteoarthritis research, beyond 
the heterogeneity of tissues themselves, as choosing the 
‘correct’ tissue is not always straightforward. Increasingly,  
studies of this disease are expanding to include non-
cartilaginous tissues. Recently, co-localisation of 
osteoarthritis risk signals and mQTLs has been conducted 
in other osteoarthritis-relevant tissue types, revealing 
significant mQTLs in both synovium [46••] and fat pad 
[36], a proportion of which appear to exert tissue-specific 
effects. We discuss the tissue specificity of osteoarthritis 
enhancers in more detail below.

H3K27ac

H3K4me1
Increased transcriptional activation

potential
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TF TF TF
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Fig. 1  SNVs can directly or indirectly affect enhancer activity. A 
The presence of a single nucleotide variant (SNV) within a transcrip-
tion factor (TF) binding motif alters TF binding affinity within an 
enhancer region. Left, TF binds in the presence of the T allele, result-
ing in the recruitment of co-factors and interaction with the promoter 
of a target gene. This results in increased target gene expression. 
Right, the A allele within the binding motif of the TF reduces TF 
binding, decreasing enhancer activity and downstream gene expres-
sion. B SNVs modulate proximal CpG methylation status, leading 
to differential TF binding and enhancer activity. Top, the A allele 
has no effect on proximal CpG methylation status; therefore, TFs 
that preferentially bind unmethylated CpGs bind the enhancer and 
regulate target gene expression. Bottom, the T allele recruits DNA 

methyltransferase enzymes (DNMTs) that increase proximal CpG 
methylation status; therefore, TFs that preferentially bind methylated 
CpGs (mTF) bind the enhancer and regulate target gene expression. 
This effect can operate in reverse or lead to TF competition for bind-
ing site occupancy. C SNVs affect the expression of genes encoding 
histone modifiers. This results in altered patterns of histone modifica-
tions and enhancer activity. Top, the A allele induces enhancer-asso-
ciated histone modifications, including histone 3 lysine 27 acetylation 
(H3K27ac) and histone 3 lysine 4 mono-methylation (H3K4me1), 
activating enhancer activity and increasing transcriptional activation 
potential of target genes. Bottom, the T allele does not affect histones 
proximal to the poised enhancer, leaving it inactivated and reducing 
the transcriptional activation potential of target genes
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Osteoarthritis Risk SNVs and Chromatin 
Remodelling Proteins

Enhanceropathies encompass pathologies that result in direct 
inhibition of TF binding to enhancer regions and, addition-
ally, those which affect chromatin state and enhancer acces-
sibility. Several osteoarthritis-associated SNVs map to genes 
encoding post-translational modifiers of histone proteins, 
including the histone methyltransferase gene DOT1L and 
the histone acetylation and de-ubiquitinase gene SUPT3H 
[47, 48]. Loss of DOT1L-mediated methylation of histone 3 
lysine 79 (H3K79me) following the addition of the small mol-
ecule S-adenosyl methionine competitive inhibitor EPZ-5676 
in human primary articular chondrocytes has been shown to 
reduce the expression of chondrocyte markers COL2A1 and 
ACAN. Moreover, intra-articular injection of EPZ-5676 into 
the knee of adult mice triggered cartilage loss marked by his-
tological staining [49]. To the best of our knowledge, no func-
tional data has been reported describing the role of SUPT3H in 
cartilage. However, allelic expression imbalance (AEI) studies 
using nucleic acids from human articular chondrocytes have 
identified a risk allele correlating with increased SUPT3H 
expression in synovium, cartilage and trabecular bone sam-
ples derived from patients undergoing arthroplasty for primary 
osteoarthritis [50]. Together, these results are suggestive that 
dysregulation of histone modification proteins, and a subse-
quent change in chromatin accessibility and enhancer function, 
can contribute to osteoarthritis pathogenesis (Fig. 1C). Fur-
ther investigations are required to understand the mechanisms 
underlying such dysregulation, and characterise the functional 
impact upon the epigenome.

Chromatin State at Chondrocyte Enhancers 
in Osteoarthritis

Over the last decade, multiple technologies have been 
developed and successfully applied to identify tissue-
specific gene enhancers. The main techniques along 
with their respective advantages and limitations are out-
lined in Table 1. These technologies quantify a range 
of parameters to define chromatin state ranging from 
CA, long-range interactions (LRI), and post-translational 
histone modifications (PTMs). Together, they enable the 
designation of active enhancer elements and their target 
genes in disease-relevant cell types. Many public data-
bases have made such datasets available across multiple 
cell and tissue types and are summarised in Table 2. The 
availability of epigenomic datasets has enabled the pri-
oritisation of enhancer elements for functional follow-up 
studies and the identification of osteoarthritis effector 
genes [4].

Histone Post‑Translational Modifications (PTMs)

Histone PTMs provide valuable information on chro-
matin state. Typically, histone 3 lysine 4 mono-meth-
ylation (H3K4me1) and H3K27 acetylation (H3K27ac) 
are associated with enhancer activity. Other histone 
marks are associated with transcriptionally repressed 
regions (H3K27 tri-methylation, me3), active pro-
moters (H3K4me3) and actively transcribed regions 
(H3K36me3). Performing chromatin immunoprecipita-
tion with high-throughput sequencing (ChIP-Seq) on his-
tone modifications has facilitated the epigenome-wide 
annotation of regulatory elements within different cell 
types, defined by specific combinations of histone marks. 
This provides a useful tool for prioritising enhancer 
regions in specific cell types (Table 1). Several large-
scale projects have defined histone PTMs across many 
cell types and provide a useful resource for investigators, 
including ENCODE, FANTOM and Roadmap (Table 2) 
[60, 61, 62••]. The NIH Roadmap epigenomics project 
used chromatin state learning approaches to produce mul-
tiple models to predict the chromatin state in the epig-
enome of over 111 cell types [62••]. This included cells 
originating from articular joints: mesenchymal stem cells 
(MSCs) and MSC-derived cultured chondrocytes. Under-
standing histone modification changes during cartilage 
development, as well as in healthy and diseased mature 
cells, has provided a better understanding of enhancers 
that drive disease.

In 2020, Cheung et al. performed histone ChIP-Seq 
on hMSCs cultured in monolayer or differentiated into 

Fig. 2  Osteoarthritis cartilage mQTLs are enriched in chondrocyte 
enhancer regions. Intersection of CpGs on the Illumina Infinium Human-
Methylation450 BeadChip array (left) and the 108 reported osteoarthritis 
cartilage mQTLs (right) with chromatin state data from the Roadmap Epi-
genomics Project in MSC-derived chondrocytes (E049) reveals enrich-
ment for cartilage mQTLs in enhancer-annotated regions (P < 0.0001) and 
depletion in promoter-annotated regions (P = 0.0123). No significant dif-
ference was identified for transcribed (P = 0.4549), repressed (P = 0.9035), 
quiescent (P = 0.4223), or other regions (P = 0.2869). Intersection was 
performed using ‘bedtools Intersect intervals’ within Galaxy. Statistical 
test: Fisher’s exact test (GraphPad Prism 10)
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chondrocytes [63]. Classification of histone ChIP-Seq data 
using a 16-state chromatin model showed a high degree 
of similarity of enhancer regions (marked by H3K4me1 
and H3K27ac modifications) between terminally differen-
tiated hMSCs and Roadmap E049 chondrocytes. Integra-
tion with epigenome-wide DNAm array data identified that 
CpGs that became demethylated during chondrogenesis 
were overrepresented in enhancer regions. To assess the 
functional role of DNAm at these putative enhancers, six 
regions encompassing the demethylated sequences were 
cloned into luciferase reporter vectors and, in all cases, the 
unmethylated enhancer sequence demonstrated increased 
reporter activity in the SW1353 chondrosarcoma cell line 
when compared to methylated vectors. These functional 
validation studies suggest that DNAm modulates TF 
binding and chondrocyte enhancer activity at these sites 
(Fig. 1B).

The utility of integrating histone ChIP-Seq data with 
other epigenetic datasets is an effective strategy towards 
enhancer identification. The availability of large public data-
sets (Table 2) provides a valuable resource for investigators 
to apply to their own studies. Future studies aiming to char-
acterise PTMs in primary cells, which can be challenging 
to collect in sufficient numbers required for ChIP-Seq, may 
choose to opt for CUT&RUN (Cleavage Under Targets and 
Release Under Nuclease) [59] (Table 1). Using CUT&RUN, 
which requires as few as 10,000 cells per assay, Sarkar et al. 
have recently investigated binding sites of the TF STAT3 in 
human foetal, adult, and osteoarthritis chondrocytes [64].

Chromatin Accessibility (CA)

Open, accessible chromatin facilitates the binding of TFs 
that modulate gene expression. Therefore, measuring CA 
in relevant cell types can provide valuable insight into cell 
type-specific CREs [65]. Historically, DNase I Hypersensi-
tivity Site (DHS) [66] with sequencing (DNase-Seq), which 
identifies nucleosome-depleted regions of the genome that 
are accessible for cleavage by DNase I, and Formaldehyde-
Assisted Isolation of Regulatory Elements with Sequenc-
ing (FAIRE-Seq) [67], which utilises phase separation of 
crosslinked protein-DNA structures and high-throughput 
sequencing, have been used to identify accessible chromatin 
(Table 1). However, these technologies are limited by the 
requirement for large cell numbers which can be difficult to 
acquire in matrix-dense, hypocellular tissues such as bone 
and cartilage. More recently, the Assay for Transposase 
Accessible Chromatin with Sequencing (ATAC-Seq) was 
developed. This technology employs Tn5 transposase to 
‘tagment’ accessible DNA via cleavage and tagging with 
sequencing adaptors, facilitating the detection of open 
chromatin regions whilst requiring as little as 50,000 cells A
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(Table 1) [68]. To date, five osteoarthritis-relevant ATAC-
Seq studies have been reported.

In 2018, Liu et al. mapped chromatin accessibility in 
human articular chondrocytes (hACs) derived from eight 
Japanese primary osteoarthritis patients undergoing knee 
arthroplasty [69]. They identified 109,215 accessible chro-
matin regions, of which 71% reside within enhancers marked 
by Roadmap DHS annotations, cross-validating ATAC-Seq 
against the more established DNase-Seq. They intersected 
the peaks with the physical location of osteoarthritis-asso-
ciated SNVs and found that 68% fell within accessible chro-
matin regions, again emphasising the role of these regulatory 
elements in osteoarthritis gene dysregulation.

The role of CA in critical TF for knee gene expression 
in osteoarthritis was further supported by an independent 
ATAC-seq study in 2021. Barter et al. demonstrated that 
stimulation of the chondrosarcoma cell line SW1353 with 
proinflammatory cytokine Interleukin-1 (IL-1) resulted in 
241 significant differentially accessible regions (DARs), 
which were enriched in Roadmap chondrocyte enhancers 
[70]. Conversely, the changes were underrepresented in 
promoter regions, suggesting that the disruption of GRNs 
within the joint in response to inflammatory stimuli is pre-
dominantly driven by enhancers. Furthermore, the authors 
functionally validated these regions in driving the inflamma-
tory response using CRISPR-Cas9 to delete an IL-1-induced 
open chromatin region within MMP13, encoding matrix 
metalloproteinase-13 (a well-characterised initiator of car-
tilage catabolism) from the genome of SW1353 immortal-
ised chondrosarcoma cells. Deletion of this gene enhancer 
resulted in an attenuated upregulation of MMP13 following 
IL-1 stimulation.

To date, the most comprehensive analysis of a gene 
enhancer associated with osteoarthritis pathogenesis [71••] 
was published in 2020. Disease-associated SNVs mapping 
to GDF5, encoding growth differentiation factor 5, a bone 
morphogenic protein with known roles in mammalian knee 
development [72], were intersected with embryonic mouse 
and human knee ATAC-Seq peaks to prioritise putative 
causal variants. Richard et al. identified the presence of 
rs6060369 within a common knee open chromatin region 
in mice and humans [71••], the deletion of which resulted 
in reduced GDF5 expression in the chondrocyte cell line 
TC28a2. Murine studies of the CRE further demonstrated 
that deletion of the region resulted in morphological changes 
to condyle curvature and width and led to the development 
of osteoarthritis in aged mice. Computational modelling pre-
dicted that rs6060369 occupied and disrupted the TF binding 
site for pituitary homeobox-1 (PITX1), a critical TF for knee 
development [73], which was functionally validated using 
ChIP-Seq, supportive of the enhanceropathy model depicted 
in Fig. 1A. This study was the first to demonstrate that an 
osteoarthritis-associated enhancer variant controlling early 

development of the human knee joint can predispose humans 
to osteoarthritis in later, post-reproductive life: a phenom-
enon known as antagonistic pleiotropy [74].

To further understand the developmental origins of the 
functional gene dysregulation that contributes to osteoar-
thritis and temporal changes in chromatin accessibility in 
cartilage, our laboratory performed ATAC-Seq on 12 human 
foetal cartilage samples taken from the proximal (hip) and 
distal (knee) ends of developing long bones and 10 osteo-
arthritis cartilage samples from patients undergoing arthro-
plasty at hip and knee joint sites [32•]. Significant DARs 
(113,887 hip and 121,050 knee) were identified between 
foetal and osteoarthritis cartilage. Once more, these regions 
showed significant enrichment of enhancer annotations, indi-
cating that changes in gene expression are driven by altered 
enhancer function (rather than promoters). Interestingly, 36 
osteoarthritis-associated SNVs overlapped with ATAC-Seq 
peaks uniquely in foetal cartilage (n = 16) or osteoarthritis 
cartilage (n = 20), suggesting that genetic determinants of 
osteoarthritis risk may function at specific stages of the life 
course. Future functional studies and fine-mapping of risk 
loci to target genes must consider tissues taken through-
out the life course, post-development, yet before disease 
initiation.

Understanding disease-specific changes to enhancer 
accessibility contributes to our understanding of pathol-
ogy. In 2023, Wang et al. applied ATAC-Seq to identify 
DARs between primary chondrocytes taken from patients 
with osteoarthritis (n = 2) or Kashin-Beck disease (KMD, 
n = 2) to understand specific differences in these cartilage-
degrading diseases. Of the 51,900 accessible chromatin 
peaks identified for osteoarthritis chondrocytes, 14,541 were 
not present in KMD chondrocytes. These uniquely acces-
sible chromatin regions may therefore provide insight into 
osteoarthritis-specific enhancer dysregulation and warrant 
further investigation.

Long Range Chromatin Interactions (LRI)

The spatial organisation of the non-linear genome provides 
important context to regulatory elements that act at physi-
cally distal regions. Chromosome conformation technolo-
gies are therefore valuable tools to determine targets of 
enhancer activity. Chromatin conformation capture tech-
nologies (including Capture Hi-C) allow high-throughput 
detection of LRIs following DNA–protein crosslinking and 
base-pair resolution sequencing (Table 1) [75]. These LRI 
maps depicting enhancer-promoter interactions can provide 
insights into the molecular mechanisms by which SNVs 
drive susceptibility to common, complex diseases [76]. For 
example, the application of Capture Hi-C data in human 
mesenchymal stem cells (hMSCs) has identified that the 
thumb osteoarthritis SNV rs11588850, which resides within 
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the gene body of SNAP47, physically interacts with the 200 
kb-upstream transcription start site (TSS) of WNT9A. The 
WNT9A gene is differentially expressed between high and 
low-grade osteoarthritic cartilage and known to play a key 
role in joint formation [77, 78].

Additional studies have applied chromatin conformation 
data in silico to prioritise osteoarthritis risk SNVs and effec-
tor genes. Using existing Chromatin Interaction Analysis 
by Paired-End Tag sequencing (ChIA-PET) data (Table 1), 
Kehayova et al. identified physical interactions between the 
locations of osteoarthritis mQTL CpGs identified in adult 
cartilage tissue and the 3′ untranslated region of COL-
GALT2, subsequently confirming this as an osteoarthritis 
effector gene through functional analysis [37]. Similarly, 
LRIs were identified between the TSSs of TMEM129 and 
SLBP and an osteoarthritis-associated differentially meth-
ylated region, with functional studies confirming a regula-
tory role of this putative enhancer in modulating TMEM129 
expression in chondrocytes [79].

Tissue‑Specific Enhancers Within 
the Osteoarthritic Joint

Historically, investigations into osteoarthritis aetiology at 
the molecular level have been cartilage-centric, yet progres-
sively the paradigm is shifting to consider osteoarthritis as 
a disease affecting the whole joint [1]. Transcriptomic and 
epigenomic studies increasingly include non-cartilaginous 
joint tissues, such as synovium [46••, 80], infrapatellar fat 
pad [36] and subchondral trabecular bone [81, 82].

Direct comparisons of enhancer methylation status at 
the sites of known OA-mQTLs have identified one notable 
example of opposing allelic impacts upon DNAm measured 
in distinct joint tissue environments [39••]. At this locus, har-
bouring the gene COLGALT2 and marked by osteoarthritis 
risk SNV rs11583641, 8 CpGs cluster within a 500-bp region 
of an intronic enhancer. In osteoarthritis cartilage, 3/8 CpGs 
exhibited significant mQTLs, with the major (risk) allele cor-
relating with decreased levels of DNAm. Functional expres-
sion studies involving CRISPR-Cas9 deletion of the region 
and precision editing of the methylome at this site confirmed 
COLGALT2 as the target gene, with a decrease in methyla-
tion corresponding with an increase in gene expression [37]. 
Interestingly, this epigenetic effect was much greater in human 
foetal cartilage, and the chromatin at the enhancer was signifi-
cantly more accessible, indicating that the conferred overex-
pression of the protein in cartilage in those carrying the risk 
allele is also active during skeletal development [83]. The dis-
cussion of the role of enhancers during cartilage development, 
and how this contributes to osteoarthritis in later life, was 
recently intricately described [84] and so has been excluded 
from the scope of this review.

Analysis of the identified OA-mQTLs within adult osteo-
arthritis synovium revealed that at all 8 enhancer CpGs, the 
risk allele correlated with significantly increased DNAm, and 
a subsequent decrease in gene expression, between which a 
functional link was again confirmed through epigenome editing 
[39••]. This is an example of biological pleiotropy, in which 
the impact of a risk variant (or haplotype) produces a differ-
ent phenotypic outcome between two tissues. Such effects are 
known and already add substantial complexity to the pharma-
cological targeting of pathways resulting from GWAS studies. 
It is estimated that ~ 30% of GWAS SNVs exhibit pleiotropic 
effects (associating with multiple traits or diseases) which map 
to > 60% of genes [85]. However, such antagonistic effects are 
seemingly rare within multiple tissues of the same organ, which 
have the potential to contribute to the same disease. To date, 
relatively few studies have directly contrasted such effects 
between tissues of the articulating joint, and amongst those 
that have, only a small number of all known osteoarthritis risk 
loci have been included [41, 46••, 50, 86]. On an epigenome-
wide scale (considering all SNV-CpG correlations), Kreitmaier 
et al. identified just 33 mQTL pairs demonstrating an antago-
nistic effect between osteoarthritis knee cartilage and synovium 
(0.02%) [34]. The extent to which such biological pleiotropy 
within the joint could impact future pharmacological targeting 
of osteoarthritis remains unclear. Rigorous molecular investiga-
tions into the impact of SNVs upon target genes, coupled with 
biological studies into the encoded protein function, within the 
context of multiple joint tissues are essential to inform pre-
clinical drug development studies.

Finally, the consideration of cartilage as a heterogeneous 
tissue must not be overlooked. Mature articular cartilage 
has long been considered to consist of a single cell type: the 
articular chondrocyte. Whilst this central dogma still stands, 
the advent of single-cell (sc) technologies has revealed and 
defined subsets of articular chondrocytes [87] within both 
diseased and healthy tissue [88] at the transcriptome level. 
To date, scATAC and scMethyl-seq have not been applied 
in human chondrocytes, yet bulk sequencing technologies 
have paved the way for the identification of disease-driving 
chondrocyte subsets within cartilage and the identification 
of subset-specific enhancers [89]. It is wholly possible that 
in cartilage, as has been described in other tissues, bulk epi-
genomic investigations can mask correlations between the 
epigenome and transcriptome.

SNV to Gene Studies: The Missing Link 
and Future Directions

In keeping with the ‘liability threshold’ model, an indi-
vidual who inherits sufficient osteoarthritis risk alleles is 
likely to exhibit aberrant enhancer function and dysregula-
tion of essential genes for normal joint development and 
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function, resulting in osteoarthritis. However, functional 
interpretation of osteoarthritis risk SNVs is impeded by 
several factors: they often reside within linkage disequilib-
rium (LD) blocks, meaning reported variants (the array tag 
SNVs) are likely a proxy for the causal variant; SNVs exert 
tissue-specific effects, i.e., they may regulate a target gene 
in one tissue whilst having no effect on gene expression in 
another or even have opposing effects in distinct tissues; and 
the three-dimensional structure of chromatin may result in 
SNVs regulating genes that are physically close but linearly 
distant. Unravelling these mechanisms therefore relies on 
researchers being able to characterise regulatory elements in 
disease-relevant tissue types, combining chromatin organisa-
tion and structure with epigenetic marks such as DNAm and 
histone modifications.

Effector genes of complex traits, including osteoarthri-
tis, have been prioritised through powerful statistical fine-
mapping approaches, including the co-localisation of causal 
candidate SNVs with expression QTL (eQTL) from datasets 
such as GTEx. However, evidence suggests that less than 
half of GWAS signals co-localise with eQTLs [90]. One 
further limitation to this approach is the tissue-specificity of 
eQTLs (as also observed with mQTLs), creating a hindrance 
to conclusive results in diseases such as osteoarthritis, where 
there is a lack of disease-relevant datasets. A recent study, 
applying scRNA-seq in circulating immune cells, found no 
evidence to support that cell-type QTL specificity arises 
from differences in gene expression, or from low statistical 
power, indicating that transcription factor expression and/
or binding site accessibility (within enhancers) drive such 
effects [91]. In addition to the contribution of cellular con-
text to the co-localisation of eQTLs with GWAS signals, it 
has been reported that a limitation of this overlap is in part 
because GWAS and eQTL studies are powered to identify 
different types of SNV. This report, from Mostafavi et al., 
demonstrated using GWAS analysis of the UK Biobank (in 
44 complex traits), and GTEx eQTL data (in 38 tissues) 
that GWAS hits fall within regions of high evolutionary 
constraint, and their effector genes have large, complex 
regulatory elements, enriched for functional annotation, 
unlike eQTLs [92•]. Whilst similar biases are predicted in 
the discovery of other molecular QTLs, it has been shown 
that epigenetic QTLs are more highly enriched for disease 
heritability.

Across the field of complex disease research, including 
osteoarthritis, a multifaceted interdisciplinary approach is 
required to identify the target genes of enhanceropathies. 
The integration of multiple lines of larger genetic, epige-
netic, and transcriptomic datasets, generated in relevant 
tissues throughout the life course, must be combined with 
powerful functional tools such as Cas9 (epi)genome editing 
and massively parallel reporter assays [93]. Such endeav-
ours will only be bolstered by recent advances in single-cell 

technologies yet still require the global collaborative efforts 
of osteoarthritis researchers to combine resources and 
expertise.
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