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Abstract

Aims

Metabolic dysfunction Associated Steatotic Liver Disease (MASLD) outcomes such as

MASH (metabolic dysfunction associated steatohepatitis), fibrosis and cirrhosis are ordinar-

ily determined by resource-intensive and invasive biopsies. We aim to show that routine clin-

ical tests offer sufficient information to predict these endpoints.

Methods

Using the LITMUS Metacohort derived from the European NAFLD Registry, the largest

MASLD dataset in Europe, we create three combinations of features which vary in degree of

procurement including a 19-variable feature set that are attained through a routine clinical

appointment or blood test. This data was used to train predictive models using supervised

machine learning (ML) algorithm XGBoost, alongside missing imputation technique MICE

and class balancing algorithm SMOTE. Shapley Additive exPlanations (SHAP) were added

to determine relative importance for each clinical variable.
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Results

Analysing nine biopsy-derived MASLD outcomes of cohort size ranging between 5385 and

6673 subjects, we were able to predict individuals at training set AUCs ranging from 0.719-

0.994, including classifying individuals who are At-Risk MASH at an AUC = 0.899. Using

two further feature combinations of 26-variables and 35-variables, which included compos-

ite scores known to be good indicators for MASLD endpoints and advanced specialist tests,

we found predictive performance did not sufficiently improve. We are also able to present

local and global explanations for each ML model, offering clinicians interpretability without

the expense of worsening predictive performance.

Conclusions

This study developed a series of ML models of accuracy ranging from 71.9—99.4% using

only easily extractable and readily available information in predicting MASLD outcomes

which are usually determined through highly invasive means.

Introduction

Metabolic dysfunction Associated Steatotic Liver Disease (MASLD), formerly known as Non-

Alcoholic Fatty Liver Disease (NAFLD) [1] is the world’s most common chronic liver disease,

and with the rise in increasingly sedentary lifestyles, poses a major challenge to healthcare sys-

tems globally. It is estimated that over 25% of the global adult population has MASLD [2],

which is predicted to soon be the leading cause of liver transplantation [3]. MASLD encom-

passes a spectrum of disease severity, ranging from isolated increased hepatic triglyceride con-

tent (steatosis; metabolic dysfunction associated steatotic liver—MASL), through hepatic

inflammation and hepatocyte injury (metabolic dysfunction associated steatohepatitis—

MASH) with increasing fibrosis, and ultimately to cirrhosis and/or hepatocellular carcinoma

[4]. More advanced stages of hepatic fibrosis are associated with an increased risk of liver-

related and all-cause mortality [5]. The reference standard for grading and staging MASLD is

histological using a semi-quantitative scoring system [6, 7]. However, liver biopsy requires

expertise in both procurement and histological assessment, are costly, harbour inherent risks

and have methodological limitations, (e.g., sampling variability and intra- and inter-patholo-

gist scoring variability), rendering it unsuitable for routine MASLD clinical practice [8, 9]. In

recent years there have been major advances in the development of non-invasive biomarkers,

both blood-based and radiological [10]. Candidate serum and imaging biomarkers, as well as

multi-marker panels, are currently being evaluated in large, multi-centre independent cohorts

by international research consortia like LITMUS in Europe and NIMBLE in the USA [11, 12].

However, studies suggest that biomarker performance for the diagnostic context of use

remains to date only borderline with classification AUC scores around 0.80 [13]. With no sin-

gle marker or panel conclusively predicting biopsy results, the hope remains that a combina-

tion of complementary assessments may improve diagnostic performance. The application of

standard machine learning (ML) approaches to multi-modal training sets remain also rela-

tively unexplored in this research area.

The objective of this study was to investigate the role of selected clinical variables associated

with MASL and MASH, when predicting a set of biopsy-derived outcomes that indicate stage

of progression along the MASLD spectrum. This work explored the utility of ML approaches
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to predict binary target conditions in relation to biopsy-derived phenotypes across the

MASLD spectrum including At-Risk MASH, Advance Fibrosis and Cirrhosis. Ultimately, we

aimed to show that routinely available clinical tests can provide sufficient information to pre-

dict these outcomes, suggesting a reduced need to carry out invasive biopsies. Scholars have

attempted to tackle this problem through using ML with many studies primarily focusing

upon identifying novel combinations of biomarkers that can replace existing surrogate scores

that indicate the severity of disease [14–17]. Most studies claim to outperform the existing sur-

rogate markers such as Hepatic Steatosis Index (HSI) and Fatty Liver Index (FLI). The stron-

gest results yielded are from studies that utilise non-routinely collected multi-omics data [18].

Some scholars have focused upon utilising only routinely collected clinical information in

their analysis [19–21], however the study cohorts used or the results their method’s yielded

have been limited.

This paper demonstrates how we achieved our aim through using only data that is easily

and readily available from routine clinical appointments and standard blood tests to accurately

predict individuals who are at risk of MASH and other outcomes in relation to MASLD sever-

ity via ML. We also show that the introduction of variables that are more difficult to obtain

into ML classifiers does not improve accuracy significantly to offset the cost of procuring these

variables.

Materials and methods

Study population

This study utilised data drawn from the LITMUS Metacohort from patients participating in

the European NAFLD Registry (NCT04442334), an international cohort of NAFLD patients

prospectively recruited following standardized procedures and monitoring; see Hardy and

Wonders et al. for details [12]. Patients were required to provide informed consent prior to

inclusion. Studies contributing to the Registry were approved by the relevant Ethical Commit-

tees in the participating countries and conform to the guidelines of the Declaration of Helsinki.

The Metacohort enrolled subjects from sites in Belgium, Finland, France, Germany, Italy, the

Netherlands, Spain, Sweden, Switzerland, and the UK between Jan 6, 2010, and Dec 29, 2017.

Subjects were at least 18 years old, clinically suspected of having MASLD having been referred

for further investigation due to abnormal biochemical liver tests and/or radiological evidence

of steatosis. Participating subjects also received a liver biopsy confirming their MASLD status

within 6 months of enrolment. After providing written informed consent, participants under-

went standardised assessment protocols, including collection of serum blood samples for later

analysis with novel biomarkers. Participants reporting excessive alcohol consumption (>20/

30g per day for women/men) in the preceding 6 months and/or history of excessive alcohol

consumption in the past 5 years were excluded along with participants reporting other causes

of chronic liver diseases. Summary statistics of the LITMUS Metacohort at baseline assessment

are illustrated in the table S1 Table in the S1 File).

Features and responses

The branch of ML that this paper focuses on is known as supervised learning classification.

This is simply where ML algorithms learn from observations that have been labelled, in this

case as either negative (0) or positive (1) for a particular target condition and uses the informa-

tion about these individuals to create a model that can predict individuals where their status

for the target is unknown (i.e., unlabelled). The information in this case refers to the clinical

data that is collected, known as features. In this paper, we use a set of non-invasive clinical and

novel biomarkers as our set of predictive features. Clinically derived features were collected by
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a trained investigator (e.g., weight, BMI, comorbidity information) while standard clinical bio-

chemistry (e.g., LDL, HDL, platelet count, ALT, AST, GGT) was measured at each site’s local

laboratory. Additional biomarkers available included vibration-controlled transient elastogra-

phy (VCTE; Fibroscan™, Echosens, Paris, France) to measure liver stiffness; the Enhanced

Liver Fibrosis (ELF) test [22, 23], measured on the ADVIA Centaur CP system (Siemens,

Munich, Germany); and multiple direct collagen biomarkers, including collagen neo-epitopes

Pro-C3, Pro-C4, Pro-C6 [24, 25].

Three different combinations of these features which vary in the difficulty of procurement

are used, which are referred to as follows:

• Core features—19 clinical variables that are considered standard measurements that are

achieved through a routine clinical appointment or blood test.

• Extended features—26 clinical variables that include the 19 Core features plus 7 other fea-

tures that are either not difficult to acquire but not collected routinely, or composite scores

known to be good indicators of MASLD endpoints.

• Specialist features—35 variables that include the 26 clinical features outlined in the Extended

feature set and 9 specialist tests that are rarely procured.

These three feature sets are outlined in Table 1 and are described and evaluated individually

in [13]. All three feature sets were applied within the ML modelling to predict 9 binarized tar-

get conditions, with the number of individuals that exist within the negative and positive class

highlighted in Table 2. These targets are recorded by pathologists from liver biopsies. Biopsy

evaluation was performed by expert liver pathologists at the recruiting site. Biopsies, when

deemed of sufficient quality and size for clinical diagnosis, were assessed using the NASH Clin-

ical Research Network (NASH CRN) scoring system, where steatosis and lobular

Table 1. Clinical variables owing to three feature sets used within this analysis.

Feature Set Clinical Variables

Core Features Age, Gender, BMI, Historic Alcohol Consumption (>5 years ago), Insulin Resistance,

Hypertensive, Metabolic Syndrome, eGFR, Dyslipidaemia, ALT, AST, GGT, Platelets, Creatinine,

Serum Triglycerides, Albumin, Bilirubin, Obstructive Sleep Apnoea, AST-ALT Ratio

Extended

Features

Core Features + FIB4, NFS, APRI, BARD, Waist-to-hip Ratio, Ferritin, IgA

Specialist

Features

Extended Features + Fibroscan Stiffness, CK18-M30, CK18-M65, Pro-C3, Pro-C6, ELF, ADAPT,

FIBC3, ABC3D

https://doi.org/10.1371/journal.pone.0299487.t001

Table 2. MASLD target condition’s class distribution.

Target Condition Definition Negative (0) Positive (1) -/+ Ratio

MASL vs. MASH NAS <4 (0) vs. NAS�4 (1) 2776 3132 0.9: 1

At-Risk MASH NAS <4 AND/OR F<2 (0) vs. NAS�4 AND F�2 (1) 4014 2010 2.0: 1

High Activity A <2 (0) vs. A �2 (1) 2426 3672 0.7: 1

Clinically Significant Fibrosis F <2 (0) vs. F �2 (1) 3771 2532 1.5: 1

Advanced Fibrosis (Histology confirmed) F <3 (0) vs. F �3 (1) 4921 1382 3.6: 1

Cirrhosis (Histology confirmed) F <4(0) vs. F�4 (1) 5815 488 11.1: 1

Advanced Fibrosis (Histology & Clinically confirmed) F <3 (0) vs. F �3 AND clinically cirrhotic cases (1) 5163 1510 3.4: 1

Cirrhosis (Histology & Clinically confirmed) F <4 (0) vs. F �4 AND clinically cirrhotic cases (1) 6009 664 9.0: 1

At-Risk MASLD Otherwise (0) vs. 2� F � 3 AND NAS�4 (1) (Cirrhotics Excluded) 3979 1406 2.8: 1

https://doi.org/10.1371/journal.pone.0299487.t002
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inflammation are scored using a semi-quantitative ordinal score described by integers 0–3 and

hepatocyte ballooning is scored 0–2. Together these three scores added provide the composite

NAFLD Activity Score (denoted NAS in Table 2), ranging from 0 to 8. Disease Activity Score

(denoted A in Table 2), is also a composite score ranging from 0–5, consisting of the level of

hepatocyte ballooning and lobular inflammation. Fibrosis stage (denoted F in Table 2) is

scored with integers 0–4 [6]. Definitions for each target condition are outlined in Table 2 and

they are of particular interest as they indicate whether a patient has progressed to MASH or

advanced hepatic fibrosis. As an example, an individual is classified as At-Risk MASH (i.e. pos-

itive) if the individual has a NAS score greater of equal to 4 as well as a fibrosis stage greater or

equal to 2, and if this is not true then the individual is not At-Risk MASH (i.e. negative).

The output of each combination of feature sets to target conditions are models that repre-

sent a function of the inputted clinical variables that can accurately predict one or more of

these outcomes.

Learning approach—XGBoost

Due to data sparsity and varying levels of missingness across these 3 feature sets, we focused

our research upon algorithms that did not require a fully imputed dataset, namely XGBoost

(eXtreme Gradient Boosting) [26]. XGBoost was a highly suitable algorithm for these binary

classification exercises, this is due to its consistent high performance in classification tasks and

its ability to treat missing values for features as values themselves meaning that no missing

imputation is required. Due to XGBoost’s characteristics of being a gradient boosting tree

ensemble method, it also takes into account issues surrounding variable multicollinearity, with

the ability to consider each variable at a single time for each split and not the correlation that it

has with other features. This is particularly important in our models that use the Extended or

Specialist feature set, as many features used are composites of others.

Missing imputation—MICE

In preliminary studies we compared a number of supervised learning algorithms upon predict-

ing the binary target condition for presence/absence of “At-Risk MASH” (NAS�4 with Fibro-

sis�2) using all predictive features. The issue with these experiments was that unlike XGBoost

the vast majority of algorithms require a totally complete dataset and indeed with the Metaco-

hort being a real-world dataset, there were only 3 out of 35 totally complete clinical features.

Missing imputation tool MICE [27] (Multiple Imputation by Chained Equations) was neces-

sary. Having conducted these experiments however it was apparent that XGBoost, despite

being a tolerant algorithm towards missing values, was still the best performing learning algo-

rithm and when using XGBoost, performing MICE imputation on the training set offered

marginal improvements compared to using the algorithm without imputation. Depending

upon the data type for each feature, MICE will use different methods to determine the missing

value, for example using predictive mean matching for continuous numerical data, logistic

regression for dichotomous variables and polytomous regression for categorical data. The level

of missing imputation required for ‘Core’ features is far less than that of the more difficult to

procure feature sets, however even of the 19 ‘Core’ clinical features, only 10 were more than

90% complete.

Class balancing—SMOTE

In ML classification models, imbalanced datasets can result in the model skewing predictions

towards the majority class in order to maximise model accuracy. We therefore have the option

of either downsampling (removing datapoints of the majority class) or upsampling (increasing
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the number of datapoints of the minority class). Downsampling is less favourable due to the

removal of perfectly valuable datapoints therefore we focus upon upsampling techniques.

SMOTE (Synthetic Minority Oversampling Technique) is an upsampling method that synthet-

ically creates new minority class datapoints through selecting examples of the minority class

that are near neighbours to each other in feature space before drawing a hypothetical line

between these points; SMOTE then creates a new datapoint at some point along this line thus

creating a new synthetic minority class sample [28]. SMOTE is considered to be more reliable

than other upsampling techniques due to interpolating new data between existing minority

class datapoints, rather than some techniques that simply duplicate existing datapoints which

can lead to overfitting. It is important to note however that SMOTE is only operational when

there are no missing values across the feature set, therefore all models that use SMOTE must

also use MICE.

Model interpretability—SHAP

Particularly in ML studies for medical domains, there has long existed a tension between the

level of understanding of how these classifiers create their conclusions and the overall model

accuracy [29]. Medical settings in particular rely upon model interpretability to reduce the

level of complexity of a model and therefore increase the trustworthiness of its results. Using

an additive feature attribution method known as Shapley values [30], it is possible to determine

the relative importance for each feature and has helped to aid the explanation in individual

predictions through feature weightings for every model generated in this paper. Shapley values

can be added to a model post-hoc to its creation; using Python library SHAP, this allows for

easy integration of interpretability into naturally difficult to understand black-box models,

such as XGBoost.

Experimental design

Analysing the 9 target conditions outlined in Table 2 and utilising the 3 feature sets of varying

degrees of procurement, we applied 3 different model frameworks: XGBoost, XGBoost with

MICE, XGBoost with MICE and SMOTE to every dataset and target combination. This in

total provided 81 classifiers. We applied a train-test split to each feature and target condition

in the proportion of 80% to 20%—the training data is used to tune the hyperparameters of the

XGBoost classifiers to derive a ML model. This model was then cross-validated upon the train-

ing data to obtain evaluation metrics; the mean average of the AUC, Accuracy, Sensitivity,

Specificity and F1 scores across 5 folds were noted. The model was then applied to the test set

to derive predicted values and establish a test set AUC value.

Results

Machine learning vs. Univariate linear approach

The ML classifiers created used multiple variables in their decision making and were more

powerful and effective at predicting these outcomes than each individual feature alone. Fig 1

compares the training set AUC achieved from univariate logistic regression models upon each

of the 35 features explored in the analysis and the training set AUC achieved across all ML

models created in predicting At-Risk MASH. All 9 ML models outperformed each individual

variable when used in isolation. This demonstrates that the predictive power of these ML mod-

els is substantially greater than individual variables that have previously been used in predict-

ing various MASLD outcomes. When comparing test set AUC the ML models performed less

admirably, however the differences between training and test performance are small and to be
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expected. This is to ensure that our classifiers have not overfitted, that is, where classifiers per-

form too well upon training data and therefore struggle to generalise to unseen data and pre-

dict observations reliably—we discuss our approaches to mitigate overfitting of our ML

classifiers in the discussion section of this work. A handful of test set AUC of univariate models

can be difficult to compare with our ML classifiers due to the very small sample sizes of some

classifiers, such as N< 200 in 8 univariate cases, however the majority of these univariate mod-

els have test sets comparable to the N� 1200 of the ML classifiers. Even the smallest sample

sizes within the univariate models offer a robust estimator however, as far fewer observations

are required in models that utilise only one feature. In general, we see ML models outperform-

ing models that utilise each variable individually, highlighting the progress ML models can

offer in improving classifier performance over existing models.

Modelling using core features

Focusing first on At-Risk MASH as the target condition, the first stage of ML modelling that

was undertaken related to whether it was possible to accurately predict individuals with differ-

ent MASLD outcomes using only Core variables that are routinely collected from either from

a routine clinical practice or standard blood test. The Core feature set had 3 combinations of

ML modelling applied: XGBoost, XGBoost with MICE, XGBoost with MICE and SMOTE.

Each model contained p = 19 predictors and had N = 6024 observations, of which 2010 were

considered ‘At-Risk MASH’ (positive) and 4014 were not (negative). Taking the 80:20 train-

ing-test split, we observed a 2:1 negative-to-positive ratio in terms of the training set class split.

We wish only to balance the training set for the XGBoost with MICE and SMOTE model,

therefore we artificially enhanced the minority class (in this case the positive set) from 1601 to

3218 to match the case numbers for negative class in the training set. It is important to note

that rebalancing was not applied to the test set—this is so the test set is as close as possible to

what we would expect to see in reality, thus reducing any model biases.

Fig 1. ML/Linear approach comparison for predicting At-Risk MASH. Error bars denote +/- S.D from k = 5 fold

cross-validation.

https://doi.org/10.1371/journal.pone.0299487.g001
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Good classifier performance was attained using Core variables at predicting At-Risk

MASH, with a training AUC of 0.814 for the model which used no imputation or class balanc-

ing. There was a markedly improved performance in AUC by *8% when MICE and SMOTE

were used. It is worth noting that the classifier was much better at predicting the negative (and

in this case majority) class of individuals who were not At-Risk MASH with average specificity

being 86.2%, in comparison to average sensitivity (prediction of positive and in this case

minority class) of 63.1%. However, with the use of class balancing algorithm SMOTE the per-

formance of the classifier on the minority positive class improved at the expense of reduced

predictive power on the majority negative class, and in fact the classifier accuracy for the posi-

tive class was greater than that of the negative class in this case. This was preferable as this ulti-

mately improved all other evaluation metrics of the classifier.

Following the repetition of the 3 combinations of ML modelling techniques upon all other

target conditions using the Core variable dataset, as was the case with At-Risk MASH, the best

performing classifier was the model that used missing imputation MICE and class balancing

algorithm SMOTE. Performance metrics for these models are shown in Table 3.

Strong predictive performance for the XGBoost with MICE and SMOTE classifiers using

only Core variables with levels of accuracy was achieved with eight out of nine targets produc-

ing an AUC of>0.800. We found that all models that employed SMOTE improved either sen-

sitivity or specificity at the expense of a small decline in the other, providing a more equal

result between these metrics than before class balancing was used. For classifiers in which

there was a heavy class imbalance such as Advanced Fibrosis (Histology confirmed), Cirrhosis

(Histology confirmed), Advanced Fibrosis (Histology & Clinically confirmed), Cirrhosis (His-

tology & Clinically confirmed) and At-Risk MASLD, the improvement of sensitivity or speci-

ficity was greater, and therefore the improvement in overall AUC was greater also.

We also compared the AUC achieved from k = 5 training cross-validation with the AUC

achieved when applying the models to the test sets to test for overfitting. Cross-validation

helps to analyse the generalisation of models upon unseen data, with the main purpose being

to provide an estimate of model performance upon new test data. Fig 2 displays the ROC

curves for all 5 c.v. folds on the training set with the mean average ROC along with the ROC

achieved upon the test set highlighted. The model in question in Fig 2 was the XGBoost with

MICE and SMOTE used to predict At-Risk MASH using Core variables only. The AUC for

the test set was lower than the mean average for AUC for our training set by approximately

9%. This however was not a significant drop in model performance and with a test AUC per-

formance of 0.80, this displayed good implementation and generalisation of the model upon

new and unseen data.

Table 3. Evaluation metrics for ’Core’ dataset performance upon predicting all response using XGBoost with MICE and SMOTE.

Response AUC Accuracy Sensitivity Specificity F1

MASL vs. MASH 0.719 0.663 0.658 0.667 0.661

At-Risk MASH 0.899 0.820 0.827 0.812 0.821

High Activity 0.801 0.723 0.720 0.734 0.724

Clinically Significant Fibrosis 0.852 0.778 0.767 0.789 0.775

Advanced Fibrosis (Histology confirmed) 0.960 0.895 0.909 0.880 0.896

Cirrhosis (Histology confirmed) 0.994 0.964 0.980 0.949 0.965

Advanced Fibrosis (Histology & Clinically confirmed) 0.961 0.901 0.915 0.888 0.903

Cirrhosis (Histology & Clinically confirmed) 0.993 0.960 0.973 0.947 0.960

At-Risk MASLD 0.921 0.846 0.856 0.835 0.847

https://doi.org/10.1371/journal.pone.0299487.t003
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Model interpretability

Applying Shapley values to the most optimal model, we found a clear list of variables in

terms of their magnitude on the model’s output. Fig 3 ranks the ‘Core’ features by impor-

tance to model prediction from top to bottom, with AST, Platelet Count and AST-ALT Ratio

being the most influential predictors of the 19 available. The relative feature value for each

variable is presented, with red representing higher respective values for that feature and blue

representing lower values. The x-axis of this chart demonstrates the relative ‘push’ towards

positive or negative output of the model—for instance we see that the higher the Age of an

individual, the more likely it is that the model will classify an individual as positive and ‘At-

Risk MASH’.

Interpretability was also available for local predictions as well as the global model. Fig 4

illustrates 4 ‘force plots’ owing to 4 individuals with and without Type 2 Diabetes, and also

with and without high stage fibrosis (F>2). Force plots allow visualization of each feature’s

attribution with ‘forces’ that either increase or decrease the predicted value of the observation

by the model—in the case of the individual without Type 2 Diabetes and low stage fibrosis (top

left), strong negative influence from Albumin, GGT and Age outweigh the positive forces from

Fig 2. Training/Test set comparison. Training and Test AUCs and ROC curves for XGB + MICE + SMOTE model using Core variables upon

predicting At-Risk MASH.

https://doi.org/10.1371/journal.pone.0299487.g002
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Insulin Resistance, such that a low prediction output of 0.07 was obtained; this individual

would therefore have been predicted by the model to not be At-Risk of MASH.

It is worth noting that an individual’s diabetic status and fibrosis stage were not used to

train this model, however from the force plots we can see that very high values of 0.99 and 0.96

were predicted for the 2 individuals who were in a high fibrosis stage, therefore considering

these individuals to be positively At-Risk MASH. For the 2 individuals who were in a low

fibrosis stage, one low prediction value of 0.07 and one high prediction value 0.98 were

returned, with the higher value belonging to that of the individual who is diabetic; the model

therefore considers the non-diabetic individual with low fibrosis stage to be not At-Risk

MASH and the diabetic individual with high fibrosis stage to be At-Risk MASH. All of the

force plots have different features that were considered most important in their respective pre-

diction, however common features that appeared in these plots as most critical were Age, AST,

and Platelet count.

Fig 3. SHAP summary plots. Ranking of Core variables in terms of their influence on predicting At-Risk MASH for

XGBoost with MICE and SMOTE model.

https://doi.org/10.1371/journal.pone.0299487.g003

Fig 4. SHAP force plots. Force plots illustrating the impact of each feature upon the prediction of 4 random individual’s probability of At-Risk MASH.

Top Left: A non-diabetic, 49 year old man of low fibrosis stage. Top Right: A diabetic, 69 year old woman of low fibrosis stage. Bottom Left: A non-

diabetic 76 year old woman of high fibrosis stage. Bottom Right: A diabetic, 55 year old man of high fibrosis stage.

https://doi.org/10.1371/journal.pone.0299487.g004
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Modelling using extended and specialist features

Initially focusing again upon the target condition of At-Risk MASH, the analysis was repeated

using the Extended and Specialist variables feature set, there were therefore in total 9 models

in predicting this response. Fig 5 illustrates the AUC for each of these models.

By directly comparing each model composition to the feature set used, we see that the

average improvement in AUC of 0.03% was negligible at predicting At-Risk MASH

between Extended and Core feature sets. This compared to an average decline in AUC of

-3.4% between Core and Specialist feature sets. When also looking at other performance

metrics the improvements/deteriorations were similar for At-Risk MASH. The average

improvement in model accuracy, sensitivity, and specificity range between 0.03% and

1.57% when again comparing Extended feature set to Core feature set performance—there-

fore very little difference was found using the extra 7 variables within this new set of vari-

ables. When comparing the change in average performance to the Specialist feature set

there was a -4.70% fall in overall accuracy, -8.17% fall in specificity and 6.23% improvement

in sensitivity.

This pattern was observed across every target condition explored in this work, with the

average improvement of AUC when utilising the Extended feature set over the Core feature set

being 0.39%. This was also the case with accuracy, sensitivity and specificity, with the greatest

improvement being a 1.17% increase in sensitivity. It seems unlikely the cost of obtaining

these extra 7 features offsets any benefit in classification performance.

Fig 5. Modelling for At-Risk MASH. AUC for every classifier predicting At-Risk MASH by Feature Set and Model Composition.

https://doi.org/10.1371/journal.pone.0299487.g005
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The differences in average performance metrics between Core and Specialist feature sets

were far more variable, however. AUC for predicting MASL vs. MASH and High Activity

improved by more than 5% on average, however for other targets such as At-Risk MASH and

At-Risk MASLD average AUC performance deteriorated when introducing Specialist features.

It is therefore difficult to give a general conclusion for comparing these 2 feature sets in terms

of overall performance. Sensitivity however appeared to improve significantly (avg. 10.07%)

for every target when the Specialist feature set was used, this typically was at the expense of

heavily reduced specificity (avg. -4.86%). The high level of variability between the performance

of Core and Specialist feature sets was likely due to the differences in number of individuals

available for each set—comparison is therefore more difficult however there is little evidence

to suggest that Specialist features perform significantly better than those that can be accessed

simply by a routine clinical appointment.

Discussion

Our best models achieved an AUC score reaching 0.899 in cross-validation and 0.800 in our

hold-out test set for predicting At-Risk MASH, and similar performance for other endpoints.

These scores largely track the performance observed in [13] and reflect a modest improvement

over individual biomarkers. Interestingly, our machine learning models using ‘Core’ features

significantly outperformed established markers such as FIB-4 (with AUC = 0.708 for At-Risk

MASH on our test sample). Additionally, they provide similar levels of performance to the

best performing specialised markers. This suggests that incremental improvement in MASLD/

MASH screening is possible with established biomarker assays combined with more advanced

models. Our inability to radically improve classification performance may be due to the rela-

tively small sample size of novel biomarkers available in the LITMUS Metacohort. Progress

with similar models may be possible with the more complete prospective LITMUS Study

Cohort [12]. We must also acknowledge that classification performance will be limited by the

fundamental variability in biopsy reads, though we do not claim that we have reached that ceil-

ing yet.

It is very typical of medical data to have varying levels of missing data as it is either not feasi-

ble or unnecessary to record every variable for each individual at baseline appointments. The

level of missingness therefore increases the more complex feature sets are used within the

modelling. The level of imputation required for the Specialist feature set was so great for some

variables that it is not wise to use the same number of observations as used in the modelling of

the other 2 feature sets. Comparison should therefore be treated with caution when comparing

classifier performance using Core features to the classifiers using Specialist features with

approximately N� 950 for modelling using Specialist features, compared to N� 6000 for

Core feature modelling.

All target conditions that are explored in this paper are also imbalanced. Ideally for ML clas-

sification, the number of negative and positive cases should display a ratio of 1:1, however the

nearest that this is achieved for these targets was Steatosis vs. MASH with a ratio of 0.9:1. Some

target outcomes display severely imbalanced levels of class, with Cirrhosis (Histology Con-

firmed) providing a negative-to-positive class ratio of 11.1:1. The usage of class balancing algo-

rithm SMOTE was therefore more aggressive in cases where there are such great imbalance.

Also, although SMOTE is a markedly improved version of existing upsampling methods, it

naturally still bears limitations. In particular it does not consider the quality of synthetic sam-

ples generated and therefore can struggle to fully capture the distribution of the minority class.

However, SMOTE still offers significant advantages within ML classification and is seen to be

of great benefit and reliability to heavily imbalanced datasets.
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The performance for each target condition from base XGBoost model to XGBoost with

MICE falls in 8 out of the 9 targets observed suggesting a worse level of classifier performance

for the fully imputed datasets. This is in contrast to the use of class balancing algorithm

SMOTE, with all model performances for each target condition bar one improving between a

range of 5.10–14.60%. For targets in which the level of class imbalancing was more drastic and

therefore used SMOTE more aggressively to increase the minority class, it is clear that these

targets had the greatest improvements in AUC performance. For target conditions in which

the level of initial class imbalancing was less drastic however and the more conservative the

use of the class balancing algorithm, there was at worst little difference in classifier perfor-

mance, however in general there was still an improved model. For all SMOTE models also, any

improvement in either sensitivity or specificity was offset by a decline in the other. The only

two models in which specificity improves over sensitivity is where the target condition had

more positive cases than negative cases. It is useful to point out that for every target condition,

the net improvement between these two metrics was greater than zero. Alongside an overall

improvement to AUC and Accuracy also, it can therefore be concluded that SMOTE offers a

significant improvement upon model performance.

Finally, the reported accuracy of as high as 99.4% in the prediction of Cirrhosis (Histology

Confirmed) suggests a possibility of overfitting. Several measures were taken within the experi-

mental design of this work to reduce the chances of model overfit. This included the use of k-

fold cross-validation when tuning hyperparameters and assessing the model fit; this method

allows for the ML models to not be strongly influenced by any particular part of the training

data and allow for a more accurate indication of model performance. Furthermore, tuning

hyperparameters ‘max_depth’ and ‘colsample_bytree’ within the XGBoost models allowed for

model complexity to be controlled as well as adding randomness to allow the model training

to be robust to noise respectively. SMOTE also ensures that models do not become biased and

overfit towards the majority class. It is acknowledged however that despite these steps overfit-

ting can still occur, and as shown in Fig 2, mean training AUC is still slightly greater than test

AUC. We would therefore issue caution to clinicians when using these models upon unseen

data but be reassured of this small reduction that our models still present overall a good

generalisation.

Conclusion

Building upon previous linear approaches to predict MASLD related endpoints, this research

highlights the capability of more complex, non-linear machine learning methods in being able

to accurately classify individuals of varying severity in relation to the MASLD natural progres-

sion. In particular, we have demonstrated the ability of predicting such outcomes using easily

extractable and readily available information as collected from routine clinical appointments

or standard blood tests to a high degree of accuracy. Through using the ML algorithm

XGBoost along with missing imputation algorithm MICE and class balancing tool SMOTE

upon easily accessible variables, we are able to obtain a classifier with an accuracy of 89.9% at

predicting At-Risk MASH. Using this model structure, we are also able to accurately predict

other MASLD outcomes up to a training set AUC of 99% in some cases. We have also demon-

strated that the introduction of variables that are more complex and difficult to obtain from

standard healthcare procedures do not substantially improve the accuracy of these classifiers

to offset the cost of procuring these variables although confirmatory analysis upon suitable val-

idation sets is required when available. Each model created within this research was also

designed to be highly interpretable, offering clinicians the ability to explore how each individ-

ual classifier has come to its conclusions. Each model created, with the help of SHAP, was able
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to display the most important features used in a model’s decision making, how specific values

of each feature contribute to final output, and also the observation of personalised predictions

for each individual used within the classifier’s training.
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Beaujon, Assistance Publique Hopitaux de Paris: Valerie Paradis. University Medical Cen-

ter Mainz: Detlef Schuppan, Jörn M. Schattenberg, Rambabu Surabattula, Sudha Myneni, Yong
Ook Kim, Beate K. Straub. University of Cambridge: Toni Vidal-Puig, Michele Vacca, Sergio
Rodrigues-Cuenca, Mike Allison, Ioannis Kamzolas, Evangelia Petsalaki, Mark Campbell, Chris
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