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Background: Neuroblastoma (NB) is a common solid tumor in children, with a dismal prognosis in high-
risk cases. Despite advancements in NB treatment, the clinical need for precise prognostic models remains 
critical, particularly to address the heterogeneity of cancer stemness which plays a pivotal role in tumor 
aggressiveness and patient outcomes. By utilizing machine learning (ML) techniques, we aimed to explore 
the cancer stemness features in NB and identify stemness-related hub genes for future investigation and 
potential targeted therapy.
Methods: The public dataset GSE49710 was employed as the training set for acquire gene expression 
data and NB sample information, including age, stage, and MYCN amplification status and survival. 
The messenger RNA (mRNA) expression-based stemness index (mRNAsi) was calculated and patients 
were grouped according to their mRNAsi value. Stemness-related hub genes were identified from the 
differentially expressed genes (DEGs) to construct a gene signature. This was followed by evaluating the 
relationship between cancer stemness and the NB immune microenvironment, and the development of a 
predictive nomogram. We assessed the prognostic outcomes including overall survival (OS) and event-free 
survival, employing machine learning methods to measure predictive accuracy through concordance indices 
and validation in an independent cohort E-MTAB-8248.
Results: Based on mRNAsi, we categorized NB patients into two groups to explore the association 
between varying levels of stemness and their clinical outcomes. High mRNAsi was linked to the advanced 
International Neuroblastoma Staging System (INSS) stage, amplified MYCN, and elder age. High mRNAsi 
patients had a significantly poorer prognosis than low mRNAsi cases. According to the multivariate Cox 
analysis, the mRNAsi was an independent risk factor of prognosis in NB patients. After least absolute 
shrinkage and selection operator (LASSO) regression analysis, four key genes (ERCC6L, DUXAP10, 
NCAN, DIRAS3) most related to mRNAsi scores were discovered and a risk model was built. Our model 
demonstrated a significant prognostic capacity with hazard ratios (HR) ranging from 18.96 to 41.20, P 
values below 0.0001, and area under the receiver operating characteristic curve (AUC) values of 0.918 in 
the training set, suggesting high predictive accuracy which was further confirmed by external verification. 
Individuals with a low four-gene signature score had a favorable outcome and better immune responses. 
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Introduction

Cancers in children and young adults are relatively 
uncommon and have unique diagnostic features compared 
to those affecting older individuals (1). These malignancies 
often originate from immature cells that possess stem cell-
like properties, potentially contributing to the observed 
clinical and biological variations (2). Neuroblastoma (NB) 
is currently the most prevalent extracranial solid tumor 
in childhood, with the vast majority of cases (90%) being 
identified in children under the age of 5 years (3). The 
clinical prognosis of NB is highly variable, with patients 

displaying a broad range of outcomes from complete 
remission to refractory disease that is challenging to 
treat (3). Despite intensive efforts to improve outcomes, 
current treatments still encounter high rates of resistance, 
recurrence, and progression in high-risk NB cases, with 
long-term survival still less than 40% (4). Previous studies 
on NB have identified several prognostic biomarkers, 
such as MYCN amplification, ALK mutations, and age at 
diagnosis, among others (5,6). While these markers are 
informative, their predictive power is often limited by NB’s 
extensive biological diversity, which stems from its complex 
genetic and epigenetic landscape. Therefore, finding a 
robust index to predict and evaluate clinical prognosis and 
therapeutic efficacy has become an urgent issue, with the 
goal of achieving accurate clinical interventions.

Many investigations have shown that in various types 
of tumors, a minute fraction of undifferentiated cells, 
resembling stem cells, have the capability to initiate the 
development of cancer. These cells have been designated 
as cancer stem cells (CSCs) (7). CSCs are believed to play 
a critical role in the growth, progression, recurrence, and 
resistance to therapy of solid malignancies (8). These 
uncommon and difficult-to-detect cells have the ability to 
spread at an early stage and conceal themselves in specific 
niches located in remote organs. This makes them capable 
of causing disease relapse even after successful treatment of 
the primary tumor (9). It has been demonstrated that NB 
tumors with poor prognosis harbor an undifferentiated stem 
cell population that is responsible for their highly aggressive 
nature (10-12). Pandian et al. successfully isolated highly 
aggressive cellular clones from metastatic NB tumors, 
and these clones were found to retain their plasticity and 
adaptive stemness despite exposure to different culture 
conditions, indicating their potential as NB CSCs (13). 

Highlight box

Key findings 
•	 The newly developed neuroblastoma (NB) stemness-related 

prognostic signature in this study could facilitate the prognostic 
prediction and immune responses.

What is known and what is new? 
•	 NB tumors with poor prognosis harbor an undifferentiated stem 

cell population that is responsible for their highly aggressive 
nature.

•	 By utilizing the stemness index and machine learning methods, our 
study delved into the features of cancer stem cells in NB, further 
providing evidence of their essential role in the development 
and progression of the disease. For the first time, we constructed 
a novel mRNAsi-associated signature for NB that exhibited 
significant associations with prognosis, clinical characteristics, and 
tumor immune response in NB. 

What is the implication, and what should change now?
•	 The identification of hub genes in this study significantly advances 

our understanding of NB stem cell maintenance and suggests that 
they may serve as promising therapeutic targets for inhibiting NB 
stemness characteristics.

Finally, a nomogram for clinical practice was constructed by integrating the four-gene signature and INSS 
stage.
Conclusions: Our findings confirm the influence of CSC features in NB prognosis. The newly developed 
NB stemness-related four-gene signature prognostic signature could facilitate the prognostic prediction, and 
the identified hub genes may serve as promising targets for individualized treatments.
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Drug resistance in treatment is a major challenge in the 
management of refractory cancers. It is widely accepted 
that CSCs play a significant role in the development of 
therapy resistance in tumors (14-16). During prolonged 
drug selection of NB cells, a subpopulation of cells with 
CSC characteristics becomes enriched (17). Despite the 
evidence that the CSC subpopulation in NB contributes 
to disease metastases and therapy resistance, the origin 
and characteristics of this cell subset are still not fully 
understood (13,18,19). The heterogeneity of CSC 
populations within NB tumors contributes to the variability 
in patient responses to treatment, necessitating the 
exploration of new biomarkers that can encompass this 
diversity. Currently, there are no established therapeutic 
modalities specifically targeting CSCs, scientists have 
adopted artificial intelligence (AI) to further examine the 
characteristics of CSCs within tumors, in order to obtain a 
more comprehensive understanding of these cells. In a study by 
Malta et al., a novel messenger RNA (mRNA) expression-based 
stemness index (mRNAsi) was generated by machine learning 
algorithm to quantify tumor stemness (20). By quantifying 
tumor stemness, mRNAsi may offer a more comprehensive 
biomarker for NB prognosis. Stemness attributes, reflective of a 
tumor’s ability to sustain growth, resist therapy, and metastasize, 
are particularly pertinent to the aggressive and often treatment-
resistant nature of high-risk NB. Prognostic signatures based 
on mRNAsi have been successfully developed in various types 
of cancer, indicating the stemness of CSCs and predicting 
unfavorable outcomes (21-23). Despite this, few studies have 
sought to determine the predictive and prognostic value of 
mRNAsi-related genes in NB. 

Our study proposes mRNAsi as a promising tool for 
prognostic assessment, with the potential to enhance the 
precision of clinical interventions in NB. We utilized the 
mRNAsi in a comprehensive bioinformatics analysis to 
identify genes associated with stemness, with the aim of 
discovering potential therapeutic targets and developing a 
prognostic signature for NB. The mRNAsi of NB patients 
was evaluated and a risk model was developed using the four 
hub genes that we identified. A comprehensive evaluation of 
prognosis, clinical characteristics, tumor microenvironment 
(TME), and response to immunotherapy was conducted 
across different subtypes. Our findings offer novel insights 
into CSC research in NB and have the potential to improve 
individualized treatments for NB patients. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tp.amegroups.com/article/
view/10.21037/tp-23-582/rc).

Methods

Data acquisition

The microarray data were downloaded from the Gene 
Expression Omnibus (GEO) database (24). The gene 
expression profiles and clinical information of 498 NB patients 
were obtained from the dataset GSE49710, which is hosted on 
the GEO. Overall survival (OS) is defined as the duration from 
the date of diagnosis or initiation of treatment to either the 
date of death from any cause or the last follow-up. The probes 
were mapped to gene symbols using the platform GPL16876’s 
gene mapping information. We obtained the E-MTAB-8248 
dataset (N=223) from the ArrayExpress database (https://
www.ebi.ac.uk/biostudies/arrayexpress) to externally validate 
our signature. Table S1 provides a detailed illustration of 
patient information derived from two datasets. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Calculation of stemness index

By using the one-class logistic regression (OCLR) machine 
learning (ML) algorithm, we calculated the mRNAsi of 
all 498 samples to represent their stemness values (20). 
To normalize the mRNAsi values to a range of 0 to 1, 
we employed a linear transformation technique, which 
involved subtracting the minimum value from each data 
point and then dividing the result by the range, defined as 
the maximum value minus the minimum value. Patients 
were stratified into two groups based on the median value 
of mRNAsi. The prognostic significance of mRNAsi 
was evaluated using Kaplan-Meier (KM) analysis for 
OS difference between the patient groups. Multivariate 
Cox regression was employed to validate the prognostic 
independence of mRNAsi.

Analysis of enriched gene sets 

We employed gene set enrichment analysis (GSEA) to 
investigate the differences in functional pathways between 
the two mRNAsi groups. The dataset was obtained from the 
Molecular Signatures Database (MSigDB). The latest MSigDB 
consists of nine categories (C1–C8 and Hallmark) (25).  
The R package “clusterProfiler” was used for analysis (26).

Construction and verification of a four-gene signature

The 498 samples of GSE49710 were used for signature 

https://tp.amegroups.com/article/view/10.21037/tp-23-582/rc
https://tp.amegroups.com/article/view/10.21037/tp-23-582/rc
https://www.ebi.ac.uk/biostudies/arrayexpress
https://www.ebi.ac.uk/biostudies/arrayexpress
https://cdn.amegroups.cn/static/public/TP-23-582-Supplementary.pdf
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development and 223 samples of E-MTAB-8248 for model 
validation. The R package “limma” was used to identify 
differentially expressed genes (DEGs) (27). Cox analysis and 
least absolute shrinkage and selection operator (LASSO) 
regression analysis were used to further screen DEGs. 
Ultimately, the risk score for the prognostic gene signature 
was derived by multiplying the mRNA expression level 
with the regression coefficient assigned to each gene. Then, 
two patient risk groups were built according to the median 
score. The assessment of the predictive performance of 
the model was conducted by KM analysis, decision curve 
analysis (DCA), and area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve. We adopted 
AUC threshold values of >0.7 for acceptable, >0.8 for 
excellent, and >0.9 for outstanding predictive performance.

Analysis of immune microenvironment and prediction of 
therapeutic sensitivity

To evaluate the degree of immune infiltration, four algorithms 
were used, including Estimation of STromal and Immune cells in 
MAlignant Tumours using Expression data (ESTIMATE) (28),  
Cell-type Identification By Estimating Relative Subsets Of 
RNA Transcripts (CIBERSORT) (4), Microenvironment 
C e l l  P o p u l a t i o n s - c o u n t e r  ( M C P c o u n t e r )  ( 2 9 ) ,  
and xCell (30). The activity of 14 cancer-related pathways 
was analyzed by the “PROGENy” R package (31). In order 
to assess the potential immunotherapy response, we used 
the Tumor Immune Dysfunction and Exclusion (TIDE, 
http://tide.dfci.harvard.edu/) (32) and immunophenoscore 
(IPS, https://tcia.at/tools/toolsMain) (33) algorithms. A 
high IPS score and low TIDE score may suggest a more 
favorable response to immunotherapy. From the database 
of Genomics of Drug Sensitivity in Cancer (GDSC, https://
www.cancerrxgene.org/) (34), we obtained the anti-cancer 
drugs information. To determine the IC50 of drugs, we 
employed the “pRRophetic” R package (35).

Predictive nomogram development and validation

A nomogram plot incorporating the risk score of the four-
gene model and the International Neuroblastoma Staging 
System (INSS) stage was built using the “rms” R package. 
The predictive ability of the nomogram was assessed by 
analyzing the ROC curve and the calibration plot. The 
global and individual Schoenfeld tests were used to estimate 
the time-varying covariance of the Cox proportional risk 
regression analysis hypothesis. We assumed that Schoenfeld 

residuals were time independent. A P value <0.05 indicated 
rejection of this assumption.

Statistical methods

R software (version 4.2.1; The R Foundation for Statistical 
Computing, Vienna, Austria) was employed for statistical 
analysis and data visualization. We used two-tailed unpaired 
Student’s t-test and Wilcoxon test to compare differences 
between two groups. The differences between rates were 
tested using either the chi-square test or Fisher’s exact test. 
To generate images, we used Adobe Illustrator (version 
22.0; Adobe, San Jose, CA, USA). In this study, a two-
sided P values less than 0.05 were considered as statistically 
significant.

Results

The relationship between clinical features and mRNAsi in 
NB

Following the computation with the OCLR algorithm, 
the mRNAsi values of 498 samples were subsequently 
arranged in ascending order. The correlation between 
clinical characteristics and mRNAsi was assessed and is 
visualized in Figure 1A. The analysis revealed that patients 
with high mRNAsi tended to exhibit clinical characteristics 
indicative of more aggressive disease, such as higher INSS 
stage and poor OS status. Notably, MYCN amplification, 
a well-established marker of poor prognosis in NB, was 
also more prevalent in this group. Additionally, these 
patients were more likely to be over 18 months at diagnosis, 
another factor associated with a less favorable outcome 
in NB. Statistically significant differences in mRNAsi 
were observed among patients with different clinical 
characteristics (Figure 1B-1D). Patients with INSS stage 
4 were observed to have significantly higher mRNAsi 
levels compared to the other stages (P<0.0001), and those 
with MYCN amplification displayed a markedly higher 
mRNAsi than patients lacking amplification (P<0.0001). 
Furthermore, the mRNAsi levels of patients aged over 
18 months at diagnosis were markedly higher than those 
diagnosed before 18 months (P<0.0001). In addition, 
patients with lower mRNAsi had significantly better 
survival outcomes than those with high mRNAsi (P<0.0001)  
(Figure 1E). The Cox regression indicated that mRNAsi 
could independently predict the OS of NB, in addition to 
INSS stage, MYCN, and age (Figure 1F).

http://tide.dfci.harvard.edu/
https://tcia.at/tools/toolsMain
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
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Significant survival discrepancies between different 
mRNAsi groups

According to the respective mRNAsi value of each patient, 
two groups were created: low mRNAsi and high mRNAsi. 
As indicated by the survival analysis, high mRNAsi patients 
had significantly shorter OS, regardless of their INSS 

stages (Figure 2A,2B), MYCN statuses (Figure 2C,2D), 
or ages (Figure 2E,2F). Among the 131 NB patients aged 
over 18 months who were also INSS stage 4, those with 
high mRNAsi also had a worse prognosis (P=0.0072)  
(Figure 2G). Similarly, in the subset of 47 patients with 
MYCN amplification, those categorized in the high 
mRNAsi group demonstrated a poorer survival outcome 

Figure 1 Correlation between mRNAsi and clinical characteristics of NB. (A) A summary of the association between mRNAsi and 
clinical characteristics of NB. (B-D) The discrepancies in mRNAsi of different clinical characteristics patients. (E) The KM curve showed 
differences between patients with high and low mRNAsi. (F) Forest diagram displaying the multivariate Cox proportional hazard regression 
model for mRNAsi and clinical parameters. (The KM curve = the Kaplan-Meier curve. **, P<0.01; ***, P<0.001; ****, P<0.0001). mRNAsi, 
messenger RNA expression-based stemness index; OS, overall survival; Amp, amplification; INSS, International Neuroblastoma Staging 
System; AIC, Akaike Information Criterion; NB, neuroblastoma.
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Figure 2 Significant survival discrepancies between different mRNAsi groups. (A-F) Significant survival difference between high and low 
mRNAsi patients in each clinicopathological subgroup. (G) Significant survival difference between high and low mRNAsi patients in patients 
with stage 4 and over 18 months. (H) Significant survival difference between high and low mRNAsi patients in patients with stage 4, over 18 
months, and MYCN amplification. Amp, amplification; mRNAsi, messenger RNA expression-based stemness index.
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(P=0.047) (Figure 2H).

GSEA of DEGs

To investigate the function of DEGs between patients with 
low and high mRNAsi, we used MSigDB to conduct an 
enrichment analysis. The top two enrichments with the 
lowest P values in each of the nine categories (C1–C8 and 
Hallmark) are presented in Figure 3. In Figure S1A,S1B, 
the top 10 enrichment with the lowest P values of C5 
[Gene Ontology (GO) gene sets] and H (Hallmark gene 
sets) were presented, respectively. The gene set on the 
left represents normalized enrichment score (NES) <0. As 
depicted in Figure 3, genes located on chr1p36 were found 
to be more enriched in the low mRNAsi group, suggesting 
a potential higher frequency of 1p36 deletion in patients 
with high mRNAsi. Loss of tumor suppressor genes at the 
1p36 locus is crucial in the oncogenesis and progression of 
NB (36,37). According to GO enrichment analysis, the low 
mRNAsi group showed enrichment of gene sets associated 
with positive regulation of cell adhesion, whereas the high 
mRNAsi group exhibited enrichment of gene sets related to 
chromosome separation and nuclear division (Figure S1A). 
The Hallmark enrichment results showed that the gene sets 
related to MYC targets, DNA repair, G2/M checkpoint, 
and E2F targets were enriched in the high mRNAsi group  
(Figure S1B). These pathways related to cell division, DNA 
damage repair, and cell cycle are critical for the survival of CSCs.

Construction of the four-gene signature

Analysis of gene expression differences revealed 20 
DEGs, as shown in Figure 4A. Univariate Cox analysis 
demonstrated that all 20 genes were significantly associated 
with OS (Figure 4B). LASSO regression analysis identified 
seven variables as the most influential (Figure 4C,4D), and 
three collinear variables were excluded by multivariate 
Cox regression (Figure 5A). Finally, four genes (ERCC6L, 
DUXAP10 ,  NCAN ,  DIRAS3) were included in the 
prediction signature, and the chordal graph displayed in 
Figure 5B demonstrates their close interrelation. Based 
on the coefficients of the four genes, the risk score was 
calculated by the following formula:

( ) ( ) ( ) ( )Four-gene signature risk score 0.602 the expression of 6 0.139 the expression of 10 0.154 the expression of 0.101 the expression of 3ERCC L DUXAP NCAN DIRAS= × + × + × − ×

( ) ( ) ( ) ( )Four-gene signature risk score 0.602 the expression of 6 0.139 the expression of 10 0.154 the expression of 0.101 the expression of 3ERCC L DUXAP NCAN DIRAS= × + × + × − ×

( ) ( ) ( ) ( )Four-gene signature risk score 0.602 the expression of 6 0.139 the expression of 10 0.154 the expression of 0.101 the expression of 3ERCC L DUXAP NCAN DIRAS= × + × + × − ×

( ) ( ) ( ) ( )Four-gene signature risk score 0.602 the expression of 6 0.139 the expression of 10 0.154 the expression of 0.101 the expression of 3ERCC L DUXAP NCAN DIRAS= × + × + × − ×

	 [1]

Internal and external verification of the four-gene 
signature

By using the median risk score (6.534) as a cutoff point, 
the 498 NB samples were categorized into two groups. 
The two groups showed significant differences in survival, 
with shorter OS in the high-risk score group (P<0.0001) 
(Figure 5C,5D). KCAN, DUXAP10, and ERCC6L were 
upregulated in the high-risk score group, whereas DIRAS3 
was overexpressed in the low-risk score group. The ROC 
curve demonstrates the risk score’s predictive ability for OS, 
with high AUC values at different time points (Figure 5E).

The E-MTAB-8248 dataset was employed to evaluate 
the predictive ability of the risk score. The KM analysis 
revealed that, in line with the findings of the training set, 
the high-risk group demonstrated shorter OS (P<0.0001) 
(Figure S2A), highlighting significant survival differences 
between the two groups (Figure S2B). 

Comparative analysis and correlation of the four-gene 
signature with other clinical indicators

The significant and positive association between high-
risk scores and high mRNAsi indicated that the four-
gene signature can effectively reflect the stemness of NB 
specimens (Figure 6A). The advanced INSS stage, MYCN 
amplification, and age above 18 months are established 
clinical factors that are highly linked with a dismal prognosis 
in NB (3). Figure 6B depicts the correlation between these 
features and the risk score for predicting the prognosis. 
High-risk scores were observed to be associated with clinical 
indicators such as INSS stage 4, MYCN amplification, age 
>18 months, and deceased OS status. Moreover, compared 
to the low mRNAsi group, all low-risk patients in the  
four-gene model were non-MYCN-amplified, indicating 
a higher accuracy of the gene signature, as illustrated in  
Figure 6C. It is worth mentioning that the predictive 
ability of the four-gene signature exceeded that of MYCN 
status, INSS stage, and mRNAsi. This was evident in 
the area under the ROC curve (Figure 6D) and the DCA 
curve for 5-year OS prediction (Figure 6E), both of which 
demonstrated the superior predictive ability of the model.

Immune infiltration and sensitivity to treatment

The low and high-risk score groups exhibited remarkable 
differences in immune infiltration, as calculated by the 
four-gene signature. Figure 7A and Table S2 provide an 

https://cdn.amegroups.cn/static/public/TP-23-582-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TP-23-582-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TP-23-582-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TP-23-582-Supplementary.pdf
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High mRNAsi group vs. low mRNAsi group

Gene number

Figure 3 The GSEA of DEGs between high and low mRNAsi. The enrichment analysis of DEGs, the top two enrichments of up and 
down-regulated were displayed in each category, respectively. The gene sets with NES <0 were listed on the left, and the gene sets with NES 
>0 were listed on the right. C, category; H, Hallmark; GSEA, gene set enrichment analysis; DEGs, differentially expressed genes; mRNAsi, 
messenger RNA expression-based stemness index; NES, normalized enrichment score.
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Figure 4 Construction of the four-gene signature. (A) Heat map of 20 DEGs between high and low mRNAsi NB patients. (B) The 
univariate COX analysis for selecting genes significantly associated with OS. (C,D) The LASSO regression analysis for filtering genes. 
****, P<0.0001. CI, confidence interval; vars, variables; DEGs, differentially expressed genes; mRNAsi, messenger RNA expression-based 
stemness index; NB, neuroblastoma; OS, overall survival; LASSO, least absolute shrinkage and selection operator. 

2

1

0

1

2

mRNAsi group
    High
    Low

–7 –6 –5 –4 –3 –2

–6 –4 –2Lambda (log scale)

Log lambda

P
ar

tia
l l

ik
el

ih
oo

d 
de

vi
an

ce

C
oe

ffi
ci

en
ts

0.75

0.50

0.25

0.00

–0.25

13.5

13.0

12.5

12.0

1             1.5        2      2.5    3

A

B

C D

Hazard ratio (95% CI)



Xia et al. Stemness-related signature for predicting NB prognosis100

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2024;13(1):91-109 | https://dx.doi.org/10.21037/tp-23-582

1      1.2    1.4   1.6 1.8  2  2.2

–1                   1

Time, day

249
249

77
173

9
43

1
1

High-risk
Low-risk

Number at risk

P<0.0001

AUC of 1-year =0.87

AUC of 3-year =0.907

AUC of 5-year =0.918

1.00

0.75

0.50

0.25

0.00

0 2000 4000 6000

0 2000 4000 6000

S
ur

vi
va

l p
ro

ba
bi

lit
y

Tr
ue

 p
os

iti
ve

 r
at

e

R
is

k 
sc

or
e

O
S

, d
ay

False positive rate

Time dependent ROC

A B

C

E

D

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Risk score
   High-risk
   Low-risk

Status
   Alive
   Dead

Genes 
expression

1.5
1.0
0.5
0.0
–0.5
–1.0
–1.5

NCAN

DUXAP10

ERCC6L

DIRAS3

10.0

7.5

5.0

2.5

0.0

6000

4000

2000

0

1.83 (1.51, 2.21)    <0.001

1.15 (1.02, 1.29)     0.018

1.17 (1.05, 1.29)     0.004

0.90 (0.82, 1.00)     0.039

ERCC6L

DUXAP10

NCAN

DIRAS3

498

498

498

498

Hazard ratio (95% CI) PGene        N

Figure 5 Verification of the four-gene signature. (A) Multivariate Cox regression analysis for removing collinearity genes. (B) Circle plot of 
the correlation between the four genes. (C) KM curve for prognostic prediction of OS using the four-gene signature. (D) The distribution of 
risk scores, the association of risk scores and OS, and the four-gene mRNA expression. (E) The ROC curve for verification of the prediction 
performance of four-gene signature. CI, confidence interval; OS, overall survival; ROC, receiver operating characteristic; AUC, area under 
the curve; KM, Kaplan-Meier; mRNA, messenger RNA. 

overview of the immune infiltration differences, as assessed 
by ESTIMATE, CIBERSORT, MCPcounter, and xCell. 
Patients identified as low risk by the ESTIMATE algorithm 
tend to have higher ImmuneScore, StromalScore, and 
ESTIMATEScore (P<0.0001). The results obtained 

from CIBERSORT showed that the low-risk score group 
had a significantly higher infiltration abundance of M2 
macrophages compared to the high-risk score group 
(P<0.0001). The significant distinctions in the abundance 
of naïve B cells (P<0.01) and memory B cells (P<0.0001) 
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Figure 6 Comparison and association of four-gene signature with other clinical indicators. (A) Correlation between four-gene risk scores 
and mRNAsi. (B) Distribution of INSS stage, MYCN status, age at diagnosis, OS status, and four-gene signature risk scores in mRNAsi. (C) 
Sankey diagram for mRNAsi, MYCN status, and four-gene risk scores. (D) The AUC of the four-gene signature, INSS stage, MYCN status, 
and mRNAsi. (E) The DCA curves of the four-gene signature, INSS stage, MYCN status, and mRNAsi at 5 years. mRNAsi, messenger 
RNA expression-based stemness index; INSS, International Neuroblastoma Staging System; OS, overall survival; Amp, amplification; N/A, 
not applicable; AUC, area under the curve; DCA, decision curve analysis.
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Figure 7 Immune infiltration and sensitivity to chemotherapy. (A) Heat map of immune infiltration calculated by ESTIMATE, 
CIBERSORT, MCPcounter and xCell. (B,C) Violin plots of TIDE score and IPS. (D) Boxplot of tumor-related pathways activity. (E-
H) Ridge plot for IC50 of four anti-cancer drugs (fulvestrant, tamoxifen, pictilisib, buparlisib). *, P<0.05; **, P<0.01; ***, P<0.001; ****, 
P<0.0001. ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumours using Expression data; CIBERSORT, Cell-type 
Identification By Estimating Relative Subsets Of RNA Transcripts; MCPcounter, Microenvironment Cell Populations-counter; TIDE, 
Tumor Immune Dysfunction and Exclusion; ns, not significant; IPS, immunophenoscore.
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also warrant attention. Naïve B cells have been reported 
to secrete cytokines that hinder the proliferation of cancer  
cells (38). Memory B cells have a significant impact on 
the tumor immune microenvironment by recognizing 
and binding to tumor-associated antigens. They initiate 
the production of antibodies and stimulate the immune 
system to attack cancer cells (38). The application of 
MCPcounter revealed substantial differences in 8 out of 
10 cell types between the two groups (P<0.05). Among 
them, the significantly higher abundance of natural killer 
(NK) cells and cytotoxic lymphocytes in patients with low-
risk score attracted our attention in particular (P<0.0001). 
Additionally, as per xCell, the low-risk group showed 
significantly higher infiltration abundance of CD4+ T 
cells, CD8+ T cells, and M2 macrophages (P<0.0001). 
Furthermore, both the TIDE score (Figure 7B) and the IPS 
(Figure 7C) were significantly different between the high 
and low-risk score groups, with the former being higher and 
the latter being lower in the high-risk group. These findings 
suggested a poor immunotherapy response in the high-risk 
score group. Specifically, low-risk score patients (65%) were 
more responsive to immunotherapy than high-risk patients 
(29%), as revealed by TIDE algorithms (P<0.001) (Figure S3).

As depicted in Figure 7D, between the high- and low-
risk score groups, significant differences in activity were 
observed in 11 out of the 14 tumor-related pathways. 
Specifically, the high-risk score group showed significantly 
higher activity in the estrogen, PI3K, EGFR, MAPK, 
and p53 pathways, compared to the low-risk score group. 
Conversely, the TGF-β, androgen, NF-κB, TNF-α, JAK-
STAT, and Trail pathways exhibited higher activity in the 
low-risk group. Furthermore, a significant reduction in the 
IC50 of four anti-cancer drugs related to the estrogen and 
PI3K pathways was observed in the high-risk score group: 
fulvestrant (P<0.001) (Figure 7E), tamoxifen (P<0.001) 
(Figure 7F), pictilisib (P<0.001) (Figure 7G), and buparlisib 
(P<0.001) (Figure 7H). This indicates that these drugs are 
more effective for the high-risk group.

Nomogram development and validation

The nomogram was constructed to make the clinical 
application of the four-gene signature more feasible for 
prognosis prediction. The Schoenfeld tests indicated 
that the INSS stage and risk score did not violate the 
proportional risk hypothesis (P>0.05) (Figure S4). Hence, 
the nomogram was constructed by integrating the risk score 
and INSS stage (Figure 8A). The ROC curve (Figure 8B)  

and calibration curve (Figure 8C) demonstrate the 
nomogram’s predictive value. The AUC for 1-, 3-, and 
5-year OS prediction in the ROC curves were 0.865, 0.915, 
and 0.926, respectively. 

Discussion

By employing the OCLR machine-learning algorithm, we 
computed the mRNAsi for NB patients, which enabled us 
to uncover novel biological mechanisms associated with 
CSCs. We observed that higher mRNAsi scores were 
correlated with worse clinicopathological factors, such as 
advanced INSS stage, MYCN amplification, and older age. 
Our study revealed that high mRNAsi patients tended to 
have a worse prognosis, irrespective of their INSS stages, 
MYCN status, and age. Furthermore, mRNAsi was found 
to be an independent risk factor with strong predictive value 
for the survival of NB patients. These findings suggest that 
mRNAsi has potential as a promising prognostic indicator 
for NB. 

Through GSEA, we observed that the low mRNAsi 
group had enriched genes associated with cell adhesion, 
whereas gene sets representing active cell division, such as 
chromosome segregation and nuclear division, were found 
to be more enriched in the high mRNAsi group. 

CSCs differ from normal stem cells in their inability 
to regulate their mode of cell division, which results in 
perpetual cell division and consequent unchecked growth of 
tumors (39). Moreover, some CSCs have acquired specific 
genetic alterations that confer them with migratory abilities, 
enabling them to detach from adhesion with other tumor 
cells and further disperse and metastasize (40). Gene sets 
related to DNA repair and cell cycle were predominantly 
enriched in the high mRNAsi group. It is known that 
DNA repair pathways have a crucial role in maintaining 
genome integrity, but CSCs activate these pathways 
inappropriately to evade anticancer therapies (41). Stem 
cells are able to maintain their longevity by exiting the cell 
cycle for extended periods, which allows them to preserve 
their replicative potential and reduce DNA damage (42). 
Consequently, slow-cycling dormant CSCs can survive 
cytotoxic drugs and differentiate into highly proliferative 
cells that have the ability to regenerate tumors (43). Our 
study also demonstrated that high mRNAsi NB patients 
were more likely to have 1p36 deletion, which is a common 
segmental chromosomal loss in NB and is strongly linked 
to poor OS (44). In another study, it was shown that miR-
200b, located at chromosome 1p36, is downregulated in 

https://cdn.amegroups.cn/static/public/TP-23-582-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TP-23-582-Supplementary.pdf
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Figure 8 Construction and validation of the nomogram. (A) The nomogram plot constructed based on four-gene signature risk score and 
INSS stage. (B) ROC curves validating the predictive performance of nomogram. (C) Calibration plot validating the predictive performance 
of nomogram. ***, P<0.001. Pr, probability; ROC, receiver operating characteristic; AUC, area under the curve; OS, overall survival; INSS, 
International Neuroblastoma Staging System. 
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hepatocellular carcinoma (HCC) and is correlated with 
the stemness of CSCs. Through the inhibition of ZEB1 
expression, miR-200b can suppress the stemness of HCC 
CSCs (45). 

Various prognostic signatures for NB have been 
reported in previous studies (12,46,47). However, to 
our knowledge, no previous study in NB has reported 
measuring stemness for prognostication. In our study, we 
first utilized bioinformatics methods to construct a gene 
prediction model for NB that is related to cancer stemness. 
By employing an ML approach, we identified potential 
hub biomarkers from mRNAsi phenotype-based DEGs. 
Among them, four genes (ERCC6L, DUXAP10, NCAN, 
and DIRAS3) were identified as promising cancer stemness-
related biomarkers for NB. The four-gene signature 
remained an effective reflection of the NB stemness value 
while outperforming the mRNAsi subgrouping in terms of 
prognostic accuracy. These stemness-related hub genes are 
very likely to be crucial in NB progression and may hold 

promise as potential targets for treatment.
Drug resistance in treatment is a major challenge in the 

management of refractory cancers. It is widely accepted 
that CSCs play a significant role in the development of 
therapy resistance in tumors (14-16). During prolonged 
drug selection of NB cells, a subpopulation of cells with 
CSC characteristics becomes enriched (17). A recent study 
has shown that drug resistance induced by CSCs may be 
closely associated with immune evasion and the formation 
of a distinct tumor immune microenvironment (48). 
Therefore, targeting CSCs and enhancing the immune 
microenvironment represent promising strategies to 
overcome drug resistance and improve treatment efficacy. 
In recent research, mRNAsi was found to be higher in 
tumors with lower anti-tumor immunity, suggesting its 
strong association with the TME (22,23). We demonstrated 
through multiple algorithms that, in our stemness predictor 
gene model, low-risk score NB patients responded better 
to immunotherapy than did high-risk patients. Moreover, 
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the distribution of immune cells between high- and low-
risk score NB patients is significantly different. Typically, 
there is a higher infiltration abundance of CD4+ and CD8+ 
T-cells in the low-risk group, reflecting a better immune 
activity in low-risk score patients. Interestingly, we observed 
higher levels of M2 type macrophages in the low-risk 
score group, corroborating earlier research reports. In 
NB, M2 type macrophage has been reported to be linked 
with a favorable outcome, and more M2-like macrophages 
have been found in stage 1/2 than in stage 4S (49,50). By 
conducting single-cell analysis, Liu et al. observed that 
M2-like macrophages were the predominant immune cell 
type within the NB tumor immune microenvironment, 
with their abundance decreasing progressively from 
favorable stages to advanced stages (50). This finding 
suggests that M2-like macrophages are likely to have a 
critical function in inhibiting tumor growth in NB, which 
is somewhat contradictory to their tumor-promoting 
characteristics observed in other cancers (51,52). Additional 
investigations are required to elucidate the precise subtypes 
and phenotypes of M2-like macrophages present in NB. 
In sum, our four-gene signatures established based on the 
NB mRNAsi confirmed the close relationship between 
CSCs and TME, and demonstrated its potential to predict 
response to immunotherapy in NB patients. The identified 
four hub genes may serve as potential targets to aid in the 
immunotherapy of NB. 

Despite advances in the selection of CSCs in NB, 
targeting these cells effectively remains challenging (53). 
Our study examined the activity of signaling pathways 
associated with mRNAsi-related genes, and identified 
several drugs targeted at certain pathways that suggested 
better efficacy in the high-risk score group. 

Among the four pivotal genes, ERCC6L, also known 
as PICH, is a DNA helicase that has recently been 
identified. It has been shown to be involved in embryonic 
development, suggesting its important role in growth 
regulation. ERCC6L dysfunction can lead to DNA damage, 
affecting the cell cycle and division, and promoting cancer 
development (54,55). Its significant role in tumorigenesis 
and progression has been demonstrated in many studies 
(56-59). The long non-coding RNA (lncRNA) DUXAP10 
is a pseudogene located on chromosome 14q11.2 and has 
been found to be upregulated in several types of cancer 
(60-62). Studies have demonstrated that upregulation of 
DUXAP10 is linked to advanced disease features and poor 
outcome, indicating its potential as a prognostic biomarker 
for predicting cancer outcomes (63-65). Belonging to the 

lectican family, neurocan (NCAN) is a secreted chondroitin 
sulfate proteoglycan that inhibits axon regeneration after 
nervous injury (66). Increased NCAN expression levels 
have been associated with poor OS in NB patients (67). 
Additionally, NCAN overexpression in NB cells has 
been shown to stimulate sphere formation and enhance 
malignancy. Knockdown of NCAN led to the suppression of 
potential stemness markers. Based on these results, Su et al.  
proposed that NCAN may serve as a constituent of the 
extracellular matrix, creating a specific microenvironment 
that promotes the growth of CSCs (67). DIRAS3, also known 
as ARHI, is commonly downregulated or lost in various 
types of cancer and acts as a tumor suppressor (68-70).  
Our research has indicated that DIRAS3 also exhibits a 
protective effect. The restoration of DIRAS3 expression 
results in inhibited malignant biological behavior in various 
types of cancer (71-73). Nevertheless, it remains unclear 
whether DIRAS3 can also suppress tumor growth in NB. 
To summarize, the mechanistic plausibility of our findings 
is supported by these genes’ influence on the progression 
and prognosis of many cancers, including NB. However, 
some of these genes have not been thoroughly investigated 
in the context of NB and may represent potential targets for 
suppressing NB stemness features. 

Finally, we developed a prognostic nomogram that 
provides a user-friendly scoring system. In the clinical 
setting, it is customary to forecast the prognosis of NB 
patients by evaluating their clinicopathological features. 
However, the accuracy of these predictions is often 
suboptimal. Our nomogram demonstrated prediction 
accuracy superior to that held by prognostic indicators 
currently used in clinical practice (stage, MYCN status, 
age at diagnosis), as indicated by the calibration curves. By 
combining the four-gene signatures with staging system, 
this nomogram has the potential to serve as a precise and 
efficient tool to help evaluate the outcome of NB patients. 
Such a tool could prove invaluable in facilitating medical 
decision-making. 

Several limitations should be considered in this study. 
Firstly, the retrospective nature of the analysis and the 
reliance on bioinformatics approaches are significant 
drawbacks. Thus, it would be advantageous to obtain 
prospective sequencing data for future investigations. 
Secondly, while the stemness index-related signature and 
the developed prognostic nomogram have shown impressive 
predictive capabilities for NB survival, it is essential to 
validate these findings through expanded research involving 
larger sample sizes, comprehensive data from a broader 
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range of centers, and in-depth prospective studies. Thirdly, 
to ensure the model aligns with the needs and expectations 
of key stakeholders, including healthcare professionals 
and patients, comprehensive qualitative research is 
imperative. This will involve gathering perspectives on 
the prognostic model’s utility, challenges, and potential 
integration into clinical practice, particularly in the 
context of its deployment as an AI medical device. The 
nomogram is a two-dimensional graphic scoring method 
that might be difficult to assign a value to in continuous 
variables. Alternative methods for simplifying the use of 
the prediction tool in common practice include web-based 
applications and scoring tables. As computerized clinical 
decision support systems (CCDSS), the online application 
will simplify the predictive model for use in general practice 
or external validation by other hospitals. A prior systematic 
review discovered that CCDSS improved care processes 
such as screening and treatment while having a challenging 
influence on patient outcomes, healthcare costs, and patient 
safety (74).

Conclusions

By utilizing the stemness index and ML methods, our 
study evaluated the prognostic value of CSC features 
in NB, confirming their role in the development 
and progression of the disease. For the first time, we 
constructed a novel mRNAsi-associated signature for 
NB that exhibited significant associations with prognosis, 
clinical characteristics, and tumor immune response in 
NB. The identification of four influential genes for NB 
stemness in this study improves on prior approaches to NB 
prognostication and identifies promising therapeutic targets 
for inhibiting NB stemness characteristics. 
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Table S1 Patients Characteristics of the GSE49710 and E-MTAB-8248 dataset 

Characteristic Subtypes
GSE49716 E-MTAB-8248

Overall, mean ± SD or N (%) Overall, mean ± SD or N (%)

N 498 223

Age (days) 758±1031 1040 ±1320

Age_group <18 months 300 (60.2) 103 (46.2)

≥18 months 198 (39.8) 120 (53.8)

Status Live 393 (78.9) 181 (81.2)

Death 105 (21.1) 42 (18.8)

Overall survival (days) 2185.42±1370.89 2230±1450

INSS_STAGE 1 121 (24.3) 29 (13.0)

2 78 (15.7) 39 (17.5)

3 63 (12.7) 36 (16.1)

4 183 (36.7) 89 (39.9)

4S 53 (10.6) 30 (13.5)

MYCN status Non-amplification 401 (80.5) 176 (78.9)

Amplification 92 (18.5) 46 (20.6)

No data 5 (1.0) 1 (0.4)

Supplementary



© Translational Pediatrics. All rights reserved. https://dx.doi.org/10.21037/tp-23-582

Figure S1 The GSEA of DEGs between high and low mRNAsi. (A) The top 10 GO gene sets enrichment (C5). (B) The top 10 hallmark 
gene sets enrichment. The gene sets with NES <0 are listed on the left, and the gene sets with NES >0 are listed on the right. GO, Gene 
Ontology; NES, normalized enrichment score; GSEA, gene set enrichment analysis; DEGs, differentially expressed genes; mRNAsi, 
messenger RNA expression-based stemness index. 
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Figure S2 The external verification of the four-gene signature. (A) The KM curve for OS predicting of the four-gene signature in 
E-MTAB-8248. (B) The distribution of risk scores, the association of risk scores and OS in E-MTAB-8248. KM, Kaplan-Meier curve; OS, 
overall survival.



Table S2 Comparison of immune infiltration-related genes as assessed by ESTIMATE, CIBERSORT, MCPcounter, and xCell 

Sig_names P.value High Low Statistic P.adj Log10pvalue Significance

pro_B-cells_xCell 7.59E-52 0.624503 -0.65648 1.28098 7.51E-50 51.11974 ****

Melanocytes_xCell 2.57E-47 -0.60958 0.588222 -1.1978 1.27E-45 46.58964 ****

Tgd_cells_xCell 1.52E-44 0.602928 -0.61795 1.220878 5.03E-43 43.81732 ****

Th2_cells_xCell 8.38E-33 0.511512 -0.5229 1.03441 2.07E-31 32.07679 ****

Th1_cells_xCell 5.91E-30 0.49735 -0.50403 1.001382 1.17E-28 29.22868 ****

Osteoblast_xCell 1.50E-26 0.432907 -0.46269 0.895594 2.47E-25 25.82401 ****

HSC_xCell 3.00E-25 -0.45143 0.415564 -0.86699 4.24E-24 24.52357 ****

CLP_xCell 2.24E-23 0.412387 -0.42497 0.837353 2.77E-22 22.64973 ****

Erythrocytes_xCell 8.44E-23 0.361926 -0.43594 0.797871 9.28E-22 22.07385 ****

CD4+_naive_T-cells_xCell 6.26E-22 -0.40959 0.365033 -0.77462 6.20E-21 21.20322 ****

CD8+_naive_T-cells_xCell 8.41E-22 0.408336 -0.42712 0.835461 7.57E-21 21.07499 ****

Mast_cells_xCell 1.19E-20 -0.41393 0.408401 -0.82233 9.82E-20 19.92451 ****

Macrophages_M2_xCell 1.77E-17 -0.36736 0.319039 -0.6864 1.35E-16 16.75229 ****

CD4+_Tem_xCell 4.49E-17 -0.35314 0.322876 -0.67602 3.18E-16 16.3475 ****

Mesangial_cells_xCell 1.16E-16 -0.373 0.365348 -0.73835 7.63E-16 15.9373 ****

Sebocytes_xCell 2.21E-15 -0.35344 0.324693 -0.67813 1.37E-14 14.65609 ****

Monocytic_lineage_MCPcounter 1.31E-14 -0.31702 0.331742 -0.64876 7.65E-14 13.88132 ****

Plasma_cells_xCell 7.90E-14 0.292339 -0.34219 0.634534 4.35E-13 13.10226 ****

aDC_xCell 2.04E-13 -0.31209 0.344778 -0.65686 1.06E-12 12.69127 ****

Myeloid_dendritic_cells_MCPcounter 4.65E-13 -0.30445 0.309747 -0.6142 2.30E-12 12.33209 ****

CD8+_Tem_xCell 5.25E-13 -0.28343 0.243849 -0.52728 2.48E-12 12.2797 ****

ImmuneScore_estimate 2.00E-12 -0.30277 0.28725 -0.59002 9.00E-12 11.69908 ****

ESTIMATEScore_estimate 2.19E-12 -0.29812 0.296791 -0.59491 9.41E-12 11.66027 ****

Class-switched_memory_B-cells_xCell 7.58E-12 -0.2531 0.165702 -0.4188 3.13E-11 11.12053 ****

CD8+_T-cells_xCell 1.31E-11 -0.28693 0.238596 -0.52552 5.20E-11 10.88188 ****

CD4+_T-cells_xCell 5.61E-11 -0.28669 0.250334 -0.53703 2.14E-10 10.25117 ****

Neurons_xCell 7.02E-11 -0.20129 0.282099 -0.48339 2.57E-10 10.15364 ****

MEP_xCell 5.33E-10 0.227634 -0.38165 0.609285 1.89E-09 9.273112 ****

NK_cells_MCPcounter 1.97E-09 -0.25785 0.244688 -0.50254 6.71E-09 8.706543 ****

Megakaryocytes_xCell 2.07E-09 -0.26074 0.246052 -0.50679 6.84E-09 8.683333 ****

StromalScore_estimate 3.09E-09 -0.25252 0.255219 -0.50774 9.88E-09 8.509465 ****

CD4+_Tcm_xCell 3.46E-09 -0.28923 0.222837 -0.51207 1.07E-08 8.460616 ****

Tregs_xCell 6.80E-09 -0.24958 0.126033 -0.37561 2.04E-08 8.167262 ****

Macrophages_M2_CIBERSORT 9.37E-09 -0.25036 0.19064 -0.441 2.73E-08 8.028062 ****

Endothelial_cells_MCPcounter 2.19E-08 -0.21682 0.221515 -0.43834 6.21E-08 7.658569 ****

T_cells_MCPcounter 3.51E-08 -0.24834 0.219247 -0.46759 9.66E-08 7.454143 ****

Platelets_xCell 1.13E-07 -0.23725 0.219874 -0.45712 3.01E-07 6.9486 ****

B_cells_memory_CIBERSORT 1.40E-07 0.117725 -0.23613 0.35385 3.66E-07 6.852464 ****

cDC_xCell 1.78E-07 -0.23876 0.215837 -0.4546 4.51E-07 6.75046 ****

Monocytes_xCell 2.48E-07 -0.20594 0.147721 -0.35366 6.13E-07 6.606303 ****

iDC_xCell 1.94E-06 0.200012 -0.22561 0.425625 4.68E-06 5.712619 ****

Plasma_cells_CIBERSORT 2.89E-06 0.063779 -0.20606 0.269841 6.81E-06 5.539192 ****

Smooth_muscle_xCell 3.09E-06 0.1174 -0.27333 0.390731 7.11E-06 5.51046 ****

Cytotoxic_lymphocytes_MCPcounter 5.61E-06 -0.20408 0.19616 -0.40024 1.26E-05 5.250774 ****

CMP_xCell 6.58E-06 0.146851 -0.18558 0.332435 1.45E-05 5.182073 ****

T_cells_CD4_memory_resting_CIBERSORT 7.84E-06 -0.21436 0.129451 -0.34381 1.69E-05 5.105585 ****

Chondrocytes_xCell 3.80E-05 -0.18345 0.142869 -0.32632 8.01E-05 4.419815 ****

Adipocytes_xCell 4.13E-05 -0.1941 0.158121 -0.35223 8.53E-05 4.38364 ****

Skeletal_muscle_xCell 5.40E-05 0.035792 -0.17556 0.211354 1.09E-04 4.267362 ****

CD8+_Tcm_xCell 7.08E-05 -0.18586 0.122644 -0.30851 1.40E-04 4.150135 ****

Fibroblasts_MCPcounter 1.50E-04 -0.157 0.19706 -0.35406 2.91E-04 3.823753 ***

Eosinophils_xCell 1.84E-04 -0.17355 0.154897 -0.32845 3.47E-04 3.735455 ***

Neutrophils_xCell 1.86E-04 0.10236 -0.18902 0.291377 3.47E-04 3.730593 ***

Hepatocytes_xCell 2.51E-04 -0.12878 -0.05211 -0.07667 4.60E-04 3.600515 ***

Macrophages_xCell 3.20E-04 -0.17599 0.141214 -0.3172 5.75E-04 3.494816 ***

ly_Endothelial_cells_xCell 3.25E-04 -0.1372 0.129039 -0.26624 5.75E-04 3.487546 ***

B_cells_naive_CIBERSORT 0.001635 -0.13531 0.029551 -0.16486 0.00284 2.786407 **

MSC_xCell 0.002266 0.131946 -0.12956 0.261509 0.003868 2.644725 **

NK_cells_resting_CIBERSORT 0.002739 -0.01073 -0.17912 0.168389 0.004537 2.562474 **

CD8_T_cells_MCPcounter 0.00275 -0.12974 0.114663 -0.2444 0.004537 2.560687 **

Macrophages_M0_CIBERSORT 0.004947 -0.12929 0.096471 -0.22576 0.008028 2.305689 **

Myocytes_xCell 0.011185 -0.10466 -0.03279 -0.07187 0.017859 1.951379 *

Mast_cells_activated_CIBERSORT 0.013301 -0.17647 0.082774 -0.25925 0.020902 1.876115 *

NKT_xCell 0.014771 -0.13352 0.097664 -0.23119 0.022849 1.830596 *

DC_xCell 0.016906 -0.10336 0.108747 -0.2121 0.025749 1.771962 *

Preadipocytes_xCell 0.018384 0.092771 -0.12549 0.218264 0.027576 1.735564 *

Monocytes_CIBERSORT 0.025282 -0.10741 0.001993 -0.1094 0.037357 1.597192 *

pDC_xCell 0.027544 -0.11099 0.030046 -0.14104 0.040101 1.559968 *

Neutrophils_CIBERSORT 0.032906 -0.0526 -0.10597 0.053378 0.047213 1.482727 *

naive_B-cells_xCell 0.036533 -0.09526 -0.02248 -0.07278 0.051669 1.43731 *

T_cells_follicular_helper_CIBERSORT 0.041315 0.005431 -0.13411 0.139544 0.057608 1.383891 *

T_cells_CD8_CIBERSORT 0.048048 -0.12291 0.041053 -0.16396 0.066067 1.318321 *

MPP_xCell 0.060971 0.062202 -0.12066 0.182866 0.082687 1.214877 +

Memory_B-cells_xCell 0.066906 -0.09823 -0.04316 -0.05506 0.089509 1.174534 +

Macrophages_M1_CIBERSORT 0.084148 -0.06063 -0.04395 -0.01668 0.111075 1.074956 +

Pericytes_xCell 0.097515 0.06508 -0.07266 0.137739 0.127026 1.010927 +

Macrophages_M1_xCell 0.118875 -0.06599 0.068703 -0.13469 0.15284 0.924908 +

T_cells_CD4_naive_CIBERSORT 0.136547 -0.11527 -0.04897 -0.06629 0.172592 0.864716 +

NK_cells_activated_CIBERSORT 0.137725 -0.10295 0.033783 -0.13673 0.172592 0.860987 +

T_cells_CD4_memory_activated_
CIBERSORT

0.143946 -0.11947 -0.05846 -0.06101 0.178133 0.841801 +

Basophils_xCell 0.153977 0.034953 -0.10776 0.142709 0.188194 0.812544 +

mv_Endothelial_cells_xCell 0.223623 -0.04889 0.026174 -0.07507 0.269984 0.650484 +

Dendritic_cells_activated_CIBERSORT 0.238855 -0.04326 -0.08503 0.041776 0.284899 0.621866 +

T_cells_gamma_delta_CIBERSORT 0.27677 -0.06823 -0.10448 0.036254 0.326194 0.55788 +

Mast_cells_resting_CIBERSORT 0.308185 -0.04197 -0.08704 0.045073 0.358945 0.511188 +

Endothelial_cells_xCell 0.318709 -0.04281 0.03971 -0.08252 0.366886 0.496605 +

Eosinophils_CIBERSORT 0.362759 -0.02664 -0.05918 0.032536 0.412795 0.440381 +

B_lineage_MCPcounter 0.395245 -0.05244 -0.00442 -0.04802 0.444651 0.403133 +

CD4+_memory_T-cells_xCell 0.425404 0.001076 -0.05692 0.057995 0.473202 0.371198 +

Fibroblasts_xCell 0.445453 -0.10574 -0.00843 -0.09731 0.488115 0.351198 +

T_cells_regulatory_(Tregs)_CIBERSORT 0.448672 -0.05767 -0.02854 -0.02914 0.488115 0.348071 +

Epithelial_cells_xCell 0.459906 -0.05085 9.07E-04 -0.05176 0.494899 0.337331 +

Neutrophils_MCPcounter 0.487413 -0.02897 -0.06849 0.039523 0.518859 0.312103 +

NK_cells_xCell 0.529771 -0.04409 -0.02236 -0.02172 0.557951 0.275911 +

B-cells_xCell 0.537145 -0.0503 -0.06909 0.018789 0.559762 0.269908 +

Astrocytes_xCell 0.668341 -0.05423 -0.04964 -0.00459 0.689227 0.175002 +

Keratinocytes_xCell 0.704456 -0.01324 -0.00849 -0.00474 0.718981 0.152146 +

GMP_xCell 0.941392 0.002616 -0.01869 0.021307 0.950998 0.026229 +

Dendritic_cells_resting_CIBERSORT 0.988882 -0.08526 -0.07567 -0.00959 0.988882 0.004856 +

*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; +, not significant.
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Figure S3 Differences in immunotherapy estimated response between high- and low-risk score groups revealed by TIDE algorithm. (A) 
Risk score stratification reveals diverse immune response patterns in patients. (B) Proportion of patients responding to immunotherapy in 
each risk group. R, response; NR, no response
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Figure S4 Schoenfeld test on proportional hazard assumption for the nomogram model. The Schoenfeld test for estimating time-varying 
covariance of the nomogram model.


