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A B S T R A C T

Ambitious emission reduction targets require fostering more low-carbon technologies (LCTs) in distribution
networks. Projections for future energy use predict a significant implementation of these technologies in
residential areas. Despite this, individually they cannot effectively participate in electricity markets. This study
examines the potential participation of residential LCTs (RLCTs) in multiple electricity markets, including
wholesale day-ahead, real-time, and local energy markets (LEM), through the aggregators. We propose a
stochastic weighted multi-range robust model to provide a strategy for RLCT aggregators to function as
both sellers and buyers in these markets, as price-makers in LEM and price-takers in wholesale markets. The
proposed model accounts for the uncertainty associated with the effect of offers/bids on the market clearing
price of LEM and the availability patterns of aggregated LCTs. Results of a case study using realistic data reveal
that the proposed approach results in higher overall profits compared to both risk-neutral and risk-averse robust
methods. Furthermore, the introduced model is resilient to forecast errors, as evidenced by a 12% decrease in
profits with the proposed approach compared to a 26% decrease with a risk-neutral strategy when the forecast
error was increased by 20%.
1. Introduction

New decarbonization targets are making conventional power grids
undergo radical changes to satisfy these requirements [1]. For instance,
the UK recently revised its target to reach zero emissions in the electric-
ity sector for 2035. A similar target has been set for other countries in
different parts of the world, including Germany, France, Japan, Canada,
and Chile [2,3].

One sector with significant untapped potential to accelerate the pro-
cess of reaching these targets is residential. The depicted future energy
scenarios by distribution companies in the UK demonstrate noticeable
uptake of low carbon technologies (LCTs) such as electric vehicles (EVs)
and heat pumps (HPs) in the residential part of distribution systems [4].
For instance, in one of these scenarios called the ‘leading-the-way
scenario’, the number of EVs in Northern Powergrid’s network, a UK
distribution network operator, which is geographically responsible for
approximately twenty percent of the UK, will be more than three
million in ten years. These small-scale LCTs if considered individually
cannot provide noticeable flexibility for the grid operator. However, the
coordinated operation of such assets for instance, through an aggrega-
tor can offer significant amounts of flexibility that can benefit both the
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asset owners by participating in the available electricity markets and
the grid operators/market facilitators by helping in relieving network
problems.

1.1. Literature review

Several references anticipate the co-existence of multiple markets
present in or originating from distribution networks such as local
energy markets (LEM), and wholesale day-ahead markets [5–10]. It
is therefore reasonable to assume that in such a case aggregators
of residential LCTs in distribution networks would gravitate toward
participation in multiple markets in order to maximize their profits and
benefits to their customers.

The review of existing literature in this regard reveals that there
is a gap in comprehensive models that can account for participation
in multiple markets while addressing the uncertainties related to the
effects of offers/bids on the market clearing price (MCP) in the different
electricity markets as pointed out in Table 1. Ref. [5] provides some
insights regarding the participation of large-scale distributed energy
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Table 1
Taxonomy of LCTs integration in multiple electricity markets.

Ref. no Asset type Market type Market-Role Market impact

RLCT DAWEM RTWEM LEM Seller Buyer Model Uncertainty

[5] x ✓ ✓ ✓ ✓ x BLa x
[6] ✓ x ✓ x x ✓ x x
[7] x ✓ x x ✓ ✓ x x
[8] x ✓ ✓ x x ✓ x x
[9] x ✓ ✓ x ✓ x x x
[10] x ✓ x ✓ ✓ x BLa x

This study ✓ ✓ ✓ ✓ ✓ ✓ PQCb ✓

a Bi-level optimization.
b Price quota curve.

resources (DERs) in multiple markets considering only generation as-
sets. However, such a study cannot be applied to residential LCTs
(RLCTs) as both buying and selling roles have to be incorporated in the
market-participation model (i.e. some assets like photovoltaic (PV) are
only generating power, and some such as HPs will be only consuming
energy. EVs can have both roles thus overall at a specific hour of the
day and depending on the net flow of the scheduled aggregated assets,
the RLCT aggregator could sell or buy energy).

It should be noted that the role of RLCT aggregators in these markets
is going to be different. Concerning the size of aggregated assets, the
RLCT aggregator will be a price-taker in the wholesale markets there-
fore not impacting the MCP. However, in the LEM, the RLCT aggregator
is a price-maker. These different roles need to be addressed while
designing a participation strategy for these markets. For the price-taker
role, a prediction of the market price can be incorporated into the
offering model. In the case of price uncertainty, probability density
function, and scenario-based stochastic approaches are well studied in
the literature [11,12]. While a price-taker role is more straightforward,
the price-maker needs an economic model to incorporate the impact of
offers/bids on the market price as well. There are several approaches
used in this regard [13]. First, game-theory-based methods aimed to
find an equilibrium of a repetitive game as demonstrated in [14,15].
The second group of methods is the bi-level optimization [5,16]. The
first level of the optimization contains a profit maximization/cost min-
imization from the viewpoint of the main participant (the price-maker)
and the second level of the optimization runs the market clearing
process. For instance, in [5] the first level contains maximization for an
aggregator that participates in the electricity markets. The second level
outputs the market clearing price. To solve the bi-level optimization
the duality theory and the Karush–Kuhn–Tucker optimality conditions
are utilized to convert optimization to a single optimization solvable
by the existing commercial solvers. Authors in [16] present a model
for the participation of storage facilities in the energy and reserve
market formulating the problem as a mathematical programming with
equilibrium constraints. Another group of approaches is the agent-
based methods [17]. In this group, several agents are considered to
recreate market conditions and simulate electricity market operations
and interactions.

It is important to note that despite an existing rich literature on
different LEMs focusing on the clearance methodologies and mar-
ket price determination important issues such as strategic bidding
and bid/offer creation are not adequately addressed [18]. The afore-
mentioned methodologies based on game theory and agent-based ap-
proaches are most suited to provide the analysis of strategic behav-
ior rather than developing a tool for offering/bidding strategies. In
addition, bi-level-based approaches have been demonstrated to lead
to complex mathematical formulation and high computational bur-
den [19]. Most importantly these approaches rely on full information
of all participants of the market which seems to be unrealistic for
establishing a market participation strategy.

An alternative approach is to utilize price quota curves (PQCs) to
understand the impact of additional generation (GPQC) or demand
(DPQC) on the market clearing price [20–22]. Ref. [20] applies GPQC
2

for the operation planning of a hydro producer which is a price maker
in the wholesale electricity market. In [21] GPQCs are used for the self-
scheduling problem of a generating company. Ref. [22] utilizes both
types of GPQC and DPQC in the economic assessment of a price-maker
storage unit. PQC-based approaches have simpler formulations and thus
do not carry the computational complexity of bi-level optimizations.
However, the construction of an exact forecast of a PQC is difficult
due to the inevitable uncertainties of the market and its participants.
Refs. [23–25] use scenario-based stochastic method and [13] try to
combine the probability density function (PDF) with PQC in order to
capture the uncertainty of PQCs. However, these statistical approaches
are highly dependent on historical data and require an accurate PDF
for PQC. In [26] a model based on the robust optimization is proposed
which tends to be conservative as it does not consider conservativeness
limitation tools (i.e. budget of uncertainty) and at each time the worst
cases of price predictions are incorporated into the model. In addition,
their proposed approach is not capable to consider uncertainties of the
aggregated RLCTs’ power output and availability.

In summary, the existing literature lacks in terms of investigating
the potential of participation of RLCTs aggregator in multiple markets
(e.g. day-ahead (DA) wholesale market (WEM) and LEM), simultaneous
integration of generation and consumption of RLCTs, and considera-
tion of RLCT aggregators as strategic players in the related electrical
markets with the associated uncertainties. In this paper, we aim to
cover these gaps by developing an extensive model for the simultaneous
offering and bidding strategy of RLCT aggregators to three types of elec-
tricity markets namely DA WEM, real-time (RT) WEM, and LEM. We
aim to provide RLCT aggregators with a tool to handle the prevailing
uncertainties while maximizing profit by employing the flexibility of
their assets and opportunities in multiple electricity markets.

Although we have deliberately limited the scope of this paper
to the commercial aspects of aggregator operation, we recognize the
critical importance of addressing grid-related issues associated with
aggregated assets. The conventional approach of clearing markets with
locational marginal prices, as commonly practiced in wholesale or
LEM, may encounter obstacles due to the specific limitations of dis-
tribution networks. These networks, often operating at their capacity
limits due to widespread electrification, are predominantly radial in
structure. This conventional approach could result in a notable portion
of transactions being rejected based on infrastructural limitations, de-
spite their economic merit for market players. To advance equitable,
economic, and sustainable energy systems, future research efforts must
consider various coordination mechanisms. Coordination strategies en-
compass aligning LEM clearing with contracted flexibility services,
leveraging network flexibility through methods such as reconfiguration,
battery storage, and capacitor banks, all of which necessitate complete
visibility of the LEM by DSO [27]. Recent innovative works, such
as [28], propose flexibility mechanisms enabling the DSO to access
LEM flexibility and coordinate it with the aforementioned strategies.
Additionally, these studies highlight the effectiveness of flexible net-
work technologies, such as soft open points, in supporting local markets
while ensuring network security.

We would like to note that there are several business models for the
aggregator-customer relationship [29,30], including trading flexibility
in wholesale and local electricity markets to minimize the cost of
energy or maximize reward and providing ancillary services to the
TSO and DSO. In addition, the literature provides various combinations
of models to maximize the benefit of distributed flexibility providing
stacked applications [31]. In the present paper, as explained above
we are considering that aggregators participate in the DA and RT
wholesale markets, as well as the LEM. Aggregators act on behalf of
their customers (i.e., prosumers) to buy and sell electrical energy to
maximize the reward for producers and minimize the cost of energy

for consumers.
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1.2. Problem statement and paper contributions

We utilize the concept of PQCs and propose a stochastic weighted
multi-range robust optimization model to account for the uncertainty
of the other market participants’ behavior and aggregated assets’ out-
put and availability patterns. In the proposed approach, the RLCT
aggregator is a price-taker in the wholesale market. However, par-
ticipates in LEM as a price-maker. Thereby, we model the effect of
the offers and bids of the RLCT aggregator on LEM clearing price
with PQCs, namely GPQC for the aggregated generation and DPQC
for the aggregated demand. As mentioned earlier PQCs are subject to
uncertainty. In approaches solely based on robust optimization, the
worst-case decisions under the predefined uncertainty set could prove
to be overly conservative. Thus, in this paper, considering the market’s
multi-step offering/bidding capabilities a weighted multi-range robust
optimization framework is proposed to account for the uncertainties
associated with PQCs. The uncertainty set is divided into several ranges
where for each range, a corresponding robust optimization is solved.
Note that, unlike the case of a single generation or a single consumption
unit, for the case of an RLCT aggregator, the worst-case scenario of
the GPQCs and DPQCs dependent on the state of assets requiring
proper modeling. The resulting model is nested in a stochastic scenario-
based model to deal with the complete set of uncertain parameters
in the decision-making of the aggregator. The final model enables
the aggregator to be less sensitive to price variation while exploiting
fitting price fluctuations by incorporating less conservative actions. In
conclusion, the contributions are as follows:

(1) A novel stochastic weighted multi-range robust optimization is
proposed. The proposed approach is a novel solution that models
multiple sources of uncertainty faced by the aggregator in a com-
prehensive manner, namely the effects on LEM clearing price,
PV generation and EVs availability. Most studies that consider
participation in both local and wholesale electricity markets
only provide offering (i.e. supply curves) strategies (Table 1).
The proposed methodology provides a tool for the aggregator
to produce supply and demand curves simultaneously from one
round of optimization while accounting for price-maker/taker
roles and the associated impacts on the market clearing price.

(2) Comparative studies are conducted for the proposed approach
and two conventional methods, risk-neutral and classical (risk-
averse one-range) robust methods. The results demonstrate that
the proposed solution delivers higher profits while maintaining
resiliency in the presence of forecast errors. This superior per-
formance is due to the proposed approach’s ability to balance
risk and reward more effectively than other methods, making it
a more advantageous solution for the RLCT aggregator.

2. Mathematical formulation

RLCTs could have different forms like only generation units (e.g. PV)
controllable loads (e.g. HPs), and storages (e.g. EVs) which can play
both roles. In this study, we assume an aggregator that coordinates
RLCTs to take part in three electricity markets including DA WEM, LEM,
and RT WEM. The goal is to participate in these markets to maximize
the profit of selling the excess energy in the markets while providing the
required consumption. There are two timelines that separate decision
variables into two different stages.

The first stage includes the here-and-now decision variables which
are related to the participation of the aggregator in DA WEM and
LEM. In the dynamic landscape of electricity markets as assumed in
this paper, the RLCT aggregator assumes distinct roles as a price-taker
in the wholesale market and a price-maker in the LEM, dictated by
the intricate interplay of market dynamics. Acting as a price-taker
in the wholesale market implies the RLCT aggregator’s acceptance of
market-determined electricity prices without wielding substantial influ-
3

ence. In this vast and competitive market, characterized by numerous
participants and significant power generators, the RLCT aggregator’s in-
dividual capacity is modest compared to the overall market, rendering
it a price-taker. Conversely, within the LEM, the RLCT aggregator trans-
forms into a price-maker, exerting more control over local electricity
pricing dynamics. LEMs, often smaller and more localized, provide an
environment where RLCT aggregators can wield a more influential role.
As the aggregator is a price-taker in the WEM, the only information that
is required to be submitted to the DA WEM market is a single power
quantity that the aggregator wants to sell or buy for each hour through
the course of a day. After the market is cleared by the independent
system operator, the MCP is announced to the aggregator. As this price
is not known a priori, the aggregator needs to predict the values of price
to derive optimal participation in the DA WEM energy market. At the
same stage, it is required to establish an offering/bidding strategy for
the LEM. For LEM, we presume the aggregator to act as a price-maker
that could yield a multi-step offering/bidding curve. The problem dealt
with in LEM is an economic offering/bidding therefore the information
submitted to the local market operator will be in form of multi-price-
power quantities at all time intervals for the next day. In addition,
buyer or seller positions can be taken as well in the market depending
on the available assets at each hour. Thus, both economic bidding
and offering curves should be decided simultaneously in the decision-
making problem while accounting for the uncertainty of the aggregated
assets.

The aggregator participates in the real-time market considering
different possible outcomes of uncertain parameters such as PVs output
and EVs availability. The decisions in the second stage are the wait-and-
see type, meaning that the previous stage variables are fixed (i.e. power
sold to/bought from DA WEM and LEM). The variables of this stage are
the adjustment power of controllable units and EVs. We assume that it
is possible to change the consumption of controllable units (e.g. HPs)
provided the temperature remains within the desired household tem-
perature ranges. Also, EVs can be re-scheduled considering the fact that
their availability may differ in different outcome realizations.

2.1. Non-linear deterministic model

The deterministic formulation for the participation of an RLCT
aggregator in multi-markets can be formulated as given in (1). This
model is a mixed-integer non-linear model which is then linearized as
presented in (2).

max
∑

𝑡∈

(

𝜆𝐷𝐴𝑡 𝑝𝑆𝑒𝑙,𝐷𝐴𝑡 − 𝜆𝐷𝐴𝑡 𝑝𝐵𝑢𝑦,𝐷𝐴𝑡 +

𝑝𝑆𝑒𝑙,𝐿𝐸𝑀𝑡 𝜆𝐸,𝐿𝐸𝑀𝑡
(

𝑝𝑆𝑒𝑙,𝐿𝐸𝑀𝑡
)

−

𝑝𝐵𝑢𝑦,𝐿𝐸𝑀𝑡 𝜆𝐸,𝐿𝐸𝑀𝑡
(

𝑝𝐵𝑢𝑦,𝐿𝐸𝑀𝑡
)

+

𝜆𝑅𝑇𝑡 𝑝𝑆𝑒𝑙,𝑅𝑇𝑡 − 𝜆𝑅𝑇𝑡 𝑝𝐵𝑢𝑦,𝑅𝑇𝑡

)

(1a)

s.t. 𝑝𝑆𝑒𝑙,𝐷𝐴𝑡 + 𝑝𝑆𝑒𝑙,𝐿𝐸𝑀𝑡 + 𝑝𝑆𝑒𝑙,𝑅𝑇𝑡 = 𝑝𝑆𝑒𝑙,𝑡𝑜𝑡𝑡 (1b)

𝑝𝐵𝑢𝑦,𝐷𝐴𝑡 + 𝑝𝐵𝑢𝑦,𝐿𝐸𝑀𝑡 + 𝑝𝐵𝑢𝑦,𝑅𝑇𝑡 = 𝑝𝐵𝑢𝑦,𝑡𝑜𝑡𝑡 (1c)

0 ≤ 𝑝𝑆𝑒𝑙,𝑡𝑜𝑡𝑡 ≤ 𝑃 𝑆𝑒𝑙,𝑚𝑎𝑥𝑡 𝑣𝑆𝑒𝑙𝑡 (1d)

0 ≤ 𝑝𝐵𝑢𝑦,𝑡𝑜𝑡𝑡 ≤ 𝑃𝐵𝑢𝑦,𝑚𝑎𝑥𝑡 𝑣𝐵𝑢𝑦𝑡 (1e)

𝑣𝑆𝑒𝑙𝑡 + 𝑣𝐵𝑢𝑦𝑡 ≤ 1 (1f)

𝑝𝑆𝑒𝑙,𝑡𝑜𝑡𝑡 − 𝑝𝐵𝑢𝑦,𝑡𝑜𝑡𝑡 =

𝑝𝑃𝑉𝑡 + 𝑝𝐸𝑉 ,𝑑𝑖𝑠𝑡 𝜂𝑑 − 𝑝
𝐸𝑉 ,𝑐ℎ
𝑡 − 𝑝𝐻𝑃𝑡 (1g)

𝑝𝑃𝑉𝑡 =
∑

𝑚
𝑝𝑃𝑉𝑡,𝑚 (1h)

𝑝𝑑𝑖𝑠𝑡 =
∑

𝑖
𝑝𝑑𝑖𝑠𝑡,𝑖 (1i)

𝑝𝑐ℎ𝑡 =
∑

𝑖
𝑝𝑐ℎ𝑡,𝑖 (1j)

𝑑𝑖𝑠 𝑃
𝑑𝑖𝑠
𝜇 ∀𝑡 ∈ [𝑡𝑏, 𝑡𝑒] (1k)
0 ≤ 𝑝𝑡,𝑖 ≤ 𝑖 𝑡,𝑖 𝑖 𝑖
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0 ≤ 𝑝𝑐ℎ𝑡,𝑖 ≤ 𝑃
𝑐ℎ
𝑖 (1 − 𝜇𝑡,𝑖) ∀𝑡 ∈ [𝑡𝑏𝑖 , 𝑡

𝑒
𝑖 ] (1l)

𝑆𝑜𝐶𝑡,𝑖 =
𝐸0
𝑖

𝐸𝑖
𝑡 = 𝑡𝑏𝑖 (1m)

𝑆𝑜𝐶𝑡,𝑖 =
𝐸0
𝑖 +

∑𝑡
𝜏=𝑡𝑏𝑖

(𝑝𝑐ℎ𝜏,𝑖𝜂𝑐 − 𝑝
𝑑𝑖𝑠
𝜏,𝑖 )

𝐸𝑖
∀𝑡 ∈ [𝑡𝑏𝑖 , 𝑡

𝑒
𝑖 ] (1n)

𝑆𝑜𝐶 𝑖 ≤ 𝑆𝑜𝐶𝑡,𝑖 ≤ 𝑆𝑜𝐶 𝑖, (1o)

𝑆𝑜𝐶 𝑖 =
𝑚𝑖𝑛{𝐸0

𝑖 + (𝑡𝑒𝑖 − 𝑡
𝑏
𝑖 )𝑃

𝑐ℎ
𝑖 𝜂𝑐 , 𝐸𝑖}

𝐸𝑖
(1p)

𝑆𝑜𝐶𝑡,𝑖 = 𝑆𝑜𝐶 𝑖 𝑡 = 𝑡𝑒𝑖 (1q)

𝑝𝐻𝑃𝑡 =
∑

𝑗
𝑝𝐻𝑃𝑡,𝑗 (1r)

0 ≤ 𝑝𝐻𝑃𝑡,𝑗 ≤ 𝑝𝐻𝑃𝑗 (1s)

𝑝𝐻𝑃𝑡,𝑗 = (𝐶𝑗 +
𝛥𝑡
𝑅𝑗

)𝜃𝑟𝑡,𝑗 − 𝐶𝑗𝜃
𝑟
𝑡−1 −

𝜃𝑎𝑡 𝛥𝑡
𝑅𝑗

(1t)

𝜃𝑟𝑗 ≤ 𝜃𝑟𝑡,𝑗 ≤ 𝜃
𝑟
𝑗 (1u)

𝑝𝑐ℎ𝑡,𝑖 = 𝑝𝑑𝑖𝑠𝑡,𝑖 = 0 ∀𝑡 ∉ [𝑡𝑏𝑖 , 𝑡
𝑒
𝑖 ] (1v)

The first equation, (1a), in the above deterministic formulation
depicts the objective function which is maximizing the acquired net
profit (i.e. revenue - cost) from all markets. The positive terms are the
revenue acquired by selling energy to and the negative ones are costs
related to the energy bought from these markets. Here, 𝜆𝐷𝐴𝑡 and 𝜆𝑅𝑇𝑡
are the DA and RT market price at time 𝑡 respectively. Also, 𝑝𝑡 denotes
the power that is scheduled to be sold to (𝑆𝑒𝑙) or bought (𝐵𝑢𝑦) from a
specific market distinguished by the related superscript (DA, LEM, and
RT). Note that the above objective function is non-linear due to the
price-maker role of the aggregator in LEM. Values of power quantities
affect the local energy market clearing prices meaning that 𝜆𝐸,𝐿𝐸𝑀 is a
function of power and thus there are two non-linear terms in the above
formulation namely 𝑝𝑆𝑒𝑙,𝐿𝐸𝑀𝑡 𝜆𝐸,𝐿𝐸𝑀𝑡

(

𝑝𝑆𝑒𝑙,𝐿𝐸𝑀𝑡
)

and 𝜆𝐸,𝐿𝐸𝑀𝑡
(

𝑝𝐵𝑢𝑦,𝐿𝐸𝑀𝑡
)

.
In the rest of this section, we also present the required step to linearize
the objective function.

The constraints addressing the market participation part are given
in (1b)–(1f). The first two constraints define the total scheduled power
to be sold to/bought from markets. The superscript 𝑡𝑜𝑡 denotes the total
value. The next two constraints limit the maximum power which can
be sold to, 𝑃 𝑆𝑒𝑙,𝑚𝑎𝑥𝑡 , or purchased, 𝑃𝐵𝑢𝑦,𝑚𝑎𝑥𝑡 , from all markets. Here, 𝑣𝑆𝑒𝑙𝑡
and 𝑣𝐵𝑢𝑦𝑡 are binary variables associated with the role of RLCT aggrega-
tor in the markets. In (1f) it is ensured that only one of these binaries
equals to one: when RLCT aggregator is selling energy to the electricity
markets 𝑣𝑆𝑒𝑙𝑡 = 1, and when buying 𝑣𝐵𝑢𝑦𝑡 = 1. Constraint (1g) is the
power balance of the aggregator at each time where 𝜂𝑑 is discharging
efficiency. Accordingly, the total energy sold to or bought from the
market is equal to the produced power from the PV units, total dis-
charged power from EV batteries minus the consumed power to charge
EVs, and supply the total demand. The total power of PVs and EVs
that are used in these constraints are defined in Eqs. (1h)–(1j). Here,
𝑖 is for an EV and 𝑚 represents a PV unit. The next set of constraints
describes EV day-ahead scheduling. Charge/discharge limitations are
given in (1k) and (1l). Here, 𝜇𝑡,𝑖 is an auxiliary binary variable to avoid
simultaneous charging and discharging of EVs in a specific time period.
Note that 𝜇𝑡,𝑖 is one if EV is discharging. The state of charge (SoC) at
the start of the charging/discharging period, 𝑡𝑏𝑖 , is provided in (1m)
where 𝐸0

𝑖 is the initial energy of the battery and 𝐸𝑖 is the capacity.
Constraint (1n) models the SoC for the charging/discharging period,
[𝑡𝑏𝑖 , 𝑡

𝑒
𝑖 ], having 𝜂𝑐 as charging efficiency. The SoC is limited within a

specific range provided in (1o). Note that depending on the availability
period of an EV and the initial energy, having a fully charged battery at
the end of each period may not be possible. Thus, in (1p) the maximum
possible value of SoC, 𝑆𝑜𝐶 𝑖, for each EV is calculated then it is assumed
at the end of the charging period, 𝑡𝑒 the SoC of each battery should
4

𝑖

Fig. 1. A multi-step DPQC example utilized for the linearization of the optimization
objective function.

match this value as demonstrated in (1q). Constraint (1r) shows the
demand coming from HP units, ∑𝑗 𝑝

𝐻𝑃
𝑡,𝑗 , 𝑗 denoting a HP. The power

of HPs is adjustable through the day at each hour (1s), however, it is
related to the building thermal model as given in (1t). Here, 𝐶 and
𝑅 are thermal parameters of a building, 𝜃𝑟 is inside the building and
𝜃𝑎 is ambient temperature. The temperature may vary in the desired
(i.e. comfort) zone determined by (1u). The last constraint, (1v) states
the charging/discharging powers of EVs outside the availability period.

2.2. Linear deterministic model

The objective function of problem (1) is nonconvex, which makes
it difficult to guarantee a global optimum. This subsection provides
a method to convexify it, by linearizing it using the step-wise form
of PQCs as depicted in Fig. 1 for a DPQC. The demonstrated DPQC
includes four steps that depict the potential effect of bids on market
price.

For each step, the price is fixed and the value of power can be
determined with respect to the accumulated length of previous steps
and a variable that varies within the length of the current step (𝑠). Ac-
cordingly, power quantities can be rewritten as the summation of two
linear terms as shown in (2b) for sold power to LEM and (2e) for the
bought power. In other words, the power values are composed of fixed
and variable terms. The fixed term, 𝑏𝑆𝑒𝑙𝑡,𝑠 𝑞

𝑆𝑒𝑙,𝑚𝑖𝑛
𝑡,𝑠 and 𝑏𝐵𝑢𝑦𝑡,𝑠′ 𝑞

𝐵𝑢𝑦,𝑚𝑖𝑛
𝑡,𝑠′ , depend

on the PQC step, 𝑏 is a binary that denotes a selected step. At each time
interval, only one step can be selected (i.e. (2d) and (2g), 𝑜 is a binary
representing the selling/buying status LEM) which gives a minimum
power plus a variable term, 𝑥, whose value is limited to a certain range
as provided in (2c) and (2f) for the GPQC and DPQC, respectively. Only
one type of offer/bid is submitted at each time ensured in (2h). Finally,
constraint (2i) depending on the selling/buying status at 𝑡 determines
the price, 𝜆𝐸𝑡 which is no longer a function of power.

max
∑

𝑡∈

(

𝜆𝐷𝐴𝑡 𝑝𝑆𝑒𝑙,𝐷𝐴𝑡 − 𝜆𝐷𝐴𝑡 𝑝𝐵𝑢𝑦,𝐷𝐴𝑡 +

∑

𝑠∈𝑆𝑆𝑒𝑙
𝜆𝑆𝑒𝑙,𝐿𝐸𝑀𝑡,𝑠 (𝑥𝑆𝑒𝑙𝑡,𝑠 + 𝑏𝑆𝑒𝑙𝑡,𝑠 𝑞

𝑆𝑒𝑙,𝑚𝑖𝑛
𝑡,𝑠 ) −

∑

𝑠′∈𝑆𝐵𝑢𝑦
𝜆𝐵𝑢𝑦,𝐿𝐸𝑀𝑡,𝑠′ (𝑥𝐵𝑢𝑦𝑡,𝑠′ + 𝑏𝐵𝑢𝑦𝑡,𝑠′ 𝑞

𝐵𝑢𝑦,𝑚𝑖𝑛
𝑡,𝑠′ ) −

𝜆𝑅𝑇𝑡 𝑝𝑆𝑒𝑙,𝑅𝑇𝑡 − 𝜆𝑅𝑇𝑡 𝑝𝐵𝑢𝑦,𝑅𝑇𝑡

)

(2a)
s.t. (1b)–(1v)

𝑝𝑆𝑒𝑙,𝐿𝐸𝑀𝑡 =
∑

𝑠∈𝑆𝑒𝑙
𝑥𝑆𝑒𝑙𝑡,𝑠 + 𝑏𝑆𝑒𝑙𝑡,𝑠 𝑞

𝑆𝑒𝑙,𝑚𝑖𝑛
𝑡,𝑠 (2b)

0 ≤ 𝑥𝑆𝑒𝑙𝑡,𝑠 ≤ 𝑏𝑆𝑒𝑙𝑡,𝑠 𝑞
𝑆𝑒𝑙,𝑚𝑎𝑥
𝑡,𝑠 (2c)

∑

𝑏𝑆𝑒𝑙𝑡,𝑠 = 𝑜𝑆𝑒𝑙𝑡 (2d)

𝑠∈𝑆𝑒𝑙
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Fig. 2. Mapping example of a multi-range uncertainty set to a multi-step offer curve.

𝑝𝐵𝑢𝑦,𝐿𝐸𝑀𝑡 =
∑

𝑠′∈𝐵𝑢𝑦
𝑥𝐵𝑢𝑦𝑡,𝑠′ + 𝑏𝑏𝑢𝑦𝑡,𝑠′ 𝑞

𝐵𝑢𝑦,𝑚𝑖𝑛
𝑡,𝑠′ (2e)

0 ≤ 𝑥𝐵𝑢𝑦𝑡,𝑠′ ≤ 𝑏𝐵𝑢𝑦𝑡,𝑠′ 𝑞
𝐵𝑢𝑦,𝑚𝑎𝑥
𝑡,𝑠′ (2f)

∑

𝑠∈𝐵𝑢𝑦
𝑏𝐵𝑢𝑦𝑡,𝑠′ = 𝑜𝐵𝑢𝑦𝑡 (2g)

𝑜𝑆𝑒𝑙𝑡 + 𝑜𝐵𝑢𝑦𝑡 ≤ 1 (2h)
𝜆𝐸𝑡 =

(
∑

𝑠∈𝑆𝑆𝑒𝑙
𝑏𝑆𝑒𝑙𝑡,𝑠 𝜆

𝑆𝑒𝑙,𝐿𝐸𝑀
𝑡,𝑠 +

∑

𝑠′∈𝑆𝐵𝑢𝑦
𝜆𝐵𝑢𝑦,𝐿𝐸𝑀𝑡,𝑠′ 𝑏𝐵𝑢𝑦𝑡,𝑠′

)

(2i)

2.3. Price-maker uncertainty characterization

In this section, we propose a model for the optimal offering strategy
of a price-maker in the electricity markets under uncertainty based on
PQCs. We consider the participation of the RLCT aggregator in LEM as
a strategic player. We develop a simultaneous multi-step offering and
bidding curve construction methodology while addressing the uncer-
tainties associated with both GPQCs and DPQCs. In the next section,
we incorporate this model into the overall participation strategy of the
RLCT aggregator for all markets. Suppose that the RLCT aggregator is
participating in the local market as a price-maker.

It is difficult to make an exact prediction and have accurate PQCs
because knowing the realized accepted values of offers/bids a-priori
is complicated. Consequently, the RLCT aggregator needs to consider
the uncertainty of PQCs while deriving the offering/bidding strategies.
We utilize the concept of robust optimization and consider an interval
around the forecasted PQCs. Choosing a robust approach has the advan-
tage of not requiring the distribution information for price and power
quantities while delivering more computational tractability. However,
the typical risk-averse robust methods yield over-conservative outputs
due to two main factors namely: large forecast ranges (i.e. inter-
val length) and always the consideration of worst cases. This over-
conservativeness is not desirable for an agent like an RLCT aggregator
as it also likes to explore future realizations that could deliver more
revenues. Therefore, we divide the uncertainty interval into multiple
smaller ranges spanning realizations from conservative to optimistic
ones. We propose a robust approach considering a multi-range set as
depicted in Fig. 2 alongside with polyhedral uncertainty model with a
budget of uncertainty for each range. The uncertainty interval (i.e. the
interval around the predicted PQC) is divided into several ranges. As
can be seen, each range is mapped into one step of the offering curve
for which the robust optimization (3) with the budget of uncertainty
is solved. The provided figure specifically describes how offers can be
constructed from a multi-range uncertainty set. A similar procedure can
be considered for building the bids. For bids, the first top range of the
uncertainty set is mapped to the first step of the bidding curve and this
process is repeated for the remaining steps. In the objective function of
5

model (3), it is assumed that the values of price coming from PQCs are
uncertain varying in intervals provided in (3a) and (3b). Here, �̂�𝑡,𝑠 is
the uncertain price of step 𝑠, 𝑠′ at time 𝑡.

max
∑

𝑡∈

(

∑

𝑠∈𝑆𝑆𝑒𝑙
�̂�𝑆𝑒𝑙,𝐿𝐸𝑀𝑡,𝑠 (𝑥𝑆𝑒𝑙𝑡,𝑠 + 𝑏𝑆𝑒𝑙𝑡,𝑠 𝑞

𝑆𝑒𝑙,𝑚𝑖𝑛
𝑡,𝑠 )

−
∑

𝑠′∈𝑆𝐵𝑢𝑦
�̂�𝐵𝑢𝑦,𝐿𝐸𝑀𝑡,𝑠′ (𝑥𝐵𝑢𝑦𝑡,𝑠′ + 𝑏𝐵𝑢𝑦𝑡,𝑠′ 𝑞

𝐵𝑢𝑦,𝑚𝑖𝑛
𝑡,𝑠′ )

)

(3a)

s.t. (1b)–(1v), (2b)–(2i)
�̂�𝑆𝑒𝑙,𝐿𝐸𝑀𝑡,𝑠 ∈ [𝜆𝑆𝑒𝑙,𝐿𝐸𝑀𝑡,𝑠 , 𝜆

𝑆𝑒𝑙,𝐿𝐸𝑀
𝑡,𝑠 ] (3b)

�̂�𝐵𝑢𝑦,𝐿𝐸𝑀𝑡,𝑠 ∈ [𝜆𝐵𝑢𝑦,𝐿𝐸𝑀𝑡,𝑠 , 𝜆
𝐵𝑢𝑦,𝐿𝐸𝑀
𝑡,𝑠 ] (3c)

The model described in (3) gives the maximization of the profit of
RLCT aggregator in the LEM market. Here, the objective function is the
difference between revenue acquired from selling energy to the market
and the cost of buying energy depending on a specific period. The
market price is no longer deterministic and as displayed in constraints
(3b) and (3c) is assumed that could take values within a predetermined
interval. With consideration of the uncertainty budget [32], 𝛤 , the
robust counterpart of the above problem is presented in (4).

max 𝑧 (4a)
s.t. (1b)–(1v), (2b)–(2i)

𝑧 ≤
∑

𝑡∈

(

∑

𝑠∈𝑆𝑆𝑒𝑙
𝜆𝑆𝑒𝑙,𝐿𝐸𝑀𝑡,𝑠 (𝑥𝑆𝑒𝑙𝑡,𝑠 + 𝑏𝑆𝑒𝑙𝑡,𝑠 𝑞

𝑆𝑒𝑙,𝑚𝑖𝑛
𝑡,𝑠 )

−
∑

𝑠′∈𝑆𝐵𝑢𝑦
𝜆𝐵𝑢𝑦,𝐿𝐸𝑀𝑡,𝑠′ (𝑥𝐵𝑢𝑦𝑡,𝑠′ + 𝑏𝐵𝑢𝑦𝑡,𝑠′ 𝑞

𝐵𝑢𝑦,𝑚𝑖𝑛
𝑡,𝑠′ )

)

−
(

∑

𝑠∈𝑆𝑒𝑙
𝜎𝑆𝑒𝑙𝑠 𝛤𝑆𝑒𝑙 +

∑

𝑠′∈𝐵𝑢𝑦
𝜎𝐵𝑢𝑦𝑠′ 𝛤𝐵𝑢𝑦

+
∑

𝑡∈
(
∑

𝑠∈𝑆𝑒𝑙
𝜙𝑆𝑒𝑙𝑡,𝑠 +

∑

𝑠′∈𝐵𝑢𝑦
𝜙𝐵𝑢𝑦𝑡,𝑠′ )

)

(4b)

𝜎𝑆𝑒𝑙𝑠 + 𝜙𝑆𝑒𝑙𝑡,𝑠 ≥ 𝑙𝑆𝑒𝑙𝑡,𝑠 𝑦
𝑆𝑒𝑙
𝑡,𝑠 (4c)

𝜎𝐵𝑢𝑦𝑠′ + 𝜙𝐵𝑢𝑦𝑡,𝑠 ≥ 𝑙𝐵𝑢𝑦𝑡,𝑠′ 𝑦
𝐵𝑢𝑦
𝑡,𝑠′ (4d)

− 𝑦𝑆𝑒𝑙𝑡,𝑠 ≤ 𝑝𝑆𝑒𝑙𝑡,𝑠 ≤ 𝑦𝑆𝑒𝑙𝑡,𝑠 (4e)

−𝑦𝐵𝑢𝑦𝑡,𝑠′ ≤ 𝑝𝐵𝑢𝑦𝑡,𝑠′ ≤ 𝑦𝐵𝑢𝑦𝑡,𝑠′ (4f)

𝑦𝑆𝑒𝑙𝑡,𝑠 , 𝜎
𝑆𝑒𝑙
𝑠 , 𝜎𝐵𝑢𝑦𝑠′ , 𝜙𝑆𝑒𝑙𝑡,𝑠 , 𝜙

𝐵𝑢𝑦
𝑡,𝑠 ≥ 0 (4g)

This mathematical representation is derived by utilizing the duality
properties and exact linear equivalences. Note that 𝑧 is the new ob-
jective function and the new variables 𝜎 and 𝜙 are the dual variables
related to the price bound and uncertainty set characterization by the
budget of uncertainty for both selling and buying prices. In addition,
𝑦 is an auxiliary variable and parameters 𝑙𝑆𝑒𝑙𝑡,𝑠 and 𝑙𝐵𝑢𝑦𝑡,𝑠′ represent the
maximum deviation from the predicted values (the uncertainty interval
is considered to be symmetric: 𝜆𝑆𝑒𝑙,𝐿𝐸𝑀𝑡,𝑠 ± 𝑙𝑆𝑒𝑙𝑡,𝑠 , 𝜆𝐵𝑢𝑦,𝐿𝐸𝑀𝑡,𝑠′ ± 𝑙𝐵𝑢𝑦𝑡,𝑠′ ) for each
step and time. Predetermined 𝛤𝑆𝑒𝑙 and 𝛤𝐵𝑢𝑦 are the budget parameters
that can take value in [0, 𝑇 ] where 𝛤 = 𝑇 represents maximum
conservativeness and 𝛤 = 0 is equal to the deterministic model.

The above problem gives the robust optimization associated with
one range. We expand this formulation to include all ranges by utilizing
the weighted sum approach and introducing the parameter 𝛼𝑘 and 𝑘
ranges. This parameter can be tuned by the decision-maker considering
confidence in a price forecast range. Thus:

max
∑

𝑘
𝛼𝑘𝑧𝑘 (5a)

s.t. (1b)–(1v), (2b)–(2i), (4b)–(4g) ∀𝑘
∑

𝑘
𝛼𝑘 = 1 (5b)

�̂�𝑆𝑒𝑙,𝐿𝐸𝑀𝑡,𝑘 ≥ �̂�𝑆𝑒𝑙,𝐿𝐸𝑀𝑡,𝑘−1 (5c)

�̂�𝐵𝑢𝑦,𝐿𝐸𝑀𝑡,𝑘 ≤ �̂�𝐵𝑢𝑦,𝐿𝐸𝑀𝑡,𝑘−1 (5d)

𝑝𝑆𝑒𝑙,𝐿𝐸𝑀𝑡,𝑘 ≥ 𝑝𝑆𝑒𝑙,𝐿𝐸𝑀𝑡,𝑘−1 (5e)
𝐵𝑢𝑦,𝐿𝐸𝑀 𝐵𝑢𝑦,𝐿𝐸𝑀
𝑝𝑡,𝑘 ≥ 𝑝𝑡,𝑘−1 (5f)
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𝜆

𝜆

By solving the above optimization the offering and bidding curve at
each time period can be extracted. The Eqs. (5a) depicts the objective
function. Constraint (5b) ensures that the summation of all given 𝛼𝑘s
equals unity. It is important to mention that the RLCT aggregator as a
price-maker market participant is only allowed to submit step-wise non-
decreasing offering curves and step-wise non-increasing bidding curves
to the market. Thus, extra conditions (5c)–(5f) are added to the opti-
mization to guarantee the explained feature for both of the submitted
curves. Note that the values of price for each offering/bidding curve
step can be recovered from (5) as demonstrated in (6).

�̂�𝑆𝑒𝑙,𝐿𝐸𝑀𝑡,𝑘 =
∑

𝑠∈𝑆𝑆𝑒𝑙
𝜆𝑆𝑒𝑙,𝐿𝐸𝑀𝑡,𝑠 𝑏𝑆𝑒𝑙𝑡,𝑠,𝑘 − 𝑙

𝑆𝑒𝑙
𝑡,𝑠,𝑘𝑏

𝜙
𝑡,𝑠,𝑘 (6a)

̂𝐵𝑢𝑦,𝐿𝐸𝑀
𝑡,𝑘 =

∑

𝑠′∈𝑆𝐵𝑢𝑦
𝜆𝐵𝑢𝑦,𝐿𝐸𝑀𝑡,𝑠′ 𝑏𝐵𝑢𝑦𝑡,𝑠′,𝑘 + 𝑙

𝐵𝑢𝑦
𝑡,𝑠′,𝑘𝑏

𝜙
𝑡,𝑠′,𝑘 (6b)

̂𝐸,𝐿𝐸𝑀
𝑡,𝑘 = �̂�𝑆𝑒𝑙,𝐿𝐸𝑀𝑡,𝑘 + �̂�𝐵𝑢𝑦,𝐿𝐸𝑀𝑡,𝑘 (6c)

Where 𝑏𝑆𝑒𝑙𝑡,𝑠,𝑘 and 𝑏𝜙𝑡,𝑠′,𝑘 are binary variables that become one when 𝜙
is non-zero meaning that the maximum deviation in a specific step is se-
lected. Note that, the worst case for selling action happens in the lowest
value of the price and for buying in the highest value. Thus, Eqs. (6a)
and (6b) give the price of selling/buying, and Eq. (6c) provides the
final price. The proposed weighted multi-range robust approach pro-
vides a decision-making tool for RLCT aggregator as a price-maker to
schedule its assets with consideration of the possible outcome of its
offering/bidding on the market clearing price. In addition, the extra
parameter of 𝛼 gives the option to signify a specific range. This could
be especially useful in the day-to-day offering strategy. For example,
the historical data while building PQCs could suggest that the forecast
error may be up to twenty percent at some times of the day. However,
this is not always the case thus the operator can tune the offering by
having a higher weight for the ranges closer to the forecasted ones.

2.4. Stochastic weighted multi-range robust approach

In this section, we incorporate the price-maker model explained in
the previous section into the overall multi-market participation model
of the RLCT aggregator. The aggregator first decides the DA-related
variables which include the amount of power offered to or bought
from DA WEM and the offering/bidding curve to be submitted in the
LEM. These decisions are here-and-now types which are then fixed
while making the next stage (i.e. wait and see) decisions including
the power traded with the RT electricity market, EVs rescheduling,
and HP consumption adjustment. This structure of decisions is in line
with real-world applications. RLCT aggregator decides its strategy in
DA markets and HP scheduling. This takes place before the gate closure
time and in advance for all of the following time periods. Only, after
these decisions are taken, the values of PV production along with
EVs availability are realized at each time. Thus, the RLCT aggregator
decides how to manage its action optimally (i.e. selling/purchasing
additional/deficient power from the market and/or utilizing the HP
flexibility) in order to maximize its overall profit. The proposed for-
mulation is given in (7). The RLCT aggregator aims at maximizing
the overall profit while participating in all markets. The first term
is the profit from the DA WEM as explained previously. The second
term represents the objective of the defined model in the previous
subsection related to the offering/bidding curve construction of the
LEM. The last term is the expected profit from the real-time operation
of the RLCT aggregator through the real-time market. We assume that
it is possible to modify the HP schedule but with a cost (𝑐𝑜𝑠𝑡𝑅𝑇 ). The
temperature should remain within the defined range. As mentioned
earlier the trading happens in two stages wherein the first power traded
with DA WEM and LEM is decided and only then when scenarios of
the real-time are realized power traded in the real-time market with
EVs and HP schedules are decided. In this regard, constraints (7b)
6

and (7c) separate the first stage power decisions into sold and bought
respectively. The difference between these two values should be in
balance with the schedule of the assets of the aggregator as enforced
in (7d). The power balance equation is given in (7e) where 𝑅𝐻𝑃 is
the change in consumption of HPs in each scenario, 𝜔, and time. The
power traded in the RT market equals the difference between the
realized value of PV generation and the forecasted one, the difference
between the power scheduled for EVs in other markets with the RT
market, and the changes of HP consumption at each scenario and time.
The cost related to the reduction in power of HP is defined linearly
in constraint (7f) as a multiplication of a fixed price, 𝜆𝜉 , and the
accumulated power curtailed from the scheduled HPs. Constraints (7g)–
(7h) demonstrate the rescheduling of EVs per each scenario and time
which were explained for the deterministic model. Finally, constraints
(7i)–(7l) address the utilization of the flexibility of HP and limits of
temperature in the real-time market. Note that 𝑅𝐻𝑃𝑡,𝑗,𝑘,𝜔 is a non-negative
variable as imposed in (7k).

max
∑

𝑡∈

(

𝜆𝐷𝐴𝑡 𝑝𝑆𝑒𝑙,𝐷𝐴𝑡 − 𝜆𝐷𝐴𝑡 𝑝𝐵𝑢𝑦,𝐷𝐴𝑡 +

∑

𝑘∈
(𝛼𝑘𝑧𝑘 +

∑

𝜔
𝜋𝜔𝜆

𝑅𝑇
𝑡,𝜔 (𝑝

𝑆𝑒𝑙,𝑅𝑇
𝑡,𝑘,𝜔 −

𝜆𝑅𝑇𝑡,𝜔 𝑝
𝐵𝑢𝑦,𝑅𝑇
𝑡,𝑘,𝜔 − 𝑐𝑜𝑠𝑡𝑅𝑇𝑡,𝑘,𝜔))

)

(7a)
s.t. (1k)–(1q) ∀𝜔, 𝑘, (5b)–(5b), (6a)–(6c)

𝑝𝑆𝑒𝑙,𝐷𝐴𝑡 + 𝑝𝑆𝑒𝑙,𝐿𝐸𝑀𝑡,𝑘 = 𝑝𝑆𝑒𝑙,𝑡𝑜𝑡𝑡,𝑘 (7b)

𝑝𝐵𝑢𝑦,𝐷𝐴𝑡 + 𝑝𝐵𝑢𝑦,𝐿𝐸𝑀𝑡,𝑘 = 𝑝𝐵𝑢𝑦,𝑡𝑜𝑡𝑡,𝑘 (7c)

𝑝𝑆𝑒𝑙,𝑡𝑜𝑡𝑡,𝑘 − 𝑝𝐵𝑢𝑦,𝑡𝑜𝑡𝑡,𝑘 =

𝑝𝑃𝑉𝑡 + 𝑝𝐸𝑉 ,𝑑𝑖𝑠𝑡,𝑘 𝜂𝑑 − 𝑝
𝐸𝑉 ,𝑐ℎ
𝑡,𝑘 −

∑

𝑗
𝑝𝐻𝑃𝑡,𝑗,𝑘 (7d)

𝑝𝑆𝑒𝑙,𝑅𝑇𝑡,𝑘,𝜔 − 𝑝𝐵𝑢𝑦,𝑅𝑇𝑡,𝑘,𝜔 =

(𝑝𝑃𝑉 ,𝑅𝑇𝑡,𝜔 − 𝑝𝑃𝑉𝑡 ) + (𝑝𝐸𝑉 ,𝑑𝑖𝑠,𝑅𝑇𝑡,𝑘,𝜔 − 𝑝𝐸𝑉 ,𝑑𝑖𝑠𝑡,𝑘 )𝜂𝑑 −

(𝑝𝐸𝑉 ,𝑐ℎ,𝑅𝑇𝑡,𝑘,𝜔 − 𝑝𝐸𝑉 ,𝑐ℎ𝑡,𝑘 ) +
∑

𝑗
𝑅𝐻𝑃𝑡,𝑗,𝑘,𝜔 (7e)

𝑐𝑜𝑠𝑡𝑅𝑇𝑡,𝑘,𝜔 = 𝜆𝜉𝑡,𝜔
∑

𝑗
𝑅𝐻𝑃𝑡,𝑗,𝑘,𝜔 (7f)

𝑝𝑑𝑖𝑠,𝑅𝑇𝑡,𝑘,𝜔 =
∑

𝑖
𝑝𝑑𝑖𝑠,𝑅𝑇𝑡,𝑖,𝑘,𝜔 (7g)

𝑝𝑐ℎ,𝑅𝑇𝑡,𝑘,𝜔 =
∑

𝑖
𝑝𝑐ℎ,𝑅𝑇𝑡,𝑖,𝑘,𝜔 (7h)

𝑝𝐻𝑃𝑡,𝑗,𝑘 − 𝑅
𝐻𝑃
𝑡,𝑗,𝑘,𝜔 = (𝐶𝑗 +

𝛥𝑡
𝑅𝑗

)𝜃𝑟,𝑅𝑇𝑡,𝑗,𝜔

−𝐶𝑗𝜃
𝑟,𝑅𝑇
𝑡−1,𝑗,𝜔 −

𝜃𝑎𝑡 𝛥𝑡
𝑅𝑗

(7i)

𝑝𝐻𝑃𝑡,𝑗,𝑘 − 𝑅
𝐻𝑃
𝑡,𝑗,𝑘,𝜔 ≥ 0 (7j)

𝑅𝐻𝑃𝑡,𝑗,𝑘,𝜔 ≥ 0 (7k)

𝜃𝑟,𝑅𝑇𝑗 ≤ 𝜃𝑟,𝑅𝑇𝑡,𝑗,𝜔 ≤ 𝜃
𝑟,𝑅𝑇
𝑗 (7l)

𝑝𝑐ℎ,𝑅𝑇𝑡,𝑖,𝑘,𝜔 = 𝑝𝑑𝑖𝑠,𝑅𝑇𝑡,𝑖,𝑘,𝜔 = 0 𝑡 ∉ [𝑡𝑏,𝑅𝑇𝑖,𝜔 , 𝑡𝑒,𝑅𝑇𝑖,𝜔 ] (7m)

3. Numerical studies

In this section, numerical simulations are provided for the partic-
ipation of an RLCT aggregator in the local and wholesale electricity
markets in two separate case studies. In case I, we consider partici-
pating only in LEM to better investigate the impact of the aggregator
offering/bidding in the market and associated uncertainties. In case
II, all markets are considered. We analyze how adding the capability
to participate in extra markets could impact the performance of the
aggregator. The optimization problem is solved using the CPLEX solver

in GAMS software and the reported average time consumption is three
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Fig. 3. Example of PQCs for different hours (a) GPQC (b) DPQC.

Fig. 4. Offering and bidding curve in LEM (a) Offering curve (Hour 17) (b) Bidding
curve (Hour 20).

Fig. 5. Scheduled exchanged power with the LEM for different hours of the day for
different ranges of the proposed and risk-neutral strategy. Here, the positive values are
the supply and the negative ones are the demand.

and nineteen minutes for cases I and II, respectively. Prior to going
into details of each case, the input data and LEM setup are explained
as follows.

3.1. Data and LEM setup

To build up the LEM environment that the RLCT aggregator partici-
pates in, we consider the leading-the-way scenario (the year 2035) from
the distribution future energy scenarios and the county Durham located
at the northeast of England as the geographical area [4]. Considering
this scenario, there will be a high uptake of LCTs in the grid having the
potential to directly or indirectly (through an aggregator) participate in
the LEM. The considered information in the aforementioned scenario
includes the number of EVs, number of HPs, domestic installed PV
capacity, large solar generation installed capacity, wind generation in-
stalled capacity, non-renewable generation installed capacity, domestic
underlying consumption, and industrial and commercial energy con-
sumption all provided in Table 2. We assume that twenty-five percent of
the residential assets including EVs, HPs, and fifty percent of domestic
PV capacity are aggregated by the RLCT aggregator to participate in
the market with the goal of maximizing the overall profit as explained
in the mathematical formulation section. The data for wind speed and
solar irradiance comes from [33] for county Durham. The days under
study that use this data start from the first of March for Case I and from
the first of April for Case II. The EV and HP types/models are from [11]
assuming ten different types. Also, for the second case, five scenarios
with different PV irradiance and EV availability are built according to
the model explained in [11]. For LEM, it is assumed that ten generation
units participate in the market including seven renewable and three
non-renewable, along with four demand units representing the I&C
7

consumers. The depicted capacities from the scenario given in Table 2 b
are divided among these units. The offers/bids are built according to
the approach proposed in [34]. Finally, after acquiring offers/bids PQCs
for both generation and demand are constructed some samples of which
are provided in Fig. 3.

3.2. Case I: Participation only in LEM

In this case, the aggregator participates in LEM while only dealing
with the uncertainty of offers/bids impacts on the market price. We
first investigate the performance for a day (first of March) and then the
overall performance is analyzed for longer periods. We use the data ex-
plained above to investigate and analyze the performance of the RLCT
aggregator in the LEM. Four ranges are considered within the twenty
percent confidence interval around the predicted PQCs ultimately re-
sulting in offers/bids with a maximum of four steps. The model (5) is
used to derive the offers/bids in LEM. For the first day, examples of
the acquired curves are demonstrated in Fig. 4. For the offering curve
first, the power of 7.6 MWh is offered with the price of £119.2/MWh.
The next submitted offers are (12.5 MWh, £143.3/MWh), (26.2 MWh,
£164.2/MWh), and (31.4 MWh, £179.2/MWh). For each range, the
scheduled power to be exchanged in the LEM is given in Fig. 5. The first
range corresponds to the lowest range (e.g. first step in Fig. 2) when
selling and the highest range for buying electricity for the market hence
the worst case of the price realization. Thus, the activity, in this case,
is the minimum as in this situation model tries to refrain from fully
participating in the market and impacting market price unfavorably
(i.e. lowering/increasing price when selling/buying) at different hours.
Thus, as can be seen from this figure, for this range RLCT aggregator
has lower activity in the market where in several hours of the day no
power is exchanged with the market meaning that it is more beneficial
to provide the necessary consumption and avoid impacting markets by
extra offering/bidding in the market. This behavior changes in other
ranges. As can be seen from Fig. 5, the most supply and demand come
from the fourth range which exploits a range where the price is high
when offering and low when bidding. In other words, the price in this
range varies in the highest bounds of GPQCs and the lowest of DPQCs,
depicting a situation that despite having a high sensitivity to the market
clearing price, more participation in the market will still be profitable.
The obtained price profiles for each range are gathered in Fig. 6. As
already explained lower ranges correspond to more conservative prices.
This translates to lower selling prices in the market and higher prices
required for buying electricity in the market. On the other hand, two
conditions are enforced on the offering/bidding curves as explained in
the mathematical formulation section, namely non-decreasing for the
offering curves and non-increasing for the bidding curves. The average
expected profit for this day is £22189 which is calculated via averaging
the expected profit acquired from all ranges as the considered 𝛼 is
he same for all ranges. The corresponding scheduled power and price
rofiles are depicted in Figs. 5 and 6. For the sake of comparison, two
esults of two more strategies are considered, namely a risk-neutral
nd a classical robust approach (risk-averse with one range). Toward
nvestigating the actual performance of each strategy a validation after-
he-fact analysis is carried out using real data as explained in the
ollowing. First, the offering/bidding quantities are derived for the
hole period of the optimization. Then, considering these hourly of-

ers/bids, the market is cleared, realizing the power exchanged with the
arket and the resulting price. With this information, the overall profit

f each strategy per day can be calculated. For better demonstration,
he obtained profits for eleven consecutive days starting from the first
f March are given in Fig. 4. As can be seen from 4, except for one
ay for the risk-neutral strategy, the proposed approach outperforms
ther strategies. The reason for the day with lower achieved profit
han risk-neutral is due to the fact that on this day the predicted PQCs
ere realized very close to the real ones. However, on other days
here this was not the case, the difference is much more noticeable

etween the proposed and the risk-neutral strategy. Also, the classical
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Table 2
The input data of the future distribution energy scenarios (* Industrial and commercial)

Data Value Data Value

No. of EVs 109 364 No. of HPs 66 652
Domestic PV 98.88 MW Large solar 427.255 MW
Wind 148.94 MW Non-Renewable 47.813 MW
Domestic load 514112 MWh/yr I&C∗ load 951117 MWh/yr

Table 3
The total resulting profit (M£) of each strategy for a period of one month with respect
to different forecasting errors.

Strategy Forecasting error

10% 20% 30%

Risk-Neutral 0.786 0.690 0.576
Classical robust 0.686 0.622 0.557
Proposed 1.271 1.189 1.121

Table 4
Potential profit with the proposed approach (% of
Ideal Case).

Error percentage Proposed (%)

10% 92.1
20% 86.06
30% 80.14

Fig. 6. Acquired price profiles corresponding to different ranges of uncertainty set of
he proposed and risk-neutral strategy.

obust approach seems to perform better than risk-neutral on some
f the days with high price fluctuations from the predicted values,
owever, its achieved profit is lower than that of the proposed strategy
or all days. The same process is repeated for the period of a whole
onth and the total acquired profit by each strategy is provided in
able 3 with respect to different forecasting errors. As can be seen, the

ncrease in prediction error results in lower overall profits. However,
his has different impacts on the considered strategies in terms of profit
chieved. For the proposed strategy the total profit is decreased by
2 percent for the 30 percent forecasting error compared to the 10
ercent forecasting error. This is 26 percent for the risk-neutral strategy
nd 19 percent for the classical robust approach. The risk-neutral is
n optimistic approach and is thus sensitive to the prediction error.
he more the prediction error the more impact on the acquired profits.
he classical robust approach, however, despite reaching a lower total
erformance is moderately sensitive to prediction errors.

We conducted a comprehensive comparison of our approach, specif-
cally evaluating the potential acquired profit in contrast to an ideal
ase, which serves as a benchmark with perfect hindsight demonstrated
n Table 4. In the previous table findings demonstrated that the pro-
osed method consistently achieves noticeably superior performance
n terms of both acquired profit and resilience to prediction errors.
mportantly in Table 4, comparable results were obtained even when
ompared to a scenario with no uncertainty. These results underscore
he efficacy of our proposed method as a valuable tool for decision-
akers operating in similar market settings, highlighting its robustness

nd effectiveness in addressing real-world uncertainties (see Fig. 7).
8

Fig. 7. The obtained profit of the after-the-fact analysis on different days for the
proposed, risk-neutral, and classical robust strategies.

3.3. Case II: Participation in multiple markets

In the previous case study, the RLCT aggregator participation in
LEM was demonstrated while investigating the different aspects of the
proposed uncertainty modeling approach. In this case, we consider
all markets. Five scenarios are constructed for the RT realization of
uncertain parameters according to the procedure provided in [11].
Fig. 8 summarizes the expected power traded in LEM, power traded
in DA WEM, and power traded in RT WEM. As can be seen, the
proposed strategy utilizes the price of DA WEM and LEM as a signal
to schedule the assets and trade accordingly in these markets. When
there is a noticeable difference in market prices the trading is shifted
completely toward the market with a favorable price. To keep the
figure more tractable, for three scenarios, the power adjustment in
RT WEM is provided in this figure. For the first two scenarios, the
variation in realized PV generation and the EVs availability necessitates
buying some of the power back or selling the excess scheduled power
in the RT market. The third scenario depicts less contribution to this
market coming from the realized values being close to the prediction
of assets’ behavior. Table 5 provides a comparison of profit acquired
from LEM between two cases: having only the option of participating
in LEM and all markets simultaneously considering the expected profit
of each range of uncertainty set. As can be seen, the difference is more
considerable for the first and second ranges. This means that in these
ranges when there is an option of participating in additional markets
other than LEM since price fluctuations through the day are smaller it
is preferable to withhold more power from LEM and participate more
in the DA WEM market. However, when the difference between the low
and high prices of LEM during the day increases, meaning more chance
for arbitrage, the activity in LEM increases to benefit from buying at
lower prices and then selling at higher prices. Note that in presence of
the option of participating in DA WEM the activity in LEM is still lower
than LEM only case, in order to avoid impacting the MCP leading to
lower profits. Finally, Table 6 summarizes the total profit acquired by
the aggregator by participating only in LEM and also in all markets.
The results demonstrate that the profit is increased by 28 percent
when the RLCT aggregator is participating in all markets. Indeed, if the
aggregator schedules all of its assets toward LEM which is naturally
a smaller market in terms of the sizes of traded energy compared
to DA WEM, it moves MCP lower when offering the generation to
market and higher when buying energy from the market. Thus, it is
beneficial that the aggregator cut off some of the energy traded in LEM
toward DA WEMs. However, more interestingly, as reported in this
table, the traded energy in all markets is fifty percent more than energy
traded only in LEM which demonstrates that providing the capability
to participate in multi-markets simultaneously releases more flexibility
from the residential side, hence increasing the potential profit of the
aggregator representing customers alongside bringing more resources

to the markets when required.
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Fig. 8. The expected values of power traded in the markets along with DA and LEM
market prices.

Table 5
Comparison of expected profit (£) acquired from LEM for different ranges of uncertainty
set: (a) when the aggregator is only participating in LEM and (b) when all markets are
considered in the optimization formulation.

Range

First Second Third Fourth

(a) 15 904.24 22 542 45 172.15 61 488.63
(b) 2364.47 6187.75 35 635.02 52 321.71

Table 6
The expected profit and traded energy in case of only participating LEM and both WEM
and LEM.

WEMs and LEM LEM

Total profit (£) 46 534.29 36 276.76
Total traded energy (MWh) 766.1 508.05

Fig. 9. Profit and CVaR with different values of risk-aversion parameter.

We also calculated conditional value at risk (CVaR) based on the
methodology outlined in [35] and depicted the results in Fig. 9. This
visual representation unveils the impact of the risk aversion parameter
𝛽 on the intricate interplay between profit and CVaR within the aggre-
gator’s decision-making framework, considering uncertainties from PV
and EVs. Each data point is annotated with the corresponding 𝛽 values,
offering a transparent insight into the aggregator’s risk preferences. The
observed trend aligns with theoretical expectations: heightened risk
aversion prompts a more conservative approach. On the other hand,
lower 𝛽 values signify a more aggressive strategy, resulting in elevated
total profit. This figure succinctly captures the relationship between
risk aversion and decision-making, illustrating how aggregators bal-
ance profit and risk regarding variable uncertainties coming from the
aggregated assets.

4. Conclusion

The future energy scenarios in several countries around the world
depict a noticeable uptake of low-carbon technologies, especially at
9

the residential level. This paper addressed several challenges that an
aggregator of such technologies could face in energy markets:

(1) Deriving a suitable strategy to participate in multiple electricity
markets at local and wholesale levels.

(2) Consideration of seller/buyer and price-maker/price-taker roles
in the aforementioned markets.

(3) Accounting for the uncertainty associated with the potential
effects of offering/bidding on the MCP when the aggregator
could be a price-maker.

The proposed stochastic multi-range robust approach has proven to be
a well-suited solution for effectively addressing the intricate challenges
inherent in managing uncertainties associated with offer/curves. This
model optimally derives offer/curves while accounting for uncertainties
in both the price-maker model and the outputs of aggregated assets.

The obtained results underscore the efficacy of our approach, show-
casing that an aggregator can attain higher overall profits in compar-
ison to conventional robust and risk-neutral approaches. Importantly,
our method ensures that these profits exhibit reduced sensitivity to vari-
ations in forecast errors. This heightened resilience to uncertainties en-
hances the reliability and stability of the aggregator’s decision-making
process. Throughout this study, our primary goal centered on profit
maximization, a pursuit that translated into increased participation
in various markets. This holds particularly true when considering the
simultaneous engagement with multiple markets. By achieving superior
profitability and mitigating sensitivity to forecast errors, our proposed
approach not only aligns with the main objectives of the aggregator but
also positions itself as a robust and practical solution for contemporary
challenges in energy market participation. The positive outcomes ob-
tained in our research underscore the significant contributions of our
proposed model in fostering more effective and profitable participation
of aggregators in diverse energy markets.

5. Future work

As for future research direction, we envision three promising av-
enues. Firstly, in the presence of sufficient data, the exploration of data-
driven methods for comparison and potential tuning of uncertainty
sets stands out as a valuable direction. This approach could leverage
the richness of available data to refine the model’s understanding
of uncertainties, further enhancing its adaptability and performance.
Secondly, we propose future investigations into incorporating distri-
bution network information into the offering model of the aggregator.
Considering the intricacies of the distribution network could provide a
more comprehensive representation of the operating environment, po-
tentially leading to more accurate and context-aware decision-making
by the aggregator. This avenue opens new possibilities for aligning
the model with the evolving dynamics of distribution networks, of-
fering a holistic perspective for future research endeavors. Thirdly,
incorporating the dynamics of energy and reserve markets into our
modeling framework could provide a more comprehensive understand-
ing of the aggregator’s decision-making landscape. This avenue holds
the potential to enhance the adaptability and robustness of our pro-
posed approach, offering valuable insights for a more resilient and
efficient integration of low-carbon technologies into the broader energy
landscape.
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Appendix

A general optimization form of the problem addressed in the paper
can be formulated as shown in (8).

max 𝒂𝑇 𝒙 + E[min𝜓𝑟∈𝛹𝒑𝒓(𝒙,𝝍𝒓)] + E[𝒒(𝒙, 𝜔)] (8a)

s.t. 𝒒(𝒙, 𝜔) ≤  (8b)
𝒑𝑟(𝒙,𝝍 𝑟) ∶= max𝑦𝑟∈𝐹 (𝑥,𝜓𝑟)𝑐

𝑇 𝑦𝑟 (8c)

𝐹 (𝑥, 𝜓𝑟) ≠ ∅ (8d)

The objective is the aggregator profit set to be maximized over three
markets of DA wholesale, local market and real-time market as demon-
strated respectively in (8a) followed by constraint (8b)–(8d). Note
that 𝛹 is a full uncertainty set containing all ranges, 𝒑𝒓(𝒙,𝝍𝒓) is the
profit over local market with multi-range uncertainty constrained by
𝐹 (𝑥, 𝜓𝑟) and 𝒒(𝒙, 𝜔) which stands for the optimal value of the second-
stage real-time problem. In this regard, our approach can provide a
solution that maximizes the first-stage profit in the DA market and the
expected worst profit in the local market, along with the expected profit
in the real-time market, considering the collection of all uncertainty
sets and scenarios, respectively. Thus, as explained in the paper, the
first term does not incorporate uncertainty. For each future turnout,
only one value is determined, thereby eliminating the requirement for
the expectation. The second term represents the weighted multi-range
uncertainty set for modeling bidding in the local market, followed by
the expectation of the operation over scenarios of different outcomes
in real-time. In this part, we want to provide some insight into the
conservatism of the utilized uncertainty set in the paper compared to
the robust method, assuming that both methods use the same shape for
describing the variation of uncertain variables. For instance, both be a
box or an ellipsoidal uncertainty set.

Note that, regarding the defined type of the uncertainty set in the
paper for robust optimization, the expectation can be rewritten as
∑

𝑗 𝛼𝑗 (min𝜓𝑗𝒑𝒋(𝒙,𝝍𝒋)), translating into finding the worst case in multiple
ranges with different associated weights. It can be demonstrated that
such a set of uncertainty would lead to a less conservative solution
compared to a classical robust approach with one range. To prove this,
consider an uncertainty set comprising two ranges. The first range of
the uncertainty set, 𝜁1, has a more conservative associated optimal
solution compared to the second range, 𝜁2. If these two sets were
considered separately, meaning weights for both are equal to one (𝛼1 =
𝛼2 = 1), the relation of associated optimal values can be described as
𝑔(𝜁2) = min[𝑔(𝜁1), 𝑔(𝜁1∖𝜁2)]. In the proposed method, we consider both
ranges with 𝛼1+𝛼2 = 1. Thus, for the multi-range set, the optimal value
can be formulated as 𝑔(𝜁1, 𝜁2, 𝛼1, 𝛼2) = 𝛼1𝑔(𝜁1) + 𝛼2𝑔(𝜁2), which shows
that for two ranges, the conservatism of the proposed method is less
than the classical robust method: 𝑔(𝜁1) ≤ 𝑔(𝜁1, 𝜁2, 𝛼1, 𝛼2) ≤ 𝑔(𝜁2). This
10

can be easily generalized for more than a two-range uncertainty set.
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