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REVIEW
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of Copenhagen, Copenhagen, Denmark; cCHL4special, Darmstadt, Germany; dResearch Unit of Health Sciences and Technology, Faculty of 
Medicine, University of Oulu, Oulu, Finland; eDepartment of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 
Vilnius, Lithuania; fDepartment of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; gWorld Health Organization 
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Belgium; iSynOA Therapeutics, Philadelphia, PA, USA; jSchool of Computing, Newcastle University, Newcastle upon Tyne, UK; kDepartment of 
Clinical Sciences, Orthopaedics, Lund University, Lund, Sweden

ABSTRACT
Introduction: Osteoarthritis (OA) affects over 500 million people worldwide. OA patients are sympto-
matically treated, and current therapies exhibit marginal efficacy and frequently carry safety-risks 
associated with chronic use. No disease-modifying therapies have been approved to date leaving 
surgical joint replacement as a last resort. To enable effective patient care and successful drug 
development there is an urgent need to uncover the pathobiological drivers of OA and how these 
translate into disease endotypes. Endotypes provide a more precise and mechanistic definition of 
disease subgroups than observable phenotypes, and a panel of tissue- and pathology-specific bio-
chemical markers may uncover treatable endotypes of OA.
Areas covered: We have searched PubMed for full-text articles written in English to provide an in- 
depth narrative review of a panel of validated biochemical markers utilized for endotyping of OA and 
their association to key OA pathologies.
Expert opinion: As utilized in IMI-APPROACH and validated in OAI-FNIH, a panel of biochemical 
markers may uncover disease subgroups and facilitate the enrichment of treatable molecular endotypes 
for recruitment in therapeutic clinical trials. Understanding the link between biochemical markers and 
patient-reported outcomes and treatable endotypes that may respond to given therapies will pave the 
way for new drug development in OA.
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1. Introduction – molecular endotypes of 
osteoarthritis

Osteoarthritis (OA) affects over 500 million people worldwide 
and is a highly heterogenous disease [1–3]. Despite etiological 
differences, OA patients continue to be treated as 
a homogenous population. This ‘one-size-fits-all’ mentality 
has not only hampered the evolution of more effective patient 
care, but has likely contributed to the lack of clinically 
approved disease-modifying OA drugs (DMOADs) [4,5]. In 
medical practice, this approach could contribute to patients 
receiving ineffective, perhaps even harmful, treatments. In 
clinical trials, it can limit the ability to demonstrate efficacy 
of a novel therapy, leading to discontinuation of development. 
There is an urgent need to improve our understanding of the 
OA population to enable improved patient care and usher in 
a new wave of therapeutics.

The pathobiological drivers of OA and how these translate 
into identifiable phenotypes have not been fully elucidated, 
but subgroups driven by trauma-injury, subchondral bone, 

cartilage, and metabolic syndrome have been reported [6]. 
A clinical phenotype encompasses the observable traits that 
distinguish between groups of patients with a given disease 
[7]. While phenotypes are without mechanistic implications, 
endotypes are defined by distinct mechanisms which provide 
a link between the underlying disease drivers and the pheno-
typic traits to ascribe a more precise definition of patient 
subgroups [6]. Endotypes are often associated with clinical 
tests, such as biochemical markers, to align patients to specific 
subgroups for use in clinical stratification as a precursor to 
personalized medicine. A molecular understanding of OA phe-
notypes is therefore crucial and application of this knowledge 
can facilitate drug development and increase the potential for 
approval of effective and personalized treatments for OA 
patients [4].

Biochemical markers can uncover relevant subgroups of OA 
and facilitate development of DMOADs [2,8]. This has been the 
goal of the Osteoarthritis initiative from the Foundation for 
the National Institutes of Health (OAI-FNIH) and the Innovative 
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Medicines Initiative Applied Public-Private Research enabling 
Osteoarthritis Clinical Headway (IMI-APPROACH) [2,9]. IMI- 
APPROACH was a two-year, observational cohort that mea-
sured 16 molecular markers in 297 knee OA (KOA) patients 
[2]. The study identified endotypes of structural damage, 
inflammation, and low tissue turnover that were differentially 
associated with pain and structural outcomes at baseline [10]. 
To utilize such markers for future discovery of OA endotypes, it 
is imperative to understand what they measure and what 
processes they reflect [4]. As applied in IMI-APPROACH, this 
review provides an in-depth understanding of a panel of 
validated markers for endotyping of OA. This review will 
focus on markers of key OA pathologies, namely cartilage 
formation and degradation, bone formation and resorption, 
and connective tissue inflammation (Figure 1). The aim is to 
elucidate how such molecular markers may facilitate the 
enrichment of patients with clinically relevant endotypes for 
recruitment in future therapeutic clinical trials.

2. Cartilage formation and degradation

A cornerstone of OA is the dysregulated balance between 
tissue formation and degradation. Affected tissues include 
articular cartilage, bone, and synovium, all of which are col-
lagenous tissues with an extracellular matrix (ECM) [5]. As 
collagens and proteoglycans are the main structural proteins 
of the joint ECM that are continuously turned over, they are of 
special interest in OA [5,9,12]. Quantification of degradation as 
well as formation of such proteins can reflect overall joint 
disease activity in OA and can provide insight into the patho-
physiology of a given patient and drive the choice of therapy 
[13]. Measurement of ECM degradation and formation pro-
ducts may in some cases provide more stability compared to 
whole proteins. As ECM turnover fragments are often dena-
tured, they do not rely on correct protein conformation for 
quantification, which is often the case when measuring whole 
proteins such as cytokines and interleukins (ILs) [14].

2.1. Type II collagen and PRO-C2

Type II collagen contributes to the integrity of articular carti-
lage and its tensile strength [13,15]. It makes up ~ 60% of dry 

weight of healthy, adult articular cartilage, and its expression 
is regulated by chondrocytes (cartilage cells) [16,17]. The fibril-
lar collagen consists of a homotrimeric α1(II) chain and N- 
(PIINP) and C-terminal propeptides (PIICP) that are cleaved 
off by matrix metalloproteinases (MMPs) and N- and 
C-proteinases to form mature collagen. Thus, the amount of 
free propeptides reflects the formation of mature type II col-
lagen [12]. Alternative splicing in the second exon of the gene 
COL2A1 gives rise to two PIINP variants. Type IIA (PIIANP) is the 
embryonic variant that is replaced by type IIB (PIIBNP), tran-
scribed without the second exon in mature articular cartilage. 
The competitive PRO-C2 electro-chemiluminescence immu-
noassay (ECLIA) (Nordic Bioscience, Herlev, Denmark) mea-
sures PIIBNP by targeting the epitope 26QDVRQPG32 located 
between the first and third exons in type II collagen (accession 
no. P02458–1). PRO-C2 is a biochemical marker of cartilage 
formation [12] (Table 1). Studies have found lower serum 
levels of PRO-C2 in KOA patients with Kellgren-Lawrence (KL) 
grades between 2–4 compared to healthy controls, and low 
levels of PRO-C2 may predict radiographic progression and 
indicate a low cartilage repair endotype [6,12].

Fibroblast growth factor-18 (FGF-18) has previously been 
genetically associated with OA and has been found to 

Article highlights

● OA encompasses highly heterogeneous patient populations that dis-
play similar clinical manifestations but may have differing underlying 
pathobiological drivers of the disease.

● Endotypes of OA are defined by distinct biological mechanisms that 
describe the observable, phenotypic traits.

● Biochemical markers that reflect key pathologies of OA, including 
cartilage formation and degradation, bone formation and resorption, 
and connective tissue inflammation, can uncover clinically relevant, 
underlying disease drivers.

● Endotypes driven by mechanisms such as structural damage, inflam-
mation, trauma-injury, metabolic syndrome, and low cartilage repair 
have recently been reported but are not fully elucidated.

● A molecular understanding of treatable endotypes can facilitate 
development of better and personalized treatment options for OA 
patients.

Figure 1. Association between biochemical markers and cartilage turnover, 
connective tissue inflammation, and bone-remodeling endotypes of osteoarthri-
tis. This illustrates the overlapping and complex nature of their pathobiological 
relationships described in this review. It should be noted that other endotypes 
have been described, reflected by molecular markers not covered in this review 
[6,11]. αCTX-I, C-terminal cross-linked, α-isomerized telopeptide of type 
I collagen; ARGS-aggrecan, N-terminal neoepitope of aggrecanase-mediated 
degradation of aggrecan; C1M, matrix metalloproteinase (MMP)-mediated 
degradation fragment of type I collagen; C2M, MMP-mediated degradation 
fragment of type II collagen; C3M, MMP-mediated degradation fragment of 
type III collagen; C10C, C-terminal epitope of type X collagen; Coll2–1, 
N-terminal epitope on type II collagen ¾ degradation fragment; Coll2-1NO2, 
nitrated form of Coll2–1; COMP, cartilage oligomeric matrix protein; CRPM, 
MMP-mediated degradation fragment of C-reactive protein (CRP); CTX-I, 
C-terminal cross-linked, β-isomerized telopeptide of type I collagen; CTX-II, 
C-terminal cross-linked telopeptide of type II collagen; HA, hyaluronan; hsCRP, 
high-sensitivity CRP; N-MID, N-terminal middle fragment of osteocalcin; PRO-C2, 
type IIB N-terminal propeptide of type II collagen.
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stimulate cartilage formation, quantified by PRO-C2, in carti-
lage explant cultures [14,54]. Serum PRO-C2 was used to 
stratify 225 radiographic KOA patients from the phase II clin-
ical trial FGF-18 Osteoarthritis Randomized Trial with 
Administration of Repeated Doses (FORWARD) of sprifermin 
[55]. Patients with low PRO-C2 lost more cartilage over time 
but grew more cartilage in response to sprifermin relative to 
placebo, when compared to patients with high levels. PRO-C2 
was also measured in synovial fluid (SF) of 59 patients and 
increased in a biphasic manner over time in response to 
sprifermin. SF PRO-C2 was thus suggested as 
a pharmacodynamic (PD) indicator of the effect of sprifer-
min [55].

2.2. C2M

The stability of collagen fibrils is compromised in OA by their 
extensive degradation, leading to loss of cartilage tissue [22]. 
Proteolytic cleavage of type II collagen gives rise to an array of 
molecular markers, depending on the type of protease. MMPs 
(MMP-2, −8, −9, and −13) are vital for the pathogenesis of OA 
and type II collagen degradation [56]. However, cathepsin 
K also degrades type II collagen in articular cartilage [57]. 
The proteinases are secreted by chondrocytes, osteoclasts, 
and synovial cells in response to pro-inflammatory cytokines 
and growth factors [18,58]. Initial cleavage of type II collagen 
is typically mediated by MMP-1, −8, −13, and −14 and is 
preferentially cleaved between 975Gly and 976Leu (accession 
no. P02458–1). This generates two fragments that are ¾ and ¼ 
the size of mature collagen, resulting in unwound, denatured 

fragments with increased susceptibility to further proteolytic 
cleavage [22]. Subsequently, cleavage by MMP-8, −9, and −12 
can occur on the ¼ fragment of type II collagen. This includes 
cleavage between 1053Gly and 1054Val, generating the 
C-terminal neoepitope N-RDGAAG1053 [18,19]. The competitive 
C2M enzyme-linked immunosorbent assay (ELISA) (Nordic 
Bioscience, Herlev, Denmark), measured on the automated 
assay platform IDS-i10 (IDS, Boldon, United Kingdom), targets 
the neoepitope and reflects type II collagen degradation [18] 
(Figure 2). Serum C2M was measured in a study of 81 subjects 
with mild (KL 1–2) or severe OA (KL 3–4), and 75 without OA, 
and was elevated in OA patients [18]. Serum C2M was also 
measured in a study of 103 ankylosing spondylitis (AS) 
patients, 47 rheumatoid arthritis (RA) patients, and 56 healthy 
controls. C2M was higher in both disease groups compared to 
controls, indicating an involvement in other rheumatological 
disorders with pathological collagen degradation as well [51].

2.3. CTX-II

Urinary C-terminal cross-linked telopeptide of type II collagen 
(uCTX-II) is one of the most well-described biochemical mar-
kers of type II collagen degradation [20]. Cleavage by cathe-
psin B and MMP-1, −3, −7, −9, and −13 on the type II collagen 
¼ fragment in the C-terminal telopeptide region between 
1235Pro and 1236Leu (accession no. P02458–1) generates the 
C-terminal neoepitope N-EKGPDP1235 [58]. The competitive 
CartiLaps (CTX-II) enzyme immunoassay (EIA) ELISA (IDS, 
Boldon, United Kingdom) targets the neoepitope which is 
exclusively found on type II collagen [20]. uCTX-II has been 

Figure 2. Illustration of the 16 biochemical markers covered in this review and the primary pathologies of osteoarthritis they reflect. The osteoarthritic knee joint 
and the main cell types believed to be responsible for the generation of the biochemical markers have been illustrated with BioRender.com. These include 
chondrocytes (cartilage cells), hepatocytes, immune cells (including but not limited to macrophages), osteoblasts (bone-forming cells), and osteoclasts (bone- 
resorptive cells). αCTX-I, C-terminal cross-linked, α-isomerized telopeptide of type I collagen; ARGS-aggrecan, N-terminal neoepitope of aggrecanase-mediated 
degradation of aggrecan; C1M, matrix metalloproteinase (MMP)-mediated degradation fragment of type I collagen; C2M, MMP-mediated degradation fragment of 
type II collagen; C3M, MMP-mediated degradation fragment of type III collagen; C10C, C-terminal epitope of type X collagen; Coll2–1, N-terminal epitope on type II 
collagen ¾ degradation fragment; Coll2-1NO2, nitrated form of Coll2–1; COMP, cartilage oligomeric matrix protein; CRPM, MMP-mediated degradation fragment of 
C-reactive protein (CRP); CTX-I, C-terminal cross-linked, β-isomerized telopeptide of type I collagen; CTX-II, C-terminal cross-linked telopeptide of type II collagen; HA, 
hyaluronan; N-MID, N-terminal middle fragment of osteocalcin; PRO-C2, type IIB N-terminal propeptide of type II collagen.
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utilized in several clinical cohorts as a marker of cartilage 
degradation including OAI-FNIH in which uCTX-II was mea-
sured in 600 OA patients with different phenotypes on symp-
toms and structure. Baseline uCTX-II was one of the most 
prognostic markers for pain and structural progression of OA 
[9]. uCTX-II was also measured in the Cohort Hip and Cohort 
Knee (CHECK) study where it was proposed to reflect cartilage 
degradation as well as bone metabolism [21]. In a study on 
478 postmenopausal women from the Os des Femmes de 
Lyon (OFELY) cohort, increased baseline levels of uCTX-II 
were associated with a higher risk of total joint replacement 
(TJR) of hips and knees [59]. In 129 radiographic KOA patients 
from the Prediction of Osteoarthritis Progression (POP) cohort, 
uCTX-II was predictive of OA progression and severity [38].

CTX-II and C2M are both cartilage degradation markers 
but differ in tissue distribution. CTX-II has been immunolo-
calized to erosion sites and at the interface between calci-
fied cartilage and bone in human KOA cartilages, whereas 
C2M has been detected in lesions, surface erosions, and 

calcified cartilage [18]. This may indicate a reflection of 
different pathobiological processes of OA and highlights 
the value of utilizing several cartilage degradation markers, 
even if they are derived from the same protein [18]. While 
uCTX-II is considered a marker of cartilage degradation, it 
has also been associated with the marker of bone resorp-
tion, urinary C-terminal cross-linked, β-isomerized telopep-
tide of type I collagen (uCTX-I) and the bone formation 
marker, serum osteocalcin [21].

2.4. Coll2–1

Through unwinding of the triple helical region, the ¼ and ¾ 
type II collagen fragments have increased susceptibility for 
proteolytic activity [13]. Upon denaturation of the helical sec-
tion of type II collagen, the epitope 289HRGYPGLDG297 (acces-
sion no. P02458–1) becomes detectable at the N-terminal of 
the ¾ fragment [22,23]. The competitive Coll2–1 ELISA (Artialis 
SA, Liège, Belgium) targets this epitope in its linear state and is 

Table 1. Panel of 14 serum and two urine (u) biochemical markers utilized for endotyping of osteoarthritis (OA) patients in IMI-APPROACH [2,10], and their 
association with OA.

Marker Type Molecular origin Association with OA Ref.

PRO-C2 Cartilage formation Type IIB N-terminal propeptide of type II collagen. Low levels predict structural progression and indicate low 
cartilage repair endotype.

[6,12]

C2M Cartilage 
degradation

MMP-8, −9, −12 cleavage of type II collagen ¼ 
fragment.

Higher in mild (KL 1–2) and severe OA (KL 3–4) compared 
to no OA.

[18,19]

uCTX-II Cartilage 
degradation, 
bone 
remodeling

Cleavage by cathepsin B, MMP-1, −3, −7, −9, −13 of 
C-terminal telopeptide of type II collagen ¼ 
fragment.

Prognostic marker of pain and structural progression, 
associated with bone metabolism.

[9,20,21]

Coll2–1 Cartilage 
degradation

Cleavage of type II collagen ¾ fragment. Correlates with subarticular cysts and bone attrition 
WORMS, associates with JSN progression.

[22–25]

Coll2–1 NO2 Cartilage 
degradation, 
inflammation

Nitrated form of Coll2–1. Oxidative degradation of articular cartilage. Associates with 
hsCRP and synovial inflammation.

[24,26]

C10C Cartilage 
degradation, 
Inflammation

Type X collagen. Chondrocyte hypertrophy [27], located in areas of re- 
initiation of endochondral bone formation.

[27,28]

COMP Cartilage 
degradation

COMP. Conflicting clinical associations. [29,30]

ARGS- 
aggrecan

Cartilage turnover Cleavage of aggrecan by ADAMTS-4 and −5. PD marker and reflects early cartilage remodeling. Higher 
in patients undergoing TKR.

[31–34]

CTX-I Bone resorption Cathepsin K cleavage on β-isomerized type 
I collagen α1(I) C-terminal telopeptide.

Elevated in OA. Limited association to radiographic 
progression.

[35–37]

u-αCTX-I Bone resorption Native α-isomerized CTX-I. Turnover of young bone. Localized to high turnover areas 
in subchondral bone, correlated with JSN progression 
and osteophytes.

[38,39]

N-MID Bone formation N-terminal middle fragment of osteocalcin. No clear clinical associations. [40,41]
HA Inflammation, 

cartilage 
degradation

Circulating HA. Proposed marker of radiographic OA progression. [42–44]

hsCRP Inflammation CRP. Low-grade systemic inflammation, pain association. [45–47]
CRPM Inflammation CRP metabolite of MMP-1 and −8. Tissue-specific marker of early disease and inflammatory 

subgroups.
[47,48]

C1M Inflammation Type I collagen degradation by MMP-2, −9, −13. Soft-tissue specific association with inflammation, CRPM, 
and hsCRP.

[49,50]

C3M Inflammation Degradation of type III collagen by MMP-9. Synovial inflammation. High in inflammatory OA, correlates 
with hsCRP.

[50–53]

αCTX-I, C-terminal cross-linked, α-isomerized telopeptide of type I collagen; ADAMTS, A disintegrin and metalloproteinase with thrombospondin motifs; ARGS- 
aggrecan, N-terminal neoepitope of aggrecanase-mediated degradation of aggrecan; C1M, MMP-mediated degradation fragment of type I collagen; C2M, MMP- 
mediated degradation fragment of type II collagen; C3M, MMP-mediated degradation fragment of type III collagen; C10C, C-terminal epitope of type X collagen; 
Coll2–1, N-terminal epitope on type II collagen ¾ degradation fragment; Coll2-1NO2, nitrated form of Coll2–1; COMP, cartilage oligomeric matrix protein; CRP, 
C-reactive protein; CRPM, MMP-mediated degradation fragment of CRP; CTX-I, C-terminal cross-linked, β-isomerized telopeptide of type I collagen; CTX-II, 
C-terminal cross-linked telopeptide of type II collagen; HA, hyaluronan; hsCRP, high-sensitivity CRP; JSN, joint space narrowing; KL, Kellgren-Lawrence grade; MMP, 
matrix metalloproteinase; N-MID, N-terminal middle fragment of osteocalcin; PD, pharmacodynamic; PRO-C2, type IIB N-terminal propeptide of type II collagen; 
TKR, total knee replacement; WORMS, Whole-Organ Magnetic Resonance Imaging Score. For technical specifications of the molecular markers, we refer to Angelini 
et al., 2022 [10]. To ensure comparability, studies of clinical associations of a biomarker to OA were only considered for the same sample (serum/urine) and assay 
type as described for the biomarker in this review. 
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thus a surrogate marker of type II collagen degradation [24]. 
This epitope is only found in the α1 chain of type II collagen 
and the α3 chain of type XI collagen. However, type XI col-
lagen only makes up 1% wt/wt relative to α1(II) chains and is 
embedded in type II collagen fibrils [24]. Immunostainings for 
the marker have shown that Coll2–1 is located in the fibrillated 
zone of the ECM and is absent from surrounding unfibrillated 
zones [25]. As type II and XI collagens are specific to cartilage, 
and the fact that type XI collagen is turned over with type II 
collagen, it has been hypothesized that the Coll2–1 fragments 
are released from types II and XI collagens simultaneously and 
reflect cartilage ECM degradation [24]. The Coll2–1 marker has 
been used for studying the burden of disease, prognostics, 
and diagnosis of OA [60]. Coll2–1 was measured in a study of 
67 KOA and 19 RA patients and 242 healthy controls [24]. 
Serum levels of Coll2–1 were increased in both disease groups 
compared to age-matched controls and increased urinary 
levels of Coll2–1 over a one-year period were associated with 
radiographic progression of OA over three years [24,25]. 
Recently, a study demonstrated that Coll2–1 levels were not 
confounded by sampling-specific conditions, circadian rhythm 
or seasonality, and that variations in Coll2–1 rather reflected 
cartilage degradation in OA [60].

2.5. Coll2-1NO2

While Coll2–1 is a marker of type II collagen degradation, its 
nitrated form Coll2-1NO2 is associated with oxidative stress 
and inflammation [23]. Coll2–1 contains a tyrosine (292Tyr) 
residue susceptible to nitration by peroxynitrite anion, yield-
ing the nitrated epitope form, 289HRGY(NO2)PGLDG297. 
Chondrocytes produce high levels of reactive nitrogen and 
oxygen species such as nitric oxide during pathological con-
ditions [24]. Higher concentrations of nitrite (NO2

−) have 
been found in serum of OA and RA patients compared to 
age-matched controls [61]. As oxidative stress is involved in 
cartilage ECM damage and is required for the nitration of 
Coll2–1, Coll2-1NO2 has been suggested to reflect oxidative- 
related degradation and the extent of oxidative stress in 
articular cartilage [24,26]. The competitive Coll2-1NO2 ELISA 
(Artialis SA, Liège, Belgium) targets the nitrated form of 
Coll2–1 [24]. Coll2-1NO2 can discriminate OA and RA patients 
from healthy controls and can be used as a marker of prog-
nosis and burden of disease [24]. Unlike Coll2–1, Coll2-1NO2 

correlates with high-sensitivity C-reactive protein (hsCRP) in 
RA and OA, with higher levels of Coll2-1NO2 in RA patients, 
suggesting an association with synovial inflammation [24,26]. 
In a study of 121 KOA patients, the markers were quantified 
along with Whole-Organ Magnetic Resonance Imaging Score 
(WORMS) scores, of which included knee features such as 
subarticular cysts, bone attritions, osteophytes, bone marrow 
lesions, and articular cartilage integrity [23]. While Coll2–1 
correlated with subarticular cyst and bone attrition scores, 
Coll2-1NO2 correlated with osteophytes scores and WORMS 
total score. Serum Coll2-1NO2 also correlated with pain wor-
sening over a one-year period [23]. As such, Coll2–1 and 
Coll2-1NO2 reflect different pathobiological processes of OA 
and provide complimentary information on the catabolism of 
type II collagen [62].

2.6. Type X collagen and C10C

Type X collagen maintains joint tissue stiffness and aids in the 
normal distribution of proteoglycans within the growth plate 
matrix [63,64]. It is expressed by hypertrophic chondrocytes at 
sites of endochondral bone formation during skeletal devel-
opment and growth as well as under pathological conditions 
including OA [65]. Type X collagen is a network-forming, 
cartilage-specific collagen encoded by the COL10A1 gene. It 
constitutes 1% of collagen in healthy cartilage and 45% of the 
total collagen produced by hypertrophic chondrocytes [66,67]. 
Type X collagen is a homotrimer of α1(X) chains with 
a C-terminal, globular, non-collagenous domain (NC1), and 
an N-terminal non-helical domain (NC2) [66]. Through the 
NC1 domain, type X collagen assembles into a hexagonal 
lattice structure which is thought to be important for modifi-
cation of the hypertrophic, cartilage matrix during endochon-
dral bone formation [65]. Gene expression of type X collagen 
has been detected in OA tissues in areas of re-initiation of 
endochondral bone formation, such as development of osteo-
phytes [28].

The competitive C10C ELISA (Nordic Bioscience, Herlev, 
Denmark) targets the epitope 671SFSGFLVAPM680 (accession 
no. Q03692), located at the C-terminal end of the NC1 domain. 
C10C determines the level of free type X collagen and reflects 
its turnover. A study of 271 OA patients found that serum 
levels of C10C were elevated in patients with KL grade 2 
compared to subjects without OA. C10C was also higher in 
OA patients with increased levels of hsCRP and correlated with 
C2M levels, indicating an association with inflammation and 
cartilage degradation [27].

2.7. COMP

Glycoproteins play a role in the protection of cartilage surfaces 
and inhibit synovial cell overgrowth, and are involved in tissue 
remodeling and degradation of articular cartilage [68,69]. One 
such glycoprotein is the non-collagenous cartilage oligomeric 
matrix protein (COMP) [70]. Encoded by the COMP gene, it is 
expressed in healthy cartilage and forms a crucial part of the 
ECM [71,72]. COMP is expressed by articular chondrocytes and 
cell types such as platelets, vascular smooth muscle cells, and 
fibroblasts [4,73]. Through its interaction with ECM proteins 
including aggrecan and collagens I, II, IX, XII, and XIV, it is vital 
for matrix assembly. COMP forms a large homopentamer with 
multiple domains, including type 2 epidermal growth factor 
(EGF)-like and thrombospondin (TSP)-like domains [71]. The 
pentameric form binds up to five collagen molecules which 
facilitates collagen–collagen interactions and fibrillation by 
keeping them in close proximity [73]. A number of MMPs 
and A disintegrin and metalloproteinase with thrombospon-
din motifs’ (ADAMTS’) cleave COMP at the EGF-like domain 
such as MMP-3, −12, and −13 together with ADAMTS-4, −5, 
and −7 [19,71]. Evidence suggests that MMP-12 is preferred for 
cleavage of COMP [19].

COMP is a well-established cartilage degradation marker in 
OA and can be quantified by the sandwich COMP ELISA (IDS, 
Boldon, United Kingdom), however with conflicting reports 
[29]. Serum levels of COMP were measured in a 20-year 
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longitudinal cohort of 593 middle-aged women with no KOA 
at baseline. The women with the highest baseline COMP levels 
had a 48% increased risk of developing painful, radiographic 
KOA, however not significantly after adjusting for age and BMI 
[30]. COMP was also measured in serum and SF of 121 subjects 
with acute anterior cruciate ligament rupture from the Knee 
Anterior Cruciate Ligament, Nonsurgical versus Surgical 
Treatment (KANON) trial together with 25 healthy controls. 
The study found no significant differences in serum COMP 
between healthy and injured subjects. However, COMP levels 
were two-fold higher in SF within six weeks of injury and 
remained increased five years later [74].

2.8. ARGS-aggrecan

Articular cartilage has limited capacity for repair or regenera-
tion and has a finite chondrocyte population to maintain the 
ECM. Proteoglycans allow the cartilage to withstand compres-
sive loading and protect chondrocytes from mechanical 
trauma [75,76]. Proteoglycans make up 10% of healthy articu-
lar cartilage tissue and the main type is aggrecan. Expressed 
primarily by chondrocytes, aggrecans provide a hydrated gel- 
structure through interaction with hyaluronan (HA) and link 
protein [5,77]. Aggrecans form large aggregates in the ECM, 
with each consisting of a central filament of HA with up to 100 
non-covalently bound aggrecans [75,77]. Aggrecan is a multi- 
domain protein encoded by the ACAN gene and the core 
protein consists of three globular domains, G1–3 [77]. While 
G1 and G2 are separated by an interglobular domain, the 
region between G2 and G3 is substituted with chondroitin 
sulfate and keratin sulfate glycosaminoglycan chains [75]. 
The negatively charged anionic groups on the glycosamino-
glycan chains attract cations, causing a large osmotic pressure 
which draws water into the cartilage. This causes expansion of 
the ECM which provides compressive strength [77]. The inter-
globular domain of aggrecan is sensitive to proteolytic activity 
and cleavages in this region are detrimental to the compres-
sive strength due to the loss of glycosaminoglycan chains [78]. 
MMP-3, −7, −8, and −12 and aggrecanases (ADAMTS-4 and −5) 
are the major proteases responsible for aggrecan degradation 
and ADAMTS-5 is important for the initiation of ECM degrada-
tion in OA [19,78–80].

Aggrecan is subjected to cleavage by aggrecanases at six 
known sites, which exposes otherwise-inaccessible ECM pro-
teins to proteolytic activity [19,81]. The most detrimental clea-
vage site is located between 392Glu and 393Arg (accession no. 
P16112–1) within the interglobular domain, yielding the 
N-terminal 393ARGSVILT-C neoepitope [31,32]. The neoepitope 
is targeted by the sandwich ARGS-aggrecan ECLIA on the 
Meso Scale Discovery platform [32]. ARGS-aggrecan has been 
proposed as a marker of early cartilage remodeling in OA and 
has been used as a PD marker in clinical trials [33]. In a study 
of 20 OA patients undergoing total knee replacement (TKR), 20 
non-surgical OA patients, and 20 age- and sex-matched con-
trols, researchers found increased levels of serum ARGS- 
aggrecan in the surgical OA group compared to non-surgical 
OA and controls [34]. ARGS-aggrecan was evaluated in serum 
in 19 KOA patients and 20 young, healthy controls in a model 
for exercise-induced ECM turnover [82]. Only minute increases 

in ARGS-aggrecan were observed in the OA patients in 
response to moderate intensity running and cycling, which 
normalized within 24 hours. As the sensitivity to physical 
activity was low, it was deemed a reproducible and stable 
biochemical marker of OA [82].

3. Bone formation and resorption

The integrity and remodeling of bone are important aspects of 
OA pathology and the development of osteophytes and sub-
chondral bone sclerosis are considered hallmarks of OA 
[83,84]. The subchondral bone plays a pivotal part in the 
initiation and progression of OA in which pathological bone 
turnover leads to its deterioration and hypomineralization 
[83]. Over time, changes occur to the subchondral bone 
including increased vascularization, sclerosis, bone-marrow 
lesions, and microfractures. In fact, turnover of subchondral 
bone is up to 20 times higher in OA compared to that of 
normal bone [38]. The subchondral area is thus of special 
interest for the development of bone formation and resorp-
tion markers in OA [4].

3.1. Type I collagen and CTX-I

Type I collagen is the most abundant protein of the body and 
is the main constituent of bone [13]. 90% of the bone matrix 
consists of collagenous proteins, predominantly type 
I collagen, and non-collagenous proteins such as osteocalcin. 
The bone ECM provides mechanical support and is essential 
for bone homeostasis [85]. The mineral content of the bone 
ECM determines bone stiffness whereas type I collagens con-
tribute to load bearing and tensile strength [15,86]. 
Alterations to type I collagen fibrils can affect the biomecha-
nical properties of bone and as such, type I collagen-derived 
markers have been utilized extensively in the osteoporosis 
and OA fields [13,86]. Type I collagen is transcribed from the 
COL1A1 and COL1A2 genes, mainly by fibroblasts and osteo-
blasts, that form a fibrillar heterotrimer of two α1(I) chains 
and one α2(I) chain with N- and C-terminal telopeptides [87]. 
The α1(I) and α2(I) chains are subjected to post-translational 
modifications such as isomerization after maturation [86]. 
Type I collagens assemble into large collagen fibrils, stabi-
lized by covalent cross-linking of lysine residues [88].

Type I collagen is subjected to proteolytic activity by MMPs 
such as MMP-2, − 9, and −13, and cathepsin K, reflecting 
different biological processes [13,49]. Cathepsin K is pivotal 
for osteoclastic resorption of bone and cleaves type I collagen 
at multiple sites including the C-terminal telopeptide on the 
α1(I) chain [89]. Cathepsin K cleavage between 1214Arg and 
1215Tyr generates the C-terminal neoepitope N-EKAHDGGR1214 

(accession no. P02452) with an aspartyl-glycine motif prone to 
age-related β-isomerization [35,89]. This occurs through an 
attack by nitrogen from the peptide backbone of 1212Gly 
onto the side-chain carbonyl group on 1211Asp, producing β- 
Asp rather than α-Asp [86]. The sandwich Elecsys β-CrossLaps® 
(CTX-I) ECLIA (Roche Diagnostics Ltd., Switzerland) targets 
N-EKAH(β)DGGR1214, reflecting resorptive osteoclast activity 
on mature type I collagen. C-terminal cross-linked, β- 
isomerized telopeptide of type I collagen (CTX-I) is 
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a sensitive marker of bone turnover but circadian variability 
due to increased bone resorption during night/early morning 
and fasting sensitivity is well-established [89,90]. As such, 
samples should be retrieved in a fasting state within narrow 
timeframes [89]. CTX-I was developed as a urine marker (uCTX- 
I) but has since become available in serum (sCTX-I) [35,91]. 
sCTX-I has been proposed as the recommended molecular 
marker of bone resorption and is reportedly most stable in 
plasma [91]. sCTX-I has been used to evaluate the response to 
anti-resorptive treatments of osteoporosis, including assess-
ment of pamidronate in 21 patients with thyroid-hormone- 
induced bone loss [92]. sCTX-I correlated with bone resorption 
parameters, including osteoclast surfaces and eroded volume, 
in a study of 371 postmenopausal osteoporosis patients [93]. 
uCTX-I was measured in 71 progressive KOA patients, 59 
osteoporosis patients, and 50 controls from the Chingford 
study at baseline and after one and two years [36]. uCTX-I 
was elevated at all time points for both disease groups com-
pared to controls. However, a study of 1241 KOA patients 
found no association between uCTX-I and radiographic pro-
gression of OA [37].

3.2. αCTX-I

The urinary α-CrossLaps® (u-αCTX-I) EIA ELISA (IDS, Boldon, 
United Kingdom) targets the α-isomerized form of CTX-I and 
measures the turnover of newly synthesized type I collagen 
[38,39]. u-αCTX-I reflects turnover of young bone as the age- 
related β-isomerization has not yet occurred and has been 
described as a marker of high turnover areas specific for 
newly synthesized bone [38]. Measuring the urinary α/β ratio 
of CTX-I has proven useful for measuring bone age with 
a lower ratio reflecting older bone and has been suggested 
to be of clinical importance for assessment of metabolic bone 
diseases [35]. This was reflected in a study of 427 postmeno-
pausal women receiving either bisphosphonates, hormonal 
replacement therapy or raloxifene [94]. uCTX-II and u-αCTX-I 
were also measured in 129 radiographic KOA patients from 
the POP cohort [38]. While uCTX-II localized to the bone– 
cartilage interface and damaged articular cartilage, u-αCTX-I 
was found in high bone turnover areas in subchondral bone. 
u-αCTX-I correlated strongly with progression of joint space 
narrowing (JSN) and osteophytes, indicating an association 
with the dynamic biology of subchondral bone remodeling, 
whereas uCTX-II associated with static JSN severity [38]. This 
emphasizes the need for a panel of molecular markers in OA 
as they reflect different aspects of joint tissue turnover [4].

3.3. N-MID

The most abundant non-collagenous protein of the bone ECM is 
osteocalcin, also known as γ-carboxyglutamic acid-containing 
protein. Transcribed from the BGLAP gene, osteocalcin is pro-
duced by mature, bone-forming osteoblasts as a pre- 
prohormone. Cleavage of the signal peptide between 23Ala 
and 24Lys (accession no. P02818) results in pro-osteocalcin. 
Prior to its secretion, osteocalcin is γ-carboxylated on three 
glutamic acid residues, namely 68Glu, 72Glu, and 75Glu. The 
carboxylations promote the affinity for the primary mineral 

component of bone ECM, hydroxyapatite. Most of osteocalcin 
is incorporated into the bone ECM while a small fraction is 
released into circulation during bone formation [95]. During 
bone resorption, the low pH value inside the resorptive compart-
ments facilitates decarboxylation of osteocalcin, reducing its 
affinity for bone, and triggers the release of under- 
carboxylated osteocalcin [96]. Osteocalcin is also subjected to 
proteolytic activity by cathepsin K and MMPs during bone 
resorption, resulting in smaller degradation fragments [97]. 
Both γ- and under-carboxylated osteocalcins are detected in 
serum, and the under-carboxylated form is believed to function 
in an endocrine manner [95,96].

Circulating osteocalcin has been associated with changes in 
the rate of bone turnover in metabolic diseases such as 
hyperthyroidism and osteoporosis but exhibits instability in 
serum due to a highly reactive, short C-terminal sequence. 
This prompted the development of an assay targeting 
a large N-terminal middle fragment of osteocalcin (N-MID). 
The sandwich Elecsys N-MID Osteocalcin ECLIA (Roche 
Diagnostics Ltd., Switzerland) targets osteocalcin, with epi-
topes located between 52Tyr-100Val and 52Tyr-94Arg [40]. As 
the assay quantifies both γ- and under-carboxylated osteocal-
cin, it may reflect tissue turnover [98]. However, bone-forming 
osteoblasts contribute to the majority of circulating osteocal-
cin and the N-MID assay has limited ability to detect smaller 
degradation fragments of osteocalcin. As such, N-MID is 
widely considered a biochemical marker of bone formation 
[97]. Serum N-MID was measured in a study of 67 postmeno-
pausal women receiving the bisphosphonate alendronate for 
the prevention of osteoporosis, which is a disease that causes 
weakening of bones [99]. A negative correlation was found 
between two-year response in spinal bone marrow density 
and change from baseline at 12 months of N-MID. The 
researchers showed that short-term changes in the marker 
could monitor alendronate treatment and predict long-term 
response in bone mass [99]. N-MID was also measured in 151 
radiographic KOA patients from the Boston Osteoarthritis of 
the Knee Study (BOKS) [41]. No clinically meaningful associa-
tion between N-MID and the presence of bone marrow lesions 
was found.

4. Connective tissue inflammation

OA was originally considered an arthritic disease void of 
inflammation. However, inflammation has been highlighted 
during the past decade and is now strongly implicated in OA 
pathogenesis [4,100]. Recently, inflammatory endotypes have 
also been demonstrated in OA [10,101,102]. Inflammation pre-
cedes the development of significant radiographic changes 
and a clear association has been found between synovitis 
and future development of cartilage degradation in OA stages 
prior to radiographic manifestations [4,100]. During synovitis, 
immuno-infiltration is primarily mediated by synovial macro-
phages that produce pro-inflammatory cytokines, MMPs, and 
complement systems [100,103,104]. IL-1β, −6, and tumor 
necrosis factor (TNF) are involved in cartilage degradation 
and initiate the inflammatory cascade in OA [45,105]. 
Induction of the innate immune response within the damaged 
joint is a central feature of OA and can arise from signaling 

EXPERT REVIEW OF MOLECULAR DIAGNOSTICS 29



through damage-associated molecular patterns (DAMPs). 
These include degradation fragments of the ECM that further 
promote inflammation and cartilage degradation [100].

4.1. HA

HA is a ubiquitously expressed glycosaminoglycan that is 
a crucial component of the joint architecture and mechanics 
[106]. HA resides in the ECM where it is involved in structural 
organization of cartilage [107]. HA is an unbranched bipolymer 
of a disaccharide consisting of D-glucuronic acid and N-acetyl- 
D-glucosamine [108]. It is synthesized by HA synthases and is 
found in varying sizes, ranging from high to low molecular 
weight fragments with differing roles in inflammation 
[107,109]. High molecular weight HA is a hydroviscous sub-
stance that exhibits extremely hydrophilic properties. It forms 
a voluminous, expanded aqueous solution that provides 
a protective structure when surrounding chondrocytes in car-
tilage [106]. HA is crucial for load-bearing properties of aggre-
cans in the articular cartilage ECM as their anchorage to cells 
in the pericellular region occurs through HAs [75,77]. Besides 
the biomechanical properties of high molecular weight HA, it 
is also immuno-suppressive [109]. Altered turnover of HA and 
elevation of oxidative stress decrease the concentration and 
molecular weight of HA. Low molecular weight HA fragments 
(<400 kDa) have pro-inflammatory properties such as upregu-
lation of cytokines by chondrocytes and fibroblasts, and 
macrophage activation [105,109]. Low molecular weight HA 
contributes to increased ECM degradation by induction of 
MMP-9, −10, and −13, as well as inflammation and pain by 
induction of cytokines, including IL-1β and TNF-α [105]. 
Increased production and release of HA from arthritic joints 
are thought to reflect local inflammation of the synovial lining 
and, to a lesser degree, cartilage degradation [110].

HA is a marker of inflammation, with elevated levels 
demonstrated in RA and OA [42,109]. HA can be quantified 
by the sandwich HA ELISA (Corgenix, Colorado, USA) that uses 
HA-binding protein purified from bovine nasal cartilage to 
capture HA [42]. Serum HA and WORMS of the knee have 
been quantified in a study of 62 KOA patients to study the 
relation between the biochemical marker and structural pro-
gression of OA [43]. Elevated baseline levels of HA predicted 
worsening of total WORMS and could identify patients at 
higher risk of disease progression over a one-year period 
[43]. Serum HA was measured in 55 erosive and 33 non- 
erosive hand OA patients. Erosive OA is severe a subset of 
hand OA that is defined by cartilage damage, bone erosion, 
and a strong inflammatory component. Serum levels of HA 
were found to be elevated in patients with erosive hand OA 
compared to non-erosive [44]. It correlated with late disease 
phases in all hand OA patients and was proposed as a marker 
for radiographic progression of hand OA over a two-year 
period.

4.2. hsCRP

CRP is a clinical marker of systemic inflammation and is widely 
utilized as a diagnostic tool in acute inflammatory diseases 
[50]. It is an acute-phase inflammatory protein of the innate 

immune system with levels rapidly increasing at sites of 
inflammation or infection. Transcribed from the CRP gene, 
the protein is primarily expressed by hepatocytes [111]. CRP 
is a homopentameric, non-glycosylated protein and is com-
prised of five non-covalently bound globular subunits [112]. 
CRP molecules are synthesized as monomers that assemble 
into the native pentameric form. Stimulation of CRP synthesis 
is mainly induced by hepatic IL-6 and, to a lesser degree, IL-1β 
and TNF-α [113]. CRP levels increase in response to tissue 
damage, which activates the acute-phase inflammatory 
response. Increasing severity of tissue damage and inflamma-
tion lead to increasing CRP levels, and higher levels of CRP 
correlate with poorer disease prognosis [112]. CRP is also itself 
a regulator of inflammatory processes, depending on the iso-
form, and accumulates at sites of inflammation. The native, 
pentameric form activates the classical complement pathway, 
induces phagocytosis, and inhibits production of nitric oxide 
species, whereas the monomeric form promotes monocyte 
chemotaxis, recruitment of leukocytes, and nitric oxide pro-
duction [113].

The pentameric form of CRP is utilized as a clinical marker 
[112]. High-sensitivity CRP (hsCRP) can be measured by the 
sandwich CardioPhase® hsCRP immunoassay (Siemens 
Healthcare, Ballerup, Denmark) and has been utilized exten-
sively as a sensitive marker of low-grade, systemic inflamma-
tion. However, factors such as age, BMI, diabetes, smoking 
status, and alcohol consumption influence the levels of 
hsCRP [46]. It has previously been suggested that local inflam-
mation, which is a prominent feature of OA, may be observed 
systemically and as a result hsCRP is also measured in the 
context of OA [45]. In a literature review of the relationship 
between serum hsCRP and hip and KOA, researchers found 
that hsCRP was moderately higher in OA patients compared to 
controls [45]. hsCRP was associated with pain and decreased 
physical function but not with radiographic OA, suggesting 
that low-grade inflammation may be of higher importance for 
symptoms rather than radiographic changes in OA [45]. hsCRP 
was also measured in a study of 770 hip or KOA patients 
undergoing TJR. After adjusting for confounders, severity of 
pain and not the extent of OA was associated with hsCRP [46].

4.3. CRPM

Due to its upregulation in all inflammatory conditions, CRP 
is a nonspecific, systemic marker of inflammation. CRP accu-
mulates at sites of tissue damage and inflammation and is 
susceptible to local enzymatic modification during patholo-
gical tissue turnover. Modified CRP may therefore be a more 
pathology- and tissue-specific reflection of chronic inflam-
mation than that of native CRP [47]. CRP is subjected to 
proteolysis by proteases such as MMPs, cathepsins, and 
ADAMTS’, resulting in the release of CRP metabolites. 
Cleavage by MMP-1 and −8 between 24Arg and 25Lys gen-
erates the MMP-exclusive N-terminal neoepitope 25KAFVFP- 
C (accession no. P02741–1) that is targeted by the compe-
titive CRPM ELISA (Nordic Bioscience, Herlev, Denmark) [47]. 
CRPM and CRP were measured in serum in a study of 40 AS 
patients and 40 age- and sex-matched controls [47]. While 
native CRP was not higher in the patients compared to 
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controls, CRPM was elevated by 25% and patients with high 
levels of CRPM had odds ratios of 6.3 of having AS. Thus, 
CRPM exhibited more discriminatory diagnostic potential 
than that of CRP for AS [47]. In a study of 704 RA patients 
from the Tocilizumab Safety and the Prevention of 
Structural Joint Damage (LITHE) cohort, serum CRPM 
decreased in a dose- and time-dependent manner to anti- 
IL-6 treatment, thereby showing PD potential [114]. Serum 
CRPM was also measured in 781 patients with radiographic 
and painful KOA from the clinical intervention trial testing 
the efficacy of the bone-resorption inhibitor, oral salmon 
calcitonin (SMC) and 658 patients with RA [48]. Overall, 
CRPM levels were lower in OA compared to RA patients, 
however with 31% of OA patients exhibiting comparable 
levels to that of RA. CRPM was also predictive of the devel-
opment of contralateral KOA over a two-year period in 
a case-control subset of 152 subject with no OA at baseline. 
CRPM was suggested as a marker of early identification of 
OA with an inflammatory phenotypic profile [48].

4.4. C1M

Inflammation and increased proteolytic activity in OA result in 
increased turnover of type I and III collagens of the ECM [115]. 
MMP-mediated degradation of type I collagen gives rise to the 
C-terminal neoepitope N-KDGVRG764 as a result of cleavage 
between 764Gly and 765Leu (accession no. P02452) on the α1(I) 
chain. The neoepitope is assessed by the competitive C1M 
ELISA (Nordic Bioscience, Herlev, Denmark) measured on IDS- 
i10 (IDS, Boldon, United Kingdom) [49]. Contrary to CTX-I, C1M 
is a soft tissue-specific metabolite generated by MMP-2, −9, 
and −13, and is not a result of bone matrix turnover by 
cathepsin K [49,116]. In fact, the neoepitope of C1M is 
destroyed by cathepsin K, the main protease in osteoclasts 
(bone-resorptive cells), but is rather found in soft tissues 
including the interstitial matrix and synovium [49]. C1M and 
CTX-I are thus examples of degradation markers derived from 
the same protein that are interpreted in very different patho-
biological contexts. C1M was originally developed for the 
assessment of liver fibrosis but has since been associated 
with inflammation in RA and OA [49]. Serum levels of hsCRP, 
CRPM, C1M and metabolites of MMP-mediated degradation of 
type III collagen (C3M) were measured in 342 symptomatic 
KOA patients from the C4Pain and HTF-Synovitis studies [50]. 
C1M and C3M were elevated in subgroups with high levels of 
CRPM and hsCRP, and C1M associated with peripheral inflam-
mation whereas C3M was associated with focal inflammation. 
Serum C1M and hsCRP have also been measured in 261 RA 
patients from the placebo arms of the phase III clinical trials of 
fostamatinib, OSKIRA 1–3 [115]. High levels of C1M and hsCRP 
could each predict radiographic progression and were both 
potential candidates for enrichment of radiographic progres-
sors for clinical trials of RA [115]. C1M and IL-6 were quantified 
in a study of 104 patients with end-stage KOA, defined as 
being scheduled for TKR surgery, to explore associations 
with synovitis and pain [117]. C1M indicated a positive (not 
statistically significant) association with neuropathic pain and 
synovitis in the periligamentous subregion.

4.5. Type III collagen and C3M

While type I and II collagens are the main components of bone 
and cartilage, respectively, type III collagen is an important 
constituent of interstitial matrices in the skin, spleen, vessels, 
lungs, and the liver [15]. It is one of the main structural 
proteins of entheses and the synovial membrane, and its 
expression increases during synovial thickening [51,52]. It is 
mostly secreted by fibroblasts and is involved in numerous 
pathologies with inflammatory components such as alcoholic 
hepatitis, cirrhosis, and lung injury [118,119]. Transcribed from 
the COL3A1 gene, the fibrillar collagen is a homotrimer of α1 
(III) chains and is often embedded in mixed fibrils with type 
I collagen [15]. Type III collagen is synthesized as a procollagen 
with N- and C-terminal propeptides. Upon cleavage of the 
propeptides by N- and C-proteinases, mature collagen is inte-
grated into the ECM [53]. As observed during inflammation, 
increased proteolytic activity results in the release of degrada-
tion fragments of type III collagen [52]. Type III collagen is 
therefore a protein of interest to reflect tissue-specific inflam-
matory processes. MMP-9-mediated cleavage between 609Gly 
and 610Lys (accession no. P02461–1) generates the N-terminal 
neoepitope 610KNGETGPQGP-C. The competitive C3M ELISA 
(Nordic Bioscience, Herlev, Denmark) measured on IDS-i10 
(IDS, Boldon, United Kingdom) targets the neoepitope [53]. 
The marker has been reported to reflect soft-tissue turnover 
associated with inflammation and serum levels of C3M are 
elevated in inflammatory OA subgroups [50–52]. As type III 
collagen is the main ECM protein of the synovium, increased 
tissue turnover reflected by C3M has been associated with 
inflammation of the synovial membrane in OA. C3M may 
therefore serve as a more tissue- and pathology-specific mar-
ker of inflammation as opposed to hsCRP [13,51].

Serum C3M was measured in 146 KOA patients from the 
New York Inflammation cohort to investigate the association 
between patient-reported outcomes (PROs) and C3M in 
patients with high or low levels of serum CRPM [120]. This 
included the Western Ontario and McMaster Universities 
Osteoarthritis Index (WOMAC), which is the most widely used 
questionnaire for assessment of pain and functioning in hip 
and KOA [121]. C3M positively correlated with worsening of 
WOMAC pain and function in patients with low levels of 
CRPM. In patients with elevated CRPM, a negative association 
was demonstrated which was in line with previous findings 
[120,122]. Serum C2M and C3M were measured in 103 AS 
patients, 47 RA patients, and 56 healthy controls [51]. C3M 
was higher in both disease groups compared to controls. High 
levels of C2M and C3M could predict 80% of the disease 
progressors of AS over a two-year period and 61% of the non- 
progressors. This supported the predictive utility of cartilage 
and connective tissue turnover biochemical markers [51].

5. Other biochemical markers of osteoarthritis

This review focused on a panel of validated biochemical mar-
kers and assays measured in serum or urine for the discovery 
of OA endotypes in IMI-APPROACH [2,10]. U-αCTX-I, sCTX-I, 
and N-MID were the most important for the structural damage 
endotype, whereas hsCRP and C1M were the most predictive 
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of the inflammatory endotype [10]. However, an array of other 
markers not covered by this review, as well as other specimens 
and assays of the same markers are also utilized in OA. COMP 
was measured in serum with the sandwich COMP ELISA from 
IDS in IMI-APPROACH but can also be quantified in both serum 
and SF with the sandwich COMP BioVendor ELISA (BioVendor, 
Karásek, Czech Republic). In contrast to the IDS assay, the 
antibody targeting sites of the BioVendor assay are published 
and are located within the coiled-coil and the EGF-like 
domains of COMP [74].

CPII is a marker of cartilage formation but contrary to PRO- 
C2, which is derived from the N-terminal propeptide of type II 
collagen, is derived from the C-terminal propeptide (Table 2). 
Serum CPII has been found to be elevated in RA and lower in 
OA compared to controls [123]. While uCTX-II is derived from 
the ¼ degradation fragment of type II collagen, CIINE is gen-
erated by MMP-13 cleavage on the ¾ fragment and urinary 
levels of CIINE have been found to be elevated in OA com-
pared to healthy controls [20,124]. As an alternative to C2M, 
the cartilage turnover marker C2C has been measured in urine 
and shown to predict the risk of KOA over a 12-year period 
compared to subjects without radiographic KOA [125]. C2C is 
generated through MMP-13-mediated cleavage on the 
C-terminus of the ¾ degradation fragment of type II collagen 
[126]. In serum, C2C correlated with increased collagen net-
work disruption in arthritic joints with KL grades 1–4 [127].

PINP is the recommended bone formation marker by the 
International Osteoporosis Foundation (IOF) and the 
International Federation of Clinical Chemistry and 
Laboratory Medicine (IFCC) [134]. Derived from the 
N-terminal propeptide of type II collagen, serum PINP has 
been found to predict KOA progression and progressive 
osteophytosis (formation of bone spurs) [128]. In contrast 
to CTX-I, which is derived from the C-terminal telopeptide 
of type I collagen, NTX-I is derived from the N-terminal 
telopeptide, and both CTX-I and NTX-I result from osteo-
clastic hydrolysis by cathepsin K [129]. Both markers are 
extensively used to assess bone resorption as a response 
to anti-resorptive treatments in clinical studies and have 
both been found to be elevated in urine in women with 

progressive OA (defined either as presence of osteophytes 
or JSN) compared to healthy controls [36]. Both serum and 
urine CTX-I are associated with higher levels of variability 
than that of NTX-I. However, lower variability of a marker is 
not necessarily better, and the clinical usefulness should be 
considered [129]. In fact, sCTX-I has been suggested to 
increase more than urinary NTX-I as a result of bone resorp-
tion [135].

Several inflammatory markers are measured in OA. Serum 
levels of IL-6 are able to predict development of radiographic 
KOA over a 10-year period and have been associated with 
cartilage loss in older adults [130,136]. Toll-like receptor 4 
(TLR-4) senses DAMPs, including ECM degradation fragments, 
and has been connected to RA and OA [131]. IL-1β has been 
measured in SF of 69 KOA patients from the POP study and 
was associated with radiographic severity of OA, reflected by 
X-ray osteophyte scores [132].

Recently, a study aimed to identify serological markers for 
prediction of radiographic and pain progression over 48  
months in OA [133]. A panel of 15 proteomic markers was 
measured in serum and was able to distinguish between 
progressors and non-progressors at a higher rate than the 
current ‘best-in-class’ marker, uCTX-II. Vitamin D binding pro-
tein (VTDB), cartilage acidic protein 1 (CRAC1), and comple-
ment C1r subcomponent (C1R) were the most important 
markers for the predictions. The 15 proteomic markers 
reached an area under the receiver operating characteristic 
curve (AUC) of 73% whereas uCTX-II alone reached 58%. The 
study highlighted the utility of a panel of serological markers 
for the identification of subjects at higher risk of KOA progres-
sion, defined by both structural and pain outcomes [133].

6. Conclusion

OA is a highly heterogeneous disease and patients are still to 
this day treated with a ‘one-size-fits-all’ approach, likely con-
tributing to the lack of clinically approved DMOADs. The OA 
patient population may demonstrate similar clinical manifes-
tations but have differing underlying pathobiological drivers 
of the disease. These can be uncovered with a set of molecular 

Table 2. Examples of other biochemical markers routinely measured in osteoarthritis (OA).

Marker Type Molecular origin Association with OA Ref.

CPII Cartilage 
formation

Type IIB C-terminal propeptide of type II 
collagen.

Low serum levels in OA compared to controls. [123]

CIINE Cartilage 
degradation

MMP-13 degradation of type II collagen ¾ 
fragment.

Elevated urinary levels in OA compared to controls. [124]

C2C Cartilage 
turnover

MMP-13 degradation of C-terminal type II 
collagen ¾ fragment.

12-year KOA risk prediction in urine. Correlates with increases collagen network 
disruption in KL 1–4 arthritic joints in serum.

[125– 
127]

PINP Bone 
formation

N-terminal propeptide of type II collagen. Serum levels predict KOA progression and progressive osteophytosis. [128]

NTX-I Bone 
resorption

Cathepsin K cleavage of type I collagen 
N-terminal telopeptide.

Elevated urinary levels in women with progressive OA compared to controls. [36,129]

IL-6 Inflammation Interleukin-6. 10-year radiographic KOA risk prediction in serum. [130]
TLR-4 Inflammation Toll-like receptor 4. Increased expression in cartilage throughout OA progression. [131]
IL-1β Inflammation Interleukin-1β. Synovial fluid levels associated with radiographic OA severity. [132]
VTDB NA Vitamin D binding protein. Predictor of KOA progression in serum. [133]
CRAC1 NA Cartilage acidic protein 1. Predictor of KOA progression in serum. [133]
C1R NA Complement C1r subcomponent. Predictor of KOA progression in serum. [133]

C1R, complement C1r subcomponent; C2C, C-terminal neoepitope on type II collagen ¾ degradation fragment; CIINE, epitope on type II collagen ¾ degradation 
fragment; CPII, type IIB C-terminal propeptide of type II collagen; CRAC1, cartilage acidic protein 1; IL-6, interleukin-6; KL, Kellgren-Lawrence grade; KOA, knee 
osteoarthritis; NA, not applicable; NTX-I, N-terminal telopeptide of type I collagen; PINP, N-terminal propeptide of type II collagen; TLR-4, toll-like receptor 4; VTDB, 
vitamin D binding protein. 
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markers that reflect cartilage degradation and formation, bone 
formation and resorption, and connective tissue inflammation, 
all of which are essential pathologies of OA. A panel of 16 
validated markers were quantified in IMI-APPROACH that 
revealed patients with endotypes driven by structural damage, 
inflammation, and low tissue turnover that differed on struc-
tural and pain outcomes. Reflected by tissue- and disease- 
specific biochemical markers, discovery of such patient sub-
groups may facilitate the identification of the right patient 
population for treatment with the right therapeutic agent at 
the right time for future clinical trials in OA. This may bring us 
closer to better, personalized treatment options for OA 
patients that improve how they function, feel, and survive.

7. Expert opinion

Traditionally, markers of cartilage turnover have been the focal 
point of biomarker discovery and development in OA. Biochemical 
markers capable of accurately predicting structural progression 
and cartilage loss, captured in X-rays and magnetic resonance 
imaging, have been much sought after in the field and have 
been extensively researched. Recently, the OA field has changed 
from a primary focus on structural outcomes to an increased focus 
on PROs [8,137]. With the new development of the Food and Drug 
Administration (FDA) guidelines focusing on the need to show 
benefits on how patients feel, function, and survive, it is 
a prerequisite to demonstrate effects on PROs [138]. As such, 
DMOADs currently in development are unlikely to be clinically 
approved without improvement on structural outcomes as well 
as PROs [1].

As the field and the FDA guidelines are evolving, molecular 
markers from the whole arthritic joint, encompassing the 
innervated areas of the synovium and soft tissue and not just 
the cartilage, that are related to pain and function are needed. 
Such markers may predict disease progression and may be 
modulated to predict efficacy on PROs. Understanding the 
diagnostic and prognostic link between PROs of pain and 
serological markers and elucidating which treatable endo-
types that may respond to a given therapy will pave the way 
for new drug development in OA. These considerations are in 
the back-drop of the phase II clinical trial FORWARD, which 
clearly demonstrated long-lasting effects of the cartilage ana-
bolic drug, sprifermin on cartilage thickness but failed to show 
significant improvement on PROs [139]. We need to develop 
strategies to predict TJRs and worsening of PROs to effectively 
counteract this in OA.

Molecular markers have the potential to identify clinically 
relevant, treatable endotypes that, when matched with the 
right treatment option, may demonstrate efficacy in a future 
clinical intervention trial. When enriching for the right patient 
subpopulation based on their molecular endotype at screen-
ing for a given clinical intervention trial, it is important to 
consider the longitudinal stability of such biomarker-based 
endotypes within the clinical trial period. As tissue remodeling 
may change over time in the individual OA patients, this may 
also be reflected by their endotypic profile. To our knowledge, 
this has yet to investigated in the OA field. Preliminary results 
from our research show that a considerable proportion of OA 

patients keep the same endotype within a typical clinical trial 
period. While some transiently change endotype over time, 
they return to their original endotype, illustrating the robust-
ness of biomarker-based endotyping.

While a clinical phenotype relates to the observable pre-
sentation of a disease, an endotype is specific for the mole-
cular pathogenesis of the disease [140]. It is conceivable that 
molecular endotypes may overlap and a clinical phenotype 
may encompass several molecular endotypes [141]. As such, 
the clinical manifestation of endotypes of OA may not differ. In 
other words, many OA patients will ultimately experience 
debilitating pain and need TKR but the underlying molecular 
path to the clinical manifestations may differ. Molecular endo-
typing can inform how to target the different OA patients by 
uncovering their underlying, pathological drivers of the dis-
ease. Some OA patients may also show properties of several 
molecular endotypes with one endotype being predominant 
at a given point in time, such as exhibiting structural damage 
of bone tissue while simultaneously having an inflammatory 
component that may dominate at a later point in time. These 
considerations may be relevant for decision-making on enroll-
ment of patients based on their molecular endotype at screen-
ing for a clinical intervention trial. In some cases, it may be 
most relevant to enroll and treat patients based on the under-
lying disease-driving endotype that is dominant at the time of 
screening, while it in other cases may be more relevant to 
rather deselect patients based on endotypic traits that are not 
targeted by the disease-modifying treatment in question.

The development path for true disease-modifying therapies 
in OA is still debated between sponsors and agencies [138]. One 
approach may be a FDA Subpart H-accelerated approval on PROs 
of pain, followed by assessment of rates and/or postponement of 
TJRs over a longer study period [138]. In light of the large 
Canakinumab Anti-Inflammatory Thrombosis Outcomes Study 
(CANTOS) in which an IL-1β-inhibiting, anti-inflammatory drug 
prevented incidents of TJRs in subjects with elevated levels of 
hsCRP and previous history of myocardial infarction with 
a median follow-up time of 3.7 years, this seems more feasible 
than ever [142]. However, such clinical trial designs with longer 
study periods require large investments.

An increasing amount of attention has recently been direc-
ted toward the clinical effects of weight-loss therapies on 
PROs of pain in OA. Recently, several clinical trials of KOA 
patients suffering with obesity have commenced, including 
research studies testing the efficacy of semaglutide 
(ClinicalTrials.gov ID: NCT05064735) or physiotherapist- 
guided dietary and exercise programs (ClinicalTrials.gov ID: 
NCT04733053) on weight-loss and PROs. Obesity is associated 
with low-grade, chronic inflammation and an endotype driven 
by metabolic syndrome has previously been described [6]. This 
may indicate a clinically relevant and treatable endotype that, 
when paired with an optimal treatment option, may exhibit 
superior efficacy on PROs, including WOMAC pain. This clearly 
illustrates the future era of disease-modifying drug develop-
ment in OA. Targeting treatable endotypes that first demon-
strate efficacy on PROs that with the right clinical 
development path and strategy may translate into postpone-
ment of TJRs, all for the benefit of the OA patients.
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