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Abstract: A truncated, mean-parameterized Conway-Maxwell-Poisson model is developed to handle
under- and overdispersed count data owing to individual heterogeneity. The truncated nature of the data
allows for a more direct implementation of the model than is utilized in previous work without too much
computational burden. The model is applied to a large dataset of Test match cricket bowlers, where the
data are in the form of small counts and range in time from 1877 to the modern day, leading to the in-
clusion of temporal effects to account for fundamental changes to the sport and society. Rankings of
sportsmen and women based on a statistical model are often handicapped by the popularity of inappro-
priate traditional metrics, which are found to be flawed measures in this instance. Inferences are made
using a Bayesian approach by deploying a Markov Chain Monte Carlo algorithm to obtain parameter
estimates and to extract the innate ability of individual players. The model offers a good fit and indicates
that there is merit in a more sophisticated measure for ranking and assessing Test match bowlers.
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1 Introduction

Statistical research in cricket has been somewhat overlooked in the stampede to model football and
baseball. Moreover, the research that has been done on cricket has largely focused on batsmen,
whether modelling individual, partnership and team scores (Kimber and Hansford, 1993; Scarf
et al., 2011; Pollard et al., 1977), or ranking Test batsmen (Brown, 2009; Rohde, 2011; Boys and
Philipson, 2019; Stevenson and Brewer, 2021), or on short-format cricket via predicting match out-
comes (Davis et al., 2015) or optimising the batting strategy in one day and Twenty20 international
cricket (Preston and Thomas, 2000; Swartz et al., 2006; Perera et al., 2016). Indeed, to the author’s
knowledge, this is the first work that explicitly focuses on Test match bowlers.
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Test cricket is the oldest form of cricket. With a rich and storied history, it is typically held up as
being the ultimate challenge of ability, nerve and concentration, hence the origin of the term ‘Test’
to describe the matches. For Test batsmen, their value is almost exclusively measured by how many
runs they score and their career batting average, with passingmention made of the rate at which they
score, if this is remarkable. Test bowlers are also primarily rated on their (bowling) average, which in
order to be on the same scale as the batting average is measured as runs conceded per wicket, rather
than the more natural rate of wickets per run. In this work we consider the problem of comparing
Test bowlers across the entire span of Test cricket from its genesis in March 1877 to the modern day,
July 2022.

Rather uniquely, the best bowling averages of all-time belong to bowlers who played more than
a hundred years ago, contrast this with almost any other modern sport where records are routinely
broken by current participants, with their coteries of support staff dedicated to fitness, nutrition and
wellbeing along with access to detailed databases highlighting their strengths and weaknesses. The
proposed model allows us to question whether the best Test bowlers are truly those who played in
the late 19th and early 20th century or whether this is simply a reflection of the sport at the time.
Along the way, we also deliberate whether the classic bowling average is the most suitable mea-
sure of career performance. Taking these two aspects together suggests that there are more suitable
alternatives than simply ranking all players over time based on their bowling average, as seen at
https://stats.espncricinfo.com/ci/content/records/283256.html.

The structure of the article is as follows. The data are described in Section 2 and contain trun-
cated, small counts which, at the player level, are both under and overdispersed, leading to the
statistical model in Section 3. Section 4 details the prior distribution alongside the computational
details. Section 5 presents some of the results and the article concludes with some discussion and
avenues for future work in Section 6.

2 The data

The data used in this article consists of N = 47 216 individual innings bowling figures by n = 2 207
Test match bowlers from the first Test played in 1877 up to Test 2 473, in July 2022. There are cur-
rently twelve Test playing countries and far more Test matches are played today than at the genesis
of Test cricket (Boys and Philipson, 2019). World Series Cricket matches are not included in the
dataset since these matches are not considered official Test matches by the International Cricket
Council (ICC).

Bowling data for a player on a cricket scorecard comes in the form ‘overs-maidens-wickets-
runs’—note that in this work the first two values provide meta-information that are not used for
analysis—as seen at the bottom of Figure 1. A concrete example are the bowling data for James
Anderson with figures of 25.5-5-61-2. The main aspect of this to note is that the data are aggre-
gated counts for bowlers—2 wickets were taken for 61 runs in this instance, but it is not known
how many runs were conceded for each individual wicket. This aggregation is compounded across
all matches to give a career bowling average for a particular player, corresponding to the average
number of runs they concede per wicket taken. This measure is of a form that is understandable
to fans, but counter-intuitive from the standpoint of a statistical model; this point is revisited in
subsection 3.1.1.
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Table 1 Frequency and percentage of Test match wickets per innings

Wickets 0 1 2 3 4 5 6 7 ≥ 8

Frequency 16 468 10 935 7 599 5 406 3 262 1 964 801 281 100
Percentage 34.9 23.2 16.9 11.4 6.9 4.2 1.7 0.6 0.2

Figure 1 Bowling figures as seen on a typical cricket scorecard.
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Figure 2 Probability mass function of Test match wickets taken per innings.

In each Test match innings there are a maximum of ten wickets that can be taken by the bowling
team, and these wickets are typically shared amongst the team’s bowlers, of which there are nomi-
nally four or five. Table 1 shows the distribution of wickets taken in an innings across all bowlers,
with Figure 2 providing a visual representation. Taking six wickets or more in an innings is rare and
the most common outcome is that of no wickets taken.

Alongside the wickets and runs, there are data available for the identity of the player, the oppo-
sition, the venue (home or away), the match innings, the winners of the toss and the date the match
took place. These are all considered as covariates in the model.

To motivate the model introduced in section 3, the raw indices of dispersion at the player level
show that around 20% of players have underdispersed counts, approximately 20% of players have
equidispersed counts, with the remainder having overdispersed counts. This overlooks the effects of
covariates but suggests that any candidate distribution ought to be capable of handling both under-
and overdispersion, or bidispersion at the player level.
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3 The model

Wickets taken in an innings are counts and a typical, natural starting point may be to consider mod-
elling them via the Poisson or negative binomial distributions. However, in light of the bidispersion
seen at the player level in the raw data, we instead turn to a distribution capable of handling such
data.

The Conway-Maxwell-Poisson (CMP) distribution (Conway and Maxwell, 1962) is a general-
ization of the Poisson distribution, which includes an extra parameter to account for possible over-
and underdispersion. Despite being introduced almost sixty years ago to tackle a queueing prob-
lem, it has little footprint in the statistical literature, although it has gained some traction in the last
fifteen years or so with applications to household consumer purchasing traits (Boatwright et al.,
2003), retail sales, lengths of Hungarian words (Shmueli et al., 2005), and road traffic accident data
(Lord et al., 2008, 2010). Its wider applicability was demonstrated by Guikema and Goffelt (2008)
and Sellers and Shmueli (2010), who recast the CMP distribution in the generalized linear modelling
framework for both Bayesian and frequentist settings respectively, and through the development of
an R package (Sellers et al., 2019) in the case of the latter, to help facilitate routine use.

In the context considered here, the CMP distribution is particularly appealing as it allows for
both over- and underdispersion for individual players. For the cricket bowling data,we define Xi jk to
represent the number of wickets taken by player i in his j th year during his kth bowling performance
of that year. Also ni and ni j denote, respectively, the number of years in the career of player i and the
number of innings bowled in during year j in the career of player i . Using this notation, the CMP
distribution has probability mass function given by

Pr(Xi jk = xi jk|λi jk, ν) = λ
xi jk
i jk

(xi jk!)ν
1

G∞(λi jk, ν)

with i = 1, . . . , 2 207, j = 1, . . . , ni and k = 1, . . . , ni j . In this (standard) formulation, λi jk is
the rate parameter and ν models the dispersion. The normalizing constant term G∞(λi jk, ν) =∑∞

r=0 λri jk/(r !)
ν ensures that the CMP distribution is proper, but complicates analysis.

Sellers et al. (2019) implemented the CMP model using a closed-form approximation (Shmueli
et al., 2005; Gillispie and Green, 2015) when λi jk is large and ν is small, otherwise truncating the
infinite sum to ensure a pre-specified level of accuracy is met. Alternative methods to circumvent
intractability for the standard CMP model in the Bayesian setting have been proposed by Chania-
lidis et al. (2018), who used rejection sampling based on a piecewise enveloping distribution and
more recently Benson and Friel (2020) developed a faster method using a single, simple envelope
distribution, but adapting these methods to the mean-parameterized CMP (MPCMP) distribution
introduced below is a non-trivial task.

3.1 Truncated mean-parameterized CMP distribution
The standard CMP model is not parameterized through its mean, however, restricting its wider
applicability in regression settings since this renders effects hard to quantify, other than as a general
increase or decrease. To counter this, two alternative parameterizations via the mean have been
developed (Huang, 2017; Ribeiro Jr et al., 2018; Huang and Kim, 2019), each with associated R

Statistical Modelling xxxx; xx(x): 1–16



A truncated MPCMP model for the analysis of Test match bowlers 5

packages (Fung et al., 2019;Elias Ribeiro Junior, 2021).Themean of the standardCMPdistribution
can be found as

μi jk =
∞∑

r=0

rλri jk
(r !)νG∞(λi jk, ν)

,

which, upon rearranging, leads to

∞∑

r=0

(r − μi jk)
λri jk

(r !)ν
= 0. (3.1)

Hence, theCMPdistribution can bemean-parameterized to allow amore conventional count regres-
sion interpretation, where λi jk is a nonlinear function of μi jk and ν under this reparameterization.
Huang (2017) suggested a hybrid bisection and Newton-Raphson approach to find λi jk and applied
this in small sample Bayesian settings (Huang and Kim, 2019), whereas Ribeiro Jr et al. (2018) used
an asymptotic approximation of G∞(λi jk, ν) to obtain a closed form estimate for λi jk. The appeal of
the former is its more exact nature, but this comes at considerable computational cost in the scenario
considered here as the iterative approach would be required at each MCMC iteration, and, in this
case, for a large number of (conditional) mean values. The approximation used by the latter is con-
ceptually appealing due to its simplicity and computational efficiency, but is likely to be inaccurate
for some of the combinations of μi jk, ν encountered here, and the level of accuracy will also vary
across these combinations.

Irrespective of mean parameterization and method, the above model formulation has two ob-
vious flaws: the counts lie on a restricted range, that is, 0, . . . , 10, and there is no account taken of
how many runs the bowler conceded in order to take their wickets. For the first issue, the model
can be easily modified using truncation, which, in this case, leads to a simplified form for the CMP
distribution, which is exploited below:

Pr(Xi jk = xi jk|λi jk, ν) = λ
xi jk
i jk

(xi jk!)ν
1

G∞(λi jk, ν)
1

Pr(Xi jk ≤ 10|λi jk, ν)

= λ
xi jk
i jk

(xi jk!)ν
1

G10(λi jk, ν),

where G10 = ∑10
r=0 λri jk/(r !)

ν is used to denote the finite sum. This yields the truncated mean-
parameterized CMP distribution (MPCMP10), where the subscript denotes the value at which the
truncation occurs. Furthermore, the infinite sum in (3.1) is replaced by the finite sum

10∑

r=0

(r − μi jk)
λri jk

(r !)ν
= 0. (3.2)

Since λi jk is positive, there is a single sign change in (3.2) when μi jk > r , which, by Descartes’ rule
of signs, informs us that there is a solitary positive real root. Hence, a solution for λi jk can be found
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Figure 3 Average wickets taken for values of runs on the linear (left) and log (right) scales. The size of the data
points reflects the amount of data for each value of runs; the dashed line represents the relationship under the
traditional cricket bowling average.

without recourse to approximations or less scaleable iterative methods in this case and we can di-
rectly solve the tenth order polynomial using the R function polyroot, which makes use of the
Jenkins-Traub algorithm. The substantive question of the relationship between wickets and runs is
deliberated in the next subsection.

3.1.1 Functional form of runs
As noted earlier, data are only available in an aggregated form. That is, the total number of wickets
is recorded alongside the total number of runs conceded. Historically, this has been converted to a
cricket bowling average by taking the rate of runs conceded to wickets taken, chiefly to map this on
to a similar scale as to the classic batting average. However, in the usual (and statistical) view of a
rate this is more naturally expressed as wickets per run, rather than runs per wicket, and this rate
formulation is adopted henceforth. In either event, the number of runs conceded conveys important
information since taking three wickets at the cost of thirty runs is very different to taking the same
number of wickets for, say, ninety runs.

By looking at themean number of wickets for each value of runs the relationship betweenwickets
and runs can be assessed, see Figure 3; note that there is very little data for values of runs exceeding
120 so the plot is truncated at this point. The nonlinear relationship rules out instinctive choices such
as an offset or additive relationship—this makes sense as the number of wickets taken by a bowler
cannot exceed ten in a (within-match) innings, which suggests that the effect of runs on wickets is
unlikely to be wholly multiplicative (or additive on the log-scale).

Smoothing splines in the form of cubic B-splines are adopted to capture the nonlinear relation-
ship, with knots chosen at the quintiles of runs (on the log scale). This corresponds to internal knots
at 18, 35, 53 and 77 along with the boundary knots at 1 and 298 on the runs scale. Various nonlinear
models were also considered but did not capture the relationship as well as the proposed spline.

3.1.2 Opposition effects
As the data span 146 years it is perhaps unreasonable to assume that some effects are constant
over time. In particular, teams are likely to have had periods of strength and/or weakness whereas
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Figure 4 Mean bowling averages across decades for a selection of opposing countries: Australia (solid line),
India (dashed), South Africa (dotted) and West Indies (dot-dash).

conditions, game focus, advances in equipment and technology may have drastically altered playing
conditions for all teams at various points in the Test cricket timeline. A plot of the mean bowling
average across decades for a selection of opposition countries is given in Figure 4. Here we use the
conventional bowling average on the y-axis for ease of interpreation, but the story is similar when
using the rate. Clearly, the averages vary substantially over time as countries go through periods of
strength and weakness and game conditions and rules evolve. As such, treating them as time invari-
ant effects does not seem appropriate. Note also that some countries started playing Test cricket
much later than 1877 (see the lines for West Indies and India in Figure 4) and teams appear to take
several years to adapt and improve.

This motivates the inclusion of dynamic opposition effects, where we again adopt smoothing
splines, this time with knots chosen at the midpoints of decades (of which there are fourteen); this
is a natural timespan, both in a general and sporting sense; cricket followers will often discuss the
West Indies of the 1980s or Australia of the 1990s for instance. For identifiability, the opposition
effect of Australia in 2022 is chosen as the reference value.

3.2 Log-linear model for the mean rate
As well as runs conceded by a bowler and the strength of opposition, there are several other factors
that can affect performance, some of which are considered formally in the model. Introducing some
notation for available information: ri jk is the number of runs conceded by bowler i during the kth
innings in the j th year of his career, yi jk represents the year of this same event, oi jk indicates the
opposition (there are twelve Test playing countries in these data), hi jk indicates whether the innings
took place in the bowler’s home country (1 = home, 2 = away), mi jk is the within-match innings
index and ti jk represents winning or losing the toss (1 = won, 2 = lost).
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These remaining terms in the model for the wicket-taking rate are assumed to be additive and,
hence, the mean log-rate is modelled as

logμi jk =
8∑

p=1

βpBp
{
log ri jk

} +
qo∑

q=1

ωq,oi jk Bq,oi jk(yi jk)I(Opp = oi jk)

+θi + ζhi jk + ξmi jk + γ I(ti jk = 1)I(mi jk = 1) (3.3)

where θi represents the ability of player i and the next three terms in the model are game-specific,
allowing home advantage, pitch degradation (via thematch innings effects), andwhether the toss was
won or lost, respectively, to be taken into account. Home advantage is ubiquitous in sport (Pollard
and Pollard, 2005), and it is widely believed that it is easier to bowl as a match progresses to the third
and fourth innings due to pitch degradation, and winning the toss allows a team to have ‘best’ use of
the playing/weather conditions. The effect of losing the toss is ameliorated as the match progresses
so we anticipate that this only effects the first innings of the match, and this effect is captured by γ .

The designmatrices Bp and Bq,oi jk are the spline bases for (log) runs and each opposition detailed
in the previous two subsections, with associated parameters βp and ωq,oi jk . Note that the summation
index for the opposition spline varies across countries owing to their different spans of data—as
seen in subsection 3.1.2—with the total number of parameters for each opposition denoted denoted
by qo, o = 1, . . . , 12.

For identifiability purposes we set ζ1 = ξ1 = 0, measuring the impact of playing away via ζ2
and the innings effects relative to the first innings through ξ2, ξ3 and ξ4. We impose a sum-to-zero
constraint on the player abilities, thus in this model exp(θi ) is the rate of wickets per innings taken
by player i bowling at home in the first innings of a Test match against Australia in 2022.

CMP regression also allows a model for the dispersion. Here, recognizing that we may have both
under and overdispersion at play, we opt for a player-specific dispersion term νi , i = 1, . . . 2 207.
Naturally, this could be extended to include covariates, particularly runs, but this is not pursued
here since the model is already heavily parameterized (for the mean).

4 Computational details and choice of priors

R (RCore Team, 2022) was used for all model fitting, analysis and plotting, with the splines pack-
age used to generate the basis splines for runs and the temporal opposition effects. The Conway-
Maxwell-Poisson distribution is not included in standard Bayesian software such as rstan (Stan
Development Team, 2020) and rjags (Plummer, 2004) so bespoke code was written in R to imple-
ment the model. The code and data are available on GitHub at https://github.com/petephilipson/
MPCMP Test bowlers.

For analysis, four MCMC chains were run in parallel with 1 000 warm-up iterations followed
by 5 000 further iterations. Model fits took approximately eight hours on a standardMacBook Pro.
AMetropolis-within-Gibbs algorithm is used in the MCMC scheme, with component-wise updates
for all parameters except for those involved in the spline for runs, β. For these parameters a block
update was used to circumvent the poormixing seen when deploying one-at-a-timeupdates, with the
proposal covariance matrix based on the estimated parameter covariance matrix from a frequentist
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fit using the mpcmp package. In order to simulate from the CMP distribution, to enable posterior
predictive checking, the COMPoissonReg (Sellers et al., 2019) package was used, albeit with some
modifications to ensure the counts are truncated. Plots were generated using ggplot2 (Wickham,
2016) and highest posterior density intervals were calculated using coda (Plummer et al., 2006).

4.1 Prior distribution
For the innings, playing away and winning the toss effects we use zero mean normal distributions
with standard deviation 0.25, reflecting a belief that these effects are likely to be quite small on
the multiplicative wicket-taking scale, with effects larger than 50% increases or decreases deemed
unlikely (with a 5% chance a priori). The same prior distribution is used for the player ability terms,
θ , reflecting that while heterogeneity is expected we do not expect players to be, say, five and ten
times better/worse in terms of rate. The coefficients for the splines in both the runs and opposition
components are given standard normal priors.We recognize that smoothing priors could be adopted
here, but as we have already considered the choice of knots we do not consider such an approach
here.

For the dispersion parameters we work on the log-scale, introducing ηi = log(νi ) for
i = 1, . . . , 2 207. We adopt a prior distribution that assumes equidispersion, under which the
MPCMP model is equivalent to a Poisson distribution. Due to the counts being small we do not
expect the dispersion in either direction to be that extreme, allowing a 5% chance for ηi to be a
three-fold change from the a priori mean of equidispersion. Hence, the prior distribution for the
log-dispersion is ηi ∼ N(0, 0.5 log 3) for i = 1, . . . , 2 207.

5 Results

5.1 Functional form for runs
A plot of wickets against runs using the posterior means for β is given in Figure 5. This clearly
shows the non-linear relationship between wickets and runs and suggests that using the standard
bowling average, which operates in a linear fashion, overlooks the true nature of how the number of
wickets taken varies with the number of runs conceded. An important ramification of this is that the
standard bowling average overestimates the number of wickets taken as the number of runs grows
large, whereas the true relationship suggests that the rate starts to flatten out for values of runs
larger than 50. Returning to the figure, we clearly see much more uncertainty for larger values of
runs, where, as seen earlier, the data are considerably more sparse.

5.2 Opposition effects
Aplot of the fitted posteriormean profiles for each opposition is given in Figure 6. The largest values
of all occur for South Africa when they first played (against the more experienced England and
Australia exclusively); most teams struggle when they first play Test cricket, as shown by the largest
posterior means at the left-hand side of each individual plot (since we are modelling the rate, which
is the inverse of the traditional average). Overall, this led to the low Test bowling averages of the
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Figure 5 Mean wickets taken against runs on the linear (left) and log (right) scales with 95% HDI interval
uncertainty bands; solid circles represent the knots for the spline.
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Figure 6 Posterior mean and 95% HDI bands for each opposition.
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Figure 7 Boxplots of the posterior distributions for playing away (ζ2), match innings 2–4 (ξ2, ξ3, ξ4) and
winning the toss and bowling (γ )

1880s-1900s that still stand today as the lowest of all-time and adjusting for this seems fundamental
to a fairer comparison and/or ranking of players.

5.3 Game-specific effects
The posterior means and 95% highest density intervals (HDIs) for the innings effects—on the mul-
tiplicative scale—are 1.07 (1.04–1.09), 1.03 (1.01–1.06) and 0.99 (0.96–1.02) for the second, third
and fourth innings respectively, when compared to the first innings. Similarly, the effect of playing
away is to reduce the mean number of wickets taken by around 10%; posterior mean and 95% HDI
are 0.92 (0.90–0.93). The impact of bowling after winning the toss is the strongest of the effects we
consider, with a posterior mean and 95% HDI interval of 1.12 (1.08–1.15). Boxplots summarizing
the game-specific effects are shown in Figure 7.

5.4 Player rankings
The top thirty bowlers, as ranked by their posterior mean ability, θi , are given in Table 2. We also
include the posterior dispersion parameter for each player along with information on the era in
which they played (via the date of their debut) and the amount of available data asmeasured through
the total number of innings they bowled in (ni ).

The rankings under the proposed model differ substantially from a ranking based on bowling
average alone. As a case in point, the lowest, that is, best, bowling average of all time belongs to
GA Lohmann, who is ranked 9th in our model. Similarly, Muttiah Muralidaran, who tops our
list, is 50th on the list of best averages at the time of writing. The main ramifications of using the
proposed model is that players from the early years are ranked lower, and spinners are generally
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Table 2 Top 30 Test match bowlers ranked by posterior mean multiplicative rate

Player ability Dispersion
Rank Name Debut Innings E(eθ ) SD(eθ ) E(ν)

1 M Muralidaran 1992 230 2.02 0.08 0.83
2 SF Barnes 1901 50 1.91 0.18 0.62
3 WJ O’Reilly 1932 48 1.81 0.18 0.71
4 Sir RJ Hadlee 1973 150 1.78 0.10 0.58
5 JJ Ferris 1887 16 1.78 0.24 1.02
6 CV Grimmett 1925 67 1.77 0.14 0.79
7 AA Donald 1992 129 1.73 0.10 1.04
8 MJ Procter 1967 14 1.72 0.25 1.12
9 GA Lohmann 1886 36 1.71 0.22 0.35

10 MD Marshall 1978 151 1.71 0.10 0.76
11 T Richardson 1893 23 1.70 0.21 0.93
12 J Cowie 1937 13 1.69 0.25 0.88
13 SK Warne 1992 271 1.69 0.08 0.64
14 CEL Ambrose 1988 179 1.68 0.10 0.69
15 DW Steyn 2004 171 1.68 0.09 0.71
16 GD McGrath 1993 241 1.68 0.09 0.65
17 R Ashwin 2011 162 1.68 0.09 0.75
18 JC Laker 1948 86 1.67 0.14 0.63
19 CTB Turner 1887 30 1.66 0.20 0.66
20 Mohammad Asif 2005 44 1.65 0.17 0.74
21 DK Lillee 1971 132 1.65 0.10 0.84
22 K Rabada 2015 95 1.63 0.10 1.23
23 FH Tyson 1954 29 1.62 0.20 0.64
24 H Ironmonger 1928 27 1.62 0.21 0.55
25 Imran Khan 1971 160 1.62 0.10 0.70
26 SE Bond 2001 32 1.62 0.16 1.24
27 Waqar Younis 1989 154 1.61 0.10 0.76
28 FS Trueman 1952 126 1.61 0.10 0.86
29 PJ Cummins 2011 81 1.61 0.12 0.88
30 AK Davidson 1953 82 1.6 0.14 0.62

ranked higher. The latter is an artefact of the model, in that bowling long spells and taking wickets
is now appropriately captured through the nonlinear effect for runs.

We also see from Table 2 that five players—all seam bowlers interestingly—have underdispersed
data judging from the posterior means of νi , verifying that a model capable of handling both under-
dispersed and overdispersed counts is required for these data.

5.5 Model fitting
The performance of the model is evaluated using the posterior predictive distribution. Namely, due
to the small number of observed counts, it is viable to compare the model-based posterior predictive
probability for each observed value of 0, 1, . . . , 10 and compare that to the observed probability in
each case. A summary of this information is given in Figure 8, where we see excellent agreement
between the observed and expected proportions at each value of wickets.
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Figure 8 Observed (grey circles) and model-based (crosses) probabilities for each value of wickets.

6 Discussion

The outcome of interest considered here was the number of wickets taken by a bowler in an innings,
which was modelled using a truncated mean-parameterized Conway-Maxwell-Poisson distribution.
The model allows for comparisons between players from different eras through the inclusion of
dynamic opposition effects alongside axiomatic game-specific effects of home advantage, pitch con-
ditions and the best use thereof. However, there are other factors that were not considered here, prin-
cipally due to the aggregated nature of the data, which precludes looking at the ability of bowlers to
break partnerships, take top-orderwickets or to perform at their best in themost importantmatches,
in their most crucial stages.

Other classic count models were considered, but it was found that Poisson and negative binomial
regression models failed to adequately describe the data. Alternative count models capable of han-
dling both under- and overdispersion may perform equally well, such as those based on the gamma
count, generalized Poisson, double Poisson or Poisson-Tweedie distributions, although each of these
has some limitations. Looking further afield, an exponentially tilted multinomial model (Rathouz
and Gao, 2009) may offer increased flexibility over the aforementioned count data models. Alterna-
tive models are not pursued further here, owing to the good performance of the chosen model and
the nontrivial implementation of such non-standardmodels (that would require bespoke coding) in
this big data setting.

Additional metrics not formally modelled here are bowling strike rate and bowling economy
rate, which concern the number of balls bowled (rather than the number of runs conceded) per
wicket and runs conceded per over respectively. Whilst both informativemeasures, they are typically
viewed as secondary and tertiary respectively to bowling average in Test cricket, where time is less
constrained than in shorter form cricket. Hence, future work looking at one day international or
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Twenty20 cricket could consider the triple of average, strike rate and economy rate for bowlers,
alongside average and strike rate for batsmen, thereby requiring a multivariate count data model.

One limitation of this work is that we have ignored possible dependence between players, the
taking of wickets can be thought of as a competing resource problem and the success (or lack of)
for one player may have an impact on other players on the same team. Indeed, the problem could
potentially be recast as one of competing risks. However, this argument is rather circular in that a
bowler would not concede many runs if a teammate is taking lots of wickets and this is taken into
account through the modelling of the relationship between wickets and runs.

The MPCMPmodel may have broader use in other sports where there may be bidispersed data,
for example modelling goals scored in football matches—stronger and weaker teams are likely to
exhibit underdispersion; hockey, ice-hockey and baseball all have small (albeit not truncated) counts
as outcomes of interest with bidispersion likely at the team or player level, or both. Moving away
from sports to other fields, the MPCMP model could be used to model parity, which is known to
vary widely across countries with heavy underdispersion (Barakat, 2016), or scores in the popular
web-based word game, Wordle. It could also be appropriate for longitudinal counts with volatile
(overdispersed) and stable (underdispersed) profiles at the patient level, where the level of variability
may be related to a clinical outcome of interest in a joint modelling setting. Indeed, it will have
broader use in any field where counts are subject to bidispersion.

This work has shown that truncated counts subject to bidispersion at some hierarchical level
can be handled in a mean-parameterized CMP model, based on a large dataset, without too much
computational overhead. Further methodological work is needed to implement the model in the
case of non-truncated counts and to seek faster computational methods.
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