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Abstract—Objective: Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder commonly seen in childhood
that leads to behavioural changes in social development and communication patterns, often continues into undiagnosed adulthood due to a
global shortage of psychiatrists, resulting in delayed diagnoses with lasting consequences on individual’s well-being and the societal impact.
Recently, machine learning methodologies have been incorporated into healthcare systems to facilitate the diagnosis and enhance the potential
prediction of treatment outcomes for mental health conditions. In ADHD detection, the previous research focused on utilizing functional
magnetic resonance imaging (fMRI) or Electroencephalography (EEG) signals, which require costly equipment and trained personnel for data
collection. In recent years, speech and text modalities have garnered increasing attention due to their cost-effectiveness and non-wearable
sensing in data collection. In this research, conducted in collaboration with the Cumbria, Northumberland, Tyne and Wear NHS Foundation
Trust, we gathered audio data from both ADHD patients and normal controls based on the clinically popular Diagnostic Interview for ADHD
in adults (DIVA). Subsequently, we transformed the speech data into text modalities through the utilization of the Google Cloud Speech API.
We extracted both acoustic and text features from the data, encompassing traditional acoustic features (e.g., MFCC), specialized feature sets
(e.g., eGeMAPS), as well as deep-learned linguistic and semantic features derived from pre-trained deep learning models. These features are
employed in conjunction with a support vector machine for ADHD classification, yielding promising outcomes in the utilization of audio
and text data for effective adult ADHD screening.
Clinical impact: This research introduces a transformative approach in ADHD diagnosis, employing speech and text analysis to facilitate
early and more accessible detection, particularly beneficial in areas with limited psychiatric resources.
Clinical and Translational Impact Statement: The successful application of machine learning techniques in analyzing audio and text
data for ADHD screening represents a significant advancement in mental health diagnostics, paving the way for its integration into clinical
settings and potentially improving patient outcomes on a broader scale.
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I. INTRODUCTION

MEntal illness is a kind of health condition that gives rise
to shifts in an individual’s cognitive functions, emo-

tional reactions, and behavioural tendencies, with empirical
evidence underscoring its capacity to exert an impact on the
physical welfare of the person. Mental health conditions in-
cluding depression, schizophrenia, Alzheimer’s disease, autism
spectrum disorder (ASD), etc., are currently widespread, with
an estimated global prevalence of 450 million individuals
affected [1]. In addition to these widely publicized mental
conditions, Attention Deficit Hyperactivity Disorder (ADHD)
has been gaining attention over the years. For example, adults
with ADHD are more likely to procrastinate in activities
of daily living and cognition processes [2]. ADHD is a
mental health condition that has a detrimental impact on the
neurodevelopment of the brain and can result in profound
impairments in cognitive and social functioning. There is a
study suggesting that ADHD patients have a higher divorce
rate, criminal conduct, arrests, convictions, imprisonment and
decreased life span [3]. Currently, ADHD diagnosis relies on
clinical assessments by a specialist, such as a psychiatrist or
a paediatrician, to determine if an individual meets DSM-V
[4] criteria by displaying five or more relevant symptoms of
inattention or impulsivity/hyperactivity. However, the diagno-
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sis of ADHD is often delayed due to the global shortage
of specialists in the related areas. In the UK, the ratio of
psychiatrists to the general population is 11:100,000 [5] and
the British Broadcasting Company (BBC) reported that around
1.5 million adults in the UK have ADHD, but only 120,000
are officially diagnosed and the waiting period for a diagnosis
of ADHD is a maximum of 7 years [6].

Moreover, adults with ADHD may exhibit symptoms like
irritability, emotional instability, heightened activity, thought-
fulness, paranoia, and worry, which overlap with DSM-V [7]
criteria for anxiety and bipolar disorder, adding complexity
to the diagnostic process. Additionally, the subjective nature
of ADHD criteria and rating scales may contribute to its
perceived increasing prevalence. A recent study also suggested
that adult ADHD diagnosis is relatively neglected as ADHD
affects approximately 7.2% of children and has a lower
prevalence rate of 2.58% in adults globally [8], [9]. These
elements emphasize the importance of screening ADHD in
adults, aiming to mitigate its negative effects on individual
well-being and communities.

In contrast to most chronic conditions diagnosed through
lab tests, mental disorders rely on self-disclosure through
specialized methods, highlighting the intricate nature of mental
health data. In the past decades, machine learning (ML) and
deep learning (DL) have provided a new paradigm for gaining
knowledge from complex data [10], [11] and numerous ML
and DL-based techniques have been developed for health-
care applications including mental healthcare and achieved
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considerable success [12]–[16]. Specifically, studies are using
adjunctive data for the detection of ADHD, including magnetic
resonance imaging (MRI) [17], electroencephalography (EEG)
[18] and electrocardiograms (ECG) [19]. However, such psy-
chological signals are expensive to acquire as they require
experienced radiologists and special equipment such as an
MRI scanner and wearable EEG headset [20]. Recently, audio
and text modalities have drawn more attention for mental
health detection due to the characteristics of obtainable, non-
invasive and containing abundant information [21], [22]. Dif-
ferent from the psychological signal, human speech conveys
not only verbal (linguistic) content like words but also non-
verbal (paralinguistic) information, such as speech tone, which
is responsive to subtle shifts in the speaker’s physiological con-
dition and mental state [23]. For example, adults with ADHD
have subtle differences in speech production, increased speech
rate, and alternating and sequential motion rates compared to
non-ADHD control participants. Moreover, as suggested in
DSM-V [7], ADHD patients have speech symptoms such as
speaking loud and fast and talking excessively and tangentially
[7].

Nevertheless, barriers and limitations persist in applying
ML and DL to aid in mental health detection, encompassing
challenges such as data scarcity, absence of personality factors,
and the extraction of meaningful features from diverse data
sources [24]. Motivated by the challenge of ADHD detection
and the success of audio and text-based health-conditions
detection, we aim to carry out discriminative features in audio
and text modalities for ADHD detection. In this research, in
collaboration with Cumbria, Northumberland, Tyne and Wear
National Health Service (CNTW-NHS) Foundation Trust, we
trial a novel multi-modal ADHD dataset from 22 participants
(10 ADHD patients and 12 healthy controls). Particularly in
the proposed work, we focus on the speech and text modalities.
As far as we know, there is an absence of comprehensive prior
investigations into audio and text-based ADHD identification.
Based on the recorded dataset, we briefly investigate the
speech and text features for ADHD detection based on support
vector machines (SVM) and logistic regression (LR) and their
correlation with ADHD and evidence that speech and text can
be used for ADHD early detection.

The main contributions of the proposed work are summa-
rized as follows:

1) The study introduces a novel approach by exploring the
feasibility of using speech and text features for early ADHD
detection. This approach aims to enable timely diagnosis
and intervention, addressing the challenge of delayed ADHD
diagnosis.

2) The research conducts a comprehensive analysis of
various speech and text features to identify the most predictive
ones for discriminating ADHD. This analysis enhances our
understanding of the disorder’s manifestations in these modal-
ities, shedding light on the critical information for ADHD
detection.

3) Employing machine learning techniques, particularly
SVM and LR, the study provides a practical and data-driven
method for ADHD detection. This contribution aligns with the
broader field of ML-based healthcare applications and signifies

the potential for automated ADHD screening using audio and
text data.

The rest of the paper is organized as follows. Section 2
is the related work. Then the recorded multi-modal ADHD
dataset and the selected features are introduced in Section 3.
The experimental settings and results are discussed in Section
4. Section 5 draws the discussions and conclusions.

II. RELATED WORK

In this section, we delve into contemporary research on
mental health detection, focusing on three aspects: ADHD
detection utilizing machine learning techniques, and mental
health detection through audio and text modalities. It’s note-
worthy to emphasize that the intersection of audio and text-
based ADHD detection remains scarcely explored in existing
literature, leading to a limited number of studies available for
review in this specific area.

A. ADHD Detection Based on Machine Learning

The existing methods for ADHD detection are mainly based
on neuroimaging data and physiological data such as fMRI
and EEG signals. The Neuro Bureau ADHD-200 Preprocessed
repository (ADHD-200) [25] is the most widely used brain
MRI database for automated ADHD detection. The ADHD-
200 dataset has more controls than ADHD patients as the
challenge’s goal is to identify healthy controls, however, in real
applications, correctly diagnosing the patient is as important
as correctly diagnosing the normal person. Koh et al. use
ensembled ML classifiers with entropy features extracted from
ECG signals and classify ADHD with a high accuracy of
87.2% [19]. Boroujeni et al. combine the non-linear features
from EEG signals to detect ADHD and achieve an overall
accuracy of 96.05% [18].

Although those methods have achieved considerable results,
there are some limitations. Firstly, it’s worth mentioning that
both neuroimaging data and EEG measurements are typically
confined to hospital settings or controlled laboratories, which
necessitates the presence of specialized staff. Furthermore, the
collection of data from individuals diagnosed with ADHD is
a resource-intensive endeavour, characterized by considerable
time and financial investments [26]. Moreover, most of the
physiological data requires data preprocessing to reduce the
dimensionality or remove the noise and clean the data.

B. Audio Based Mental Health Detection

Speech patterns serve as recognized indicators of mental
disorders, and within the field of speech-based mental dis-
order detection, the quest for dependable acoustic biomark-
ers has persistently stood as a primary research focus [27],
[28]. Existing work can mainly be divided into conventional
hand-crafted features and deep-learned features, respectively.
Certain correlations exist between conventional hand-crafted
features and mental health conditions. A review pointed out
that depressive voices have paralinguistic biomarkers such
as fundamental frequency variability or jitter, shimmer [29].
Lopez et al. [30] use Mel Frequency Cepstral Coefficients
(MFCC) [31] and short-time energy in depression detection
based on the Gaussian mixture model and support vector
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regression. Nasreen and Rohanian et al. [32], [33] designed
AD-specific characteristics such as pause time, and disfluen-
cies for AD detection. Furthermore, various composite low-
level descriptors (LLD) feature sets have been employed for
mental health detection, e.g. the extended Geneva Minimalis-
tic Acoustic Parameter Set (eGeMAPS) [34], IS10˙paraling
[35], and ComParE˙2016 [36]. Fasih et al. [37] use the
eGeMAPS feature for Alzheimer’s Dementia based on sponta-
neous speech and achieved an accuracy of 71.34%. However,
conventional hand-crafted acoustic features cover voice quality
but may not capture task-specific symptoms in particular,
prompting researchers to extract lengthy feature lists with sub-
optimal results. Meanwhile, specially designed features require
translating medical knowledge into mathematical expressions,
which can be challenging. To overcome such limitations, the
utilization of pre-trained language models or ASR (Automatic
Speech Recognition) models for the extraction of deep features
has become a prevailing practice in the field. Qin et al.
fine-tuned Wav2Vec2.0 [38] for speech feature extraction and
achieved promising results [39]. Li et al. utilize a convolution
neural network as well as an information fusion method to aid
in the detection of ADHD based on speech signals and yield
considerable results [40], [41].

As speech disruption in ADHD adults has been reported
such as disfluencies [42] and poor articulation [43], as well as
the notable absence of research in ADHD speech features, it
is timely to investigate the audio-based features associated in
ADHD detection.

C. Text Based Mental Health Detection

Text-based mental health detection algorithms can be cate-
gorized based on their data source into two primary groups:
social media posts and clinical notes from interviews. The
major social media platforms include Twitter and Reddit.
Sinha et al. created a dataset sourced from Twitter which
includes manually annotated information to detect instances
of suicidal thoughts or ideation among users [44]. Kristen et
al. utilize semantic information from Twitter diary entries to
predict and screen measures for depression and psychological
aggression by an intimate partner [45]. Yates et al. contribute
a depression dataset which includes about 9k depressed users
and 100k control users [46]. Certain studies have explored
the detection of mental illness by conducting interviews and
subsequently analyzing linguistic information extracted from
transcribed clinical interviews, e.g., Michelle et al. transcribe
the audio data into text and provide a comparative analysis
of the syntactic structure and semantic content for depression
detection [47].

Recently, deep pre-trained language models based on Trans-
former such as BERT [48] have gained attention for their re-
markable effectiveness in learning subtle and complex lexical
patterns that are used in the detection of psychiatric disorders
based on text modalities. Balagopalan et al [49]. Luz et al.
transform speech into text [50], and then use the BERT model
for Alzheimer’s Disease recognition and show discriminative
results; However, there’s no ADHD-related text database and
therefore no one used text modalities to aid in the detection
of ADHD. Here, we intend to investigate whether syntactic

Fig. 1. The intended experimental setting for the dataset recording.

TABLE I
PREPARED QUESTIONNAIRE FROM DIVA

Q1) How are your focus and concentration?
Q2) How do you find your thoughts?
Q3) Do you find yourself switching off and zoning out?
Q4) Do you leave things to the last minute?
Q5) Do you make careless mistakes?
Q6) Are you normally late for an appointment?
Q7) Do you get bored easily?
Q8) Do you find it difficult to start a task?
Q9) Are you forgetful?

Q10) Do you lose things or misplace things?
Q11) Are you able to sit still in situations like lectures or meetings?
Q12) Do you tend to fidget or pace around?
Q13) How are you in situations like queues and traffic jams?
Q14) Do you tend to speak loud and fast in daily life?
Q15) Do you finish sentences for other people?
Q16) How is your mood?
Q17) Does your mood tend to change?
Q18) Do you have a short temper?
Q19) Do you spend excessively?
Q20) Are you easily led?
Q21) Do you make quick and rush decisions?

and semantic information or text data obtained from ADHD
clinical interviews or deep linguistic features extracted by fine-
tuned BERT can aid in the detection of ADHD.

III. METHODOLOGY

A. Multimodal ADHD Dataset

In our Intelligent Sensing ADHD Trial (ISAT) [51], we cre-
ate an innovative multimodal dataset comprising audio, video,
historical data/questionnaires, transcribed text data, Cambridge
Neuropsychological Test Automated Battery (CANTAB) [52]
test and keyboard tracking. The recording took place in a quiet,
clean, and no electromagnetic room (similar to a consultation
room in a hospital) and the experimental environment facilities
are arranged as shown in Fig.1. A total of 22 native English
speakers, consisting of 10 subjects diagnosed with ADHD (5
males and 5 females) and 12 control participants (8 males
and 4 females), were recruited for the study. All the ADHD
participants have NHS-certified diagnoses from the Cumbria,
Northumberland, Tyne and Wear NHS Foundation Trust, a
prominent mental health NHS Trust. Their ADHD condition
was confirmed using the ASRSv1.1 [53] symptom checklist.
All the health controls are the volunteers recruited through
posters on university campuses. Currently, under the medical
data protection policy and ethics issues, the dataset can be
accessed on request.
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TABLE II
DEMOGRAPHICS OF ALL PARTICIPANTS

ID Diagnosis Age Gender Interview Time[min:sec]

P3 ADHD 35 male 17:50
P7 ADHD 28 male 21:25
P8 ADHD 25 male 4:45

P10 ADHD 32 female 10:38
P11 ADHD 29 female 11:44
P14 ADHD 18 male 6:50
P15 ADHD 53 female 8:20
P19 ADHD 25 female 12:07
P20 ADHD 25 female 7:34
P24 ADHD 26 male 11:28

P2 Control 25 male 9:50
P4 Control 26 male 8:17
P5 Control 28 male 7:45
P6 Control 28 male 8:20
P9 Control 25 male 4:08

P12 Control 25 male 5:30
P16 Control 27 male 3:50
P17 Control 24 female 5:45
P18 Control 25 male 4:50
P21 Control 25 female 4:04
P22 Control 38 female 5:22
P23 Control 28 female 3:24

The data recording process is divided into four parts: 1) The
DIVA-based interview task; 2) The performance of CANTAB
[52] task; 3) A beep reaction task; 4) Watching normal and
boring video tasks; In this research, we only focus on the
interview part as the audio and text modality. The Diagnostic
Interview for ADHD in adults (DIVA) [54] is the primarily
used questionnaire for adult ADHD detection which is a semi-
structured interview constructed based on the Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition (DSM-
V) [7]. As shown in Table I, we’ve chosen 21 questions from
DIVA focusing on social interactions, hobbies, self-esteem,
relationships, and work to compose the questionnaire for the
interview part. During the interviews, participants are equipped
with portable microphones to capture their speech patterns.
Subsequently, we utilize the Google Speech-to-Text API 1 to
convert each audio recording into transcript data, thus creating
the text modality of our dataset. The demographics of all the
participants in the interview part are shown in Table II.

B. Data Preprocessing

All audio recordings are sampled at 16kHz, with an average
duration of approximately 8 minutes. However, this duration is
lengthy and can compromise the efficiency of feature extrac-
tion. Additionally, there may be redundant information present
beyond the interview questions, such as sudden laughter and
excessively long pauses. Hence we cut all the audio recordings
at the interview-question level, hence there are a total of
22x21=462 audio clips corresponding to 462 transcripts. All
the audio clips underwent preprocessing, which involved the

1https://github.com/Uberi/speech ˙recognition

removal of stationary noise and normalization of audio volume
across all audio clips, this was done to mitigate variations
arising from recording conditions.

For the transcripts, we exploit the following normalised
steps. Firstly, all of the common contractions have been
converted to formal writing, e.g., I’ll to I will. Secondly, all
disfluencies are retained, non-speech phenomena are annotated
as ⟨non− speech⟩, and punctuation marks are omitted as
well. Besides, all the numbers are converted into English
words. Finally, all the transcripts are lowercase.

C. Acoustic Features

Speech, a pivotal modality of human communication, bi-
furcates into two main processes: production and percep-
tion. Within production, the intricate anatomy of the vocal
tract plays a pivotal role by facilitating various articulatory
movements. These movements not only give rise to words
and phrases but also generate a diverse range of vocal be-
haviours. Specifically, vocal behaviour comprises voice and
paralinguistic elements encompassing all aspects of speech
beyond the core verbal content. Conversely, in the perception
phase, as acoustic patterns are intercepted by the auditory
apparatus, the acoustic meatus plays a central role in distilling
phonetic features, enabling both auditory recognition and
deeper cognitive interpretation of the conveyed content. Hence
we are motivated to investigate the features to model speech
production, perception and as well as paralinguistic pieces of
ADHD acoustic information.

All the acoustic features are extracted using the Python
library Librosa [55] and openSMILE [56]. All these features
were then normalized by subtracting the mean and dividing
by the standard deviation of that feature over each recording
and passed down to the pipeline as shown in Fig.2.

• Mel-Frequency Cepstral Coefficients (MFCCs)

The Mel-scale filter bank is crafted to emulate the audi-
tory and physiological aspects of how humans perceive
speech signals [57]. MFCC (Mel-frequency cepstral co-
efficients) quantifies cepstral energies on a non-linear
scale known as the Mel scale. This scale mirrors the
sensitivity of the human ear, which is more sensitive to
low-frequency sounds compared to high-frequency ones.
The relationship between the Mel scale and frequency
can be approximated by:

Mel(f) = 2595× lg

(
1 +

f

700

)
Where f is the frequency measured in Hertz. We extract
the initial 13 MFCC bands, along with their respec-
tive 13 delta MFCCs and 13 delta-delta MFCCs. These
additional features capture the rate of change and the
acceleration within the MFCCs.

• Linear Predictive Coding (LPC)

According to the source-filter model of vocal produc-
tion, the energy originating from the lungs serves as
the excitation source, while the vocal tract acts as the
filter, processing the human voice [58]. The information
present in the speech signal is shaped by the vocal tract’s
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Fig. 2. The flow diagram of the ADHD feature classification process. The transcripts are generated with the speech-to-text technique, the raw speech and
transcripts are preprocessed before feature extraction, and the extracted features are fed into the classifier to give the final classification results.

modulation as a dynamic filter, rather than being driven
by the energy source. LPC represents the digital filter
parameter designed to emulate the vocal tract, capturing
the distinct characteristics of speech. The main idea of
LPC [59] is that the current speech sample can be closely
approximated as a linear combination of past samples,
mathematically expressed as:

s(n) =

p∑
k=1

aks(n− k) + e(n)

where s(n) is the predicted next speech sample, ak is the
pth order linear predictor coefficients, s(k) is the k past
speech sample. Assume the real speech sample as ŝ(n),
e(n) is the prediction error calculated as:

en = ŝ(n)− s(n) = ŝ(n)−
p∑

k=1

aks(n− k)

By minimizing the mean square error of e(n), the filter
coefficients a(k) can be updated.

• The Geneva Minimalistic Acoustic Parameter Set
(GeMAPS)

GeMAPS [34] is configured with features designed
specifically for affective speech tasks, aiming to en-
compass and encapsulate the speaker’s overall charac-
teristics. GeMAPS consists of 18 low-level descriptors
(LLD). These include frequency-related parameters such
as pitch, jitter, and formants; energy-associated parame-
ters like shimmer, loudness, and the harmonics-to-noise
ratio (HNR); along with various spectral metrics like
the Alpha ratio, Hammarberg Index, spectral slopes,
harmonic differences, and additional formants. Each LLD
is subjected to statistical functions, resulting in a total of
62 parameters per 100 frames.

• The extended Geneva Minimalistic Acoustic Parameter
(eGeMAPS)

The eGeMAPS feature set [34] emerged from efforts
to streamline the extensive feature into a foundational
collection of acoustic attributes. These were chosen based
on their capacity to identify physiological variations in
voice production, their theoretical importance, and their

established utility in prior related research [60], [61]. This
set encompasses the F0 semitone, loudness, spectral flux,
MFCC, jitter, shimmer, formant 1, 2 and 3 frequency,
alpha ratio, Hammarberg index, and slope V0 attributes,
combined with their prevalent statistical functionals, cul-
minating in 88 features for every 100ms frame.

• INTERSPEECH 2010 Paralinguistics Challenge Feature
Set (IS10 paraling)

As mentioned earlier, paralinguistic information provides
an immense body of acoustic features that can be used
to encode the vocal state of the speaker. IS10 paraling
[35] is a feature set that reflects a broad coverage of
paralinguistic information assessment. It contains 1582
features for one utterance obtained in total by systematic
‘brute-force’ feature generation in three steps. Initially,
38 low-level descriptors were extracted from the data
at a rate of 100 frames per second. This extraction
process involved using varying window types and sizes,
specifically a Hamming window for 25 milliseconds for
most descriptors and a Gaussian window for 60 millisec-
onds for pitch. These descriptors were then subjected
to smoothing using a simple moving average low-pass
filter, which had a window length of 3 frames. Then 21
functionals to each instance in the databases but excluded
16 features with zero information. Finally, two single
features F0 number of onsets and turn duration are added.

• INTERSPEECH 2016 Computational Paralinguistics
Challenge Feature Set (ComParE 2016)

The ComParE 2016 feature set [36] has demonstrated ef-
fectiveness across a multitude of paralinguistic tasks [62].
The ComParE 2016 feature set is calculated from the
computation of various functionals over LLD contours,
including energy, spectral, MFCC, and voicing-related
LLDs. LLDs include logarithmic harmonic-to-noise ratio,
voice quality features, Viterbi smoothing for F0, spectral
harmonicity and psychoacoustic spectral sharpness. Sta-
tistical functions are also computed, bringing the total to
6,373 features.

D. Text Features

Symptoms of ADHD, including impulsivity, inattention,
and hyperactivity, can often be observed in linguistic patterns
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Fig. 3. (a) The typical process of BERT. (b) The typical process of Wav2Vec.

and behaviours. Such linguistic indications may range from
inconsistent narrative structures and frequent changes in topic
to distinct syntactic formations. Text data offers an avenue
to identify and study these nuanced linguistic deviations.
Furthermore, during the recording of the experimental data,
on certain questions, we found that the responses between
ADHD patients and normal subjects were different to some
extent, e.g., P7’s and P9’s answers to the Q4 question are yeah
it i left pretty much everything last minute my dissertation in
the first one was like two weeks before i go i still every time
i get through something I am confused how I succeeded if
that makes sense I like I did not do I’ve never done like well
but i am always confused cos it is like a week or like a day
or like you know. and sometimes not always depends on how
important it is, respectively. Consequently, we employ deep
pre-trained models to derive linguistic and semantic attributes,
facilitating the identification of ADHD.

• BERT linguistic Features

BERT [48] comprises a stack of transformer encoder
layers, with its principal advantages encompassing bidi-
rectional pre-training and a unified architecture applicable
across various tasks such as modelling the linguistic
information. As depicted in Fig.3 (a), the initial step in
the BERT process involves preprocessing the transcripts
into sub-word-level tokens. Following this, special tokens
[CLS] and [SEP] are incorporated, and the text is con-
verted into word embeddings. These word embeddings
are subsequently fed into a transformer encoder to pro-
duce the final output embeddings.
In this research, we use the pre-trained BERT-base model
with the Hugging Face Transformers library 2 to extract
linguistic features from the text. The hyperparameters
were set as learning rate to 2e-5, batch size to 4, epochs
to 8, and max input length of 256 (sufficient to cover
most cases). Two special tokens, [CLS] and [SEP], were
added to the beginning and the end of each input.

• Wav2Vec2.0 Semantic Features

Wav2Vec2.0 [38] is a framework for self-supervised

2https://github.com/huggingface/transformers

learning of representations from audio data. As pre-
sented in Fig.3 (b), in the Wav2Vec model, the first
step involves feeding the speech data into a Convolu-
tional Neural Network (CNN) to acquire latent repre-
sentations. These representations are then passed into
a transformer encoder to create context representations.
Subsequently, these representations are used in a pre-
training task following a self-supervised training strategy.
Following pre-training, Wav2Vec undergoes fine-tuning
using a character inference component optimized with a
Connectionist Temporal Classification (CTC) loss. This
component comprises a 1D convolutional layer and a
softmax layer, where the convolutional layer operates
along the time dimension with a kernel size and stride set
to 1, Wav2Vec then processes the output by consolidating
consecutive repeated characters, removing blank tokens,
and utilizing separator tokens for word separation. The
resulting transcript, devoid of punctuation, encapsulates
semantic information from the speech data and can be
employed as input for transcript-based models.
In this research, we make use of the huggingface imple-
mentation of the wav2vec2.0 base model wav2vec2-base-
960h. This base model 3 is pre-trained and fine-tuned on
960 hours of Librispeech [63] on 16kHz sampled speech
audio.

IV. EXPERIMENTAL EVALUATIONS AND RESULTS

A. Classifiers

Drawing inspiration from a prior study [64] pursuing similar
research objectives, we have selected Support Vector Ma-
chine (SVM) and Logistic Regression (LR) as our classifiers
for distinguishing between ADHD participants and healthy
controls. Both SVM and LR, renowned supervised learning
algorithms, are particularly effective in binary classification
tasks. This choice is reinforced by their demonstrated capa-
bility in handling both semi-structured and structured data, a
critical factor in our study. Their robustness against overfitting
and adaptability in diverse feature classification scenarios, as
evidenced in similar studies, make them highly suitable for
accurately classifying and differentiating within our target
groups. Our experimental approach involves using selected
audio and text features as input for the classifier. Specifically,
SVM with Gaussian Kernel and 1.0 regularization parameter
are employed for feature classification. The leave-one-subject-
out (LOSO) cross-validation is used to evaluate the model and
all the evaluating data is speaker-independent.

B. Evaluation Metric

The receiver operating characteristics (ROC) and area under
the curve (AUC), confusion matrix, accuracy, precision, recall,
and F1-score a common metrics to evaluate a classification
model and can be calculated as shown from equations (1) to
(4). The True Positive, True Negative, False Positive, False
Negative are in short as TP, TN, FP and FN, respectively. F1
Score is the harmonic mean value of precision and recall and

3https://huggingface.co/facebook/wav2vec-base-960h
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TABLE III
THE ADHD CLASSIFICATION PERFORMANCE COMPARISON ON DIFFERENT FEATURES WITH LOSO CROSS-VALIDATION AND SVM CLASSIFIER. THE

BOLD NUMBER SHOWS THE BEST PERFORMANCE.

Modality Feature Set Accuracy Precision Recall F1-Score
ADHD Control AVG

Acoustic LPC 0.680 0.642 0.667 0.654 0.701 0.678
MFCC 0.704 0.661 0.714 0.687 0.729 0.703
GeMAPS 0.716 0.656 0.791 0.717 0.716 0.716
IS10 paraling 0.725 0.669 0.781 0.721 0.729 0.725
ComParE 2016 0.736 0.679 0.795 0.733 0.739 0.736
eGeMAPS 0.762 0.697 0.843 0.763 0.761 0.762

Text BERT 0.727 0.664 0.810 0.730 0.725 0.727
Wav2Vec 2.0 0.768 0.702 0.852 0.770 0.767 0.768

TABLE IV
THE ADHD CLASSIFICATION PERFORMANCE COMPARISON ON DIFFERENT FEATURES WITH LOSO CROSS-VALIDATION AND LR CLASSIFIER. THE

BOLD NUMBER SHOWS THE BEST PERFORMANCE.

Modality Feature Set Accuracy Precision Recall F1-Score
ADHD Control AVG

Acoustic LPC 0.695 0.656 0.691 0.673 0.714 0.693
MFCC 0.701 0.653 0.733 0.691 0.711 0.701
IS10 paraling 0.718 0.661 0.781 0.716 0.721 0.718
ComParE 2016 0.725 0.665 0.795 0.724 0.725 0.725
GeMAPS 0.734 0.675 0.801 0.732 0.735 0.734
eGeMAPS 0.784 0.717 0.867 0.785 0.783 0.784

Text BERT 0.740 0.678 0.815 0.740 0.740 0.740
Wav2Vec 2.0 0.753 0.686 0.842 0.756 0.750 0.753

both positive and negative F1 scores are reported to eliminate
the impact of unbalanced data. A higher F1 score indicates
better discrimination.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2× Precision×Recall

Precision+Recall
(4)

C. Acoustic Feature Analysis

Tables 3 and 4 display the classification results for all
feature sets using SVM and LR, respectively. In both cases,
both SVM and LR classifiers reveal insightful trends, there
is a clear progression in performance metrics as we move
from acoustic features like LPC to more specially designed
feature sets like eGeMAPS. Specifically, eGeMAPS stands out
as the best-performing acoustic feature set in both classifiers,
achieving the highest scores in accuracy, precision, recall,
and F1-score. This indicates its robustness and effectiveness
in distinguishing between ADHD and control groups. The
consistent improvement across different feature sets from LPC
to eGeMAPS suggests that manually designed hand-crafted
acoustic features capture better nuance, the improvement in
accuracy from LPC to eGeMAPS in the SVM classifier is
8.2% while the improvement is 8.9% with LR classifier, which
is crucial for effective ADHD detection. The similarity in
performance by the SVM and LR classifiers also highlights
that these findings are likely feature-driven rather than de-
pendent on the choice of the classification algorithm. This

consistency emphasizes the importance of feature selection,
particularly advanced acoustic features e.g., eGeMAPS, in
developing effective ADHD diagnostic tools.

Moreover, it can be found that general acoustic features like
LPCs and MFCCs are commonly used in speech-processing
tasks and represent the spectral characteristics of the audio
signal, such as the distribution of energy in different fre-
quency bands and can capture aspects of voice quality and
characteristics of speech, but they may not be specific enough
to capture the subtle variations in speech associated with
ADHD symptoms. Specially designed manual feature sets,
based on domain knowledge, go beyond basic acoustic char-
acteristics and emphasize the paralinguistic aspects of speech.
Paralinguistic features, such as frequency-related parameters,
energy-related parameters, and spectral parameters, are more
informative in capturing the nuances of speech that may indi-
cate ADHD-related symptoms. Generally, a relation between
speech abnormalities and ADHD traits seems plausible and
should be evaluated in more detail in future research.

D. Text Feature Analysis

Based on the provided results from Table III, it can be
indicated that both linguistic and semantic features contribute
effectively to the classification process, yet they exhibit distinct
differences in terms of accuracy. Specifically, in the context
of the SVM classifier, the linguistic feature set attained an
accuracy of 72.7%, while the semantic feature set surpassed
this, achieving a higher accuracy of 76.8%. Similarly, when
employing the LR classifier, the linguistic features registered
an accuracy of 74.0%, whereas the semantic features demon-
strated a marginally superior performance with an accuracy
of 75.3%. These results underscore the nuanced efficacy of
semantic features in comparison to linguistic features across
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TABLE V
THE ADHD CLASSIFICATION PERFORMANCE COMPARISON ON INTEGRATED FEATURES WITH LOSO CROSS-VALIDATION AND SVM CLASSIFIER. THE

BOLD NUMBER SHOWS THE BEST PERFORMANCE.

Feature Set Accuracy Precision Recall F1-Score
ADHD Control AVG

IS10 paraling+BERT 0.729 0.668 0.805 0.730 0.729 0.729
ComParE 2016+BERT 0.736 0.675 0.810 0.736 0.736 0.736
eGeMAPS+BERT 0.740 0.674 0.829 0.744 0.737 0.740
ComParE 2016+Wav2Vec2.0 0.760 0.694 0.843 0.761 0.758 0.760
IS10 paraling+Wav2Vec2.0 0.768 0.704 0.848 0.769 0.768 0.768
eGeMAPS+Wav2vec2.0 0.773 0.706 0.857 0.774 0.771 0.773

TABLE VI
THE ADHD CLASSIFICATION PERFORMANCE COMPARISON ON INTEGRATED FEATURES WITH LOSO CROSS-VALIDATION AND LR CLASSIFIER. THE

BOLD NUMBER SHOWS THE BEST PERFORMANCE.

Feature Set Accuracy Precision Recall F1-Score
ADHD Control AVG

IS10 paraling+BERT 0.708 0.647 0.786 0.710 0.706 0.708
eGeMAPS+BERT 0.731 0.664 0.829 0.737 0.725 0.731
ComParE 2016+BERT 0.747 0.680 0.834 0.751 0.743 0.747
IS10 paraling+Wav2Vec2.0 0.767 0.694 0.872 0.773 0.760 0.767
ComParE 2016+Wav2Vec2.0 0.773 0.709 0.848 0.772 0.773 0.773
eGeMAPS+Wav2vec2.0 0.784 0.722 0.852 0.782 0.786 0.784

B)  eGeMAPS ROC

C) Wav2Vec 2.0 Confusion Matrix 

A) eGeMAPS Confusion Matrix

D) Wav2Vec 2.0 ROC

Fig. 4. A) Confusion Matrix for eGeMAPS Feature Using SVM Classifier. B) ROC Curve for eGeMAPS Feature Using SVM Classifier. C) Confusion Matrix
for Wav2Vec 2.0 Semantic Feature Using SVM Classifier. D) ROC curve for Wav2Vec 2.0 Semantic Feature Using SVM Classifier. The horizontal is the
actual label and the vertical is the predicted label.

different classification models. In conclusion, leveraging state-
of-the-art natural language processing and speech processing
models can be effective in identifying ADHD-related patterns
in text data. The data shows that while linguistic features are
valuable for ADHD classification, semantic features are more
insightful, capturing finer details crucial for this task. The
superior accuracy of the semantic features underscores the
importance of grasping the underlying meaning and context
of words. This suggests that a focus on semantics yields a
more accurate classification compared to solely relying on the
structural aspects of language.

However, compared to the speech modality, the text modal-

ity requires more computational resources while achieving
similar performance. In this experiment, there are two BERT
models available, namely BERT-large and BERT-base. How-
ever, due to the computational limitations (we only have access
to a workstation equipped with 4 Nvidia GTX 1080ti GPUs
and 16 GB of RAM), we opted to use the BERT-base model.
It can be assumed that using a larger model would likely result
in higher accuracy. However, as the text data are collected by
using specially designed questionnaires, they cannot meet the
general situations.

To represent the classification accuracy more intuitively,
Fig.4 displays the confusion matrices and ROC curves for
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TABLE VII
COMPARISON OF ADHD WITH DIFFERENT MODALITIES USING MACHINE LEARNING METHOD.

Author [ref] Dataset Modality ML Model Accuracy (%)
Das et al. [65] 28 ADHD 22 Control Pupillometric SVM 76.1%
Ning et al. [66] 118 ADHD 98 Control MRI LR 75.8%
Luo et al. [67] 52 ADHD 44 Control MRI SVM 76.6%
Kim et al. [68] 34 ADHD 45 Normal EEG Ensemble 81.0%
Our Method 10 ADHD 12 Control Audio LR 78.4%
Our Method 10 ADHD 12 Control Text SVM 76.8%

the two most discriminative features in both the speech and
text modalities using the SVM classifier. As shown in Fig.4,
both features’ performance is far above the random selection,
based on the eGeMAPS feature set, 77 out of 252 healthy
audio clips are misclassified as ADHD while 33 of normal
controls are classified as ADHD. When using the Wav2Vec
2.0 model, there were 76 and 31 misclassified subjects and
controls, respectively.
E. Integrated Feature Analysis

In order to investigate whether acoustic features and text
features could be complementary to detect ADHD, We simply
concatenate the acoustic features (eGeMAPS, IS10 paraling,
ComParE 2016) and text features (BERT, Wav2Vec 2.0) as
integrated features. The fused feature is then applied to the
SVM and LR for ADHD classification. The results of inte-
grated features are shown in Table V and Table VI.

Among all the integrated features, the feature set
”eGeMAPS+Wav2Vec2.0” consistently emerges as the top
performer in ADHD classification across both SVM and LR
classifiers, underscoring its robustness and effectiveness. It
achieves the highest scores in all key metrics: Accuracy
(0.773 in SVM, 0.784 in LR), Precision (0.706 in SVM,
0.722 in LR), Recall (0.857 in SVM), and F1-Score (0.782
in LR). This superior performance indicates the strong ca-
pability of this feature set in accurately classifying ADHD
cases. Notably, there is a marked improvement in performance
from ”IS10˙paraling+BERT” to ”eGeMAPS+Wav2Vec2.0”,
highlighting the effectiveness of combining advanced acous-
tic features (eGeMAPS) with sophisticated language models
(Wav2Vec2.0). Furthermore, the LR classifier generally ex-
hibits a slight enhancement in performance metrics over the
SVM classifier for the same feature sets, suggesting that LR
may be more adept at handling this specific classification task.
This consistency and improvement across different classifiers
emphasize the potential of ”eGeMAPS+Wav2Vec2.0” as a
reliable and powerful tool in the domain of ADHD diagnosis.

In summary, the results indicate that all the feature sets
exhibit greater robustness in identifying ADHD patients com-
pared to identifying individuals without ADHD. This obser-
vation may be attributed to the data imbalance between the
two groups, as individuals with ADHD tend to engage in
tangential speech patterns when compared to normal controls.
Consequently, the dataset contains a larger volume of ADHD-
related data, potentially contributing to the enhanced perfor-
mance in identifying ADHD cases. Besides, while paralinguis-
tic changes show promise as potential indicators of ADHD,
relying solely on the acoustic modality may not provide suffi-
cient information for accurately diagnosing the condition. The

integration of linguistic features into the analysis consistently
yields substantial enhancements in the predictive accuracy of
ADHD, even in cases where the transcripts exhibit relatively
high word error rates.
F. Comparison With Traditional Methods

We also compared our method with other traditional data
sources such as EEG and MRI in recent years. The results
are shown in Table VII. It can be found that the traditional
data source reveals high effectiveness, with EEG leading up
to 81.0% accuracy. These methods, however, typically involve
larger datasets compared to our study using audio and text,
where the number of subjects is notably smaller. Despite this,
the accessibility and competitive accuracy of audio and text
data, even with smaller dataset sizes, offer a practical and
promising alternative, particularly in diverse and resource-
constrained settings. Our approach could significantly broaden
the scope and feasibility of ADHD research and diagnosis.

V. DISCUSSIONS AND CONCLUSIONS

This work shows that using audio and text features to detect
ADHD is feasible with considerable results. However, further
improvement is possible in various aspects.

In the course of our research, we encountered a notable
disparity in the gender distribution among the participants
included in our dataset. Specifically, our dataset was com-
posed of an approximately equal split between individuals
diagnosed with ADHD, with 50% being males and 50%
females, while the control group consisted of 66.7% males
and 33.3% females. This observed imbalance was particularly
pronounced in terms of the representation of individuals
diagnosed with ADHD across different genders. It’s worth
highlighting that this gender imbalance within our dataset
surpasses the expected male-to-female incidence ratio of 1.6:1,
which is commonly reported in the DSM-V [7]. This manual
serves as a reference for the prevalence of ADHD among
different genders in clinical and research settings. Importantly,
it is crucial to acknowledge that our dataset, although derived
from real-world recordings and clinical data, may not provide a
completely accurate reflection of the broader population’s gen-
der distribution to ADHD. The skew in gender representation
within our dataset underscores the complexities of studying
and interpreting the real-world prevalence and characteristics
of ADHD, which may vary across different demographic
groups. Therefore, any findings or conclusions drawn from this
dataset should be interpreted in light of this inherent gender
bias.

Secondly, It’s important to recognize the impact of inherent
factors in data collection, particularly the limited number of
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participants, which can lead to reliance on individual-level
outcomes and affect the robustness and generalizability of
the findings. Remarkably, despite the challenges posed by this
limited dataset, it is noteworthy that several features exhibited
notably high levels of accuracy. Besides, when unimodal
data is limited, ADHD’s heterogeneity necessitates a multi-
perspective approach, making the use of multimodal data,
including brain MRI, physiological signals, and behavioural
tests, essential for comprehensive study. By employing Deep
Learning models, which excel in integrating varied data
through their hierarchical structure, each modality is effec-
tively analyzed and combined. Both of the two points prove
that the expansion of datasets in future research is crucial for
enhancing ADHD classification, as larger datasets significantly
improve model performance. With more comprehensive train-
ing data, models are more likely to detect broader patterns and
nuances, leading to results that are not only more accurate but
also more reliable. This underscores the substantial potential
of expanded datasets in advancing our understanding and
capabilities in ADHD research.

A third noteworthy observation pertains to the disparity in
data availability between speech and text modalities concern-
ing individuals with ADHD and normal controls. This dispar-
ity arises partly due to the characteristic symptomatology of
ADHD, including hyperactivity, resulting in a higher volume
of data in speech and text modalities from individuals with
ADHD. An alternative way to address the data imbalance issue
is to use transfer learning where we can transfer the knowledge
from a related task that has already been learned. Transfer
learning offers a pathway to leverage the accumulated knowl-
edge from related tasks to improve the accuracy and reliability
of ADHD classification models. Transfer learning allows us to
benefit from insights and features learned from related tasks.
Significantly improving the performance and generalization of
models even in the face of unbalanced datasets. In addition,
migration learning typically requires fewer labelled examples,
making it particularly valuable in situations where access to
data is limited.

Lastly, the automatic extraction of features from text pat-
terns using large-scale pre-trained models has demonstrated
encouraging outcomes. However, it’s worth noting that in
the domain of acoustic patterns, the automatic extraction of
features using neural networks remains an underexplored area.
This presents a compelling avenue for future research and
exploration. Besides, the integration of audio and text features
demonstrates promising results in our study. In essence, it
suggests that the interplay between acoustic and linguistic
elements is crucial for a more comprehensive understanding
and prediction of ADHD, transcending the limitations of each
modality when considered in isolation. This finding empha-
sizes the importance of a multimodal approach that harnesses
both paralinguistic and linguistic cues for a more robust and
accurate assessment of ADHD.

Overall, we hold the perspective that leveraging audio and
text data for ADHD classification represents a worthwhile
pursuit. This is due to the ease and cost-effectiveness of
collecting such data and the potential for generalizable results.
Consequently, this approach holds promise for potential appli-

cation in large-scale ADHD screening efforts. Nevertheless, it
is crucial to emphasize that, in its current state, this approach
does not supplant the significance of clinical diagnosis con-
ducted by seasoned experts, which continues to represent the
benchmark for ADHD assessment.

REFERENCES

[1] J. Campion, A. Javed, C. Lund, et al., “Public mental health: required
actions to address implementation failure in the context of COVID-19,”
The Lancet Psychiatry, vol. 9, no. 2, pp. 169–182, 2022.

[2] K. O. Plowden, T. Legg, and D. Wiley, “Attention deficit/hyperactivity
disorder in adults: A case study,” Psychiatric Nursing, vol. 38, pp. 29–
35, 2022.

[3] C. Mohr-Jensen and H. C. Steinhausen, “A meta-analysis and sys-
tematic review of the risks associated with childhood attention-deficit
hyperactivity disorder on long-term outcome of arrests, convictions, and
incarcerations.,” Clinical Psychology Review, vol. 48, pp. 32–42, 2016.

[4] J. Posner, G. V. Polanczyk, and E. J. S. Sonuga-Barke, “Attention-deficit
hyperactivity disorder,” The Lancet, vol. 395, pp. 450–462, 2020.

[5] S. A. Chong, “Mental health in singapore: a quiet revolution?,” Annals-
Academy of Medicine Singapore, vol. 36, no. 10, p. 795, 2007.

[6] BBC, “ADHD diagnosis for adult ‘can take seven years’.” Accessed
Aug. 2023. https://www.bbc.co.uk/news/uk-england-44956540, 2018.

[7] G. Arbanas, “Diagnostic and statistical manual of mental disorders
(DSM-V),” Alcoholism and Psychiatry Research, pp. 61–64, 2015.

[8] J. A. Fayyad, N. A. Sampson, I. H. Hwang, et al., “The descriptive
epidemiology of DSM-IV adult ADHD in the World Health Orga-
nization World Mental Health surveys,” ADHD Attention Deficit and
Hyperactivity Disorders, vol. 9, pp. 47–65, 2016.

[9] P. Song, M. Zha, Q. Yang, et al., “The prevalence of adult attention-
deficit hyperactivity disorder: A global systematic review and meta-
analysis,” Journal of Global Health, vol. 11, 2021.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[11] H. Duan, Y. Long, S. Wang, H. Zhang, C. G. Willcocks, and L. Shao,
“Dynamic unary convolution in transformers,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2023.

[12] J. Guo, W. Cao, B. Nie, and Q. Qin, “Unsupervised learning composite
network to reduce training cost of deep learning model for colorectal
cancer diagnosis,” IEEE Journal of Translational Engineering in Health
and Medicine, vol. 11, pp. 54–59, 2022.

[13] Y. Zhang, T. Liu, V. Lanfranchi, and P. Yang, “Explainable tensor multi-
task ensemble learning based on brain structure variation for Alzheimer’s
disease dynamic prediction,” IEEE Journal of Translational Engineering
in Health and Medicine, vol. 11, pp. 1–12, 2022.

[14] M. A. Ottom, H. A. Rahman, and I. D. Dinov, “Znet: deep learning
approach for 2d mri brain tumor segmentation,” IEEE Journal of
Translational Engineering in Health and Medicine, vol. 10, pp. 1–8,
2022.

[15] S. R. Chetupalli, P. Krishnan, N. Sharma, et al., “Multi-modal point-
of-care diagnostics for COVID-19 based on acoustics and symptoms,”
IEEE Journal of Translational Engineering in Health and Medicine,
vol. 11, pp. 199–210, 2023.

[16] D. Bzdok and A. Meyer-Lindenberg, “Machine learning for precision
psychiatry: opportunities and challenges,” Biological Psychiatry: Cog-
nitive Neuroscience and Neuroimaging, vol. 3, no. 3, pp. 223–230, 2018.

[17] Y. Tang, J. Sun, C. Wang, et al., “ADHD classification using auto-
encoding neural network and binary hypothesis testing,” Artificial Intel-
ligence in Medicine, vol. 123, p. 102209, 2022.

[18] Y. K. Boroujeni, A. A. Rastegari, and H. Khodadadi, “Diagnosis of
attention deficit hyperactivity disorder using non-linear analysis of the
EEG signal.,” IET Systems Biology, vol. 135, pp. 260–266, 2019.

[19] J. E. Koh, C. P. Ooi, N. S. Lim-Ashworth, et al., “Automated classi-
fication of attention deficit hyperactivity disorder and conduct disorder
using entropy features with ECG signals,” Computers in Biology and
Medicine, vol. 140, p. 105120, 2022.

[20] C. L. Nash, R. Nair, and S. M. Naqvi, “Machine learning and ADHD
mental health detection - a short survey,” International Conference on
Information Fusion, pp. 1–8, 2022.

[21] T. Zhang, A. M. Schoene, S. Ji, and S. Ananiadou, “Natural language
processing applied to mental illness detection: a narrative review,” NPJ
Digital Medicine, vol. 5, no. 1, p. 46, 2022.



IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 11

[22] D. M. Low, K. H. Bentley, and S. S. Ghosh, “Automated assessment of
psychiatric disorders using speech: A systematic review,” Laryngoscope
Investigative Otolaryngology, vol. 5, pp. 96 – 116, 2020.

[23] B. Stasak, J. Epps, and R. Goecke, “Elicitation design for acoustic de-
pression classification: An investigation of articulation effort, linguistic
complexity, and word affect.,” Interspeech, vol. 17, pp. 834–838, 2017.

[24] J. Han, Z. Zhang, C. Mascolo, et al., “Deep learning for mobile
mental health: Challenges and recent advances,” IEEE Signal Processing
Magazine, vol. 38, no. 6, pp. 96–105, 2021.

[25] P. Bellec, C. Chu, F. Chouinard-Decorte, et al., “The neuro bureau
ADHD-200 preprocessed repository,” Neuroimage, vol. 144, pp. 275–
286, 2017.

[26] V. Pereira-Sanchez and F. X. Castellanos, “Neuroimaging in attention-
deficit/hyperactivity disorder,” Current Opinion in Psychiatry, vol. 34,
no. 2, p. 105, 2021.

[27] S. A. Almaghrabi, S. R. Clark, and M. Baumert, “Bio-acoustic features
of depression: A review,” Biomedical Signal Processing and Control,
vol. 85, p. 105020, 2023.

[28] A. Parola, A. Simonsen, V. Bliksted, and R. Fusaroli, “Voice patterns
in schizophrenia: A systematic review and bayesian meta-analysis,”
Schizophrenia Research, vol. 216, pp. 24–40, 2020.

[29] N. Cummins, S. Scherer, J. Krajewski, et al., “A review of depression
and suicide risk assessment using speech analysis,” Speech Communi-
cation, vol. 71, pp. 10–49, 2015.

[30] P. Lopez-Otero, L. Dacia-Fernandez, and C. Garcia-Mateo, “A study of
acoustic features for depression detection,” 2nd International Workshop
on Biometrics and Forensics, pp. 1–6, 2014.

[31] T. Alhanai, R. Au, and J. Glass, “Spoken language biomarkers for
detecting cognitive impairment,” Automatic Speech Recognition and
Understanding Workshop, pp. 409–416, 2017.

[32] S. Nasreen, J. Hough, M. Purver, et al., “Detecting Alzheimer’s disease
using interactional and acoustic features from spontaneous speech,”
Interspeech, 2021.

[33] M. Rohanian, J. Hough, and M. Purver, “Alzheimer’s dementia recogni-
tion using acoustic, lexical, disfluency and speech pause features robust
to noisy inputs,” ArXiv preprint arXiv:2106.15684, 2021.

[34] F. Eyben, K. R. Scherer, B. W. Schuller, et al., “The geneva minimal-
istic acoustic parameter set GeMAPS for voice research and affective
computing,” IEEE Transactions on Affective Computing, vol. 7, no. 2,
pp. 190–202, 2015.

[35] B. Schuller, S. Steidl, A. Batliner, et al., “The Interspeech 2010
paralinguistic challenge.,” Interspeech, pp. 2794–2797, 2010.

[36] B. Schuller, S. Steidl, A. Batliner, J. Hirschberg, et al., “The Interspeech
2016 computational paralinguistics challenge: Deception, sincerity &
native language,” Interspeech, vol. 8, pp. 2001–2005, 2016.

[37] F. Haider, S. De La Fuente, and S. Luz, “An assessment of paralinguistic
acoustic features for detection of alzheimer’s dementia in spontaneous
speech,” IEEE Journal of Selected Topics in Signal Processing, vol. 14,
no. 2, pp. 272–281, 2019.

[38] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representations,”
Advances in neural information processing systems, vol. 33, pp. 12449–
12460, 2020.

[39] Y. Qin, W. Liu, Z. Peng, S.-I. Ng, J. Li, H. Hu, and T. Lee, “Exploiting
pre-trained ASR models for alzheimer’s disease recognition through
spontaneous speech,” ArXiv preprint arXiv:2110.01493, 2021.

[40] S. Li, Y. Sun, R. Nair, and S. M. Naqvi, “Enhancing ADHD detection
using DIVA interview-based audio signals and a two-stream network,”
2023 IEEE International Performance, Computing, and Communications
Conference (IPCCC), pp. 291–296, 2023.

[41] S. Li, R. Nair, and S. M. Naqvi, “Detecting ADHD from speech
using full-band and sub-band convolution fusion network,” 2023 IEEE
SENSORS, pp. 1–4, 2023.

[42] P. E. Engelhardt, M. Corley, J. T. Nigg, and F. Ferreira, “The role
of inhibition in the production of disfluencies,” Memory & Cognition,
vol. 38, no. 5, pp. 617–628, 2010.

[43] M. Kamath, C. Dahm, J. Tucker, et al., “Sensory profiles in adults with
and without ADHD,” Research in developmental disabilities, vol. 104,
p. 103696, 2020.

[44] P. P. Sinha, R. Mishra, R. Sawhney, et al., “Suicidal: A multipronged
approach to identify and explore suicidal ideation in Twitter,” Proceed-
ings of the 28th ACM International Conference on Information and
Knowledge Management, pp. 941–950, 2019.

[45] K. Allen, A. L. Davis, and T. Krishnamurti, “Indirect identification of
perinatal psychosocial risks from natural language,” IEEE Transactions
on Affective Computing, 2021.

[46] A. Yates, A. Cohan, and N. Goharian, “Depression and self-harm risk
assessment in online forums,” ArXiv preprint arXiv:1709.01848, 2017.

[47] M. R. Morales and R. Levitan, “Speech vs. text: A comparative anal-
ysis of features for depression detection systems,” 2016 IEEE Spoken
Language Technology Workshop (SLT), pp. 136–143, 2016.

[48] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” ArXiv,
vol. abs/1810.04805, 2019.

[49] A. Balagopalan, B. Eyre, F. Rudzicz, and J. Novikova, “To BERT or
not to BERT: comparing speech and language-based approaches for
Alzheimer’s disease detection,” arXiv preprint arXiv:2008.01551, 2020.

[50] S. Luz, F. Haider, S. de la Fuente, D. Fromm, and B. MacWhinney,
“Detecting cognitive decline using speech only: The Adresso challenge,”
arXiv preprint arXiv:2104.09356, 2021.

[51] Y. Li, S. Li, C. Nash, S. M. Naqvi, and R. Nair, “24 intelligent sensing
in ADHD trial ISAT–pilot study,” Journal of Neurology, Neurosurgery
and Psychiatry, vol. 94, p. 2, 2023.

[52] M. Sandberg, “Cambridge neuropsychological testing automated bat-
tery,” Encyclopedia of clinical neuropsychology. Springer, pp. 480–482,
2011.

[53] R. C. Kessler, L. Adler, M. Ames, et al., “The world health organization
adult ADHD self-report scale ASRS: a short screening scale for use in
the general population,” Psychological Medicine, vol. 35, no. 2, pp. 245–
256, 2005.

[54] J. J. S. Kooij and M. Francken, “Diagnostic Interview for ADHD in
adults (DIVA 2.0),” 2010.

[55] B. McFee, C. Raffel, D. Liang, et al., “librosa: Audio and music
signal analysis in python,” Proceedings of the 14th python in science
conference, vol. 8, pp. 18–25, 2015.
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