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Abstract: Cardiovascular diseases (CVDs), a group of disorders affecting the heart or blood vessels,
are the primary cause of death worldwide, with an immense impact on patient quality of life and
disability. According to the World Health Organization, CVD takes an estimated 17.9 million lives
each year, where more than four out of five CVD deaths are due to heart attacks and strokes. In the
decades to come, an increased prevalence of age-related CVD, such as atherosclerosis, coronary artery
stenosis, myocardial infarction (MI), valvular heart disease, and heart failure (HF) will contribute
to an even greater health and economic burden as the global average life expectancy increases and
consequently the world’s population continues to age. Considering this, it is important to focus our
research efforts on understanding the fundamental mechanisms underlying CVD. In this review,
we focus on cellular senescence and mitochondrial dysfunction, which have long been established
to contribute to CVD. We also assess the recent advances in targeting mitochondrial dysfunction
including energy starvation and oxidative stress, mitochondria dynamics imbalance, cell apoptosis,
mitophagy, and senescence with a focus on therapies that influence both and therefore perhaps
represent strategies with the most clinical potential, range, and utility.
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1. Cellular Senescence

Cellular senescence was originally defined as the irreversible exit from the cell cy-
cle [1]. However, over recent years the definition of senescence has evolved and now
includes many other characteristics such, as mitochondrial dysfunction, resistance to apop-
tosis, and the activation of a hypersecretory phenotype termed the senescence-associated
secretory phenotype (SASP) [2]. Arguably, these characteristics more accurately define
senescence given the substantive evidence that non-proliferative, post-mitotic cells, such
as cardiomyocytes, can become senescent [3–6]. Similarly, while originally described as a
consequence of telomere attrition following extensive proliferation [7,8], it is now accepted
that numerous types of stresses which result in DNA damage within the genome or within
the telomeres can activate pathways controlling senescence [9] (Figure 1). However, in both
proliferative and post-mitotic cell populations, senescence induction is associated with
the activation of either, or both, p21 and p16, cyclin-dependent kinase inhibitors that are
components of the tumour suppressor pathways governed by the transcription factor p53
and the retinoblastoma protein (RB), respectively [10]. The traditional view that cellular
senescence evolved as a tumour-suppressive mechanism has recently been challenged,
as evidence suggests that senescent cells contribute to several important physiological
processes throughout life, including tissue development, wound healing, and tissue re-
pair [11]. In addition to these beneficial roles, cellular senescence has also been shown to
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be crucial in tissue pathophysiology, representing a key driver of ageing and age-related
diseases [12–14]. Therefore, cellular senescence can be viewed as an example of antagonistic
pleiotropy, which is a cellular program which is beneficial in one setting but deleterious in
another [15].

Within the cardiovascular system, models of induced and attenuated senescence have
implicated senescence in the pathophysiology of myocardial remodelling (age-related,
chemotherapy-induced [16], and post-injury) [3,4,17–19], hypertension, atherosclerosis [20],
and the development of aortic aneurysms [21], and have been extensively reviewed [22–27].
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2. Mitochondrial Abnormalities in Cardiovascular Diseases

Mitochondria are double-membraned organelles with their own circular genome,
mitochondrial DNA (mtDNA), which is replicated independently of the host genome [28].
Mitochondria are involved in diverse yet interconnected functions, including the produc-
tion of adenosine triphosphate (ATP), and the regulation of nutritional metabolism, calcium
homeostasis, and programmed cell death [29–31]. They are found in the cytoplasm of
nearly all eukaryotic cells as highly dynamic networks, undergoing coordinated cycles of
biogenesis, fusion, fission, and degradation (mitophagy) to sustain their homeostasis and
to adapt energy production based on the cell’s needs [32]. Proper mitochondrial function
and dynamics are particularly necessary in tissues and cells with high energy demands
such as the heart, and particularly in cardiomyocytes, which continuously require ATP to
sustain cardiac activity. In adult cardiomyocytes, mitochondria occupy nearly one-third of
the total intracellular volume [33] and provide approximately 95% of the ATP consumed
by the heart [34]. It is, therefore, unsurprising that functional abnormalities in cardiac
mitochondria have emerged as a key factor in cardiovascular disease (CVD) leading to
decreased ATP production and energy supply, increased reactive oxygen species (ROS)
production, cell apoptosis, and mitochondrial dynamic imbalance [35].
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2.1. Energy Starvation and Oxidative Stress

Decreased energy supply is considered to be a leading consequence of mitochondrial
dysfunction. The heart’s voracious requirement for energy, in the form of ATP, mainly relies
on oxidative phosphorylation (OXPHOS) or β-oxidation of fatty acids and the tricarboxylic
acid (TCA) cycle in the mitochondria. During pathological myocardial remodelling, there
is a reduction in the levels of carnitine in the heart [36], an essential cofactor for mediat-
ing the entry of fatty acids into the mitochondria at the site of β-oxidation [37]. Due to
this reduction in fatty acids’ availability within the mitochondria, cardiac metabolism
is reprogrammed towards increased reliance on glucose as the energy resource with a
significant increase in glycolysis, to maintain ATP production. However, ATP generated
from glycolysis contributes less than 5% of the total ATP consumed [36], which is not
enough to compensate for the reduction in fatty acid oxidation, and therefore, cardiac ATP
is progressively depleted. The role of energy deprivation in the induction and pathogenesis
of heart failure (HF) is well supported by clinical evidence, in which therapeutic measures
to reduce energy consumption have been demonstrated to improve survival while treat-
ment increasing energy demand is detrimental [38]. In the mitochondria, the synthesis of
ATP takes place in the electron transport chain (ETC) [39]. Reduced nicotinamide adenine
dinucleotide (NADH) and reduced flavin adenine dinucleotide (FADH2) generated from
the Krebs cycle, and from β-oxidation, transfer protons and electrons through the ETC,
creating an electrochemical gradient that is then used to activate ATP synthase and pro-
duces ATP. Alterations in mtDNA genes such as NADH-dehydrogenase genes (MT-ND1,
MT-ND5 and MT-ND6), cytochrome b (MT-CYB), cytochrome c oxidase I and II (MT-CO1
and MT-CO2), and ATP synthase 6 (MT-ATP6), have been described in dilated cardiomy-
opathies [40]. Reduced activities of complexes I and IV, as well as of the NADH phosphate
(NADPH)-transhydrogenase and the Krebs cycle enzymes have been also observed in
patients with HF [41,42]. Interestingly, some studies suggest that mtDNA mutations induce
cardiovascular senescence and CVD, as demonstrated by the observation that Polgm/m mice,
which are prone to the accumulation of mitochondrial DNA mutations, have increased
expression of senescent markers p16ink4a and display early onset cardiomyopathy [43,44]. It
remains unclear what mechanism mediates this induction, but an increase in mitochondrial
ROS (mtROS) has been proposed as a causal factor.

Mitochondrial ATP production is accompanied by the generation of ROS (Figure 2), a
generic term for an array of short-lived and unstable free radicals that contain oxygen with
vastly different properties and biological functions that range from signalling (when strictly
regulated) to causing cell damage [45]. Physiologically, ROS-mediated signalling pathways
are associated with cell survival and proliferation, combatting infectious agents, and have
mitogenic effects on cells [46,47]. However, excessive ROS production drives oxidative
stress, a deleterious process that potentially causes irreversible damage to various molecules
and structures within the cell [48], leading to further mitochondrial dysfunction, oxidative
stress, and cell death [30,49]. Increased ROS appears to be capable of inducing senescence
through several mechanisms. Telomeres are particularly sensitive to ROS-induced damage,
possibly due to their guanine-rich regions, which increase their susceptibility to oxida-
tion [50,51], and increased ROS can accelerate telomere attrition contributing to telomere
dysfunction, premature senescence, and accelerated ageing [52]. ROS also generate DNA le-
sions in the form of single-stranded DNA and/or double-stranded breaks (DSBs) within the
genomic or telomeric DNA. Eventually, as a result of telomere shortening or DNA damage,
activation of the DNA damage response (DDR) occurs [53]. The DDR is an evolutionarily
conserved signal transduction pathway required for genome integrity preservation. It
coordinates cellular efforts to repair DNA damage, which, if unsuccessful, directs cell fate
towards apoptosis or senescence thereby impeding the propagation of corrupted genetic
information [54]. The DDR is characterised by the recruitment and activation of two large
protein sensor kinases at the site of the lesion: ataxia telangiectasia and Rad3-related (ATR)
protein when single-stranded DNA is exposed, and ataxia-telangiectasia mutated (ATM)
protein at DSBs. The recruitment of ATR or ATM to the lesion causes the local formation
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of DNA damage foci containing the phosphorylated form of the histone H2AX (γH2AX)
and ultimately inducing cell-cycle arrest through the activation of checkpoint proteins,
including p53 [55]. Furthermore, once senescent, cells exhibit a decreased mitochondrial
membrane potential, increased proton leak, and enhanced production of mtROS [56]. As
such, the elevated ROS observed in senescent cells may drive mtDNA damage creating
a positive feedback loop leading to further increases in ROS and DNA damage highlight-
ing the cyclical interactions between mitochondrial dysfunction, oxidative stress, and
senescence, and illustrating how the initiation of any of these processes could lead to a
downward spiral in tissue function.

Figure 2. Illustrates mitochondrial reactive oxygen species (mtROS) production within the electron
transport chain (ETC). Electrons, initially provided by NADH in complex I and FADH2 in complex
II, traverse through ubiquinone to reach complex III. Subsequently, they move to complex IV via
cytochrome c, where they combine with molecular oxygen to generate water. Proton-pumping
activities by complex I, complex III, and complex IV into the intermembrane space establish a proton
gradient crucial for ATP synthesis. During oxidative phosphorylation, electron leakage occurs,
leading to the interaction with molecular oxygen and the formation of superoxide (O2

−·). Complex
I and complex III serve as the primary sites for ROS production within the mitochondria, while
complex II also contributes. Complex III directs superoxide production both towards the matrix and
the intermembrane space, whereas complex I and complex II exclusively produce ROS towards the
matrix. Key components and molecules involved include coenzyme Q (CoQ), cytochrome c (Cyt c),
electrons (e−), protons (H+), adenosine diphosphate (ADP), adenosine triphosphate (ATP), reduced
(NADH) and oxidized (NAD+) nicotinamide adenine dinucleotide, flavin adenine dinucleotide
(FAD), oxygen (O2).

Perhaps unsurprisingly, given the high-volume density of mitochondria required to
fulfil the heart’s energy demand, the heart has both high mtROS production and elevated
mtROS, which have been shown to contribute to the pathophysiology of a variety of CVDs,
including atherosclerosis, cardiac ischemia/reperfusion (IR) injury, HF, cardiac hypertro-
phy, and degenerative aortic valve disease [30,34,49,57]. ROS has also been shown to be
a powerful inducer of senescence in multiple tissues and cell types, including the heart.
Monoamine oxidase A (MAO-A) is a protein linked with driving oxidative stress; it is
located at the outer mitochondrial membrane, involved in catalysing the oxidative deam-
ination of monoamines, and produces hydrogen peroxide as one of its by-products [58].
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Interestingly, cardiomyocyte-specific overexpression of MAO-A results in elevated ROS,
increased senescence and mice display a dilated cardiomyopathy and myocardial dys-
function [59]. All of these can be rescued by treatment with antioxidants [4]. Similarly,
the accelerated ageing mouse model nfkb1−/− showed increased ROS, telomere dysfunc-
tion, and cardiomyocyte hypertrophy [60]. Similar observations have been reported in
more clinically relevant models: aged mice treated with the mitochondrial-targeted pep-
tide SS-31 elamipretide had reduced myocardial ROS and improved cardiac function,
which was associated with reduced senescence [61]. Furthermore, aged, senescent car-
diomyocytes demonstrated an overall decline in the expression of most mitochondrial
genes—particularly those genes involved in the ETC—and mitochondrial ultrastructural
defects detected by transmission electron microscopy [61]. Myocardial infarction (MI)
results in alterations to mitochondrial dynamics, culminating in increased ROS production
and increased oxidative stress, particularly when followed by the clinical gold-standard
treatment of reperfusion [62]. Several studies have shown that, even in this acute setting of
increased oxidative stress, senescence is induced in multiple cell populations, including
cardiomyocytes, and that these cells are active participants in post-MI myocardial remod-
elling since their elimination attenuates inflammation remodelling and improves functional
outcomes [17,19].

Being so closely associated with cardiomyocyte dysfunction, mitochondrial damage is
of major interest when exploring the mechanisms underpinning the cardiotoxicity of many
otherwise beneficial therapeutics. This is relevant to both preclinical drug development,
where cardiac liabilities remain a leading cause of drug attrition [63,64], but also to therapies
approved for clinical use today which risk future withdrawal from the market due to
cardiac adverse drug reactions (ADRs) [65]. Both traditional and new-generation oncology
treatments are plagued by off-target cardiotoxic effects [66]. With cardiovascular disease
being a leading noncancer cause of death in an ever-growing population of cancer survivors,
understanding the mechanisms behind these cardiotoxicities is increasingly important [67].
As a case in point, anthracycline chemotherapies are notoriously chronically cardiotoxic
and have been shown to deleteriously affect mitochondrial function in many ways.

Doxorubicin (DOX), an anthracycline commonly used in clinics, was historically
shown to redox cycle via interactions with mitochondrial complex I, generating excessive
ROS as a result [68,69]. Studies have subsequently demonstrated that DOX has a high
affinity for cardiolipin, a lipid housed in the inner mitochondrial membrane which is
essential for effective energy metabolism and proper mitochondrial function [70]. Notably,
DOX becomes concentrated in the mitochondria of isolated neonatal rat cardiomyocytes,
supporting the notion that this organelle is particularly vulnerable to off-target anthracy-
cline toxicity [71]. Zhang and colleagues showed that mitochondrial function and oxidative
phosphorylation pathways were disturbed in cardiomyocytes isolated from DOX-dosed
mice, and that this was dependent on the topoisomerase IIβ (TopIIβ) enzyme which is
thought to be crucial in the cardiotoxicity of this drug [72]. It has since been shown that
DOX intercalates into mtDNA, which aids its accumulation in cardiomyocyte mitochondria
in the same model [73]. Furthermore, Ichikawa and colleagues showed that DOX causes
iron accumulation in cardiomyocyte mitochondria, leading to downstream toxicity. DOX
treatment is associated with the depletion and mutation of mtDNA, as identified in the
hearts of cancer patients [74]. The interplay between DOX-induced mitochondrial damage
and cardiomyocyte senescence within this cardiotoxicity is less well-understood, but it has
been shown that the two phenomena go hand-in-hand using in vitro and in vivo studies,
as evidenced by Mitry et. al., amongst others [75–77]. As a long-established therapy, the
impact of DOX upon cardiomyocyte mitochondria has been well reviewed [78], but newer
oncology therapies are far less well-understood. For example, though tyrosine kinase in-
hibitors (TKIs) provide more targeted anticancer actions, the TKI sorafenib has historically
been shown to impair cardiomyocyte mitochondrial function at clinically relevant doses
in vitro, and more recent reports highlight that sunitinib may also induce cardiomyocyte
mitochondrial damage via ROS accumulation [79,80]. Several other oncology therapies
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display off-target cardiovascular effects and mitochondrial toxicities [81] and it is clear the
changing landscape of cancer survivorship necessitates thorough investigations into the
long-term cardiac effects of both established and emerging antineoplastic therapies, and
mitochondrial toxicity remains an attractive avenue of research.

2.2. Mitochondria Dynamics Imbalance

In physiological conditions, mitochondria constantly undergo co-ordinated cycles of
fusion and fission, also referred to as mitochondrial dynamics [82]. Mitochondrial fusion is
characterised by the union of two mitochondria resulting in one elongated mitochondrion,
which allows for the dynamic repair of reversibly damaged mitochondria. Conversely,
mitochondrial fission is characterised by the fragmentation of one irreversibly damaged
and potentially harmful mitochondrion into small and spherical mitochondria that can be
isolated and removed by mitophagy [83,84]. The coordination of these events is essential
for the maintenance of mitochondrial quantity and quality, and therefore, the balance
between them plays a vital role in the normal function of the cardiovascular system.
Indeed, accumulating evidence has confirmed the influence of mitochondrial dynamics on
the pathogenesis of CVD [82].

Mitochondrial fusion is first mediated by the transmembrane guanine triphosphatase
(GTPase) proteins, mitofusin 1 (MFN1) and MFN2 in the outer mitochondrial membrane,
and then by the optic atrophy protein 1 (OPA1) in the inner membrane [85]. Decreased
levels of MFN1 and MFN2 have been found in animal models of atherosclerosis [86], and
a decreased expression of OPA1 has been observed in post-MI hearts, which correlated
with the downregulation of mtDNA and antioxidant genes [87]. Suggesting a causal role
of fusion in CVD, ablation of the murine Mfn1 and Mfn2 genes in adult hearts induced
mitochondrial fragmentation and dysfunction, and rapidly progressive and lethal dilated
cardiomyopathy [88,89]. Different cardiac pathologies have also been associated with the
formation of giant mitochondria or megamitochondria, as reviewed in [70], which evolve
by fusion of the membranes of numerous large individual organelles due to the overexpres-
sion of protein fusion [90]. The opposing process, mitochondrial fission, is controlled by
Mitochondrial fission protein 1 (Fis1) and Dynamin-related protein 1 (Drp1). It has been
reported that Drp1 activation during cardiac IR results in left ventricular dysfunction and
that Drp1 inhibition reduces cell death, preserves mitochondrial morphology, and inhibits
the mitochondrial permeability transition pore [91,92]. While the relationship between
mitochondrial fusion and myocardial senescence has yet to be investigated, elongated
mitochondria have been observed in several senescent cell types, including fibroblasts, and
are relevant to CVD, iPSC-derived and primary rat cardiomyocytes in vitro [93,94], and the
depletion of Fis1 mRNA levels leads to mitochondrial elongation, induces senescence, and
increases ROS production [93,95].

Fusion and fission events control mitochondria biogenesis [96], a process that increases
the number of mitochondria, improves the replication and repair of mtDNA, and induces
the synthesis of mitochondrial enzymes and proteins [30]. The co-transcriptional regulator
factor peroxisome-proliferator-activated receptor γ co-activator-1α (PGC-1α) induces mito-
chondrial biogenesis by activating the mitochondrial transcription factor A (TFAM), which
drives the transcription and replication of mtDNA [97]. Reduced gene expression of PGC-
1α has been associated with failing human hearts [98] and there is evidence that sirtuin-1
(SIRT1), a protein involved in metabolic regulation, delays the molecular characteristics of
myocardial ageing by mediating the deacetylation of PGC-1α and the activation of mito-
chondrial biogenesis [99]. The PGC-1α+/−/ApoE−/− mouse model has shown that PGC-1α
deficiency promotes vascular senescence, which is associated with increased oxidative
stress, mitochondrial abnormalities, and reduced telomerase activity [100]. Mitochondrial
biogenesis is also accompanied by variations in mitochondrial morphology [101]. Generally,
various aspects of cardiovascular biology, including cardiac development, the response to
cardiac IR injury and HF, are related to morphological and structural changes in mitochon-
dria [87,91,102]. Dramatic changes in mitochondrial morphology have also been found in
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senescent cells, where mitochondria exist in a state of hyper-fusion as a response to reduced
expression of mediators of the fission process and an overall reduction in the frequency of
the fission and fusion events [103].

2.3. Cell Apoptosis and Mitophagy

Mitochondria are pivotal in controlling apoptosis, including the release of caspase
activators and the participation of B-cell lymphoma-2 (BCL-2) family proteins [104,105]. Car-
diomyocyte apoptosis plays a critical role in the pathogenesis and progression of all types
of heart disease, particularly in ischemic heart disease and HF of various aetiologies [106].
For example, cardiac IR injury is related to the apoptotic death of cardiac muscle cells by
activating the pro-apoptotic BCL-2 regulators BAX and BAK to change the integrity of the
mitochondrial membrane and the cytosolic release of pro-apoptotic factors, which triggers
caspase-dependent cell death [107]. In hypertension, the hormone angiotensin II, which
plays an important role in volume and blood pressure control, has been linked to cardiomy-
ocyte apoptosis in rats, and treatment with losartan has been associated with a reduction
in cardiomyocyte apoptosis in both spontaneous hypertensive rats and hypertensive pa-
tients [108]. The subfamily of pro-apoptotic BCL-2 homology (BH) BH3-only proteins,
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and its homologue
BNIP3-like (BNIP3L or Nix), also induce apoptosis [109] and the forced expression of these
genes is sufficient to induce cardiomyopathy in murine models [35,110,111]. Mitochondria
are also important in other forms of cell death including necrosis. The mitochondrial
permeability transition pore (MPTP), localized on the inner membrane of mitochondria, is
the main player in oxidative stress-dependent cell death and increased mPTP is associated
with ageing and age-associated disease [112]. In the context of the heart, mPTP activation is
fundamental in causing myocardial damage following ischaemia-reperfusion (I/R) both as
a result of myocardial infarction and transplantation. At the onset of ischaemia, oxidative
phosphorylation is arrested due to a lack of oxygen which leads to the depolarisation of
the mitochondrial membrane and loss of ATP. As the cellular metabolism rapidly shifts to
anaerobic glycolysis, lactic acid is generated and the associated accumulation of hydrogen
ions reduces intracellular pH levels, inhibiting myofibril contraction and closure of the
mPTP. Upon reperfusion, the respiratory chain is rapidly exposed to oxygen, leading to
oxidative stress, and Ca2+ accumulates due to rapid mitochondrial membrane potential
restoration and pH is neutralized, which all contribute to the opening of the mPTP. The
opening of the mPTP allows the free passage of molecules, including protons, through the
inner mitochondrial membrane, uncoupling oxidative phosphorylation and disrupting ATP
production. Impaired energy metabolism further results in a continuous cycle of increasing
Ca2+ and mPTP causing osmotic swelling and damage and mitochondrial disruption and
cellular necrosis [113]. Furthermore, this mitochondrial membrane disruption may also
lead to a release of proapoptotic proteins, including cytochrome c, thereby also inducing
apoptosis [112].

To prevent cardiomyocytes containing damaged mitochondria from undergoing apop-
tosis, mitophagy, a cargo-specific form of autophagy selectively targets the degradation
of dysfunctional and damaged, and hence potentially cytotoxic, mitochondria within a
cell [30]. There are two mechanisms described for mitophagy: adaptor-mediated and
receptor-mediated. The former pathway functions via Phosphatase and Tensin Homolog
(PTEN)-induced putative kinase 1 (PINK1) and Parkin-mediated mitophagy [114]. PINK1 is
a serine/threonine kinase that continuously monitors mitochondrial health and provides a
rapid response when mitochondrial function collapses [115]. When mitochondria lose mem-
brane potential or amass unfolded protein, PINK1 accumulates on the outer membrane and
both recruits and directly phosphorylates E3 ubiquitin ligase [115,116] or phosphorylates
E3 ubiquitin via the intermediate phosphorylation of MFN2 [116]. The accumulation of
ubiquitin in key mitochondria-associated proteins on the outer mitochondrial membrane,
amplifies a signalling cascade involved in the recruitment of autophagosomes to target the
damaged mitochondria. The mitochondria-containing autophagosome is trafficked to, and
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fused with, a lysosome and degraded [117]. In healthy young hearts, there is an under-
lying level of baseline mitophagy which is essential for maintaining cellular homeostasis
in an energy-efficient heart, and for responding and adapting to stress [118]. However,
decreased mitophagy is associated with CVD, as an accumulation of “old” defective mi-
tochondria may reduce the heart’s potential to adapt to stress. Indeed, multiple animal
studies have linked the deletion of mitophagy-related genes at the whole-body level or
cardiomyocytes with the spontaneous development of cardiovascular disorders [119]. For
example, mice bearing a cardiomyocyte-specific deletion of Mnf2 prematurely succumbed
to progressive cardiomyopathy, which could be partially reversed by restoring mitophagy
in cardiomyocytes via the expression of the antioxidant enzyme catalase [120]. The whole-
body Pink1−/− mice experienced left ventricular dysfunction and pathological cardiac
hypertrophy by 2 months of age [121]. Mitophagy is also essential for reducing cardiac
injury following MI. Under baseline conditions, Parkin-deficient mice hearts were shown to
have smaller and disorganised mitochondria as revealed by ultrastructural analysis, but
mitochondrial and cardiac function were unaffected [122]. However, after MI, these mice
had reduced survival and developed larger infarcts when compared to control mice, which
was associated with the rapid accumulation of dysfunctional mitochondria in the infarct
border zone [122]. In patients with late-stage heart disease, a low number of autophago-
somes in cardiomyocytes is associated with a poor prognosis [123]. Damaging events (e.g.,
acute cardiac IR injury) lead to the reduction in the autophagy flux, and as a consequence,
damaged dysfunctional mitochondria accumulate in cardiomyocytes, leading to severe
oxidative stress and apoptosis [124]. The destabilisation of atherosclerotic plaques has also
been associated with deficient mitophagy [125,126]. Furthermore, a reduced expression of
autophagic markers p62 and microtubule-associated protein light chain (LC3)-II has been
detected within atherosclerotic plaques from human samples and mouse models [127,128].
In mouse models, the activation of mitophagy through antioxidant therapeutic strategies
has been explored to stabilise atherosclerotic plaques [129].

Aside from the conventional forms of mitophagy, there are additional specialized
pathways including a process which exhibits a notable level of specificity and involves
mitochondrial-derived vesicles, as well as the selective removal of mitochondrial fragments
containing specific cargo rather than the entire organelle. This mechanism relies on the
coordination of mitochondrial dynamics, mitophagy, and the vacuolar protein sorting (VPS)
or retromer complex. In this process, alterations to mitochondrial membrane potential and
the oxidation state of mitochondrial sub-compartments induce membrane curvature. This,
in turn, leads to the recruitment of PINK1 and Parkin. The retromer complex, comprised of
the VPS26, VPS29, and VPS35 proteins, plays a crucial role by providing the force needed
to generate a vesicle. Importantly, these vesicles are subsequently delivered to lysosomes or
peroxisomes, and this delivery process operates independently of the autophagy proteins
Autophagy related 5 or Microtubule-associated protein 1A/1B-light chain 3 [130]. It remains
to be seen if changes in the dynamics of this non-canonical form of mitophagy are associated
with CVD or senescence.

Interestingly, despite and perhaps because of mitochondrial dysfunction, senescent
cells express pro-survival pathways, enhancing survival and increasing resistance to apop-
tosis. Senescent cells are more resistant to apoptosis in response to stimuli, including serum
withdrawal, ultraviolet damage, oxidative stress, and treatment with cytotoxic drugs [131].
While there is a heterogeneity between cell types and senescence stimuli, enhanced activa-
tion of several pathways including BCL-2 family members, p53/p21Cip, ephrins (EFNB1
or 3), the phosphatidylinositol-4,5-bisphosphate 3-kinase delta catalytic subunit (PI3KCD),
plasminogen-activated inhibitor-1 and 2 (PAI1 and 2), and hypoxia-inducible factor-1α
(HIF1α) can be involved [132–134] and are referred to as senescent cell anti-apoptotic path-
ways (SCAPs). As discussed below, the activation of these pathways may contribute to the
proinflammatory nature of senescent cells.
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3. Mitochondria Dysfunction, Senescence, and Inflammation in CVD

The role of inflammation in promoting CVD is increasingly recognised. Recent dis-
coveries have demonstrated that mitochondria are key elements that stimulate innate
immune signalling cascades which trigger inflammation and promote pathology in an
expanding list of diseases, including cardiac pathologies [135]. Many investigations have
revealed that, when mitochondrial integrity is compromised, mtROS and mtDNA act as
damage-associated molecular patterns (DAMPs), endogenous molecules that are isolated
within intracellular compartments and discharged to the extracellular space in response
to damaged or dying cells [136], promoting pathological inflammatory responses by bind-
ing with pattern-recognition receptors (PRRs). For example, a study on mice found that
mtDNA released by dying ischemic cells during MI activates the Interferon regulatory
factor 3 (IRF3)-dependent innate immune response, which has a harmful effect on ventricu-
lar remodelling after MI [137]. The Stimulator of interferon genes (STING)-IRF3 pathway
might also facilitate chronic inflammation and dysfunction in endothelial cells via sensing
mtDNA [138], which are key events in the development of atherosclerosis and are associ-
ated with an elevated risk of many cardiovascular events [139]. Furthermore, cytoplasmic
mtDNA which escapes from autophagy-mediated degradation cell-autonomously has been
linked with the activation of the immune system via Toll-like receptor 9 (TLR9), which has
been associated with elevated arterial pressure and vascular dysfunction in spontaneously
hypertensive rats [140], and with exacerbated HF in mice [141]. Accumulating evidence
has also shown that mtROS and mtDNA contribute to molecular inflammation events
during the pathogenesis of CVDs, activating the Nod-like receptor (NLR) family, pyrin
domain containing 3 (NLRP3) inflammasome [142,143], although how this unfolds remains
unknown. For example, excessive mtROS and dysfunctional mitochondria are considered
critical drivers responsible for NLRP3 activation during the progression of atherosclerosis,
and the level of the inflammasome has been found to be highly associated with the sever-
ity of disease [144]. Upon activation, NLRP3 inflammasome activates caspase-1, which
cleaves and matures the pro-inflammatory cytokines interleukin (IL)-1β and IL-18, which
contribute to cardiac fibrosis and HF [145]. Elevated IL-1β levels have been also correlated
with age-related CVD [143]. Furthermore, the suppression of NLRP3 extends the lifespan
of obese adult mice by reducing liver steatosis and cardiac damage [146]. In turn, PRRs
might also modulate mitochondrial dysfunction and apoptosis, protecting against mortality
as occurs with the receptor NLR family member X1 (NLRX1) during IR injury [147].

A significant characteristic of senescent cells is the acquisition of a hypersecretory
phenotype or SASP, a collection of many biologically active factors, such as inflammatory
cytokines, chemokines, matrix remodelling proteases, extracellular vesicles, and growth
factors [148]. This heterogeneous group of secreted proteins self-reinforce and spread
senescence in an autocrine and paracrine manner, respectively, or affect the local tissue
environment of senescent cells, and possibly, the entire organism [9]. Although some
SASP factors are common to all senescent cells, its composition varies depending on the
cell type and the nature of the stimulus [149]. In senescent cardiomyocytes, increased
expression of SASP factors such as cellular communication network protein family member
1 (CCN1), interleukins (IL1α, IL1β, and IL6), tumour necrosis factor-alpha (TNFα), mono-
cyte chemoattractant protein-1 (MCP1), endothelin 3 (Edn3), tumour growth factor-beta
(TGFβ), and growth and differentiation factor 15 (GDF15) have been clinically linked with
age-related myocardial ischemia and infarction [4,17,150]. mtROS are a component of
the SASP [151], and functional mitochondria are critical for SASP production. As would
be expected, senescent cells with depleted mitochondria have reduced ROS generation
and also lose their proinflammatory phenotype yet remain in cell cycle arrest [77]. SASP
production appears to involve mitochondria through several interconnected mechanisms.
mtROS can induce c-Jun N-terminal kinase (JNK) signalling and the release of cytoplas-
mic chromatin fragments, triggering the innate immunity cytosolic DNA-sensing cyclic
GMP-AMP synthase (cGAS)-STING pathway [152]. This, in turn, activates nuclear factor-
κB (NFκB) signalling, switching on the transcription of proinflammatory genes and the
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SASP [152]. Recent studies suggest that expression of pro-survival pathways in senescent
cells leads to sublethal apoptosis and minority mitochondrial outer membrane permeabi-
lization (miMOMP). This miMOMP allows the release of mtDNA into the cytosol which
activates the cGAS–STING pathway, resulting in the increased expression of inflammatory
mediators and SASP [153]. The sublethal release of cytochrome c and caspase activation,
associated with miMOMP may also contribute to further DNA damage, increased genetic
instability, and perhaps deeper senescence [154]. Similarly, oxidative stress-dependent,
but sub-lethal activation of mPTP may allow the release of solutes and ions, including
superoxide, hydrogen peroxide, and calcium, resulting in damage to both mitochondrial
and cellular proteins, lipids, and DNA, and thus accelerating cell aging [155].

4. Mitochondrial and Senescent Cells Targeted Therapies for CVD
4.1. Therapeutically Targeting Mitochondrial Dysfunction

In recent years, an increasing number of cardiac mitochondrial targets have shown
their cardioprotective effects in experimental and clinical studies. Mitochondria are not
only the site of OXPHOS; their dysfunction is also commonly associated with ATP defi-
ciency and excessive ROS generation. Therefore, restoring their ATP-producing capacity
and counteracting the damaging effects of ROS to reduce oxidative stress and chronic in-
flammation have been suggested as primary therapeutic targets to improve mitochondrial
dysfunction [31].

AMP-activated protein kinase (AMPK) is an exclusive kinase of eukaryotes that plays
a major role in regulating energy balance by monitoring changes in the level of intracellular
ATP and coupling these changes to phosphorylation of downstream substrates, leading to
an increase in ATP synthesis and/or a restriction of ATP depletion [156]. Thus, targeting
the AMPK pathway has attracted widespread interest [30]. A well-known AMPK agonist
is the first-line drug for treating Type 2 diabetes mellitus (T2DM), metformin [157]. Mech-
anistically, it has been widely accepted that metformin exerts beneficial effects through
the inhibition of the respiratory chain at the level of Complex 1, leading to an increased
AMP/ATP ratio and activation of the signalling kinase AMPK [158], which in turn, induces
muscles to take up glucose from the blood. However, this mechanism requires higher
doses of metformin than those used in the clinical routine [159]. Recently, it has been
reported that clinically relevant doses of metformin activate AMPK through the lysoso-
mal pathway, without perturbing AMP/ATP levels [159]. The authors demonstrated that
metformin targeted lysosomal presenilin enhancer protein 2 (PEN2), which then inhibited
the vacuolar H+-ATPase (v-ATPase) on the lysosome by binding to its AT6AP1 subunit.
The formation of the PEN2-AT6AP1 axis initiates the lysosomal glucose-sensing path-
way for AMPK activation [160]. Metformin also improves mitochondrial function and
quality, as AMPK activation phosphorylates a range of target proteins involved in the
regulation of mitochondrial biogenesis (PCG-1α), mitochondrial dynamics (Drp1, MFF),
and mitophagy (PINK1-Parkin pathway) [161–164]. Interestingly, metformin has been
described as senomorphic, being able to modulate SASP secretion from senescent cells and
improve senescent cell function [165,166]. Metformin is inhibitory to SASP expression due
to its inhibition of IκB kinase and IKKα/β phosphorylation, thereby preventing the NF-κB
nuclear translocation [167]. Furthermore, metformin can attenuate senescence in human
diploid fibroblasts and mesenchymal stem cells [168], and in healthy mice, metformin has
been observed to extend health span and lifespan [169].

Indicating that metformin may have similar effects clinically, a recent meta-analysis
has identified that patients with diabetes taking metformin have a significantly increased
survival rate and a reduced incidence of age-related diseases, including CVD [170]. Sev-
eral clinical studies have shown the beneficial effects of metformin in diabetes-related
atherosclerosis, IR injury, and arrhythmia (as discussed by Bu et al.) [171]. For example, in
the Reversing with MetfOrmin Vascular Adverse Lesions (REMOVAL) trial, a double-blind
placebo-controlled randomized controlled trial to evaluate the cardiovascular effects of
metformin in adults with T1DM, atherosclerosis progression was significantly reduced in
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metformin-treated patients [172]. In another randomized, placebo-controlled trial involving
390 patients with T2DM treated with insulin, metformin treatment improved endothelial
function [173]. In non-diabetes patients, clinical studies are more controversial when evalu-
ating the benefits of metformin in CVD. In a small clinical study consisting of 33 women who
did not have diabetes, metformin reduced myocardial ischemia and improved endothelium-
dependent microvascular responses in patients with angina, compared to the placebo [174].
However, in a subsequent clinical study consisting of 173 patients without diabetes with
coronary heart disease treated with statins, Preiss et al. [175] found that metformin had no
effect on disease progression and little or no effect on several surrogate markers of CVD.
Although it remains unclear if the senomorphic activity of metformin contributes to any
of these cardioprotective effects, in patients with carotid artery atherosclerosis, metformin
ameliorates the proinflammatory state, which includes a reduction in serval SASP related
proteins including IL-6 and TNF-α [176]. Metformin also influences other hallmarks of
biological ageing. For example, nutrient-signalling pathways both through AMPK and
SIRT1 activation, as well as downregulating insulin/insulin-like growth factor 1 (IGF-1)
signalling and mechanistic targeting of rapamycin complex 1 (mTORC1). Metformin also
attenuates oxidative damage and genome instability by enhancing DNA damage response
and repair mechanisms, improving proteostasis by enhancing autophagy and inhibiting
protein synthesis, and ameliorating mitochondrial dysfunction via mitochondrial complex I
inhibition and PGC-1α upregulation. Furthermore, metformin treatment reduces telomere
shortening by activating telomeric repeat-containing RNA [177]. Metformin is now being
evaluated for its age-targeting effects in the TAME (Targeting Ageing with Metformin)
clinical trial [178].

Because of the role of ROS in CVD, a reduction in oxidative stress through the sup-
plementation with antioxidants such as Coenzyme Q10 (CoQ10), vitamin E, vitamin C,
and β-carotene has been clinically studied in humans for the treatment of CVD, including
HF, atherosclerosis, and acute MI [179–182]. However, with the sole exception of CoQ10,
no clinically significant benefits were reported. CoQ10 is a lipid-soluble and biologically
active quinone whose principal role is to participate in the ETC, where it functions as an
electron carrier [183]. In a study including 420 patients with moderate to severe HF, Svend
et al. [179] reported that long-term treatment with CoQ10, in addition to standard therapy,
was safe, and associated with an improvement in symptoms and a reduction in mortality
from cardiovascular events. Zeb et al. [180] reported beneficial effects on inflammatory
markers and reduced progression of coronary atherosclerosis in patients treated with a
capsule containing aged garlic extract and CoQ10 daily for 1 year. In a meta-analysis of
14 studies with 2149 enrolled subjects Lei et al. [184] found that patients with HF who used
coQ10 had lower mortality.

One possible explanation for the ineffectiveness of common antioxidants to show ben-
eficial effects is their inability to enter the mitochondria, the primary source of ROS [185].
There are several approaches to targeting molecules towards the mitochondria and one of
the most versatile is to develop synthetically modified antioxidants with lipophilic cationic
compounds, such as triphenylphosphonium (TPP+) [186]. TPP+ is a membrane-permeant
cation that is accumulated within the mitochondria up to several-hundredfold-fold be-
cause of the negative potential (-140 to –180 mV) generated across the inner mitochondrial
membrane by the proton pumping action of the ETC [187]. Mitoquinone (MitoQ) is CoQ10
conjugated to TPP+ and has been shown to display impressive benefits in the treatment
of CVD. It has been reported that 100 µM MitoQ in drinking water rescues the cardiac
function of pressure-overloaded HF in a mouse model by decreasing hydrogen peroxide
formation, improving mitochondrial respiration and mitochondrial permeability transition
pore opening [188]. In mice and rat studies, MitoQ protected against IR injury by blocking
oxidative damage within the mitochondria [189,190]. Treatment with MitoQ also prevented
the development of hypertension, improved endothelial function, and limited cardiac
hypertrophy in eight-week-old male spontaneously hypertensive rats [191]. Furthermore,
MitoQ controls the expression levels of cardiac hypertrophy-associated transcript (Chast)



Cells 2024, 13, 353 12 of 21

and myosin heavy chain-associated transcript (Mhrt), two long non-coding RNAs involved
in cardiac remodelling. It also attenuates adverse cardiac remodelling, and prevents HF
in mice by inhibiting the interplay between TGF-β1 and mitochondrial-associated redox
signalling [192]. In humans, a randomized, placebo-controlled, double-blind, crossover
study of 20 healthy adults (60–79 years) with endothelial dysfunction demonstrated that
oral supplementation with 20 mg/day of MitoQ was well tolerated and significantly im-
proved endothelial function and reduced arterial stiffness and plasma-oxidized low-density
lipoprotein (LDL), a marker of oxidative stress, through a reduction in mtROS [193]. Cur-
rently, in the USA, there are two ongoing clinical trials focused on the effects of MitoQ on
cardiac function: the MitoQ Supplementation and Cardiovascular Function in Healthy Men
and Women study (NCT03960073), and the Chronic Kidney Disease and Heart Failure With
Preserved Ejection Fraction: The Role of Mitochondrial Dysfunction study (NCT03586414).
Given that ROS is both an inducer and a consequence of senescence, it is perhaps unsur-
prising that, in a wide range of diseases and models, anti-oxidants (including those that are
mitochondrial targeted) are demonstrated to attenuate senescence and SASP [194].

4.2. Senolytics, Senomorphics and Future Approaches

Despite active DNA damage responses, increased mitochondrial dysfunction, in-
creased mitochondrial membrane permeability, and increased ROS production, senescent
cells remain resistant to apoptosis. Based on these findings, Zhu and colleagues hypothe-
sized that pharmacologically inhibiting the pro-survival networks could eliminate senescent
cells [132]. This gave rise to the advent of compounds collectively termed senolytics, which
target various components of anti-apoptotic pathways, including BCL-2 family members,
to promote senescent cell apoptosis.

In the context of heart health, studies have largely investigated the senolytic effects of
the combination therapy dasatinib and quercetin (D&Q), and navitoclax (ABT-263). Dasa-
tinib is a second-generation tyrosine kinase inhibitor, shown to inhibit ephrins, disrupting
the pro-survival network that includes BCL-XL, PI3K, p21Cip, PAI1, and PAI2 [132,195,196].
Quercetin, a natural flavanol, inhibits multiple pro-survival proteins, including PAIs and
PI3K, ultimately reducing BCL-W expression [197,198]. Navitoclax, a BH3 mimetic, in-
duces senescent cell apoptosis by inhibiting anti-apoptotic proteins BCL-2, BCL-XL, and
BCL-W [199,200].

Use of these senolytics in several animal models of CVD, such as age-related myocardial
dysfunction, MI, anthracycline-induced cardiotoxicity and atherosclerosis, has provided
proof-of-principle data that promoting mitochondrial mediated apoptosis in senescent cells
reduces inflammation and attenuates disease pathophysiology [17,19,132,201–204]. On the
other hand, as increased apoptosis has been implicated in age-related myocardial dysfunction,
and after MI the primary objective of reperfusion therapy is to save as much myocardium
as possible, concerns have been raised regarding the long-term outcomes of increased cell
death [3]. However, recent studies have demonstrated that senescent cardiomyocytes are
indeed detrimental to the outcome, and that the inhibition/modulation of the senescent
phenotype may be beneficial in the senescent cardiomyocyte context: inhibition of p16 in
murine cardiomyocytes improved outcome following MI with reperfusion [3].

In the future, the modulation/inhibition of the senescent phenotype may be a more
feasible route to successful intervention in this disease context, rather than the promotion
of senescent cardiomyocyte apoptosis. As such, a senomorphic approach, modulating the
senescent phenotype and attenuating the SASP, may consequently have more translational
potential than senotherapies. Alternatively, specific inhibition of miMOMP-induced inflam-
mation [153], may have therapeutic utility. For instance, the inhibition of the mitochondrial
membrane BAX and BAK nanopores with small-molecule BAX inhibitor BAI1 was shown
to decrease systemic inflammation and improve health span in aged mice [153]. Underpin-
ning all these findings, the evaluation of a drug’s senolytic and/or senomorphic capabilities
must be approached with rigour and caution, as emphasised in Niedernhofer and Robbins’
2018 correspondence [204].
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5. Conclusions

In the complex realm of cardiovascular diseases, mitochondrial dysfunction, and
oxidative stress (in isolation or within the context of senescence induction and senescent
cell function) play a key role in pathophysiology (Figure 3). A better understanding of these
interconnected phenomena will enable the development of novel therapies for CVD. Ongo-
ing research and clinical trials signal a new frontier in cardiovascular medicine, promising
innovative treatments that could transform patient outcomes. These developments mark a
significant stride towards enhancing both the quality and duration of life for those affected
by cardiovascular diseases.
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Figure 3. Mitochondrial dysfunction contributes to cardiovascular disease through apoptosis and
senescence. Mitochondrial dysfunction and increased ROS production promote DNA damage, both
chromosomal and mitochondrial. DNA damage leads to p53 activation and a cell-fate decision
between apoptosis and senescence. In apoptotic cells p53 induces mitochondrial outer membrane
permeabilization via formation of the apoptotic pore which allows cytochrome c release, activation
of the caspase cascade, and cell death. While not yet completely understood, but perhaps as a
result as less severe stress, DNA damage and p53 can lead to expression of the p21 (a negative
regulator of apoptosis and the cell cycle), activation of the p16 pathway, or activation of both
p21 and p16 pathways resulting in cellular senescence. Upregulation of pro-survival pathways in
senescent cells suppresses apoptotic pore formation leading to miMOMP, sublethal apoptosis and the
release of mtDNA into the cytoplasm. mtDNA fragments are sensed by the cGAS-STING pathway,
upregulating expression of inflammatory mediators. Sublethal activation of the caspase cascade
may also promote additional DNA damage. A combination of apoptosis and senescence will drive
pathological myocardial remodelling.
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