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ABSTRACT
This study presents a fully automated image informatics framework. The framework is combined with a
deep learning (DL) approach to automatically predict visual acuity outcomes for people undergoing surgery
for idiopathic full-thickness macular holes using 3D spectral-domain optical coherence tomography (SD-
OCT) images. To overcome the impact of high variation in real-world image quality on the robustness of DL
models, comprehensive imaging data pre-processing, quality assurance, and anomaly detection procedures
were utilised. We then implemented, trained, and tested nine state-of-the-art DL predictive models through
our designed loss function with multiple 2D input channels on the imaging dataset. Finally, we quantitatively
compared the models using four evaluation metrics. Overall, the predictive model achieved a MAE of 6.47
ETDRS letters score, demonstrating high predictability. This confirms that our fully automated approach
with input from seven central SD-OCT images from each patient can robustly predict visual acuity
measurements. Further research will focus on adapting 3D DL-based predictive models and the uncertainty
of 2D and 3D DL-based predictive models.

INDEX TERMS Image analysis, machine learning, optical coherence tomography, visual acuity
measurement.

I. INTRODUCTION

IDIOPATHIC full-thickness macular holes (MHs) form
secondary to age-related abnormalities of the vitreoretinal

interface with a prevalence of up to 3 in 1000 people over
the age of 55 [1]. They appear as a small dehiscence in
the neurosensory retina at the centre of the fovea, a highly
specialised part of the human retina responsible for fine
acuity and colour vision [2]. Today’s technology allows
ophthalmologists to diagnose, classify and measure MHs
using spectral-domain (SD) optical coherence tomography
(OCT) scans. OCT is a non-invasive, high-resolution imaging
technique that uses infrared light to provide 3D imaging of the
retina [3] (see Fig. 1).

Macular holes can be effectively treated by closing the
hole using vitrectomy surgery. Predicting the visual outcome
after surgery is important to guide the decision to operate
and manage patients’ expectations. Several studies [4]–
[6] have shown that postoperative visual acuity (VA) is
highly correlated with preoperative VA, as well as a variety
of measures of macular hole size that can be measured
on SD-OCT. Various studies have attempted to precisely
predict postoperative VA using manual 2D measurements of
MHs and preoperative VA, although their predictive ability
has been limited [7]. Three-dimensional automated image
reconstruction has improved this ability [8], [9], but there
are no current standards for shape, size, and resolution of
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(a) (b)

FIGURE 1: A preoperative 2D slice of a 3D SD-OCT image of a patient’s eye with an idiopathic full-thickness macular
hole and visual acuity (VA) of 42 ETDRS letters (a), and the postoperative 2D slice of a 3D SD-OCT image after successful
surgery with closure of the hole, restoration of the foveal depression and a VA of 71 ETDRS letters (b).

OCT imaging data captured by different OCT devices for
this task [10]. There are also many qualitative features and
subtle alterations in retinal anatomy, for example, associated
with chronicity, which may be predictive of acuity outcomes
and that are difficult to measure [11], [12]. Additionally,
image artefacts related to a patient’s eye movement and
media opacity pose a further challenge in developing
image informatics methods [13]. Recently, some researchers
have highlighted the low signal strength of OCT devices
which results in issues such as image noises, blurriness
and contrast reduction [14], [15]. Similarly, another study
expanded the analysis to include scan centring and retinal
region checks [16]. These challenges constitute our primary
motivation.

To overcome those challenges, most machine learning
(ML) and deep learning (DL) approaches have focused on
the automated classification of macular diseases, such as
age-related macular degeneration (AMD), diabetic macular
oedema (DME), and MHs from OCT images data [17]–
[22]. More recently, some DL approaches have improved the
prediction of VA outcomes [23] using OCT data [24]–[26].
In particular, convolutional neural network (CNN) models
have achieved high performance in OCT image analysis
studies; however, there have only been a limited number
of studies investigating VA measurements [23], [24], [27].
Considering the success of prominent CNN-based networks
in medicine [28]–[30], they used a ResNet [31] in the
[23], VGG [32] in the [33], and CBR-Tiny models [34]
in the [27] as a backbone. These studies also presented
that CNN-based networks excel in extracting spatial features
from OCT images. Consequently, the implementation of
CNN-based models for predicting VA measurements has
gained significant importance for the next motivation.
Subsequently, vision transformers (ViTs) [35] have recently
demonstrated great potential in assisting clinicians with
clinical diagnosis [36], particularly in OCT image analysis
[37]. However, to the best of our knowledge, ViTs have not
yet been thoroughly applied for predicting VAmeasurements.
Since ViTs consider global context and dynamic attention, it
revealed the need for comparing standard CNN-based state-
of-art models (VGG, ResNet, Inception v3 and DenseNet,
EfficientNetV2) and ViTs in this study, acting as another

motivation.
This research presents a comprehensive image informatics

framework for predicting both the preoperative and
postoperative visual acuity measurements for patients with
idiopathic full-thickness macular holes using an SD-OCT
image dataset based on image preprocessing, image quality
assessment, image anomaly detection, and deep learning
models-based prediction.
The remainder of the article is organised as follows:

Section II describes related works and our contributions,
including regression models, classification models and
predictive models of VA measurements based on image
analysis approaches. In Section III, the benchmark OCT
imaging dataset used in this study is introduced. Section IV
summarises image preprocessing, quality measurement,
anomaly detection, and the DL models-based visual acuity
prediction methodology and experimental design. Section V
details the study results, and Section VI concludes the study
findings and provides recommendations for future research.

II. RELATED WORKS
Numerous image informatics approaches to assess macular
diseases using OCT imaging data have been proposed in
the published literature (see the summary in Table 1). As
shown in Table 1, there has been only limited research
investigating how to predict VA outcomes for specific retina
diseases using OCT imaging data. In particular, the published
literature aiming to predict postoperative vision for patients
with idiopathic full-thickness macular holes is particularly
sparse [24], [26]. The approaches that have been used to date
are discussed in the following selections.

A. IMAGE BASED CLASSIFICATION APPROACHES FOR
DIFFERENT RETINAL DISEASES
Zhang et al. [18] proposed a binary classification of OCT
image data based on kernel principal component analysis
(PCA) model ensembles to predict patients with AMD-
affected eyes from normal eyes. Also, a Bayesian network
classifier was introduced by [39] and then tested on the
same image dataset. Another study implemented the bag-
of-words (BoW) model by keeping the most salient points
corresponding to the top vertical gradient values calculated
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TABLE 1: The summary of the image informatics approaches focused on assessing visual acuity using OCT imaging data.

AUTHORS TASK DATASET METHODS DISEASE
TYPE

OUTPUT EVALUATION
METHODS

RESULTS
(Avg.)

Steel et al. [6] Regression 3D OCT (1527 images) Classical Statistics MH Postoperative VA AUC 71.72%

Murphy et al. [17] Regression 3D OCT (67 images) Generalized Linear
Model

MH Postoperative VA R-squared 0.45

Kawczynski et al. [23]
Regression

3D OCT (1071 images) ResNet-50 Others
BCVA RMSE 9.01

Classification 2 classes AUC 0.91%

Obata et al. [24]
Regression

3D OCT (259 images) CNN MH
BCVA R-squared 0.46

Classification 4 classes Precision 75%,43%,
38%,50%

Rizzo et al. [26] Classification 3D OCT-A (35 images) Inception v3, VGG16,
VGG19, SqueezeNet MH Postoperative VA P value 0.005

Lachance et al. [27] Classification 2D OCT (121 images) CBR-Tiny MH Postoperative VA
2 classes

Accuracy 78.7±2.9%

Xu et al. [38] Regression 3D OCT (56 images) Segmentation Algorithm MH Geometric measurements
and Postoperative VA P value 0.0028

The proposed method Regression 3D OCT (210 images) ResNet-18
ResNet-50

MH Postoperative VA
MAE
R-squared
RMSE

6.00
0.52
9.23

in the OCT images [40]. However, this approach was
limited by relying on key points and predicting only two
classes: DME and normal eyes. Anantrasirichai et al. [19]
proposed a support vector machine (SVM)-based approach to
differentiate between normal eyes and eyes with glaucoma.
Similarly, [41] used SVM to predict the presence of AMD
and DME from normal eyes using a small image data set
with fewer outliers. However, the obtained accuracy was
extensively impacted by retinal layer discontinuities caused
by the disease pathology and motion artefacts.

In addition, Lemaitre et al. [42] developed a local binary
pattern (LBP) classifier to identify AMD and DME from
normal eyes. Liu et al. [43] proposed an approach using
image gradient information, LBP, and SVM with a radial
basis function (RBF) kernel as a classifier. The approach first
classified eyes as either normal or abnormal, and then was
further sub-classified into either DME, AMD, MH or normal
eyes.

Motozawa et al. [20] proposed two typical CNN-based
models for classifying OCT data into AMD and normal, and
they were also able to differentiate between wet and dry
AMD. Likewise, Alqudah et al. [21] showed that by using
image denoising and resizing and tuning a CNN model with
an ADAM optimiser, higher accuracy and lower time cost
could be achieved when classifying OCT images into five
classes: choroidal neovascularisation (CNV, a feature of wet
AMD), DME, dry AMD, drusen only (a feature of early
AMD), and normal.

Another OCT image classification approach using a deep
multi-scale CNN model was proposed by Rasti et al. [44].
The proposed model employed a prior decomposition and
new cost function to discriminate and fast-learn representative
image features. The authors used the modified versions of
VGG, ResNet, and Inception models to detect normal, AMD,
and DME features. Li et al. [45] suggested a novel DL
model for predicting CNV, DME, drusen, and normal eyes,

called OCTD_Net and based on modified DenseNet and
ReLayNet models. Tsuji et al. [22] proposed a method using a
capsule neural network (CapsNet) model to classify the same
eye disorders by learning spatial information from the OCT
images.
These image informatics approaches have several

limitations, including (1) a limited ability to identify different
pathologies affecting the macula, such as MHs, (2) they are
typically time-consuming due to high computation costs,
whichmeans they are inappropriate for use in clinical practice
where issues may need to be resolved in real-time, and (3)
by only relying on a limited number of key points, other
essential ocular characteristics may not be noticed during the
classification tasks.

B. IMAGE BASED PREDICTION APPROACHES FOR VISUAL
ACUITY AFTER MACULAR HOLE SURGERY
1) Classical Methods
Several authors have used regression to predict postoperative
VA using routinely collected clinical data. For example, Steel
et al. [6], using logistic regression and the univariate level
using χ̃2 tests, achieved a model area under the receiver
operator curve of 71.72% for predicting a visual acuity of 0.3
logMAR or better after surgery. Generalised linear modelling
has been used to predict actual acuity using an automated
multi-scale three-dimensional (3D) image analyser of OCT
scans for MHs [17]. The study shows preoperative VA and
MH height were important predictors of postoperative VA,
achieving an R-squared value of 0.45. When preoperative
vision was not included in the model and only OCT
parameters were included, the most predictive model was
0.39. Interestingly, using only manual clinician-measured
values, R-squared was only 0.20.
Other research teams have also investigated the three-

dimensional parameters ofMHusing differentmethodologies,
such as automatically calculating three dimensions based on

VOLUME 11, 2023 3



B. Kucukgoz et al.: Deep Learning using Preoperative OCT Images for Postoperative Visual Acuity Prediction

IMAGE DATASET

AND

VISUAL ACUITY 

MEASUREMENTS

IMAGE 

PRE-PROCESSING

IMAGE 

QUALITY

MEASUREMENTS

ANOMALY DETECTION

B

A

C

K

B

O

N

E

PREDICTION

OF 

VISUAL 

ACUITY

MODEL 

TRAINING

DATA

AUGMENTATION

THE

MODIFIED

LOSS

FUNCTION

FIGURE 2: Workflow of the proposed image informatics framework. The first stage corresponds to the input OCT image
dataset and VA measurements obtained by ophthalmologists, the second stage incorporates OCT data preparation (i.e.
scaling, the centre of mass detection, and cropping), OCT image quality analysis (i.e. noise score, blurriness score, contrast
score, motion score, and brightness-darkness score) and anomaly detection. With the obtained high-quality image dataset
and labels, multiple state-of-the-art DL models are trained and optimized by our designed loss function to predict VA
measurements in the final stages.

the sum of two-dimensional images [38]. The 3D macular
hole size parameters, such as MH volume, base area, base
diameter, and MH height, were significantly correlated to
postoperative VA (P value from 0.0003–0.011). [38].

2) Deep Learning Based Methods
Some recent studies were not only able to classify eye
disorders on OCT image datasets, but were also able
to predict associated VA measurements and recommend
potential treatment requirements. In particular, the study
by [46] presented an end-to-end DenseNet-based model
for recommending treatment options in patients with wet
AMD, where the model’s output range was low, intermediate
and high treatment requirement scores. In a further study,
Kawczynski et al. [23] proposed a ResNet-50 v2 model-
based approach that predicted the best-corrected VA (BCVA)
measurement for patients with wet AMD eyes following
treatment. BCVA measurement was obtained from the
regression model, and considering the regression model
results, they classified higher than 69 letters and lower than
69 letters into two classes.

The research presented in [26] assessed the ability to
predict VA in two groups of 35 people with surgically treated
MH using unsupervised DL models, including Inception v3,
VGG16, VGG19 and SqueezeNet. Similarly, Lachance et
al. [27] proposed a hybrid model classifying VA as higher
than 15 letters and lower than 15 letters. Another study
proposed a model for predicting postoperative VA using a
typical CNN-based model [24] and four classes: class A is
higher than 85 letters, class B is between 75 and 80 letters,
class C is between 60 and 75 letters, and class D is lower than
50 letters. The prediction of postoperative VA using DL was
compared to 3 typical regression models using preoperative
clinical data. The DL model had a superior precision value
of 46% compared to approximately 40% for the regression
models.

These DL-based image informatics approaches have
limitations related to (1) image and label data preparation,
(2) data volume, (3) data quality, and (4) low-level

model robustness and generalisation when using a wide
range of OCT machines at different hospitals. To address
some of these limitations, we recently presented a more
comprehensive image informatics framework utilising robust
data preparation and anomaly detection approaches combined
with state-of-art DL models on a closely allied OCT analysis
problem of external limiting membrane detection [11].
Contributions: This paper adds to the literature by:

• Introducing a new 3D SD-OCT imaging benchmark
dataset for 210 patients with idiopathic full-thickness
macular holes (10,339 2D slices).

• Proposing a comprehensive image informatics framework
to create a high-quality OCT image dataset used for a
robust deep learning-based predictive model of visual
acuity in patients following surgery with idiopathic full-
thickness macular holes and presenting an automated
solution for non-standardised OCT datasets (see Fig. 2).
The method concludes the impact of the following
surgery by predicting visual acuity.

• Quantitatively comparing nine 2D state-of-the-art DL-
based predictive models of both preoperative and
postoperative visual acuity using four evaluation metrics
by optimizing the models with our designed loss
function. To account for the 3D nature of the eye
captured in 3D OCT imaging data, multiple image slices
were used during the training phase.

III. MATERIALS
The proposed image informatics framework was designed,
implemented and evaluated on two sets of SD-OCT
imaging datasets, all captured using the Heidelberg Spectralis
(Heidelberg, Germany) using the same imaging protocol
at Sunderland Eye Infirmary, United Kingdom (UK) and
Rigshospitalet, Copenhagen, Denmark (see full OCT image
with fundus region Fig. 1 and without fundus region Fig. 3).
Three different Spectralis cameras were used in the UK centre
and one in Denmark. The images from the UK were collected
as part of routine care between Jan 2017 and Jan 2021 under
UK guidelines, and their use did not require ethical approval.
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The images from Denmark were obtained from a previously
published randomised controlled trial that obtained ethical
approval (protocol Number: H-4-2013-091, Rigshospitalet,
Copenhagen) and full informed consent was received from
all participants.

FIGURE 3: A random 2D slice from one of our 3D OCT
images used during training and testing.

This study included patients with a confirmed idiopathic
full-thickness macular hole (on OCT) who had undergone
vitrectomy and internal limiting membrane (ILM) peeling
with gas tamponade surgery, successfully achieved primary
hole closure (hole closure following a single surgery)
evidenced by standardised OCT imaging two weeks after
surgery, and had a best-corrected visual acuity recording at
three months (± two weeks) postoperatively. All patients
were pseudophakic postoperatively, which prevents the
confounding influence of cataracts on the visual acuity
measurement. Patients who were phakic before surgery
underwent combined phacovitrectomy if they were from the
UK cohort, and phacoemulsification and intra-ocular lens
insertion surgery one week before vitrectomy surgery if from
the Denmark group.

(a) (b)

(c) (d)

FIGURE 4: The distribution of OCT image sizes in X (a), Z
(b), distribution of preoperative (c) and postoperative (d)
visual acuity measurements. Image size in Y is 3.87 µm for
all images.

This study excluded all secondary holes, non-full thickness
holes, eyes with previous vitrectomy surgery and/or non-
primary closure, and eyes with other co-existing causes for
reduced vision, for example, AMD or amblyopia. This is
because different medical treatments or operations might be

needed. However, the techniques could be applied to other
types of MH. For both image sets, the same standardised
imaging protocol was used, namely a high-density central
horizontal scanning protocol with 29–30 µm (microns) line
spacing in the central 15 by 5 degrees.With 27–34µm spacing
between scans (Z -axis), there were typically 49 scans per
dataset. The captured OCT images, however, had variable
pixel widths, heights, and depths (X is from 178 to 497 px
(pixels), Y is from 321 to 776 px, and Z is from 49 to 96
px) relating to different captured image resolutions. The pixel
resolutions of the OCT images were, therefore, between 5.04
and 12.66 µm per pixel in-width, but the same resolution of
3.87 µm per pixel in-height (see Fig. 4a and 4b).
Image dataset and clinical data on 210 eyes from 210

patients meeting the inclusion and exclusion criteria were
analysed: 67 from Denmark and 143 from the UK. The mean
age was 70 years old (range 48–84), 172 (82%) were female,
and 105 (50%) were right eyes. The mean minimum linear
diameter of the holes was 383 µm, and the median duration of
symptoms was six months. All scans used 16 automatic real-
time settings, enabling multi-sampling and noise reduction
over 16 images.While capturing the OCT images, the patients
were asked to focus on a constant fixation object to minimise
eye motion as a general procedure.

Visual acuity was measured in all patients using Early
Treatment Diabetic Retinopathy Study (ETDRS) vision
charts, with testing at four metres [47]. These charts have
a group of five letters per row, with multiple rows with
a reducing letter size of 0.1 logMAR per line. The VA
measurement is calculated by how many letters can be
correctly read on the chart. A score of 70 letters equates
to 0.3 logMAR (or 20/40 Snellen visual acuity), whilst 35
letters equate to 1.0 logMAR (or a Snellen acuity of 20/200).
The VAs were recorded by two experienced optometrists in
a clinic unassociated with the study and were best-corrected
VAs after refraction using a standardised protocol. It is
ranged from 5 to 83, outlined in Fig. 4c and 4d. Our image
pixel resolutions and VA measurements have imbalanced
distributions.

IV. METHODS
In this section, a comprehensive description of the
imaging data preprocessing steps, data quality assessment
and anomaly detection methods to create a high-quality
standardised 3D OCT image dataset for DL-based prediction
of VA were presented. This comprehensive approach
significantly improved our proposed model’s results.

A. IMAGING DATA PREPARATION
1) Image Preprocessing
In 3D OCT images, due to ocular anatomy and acquisition
distortions, the MHs may be scaled, shifted, and oriented
randomly. Consequently, this causes high variability in the
MH location and resolution, as shown in Fig. 5. To deal
with those image acquisition issues, the following image
preprocessing steps were used:
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(a) 632× 490 px −5.43× 30 µm (b) 632× 490 px −5.59× 30 µm

(c) 750× 192 px −7.05× 38 µm (d) 365 × 178 px
−10.75× 29 µm

(e) 321 × 376 px
−11.12× 30 µm

(f) 768× 496 px −6.47× 35 µm

FIGURE 5: 2D mid-slices of six randomly selected 3D
images, with their calculated centres of mass (red crosses),
and with their corresponding image sizes in px and µm.

• Scaling (uniform resolution): All acquired OCT images
(Fig. 5) were re-scaled across X, Y, and Z dimensions
using the following sizes (7.41× 3.87× 30.1 µm), and
the resulting images are shown in Fig. 6. It ensured
consistency in scale values for all OCT images.

• Intensity Weighted Centre of Mass: The MHs were
located in a range of different positions in the 3D
OCT image slices, as presented in Fig. 5. To centre
the images around the positions of the MHs, the pixel
intensity weighted centres of mass calculated for each
dimension as a focal point of the image were used,
as shown in Fig. 6. It was used to ensure consistency
in image acquisition position for all OCT images. The
determining centres of mass were also considered when
selecting the parameter for the data augmentation stage
during the training of the DL model.

• Cropping: The scaled OCT images were then centred
around intensity-weighted centres of mass (red cross)
and cropped across the X, Y, and Z dimensions to the 3D
size 452 × 204 × 49 px, as shown in Fig. 6). It ensured
consistency in sizes for all OCT images.

2) Image Quality Assessment
The OCT images collected as part of routine clinical
care inevitably differed in image quality related to patient
movements, operator controls, and the OCT camera used.

(a) (b)

(c) (d)

(e) (f)

FIGURE 6: Results of image preprocessing steps applied
to images from Fig. 5. Final image size: (452× 204× 49 px
−7.41× 3.87× 30.1 µm).

These resulted in several image imperfections, including
speckle noise, contrast changes, and motion artefacts, which
were measured using various image quality measurement
methods. As these methods mostly have no inherent upper
limit, all features were scaled separately to a fixed range from
0 to 1. High scores mainly denote a heightened presence of
the measured imperfection. To enable a high-quality dataset
to be selected and to optimise the DL model, these methods
served as a guide to detect and remove abnormal images.
Image quality was measured using the following evaluation
metrics.

• Noise score: Noise can be a significant problem in
OCT images. Many researchers have proposed wavelet
transformations to assess the lower, average, and
upper bound of noise in these images [48], [49]. A
wavelet-based estimator of the Gaussian noise standard
deviation was performed, which revealed significant
noise variances, see Fig. 7.

(a) Low (b) High

FIGURE 7: Spectral-domain optical coherence tomography
images demonstrating a small and large noise score.

• Blurriness score: Another important issue was the blur
and sharpness of the OCT images. Recent studies have
suggested the use of a Laplacian operator with Gaussian
filters in measuring the blurriness and sharpness of
images [50]–[52]. The Gaussian filter is defined as in
Equation 1.

G(x, y) =
1√
2πσ2

e−
(x2+y2)

2σ2 , (1)
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where x and y are coordinates of an image I(x, y).
σ is the Gaussian distribution standard deviation. The
Gaussian scale-space representation L of an image
I(x, y) is defined as in the Equation 3.

L(x, y) = I(x, y) ∗ G(x, y) (2)

where ∗ is the convolution operator. Then, a Laplacian
operator, which is expressed as the divergence of the
gradient (∇I ), and calculated for two dimensions as a
sum of the second partial derivatives in the Cartesian
coordinates:

∇2 =
∂2I
∂x2

+
∂2I
∂y2

, (3)

This is convolved with the image, resulting in rapid
intensity changes. The variance in image intensity is then
measured, where if low it is labelled as blurry, otherwise
it is measured as sharp (see Fig. 8).

(a) Low (b) High

FIGURE 8: Spectral-domain optical coherence tomography
images demonstrating blurriness and sharpness.

• Contrast score: The differences in the chromaticity and
brightness of any pixel and any other pixels within the
same scene represent image contrast [53]. Therefore, the
gradients of each image pixel were measured, including
their standard deviation, with marked differences in
black and white luminance.

• Motion score: Due to the movement of the eye
during OCT scanning, consideration has to be given
to motion artefacts. Many researchers have proposed
the Horn-Schunck optical flow motion estimation
method [54]–[56]. This method implements first-order
derivatives, allowing the velocity in the flow between
sequential images to be measured with high accuracy
and resolution. The observed motion and perceived
distortions in the smooth flow of information on the Z-
axis of every 3D OCT image were measured, as seen

(a) Low (b) High

FIGURE 9: An example of optical flow velocity vector
magnitudes between two neighbouring 2D slices in a
spectral-domain optical coherence tomography image
with ((a) - grey colour) small and ((b) - red/blue colour)
large motion.

Algorithm 1: 2D Image Anomaly Candidates and
Anomaly Scores Calculation.

Require: {I} //Set of 3D images
Ensure: {a}, {d} //Sets of anomaly candidates and
anomaly scores for all 2D image slices of 3D images
p← |{I}| //Number of 3D images
for i← 1 to p do
sx,y,z ← |I i| //Image size for x, y, z
for z← 1 to sz do
{f iz } ← quality(I iz) //2D image quality scores

end for
end for
{f iz } ← normalise({f iz })
{aiz}, {d iz} ← anomaly({f iz })

in Fig. 9. An RGB colour map was used for motion
visualisation, with grey representing low motion and
red or blue representing high motion between any two
neighbouring 2D slices in a 3D image.

• Brightness-Darkness score: The brightness and darkness
of images are associated with perceived luminance.
Therefore, a luminancemeasurementwas calculated [57].
Darkness is perceived if the luminance level is low,
whereas brightness is perceived if the luminance is high.

3) Anomaly Detection
To define a high-quality image dataset for training the DL-
based VA predictive models, an anomaly detection method
was used to eliminate low-quality images. This led to an
improvement in our proposed model’s results. According to
[11], [58], although several anomaly detection methods have
been developed, unsupervised anomaly detection methods
are preferred. This is because they have the most flexible
setup and do not require any labels or prior knowledge about
the dataset [59]. Methods used for unsupervised anomaly
detection include nearest-neighbour, clustering, statistical,
subspace, and classifier-based methods [58].
This study used the nearest-neighbour method based on

the local outlier factor (LOF) method. The LOF method
computes the local density deviation of the entire dataset,
showing how much a data point’s local density differs from
its neighbours. If the data has a significantly lower density
compared to its neighbours, it has a high-density deviation,
suggesting it may be abnormal. Here, the elbow method
was applied to iteratively determine the optimal number of
neighbours in the dataset, which was found to be 10. As
discussed, quality assessment measurements were employed
for each 2D image slice in every 3D image. Then, the quality
scores were used as input to detect abnormal and normal
images by the LOF method.
Algorithm 1 shows how the LOF-based approach

determines normal and abnormal image candidates using
anomaly prediction scores d and stored in a. Where fz
corresponds to the image quality assessment measurement for
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FIGURE 10: A graph depicting the 3D OCT image
anomaly detection results: black and red points represent
normal and abnormal images, respectively. I1, I2, I3,
and I4 demonstrate randomly selected 3D images to be
presented in Fig. 11.R1.4

each 2D image slice Iz in a 3D image {I i}. {a} corresponds
to 2D image-based anomaly candidates and {d} corresponds
to 3D image-based anomaly scores calculated across the 3D
image dataset {I}.

I1 I2

I3 I4

FIGURE 11: The best to worst 2D slices from 3D spectral
domain optical coherence tomography images indicated
as I1, I2, I3, and I4 in Fig. 10.

The distribution of normalised anomaly scores among
3D images was visualised in Fig. 10, where the red points
represent the abnormal OCT image, and the black points
represent normal OCT images. To confirm the accuracy of
the proposed anomaly detection procedure, 2D slices of the
selected 3D image samples in Fig. 10, from the best to the
worst (I1, I2, I3, and I4), are displayed in Fig. 11 - where,
red/blue colours represent a high anomaly score, and a grey
colour represents a low anomaly score.

B. DEEP LEARNING MODELS:
Deep learning models, as an established but still continuously
advancing technology, have significantly improved disease

screening through medical imaging [27], [29], [60].
Numerous deep neural networks have been developed to
classify, segment and predict various diseases since they have
achieved comparable performance to human experts [28],
[36]. To provide a comprehensive overview, nine well-known
and state-of-the-art 2D DL-based predictive models were
implemented, trained and tested in this study. The input
to typical 2D convolutions is C * H * W, where C is the
number of input channels, H is the height, andW is the width.
The kernels move in two dimensions. In this study, the first
convolutional layers were changed to feed the following DL-
based predictive models with the input channels of single (1)
and multiple OCT image slices (3, 5, 7, 9, 11, 13, 17, 19, and
21) since it led to better results:

1) Visual Geometry Group (VGG)

The VGG model [32], consisting of 5 groups of convolution
layers and 1 group of a fully connected layer, provided
the feature extraction process in the OCT images. During
training, the input OCT image is propagated through
convolution layers using 3 × 3 kernel-sized filters and a
stride of 2. Although excessive depth can be computationally
expensive and time-consuming, the most relevant salient
features are extracted, including edges, corners, and interest
points. In this study, this model was selected for its relatively
small filter size compared with other models. VGG-based
models with 11 and 19 layers were used.

2) Residual Neural Network (ResNet)

The ResNet is composed mainly of 5 groups of residual
blocks and one fully connected layer [31]. These residual
blocks were used to combine the information from the
OCT images across multiple time points of the initiation
phase. These residual blocks also link each other with
skip connections. With this cross-layer connectivity, the
convergence of deep networks is sped up. Thus, it prevents
the problem of a diminishing gradient and provides a robust
model against over-fitting in this study. Themodel used a 7×7
kernel-sized filter and a stride of 2 in the first convolution
layer. ResNet-based models with 18, 34, and 50 layers were
considered.

3) Inception v3

To suppress the high computational complexity problems
encountered in VGG, ResNet and other mentioned models,
the Inception v3 model with different kernel sizes, a max-
pooling layer, and a stride, called Inception blocks, has
been proposed by [61]. Due to this, it is remarkably
useful for processing data in multiple resolutions and
multilevel features, which makes this model suitable for
OCT images. The model also overcomes high computation
times by factorising the convolution (3× 3) into asymmetric
convolutions (3× 1 and 1× 3) [61].
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4) Densely Connected Convolutional Networks (DenseNet)
DenseNet consists of sets of convolutional layers and direct
connections from any convolutional layer to all subsequent
layers [62]. Each layer receives a piece of collective
information from all preceding layers with kernel sizes 1× 1
and 3 × 3 in a dense and uses its feature maps as input.
Then, 1 × 1 convolutional layer followed by 2 × 2 average
pooling as the transition layers between sequential dense
blocks. Thus, our OCT image dataset has not been exposed
to a vanishing-gradient problem by showing a strengthened
feature propagation during training.

5) EfficientNetV2
EfficientNetV2 has recently been further introduced with
training faster and relatively smaller parameters, a new
version of the well-known EfficientNet [63], [64]. Different
from EfficientNet, EfficientNetV2 uses FusedMBConv in the
earlier stages of the network, which replaces the depthwise
convolutions (3 × 3) and expansion convolutions (1 × 1) in
MBConv with single regular convolutions (3× 3) [63], [64].
EfficientNetV2 also comes in different sizes. The large-sized
(EfficientNetV2-L) model was selected as our OCT images’
size is relatively large.

6) Vision Transformers (ViTs)
Vision Transformers (ViTs) have revolutionized computer
vision using a transformer architecture [35]. They first
split images into fixed-size patches. Each patch is linearly
embedded into high-dimensional vectors. Then, to retain
spatial information, positional embeddings are added to
the patch embeddings. The embedded patch vectors, along
with positional embeddings, are processed through a stack
of Transformer encoder layers. Each layer includes self-
attention mechanisms, allowing the model to capture
relationships between different patches. The output of the
Transformer encoder is typically a sequence of vectors. A
classification head, often a linear layer, is added to obtain the
final output for tasks. These steps allowed ViTs to discern
global contextual information on OCT images. ViT-Base with
an image patch size of 16 among several variations (ViT-
B/16) was selected.

C. EXPERIMENTAL SETUP
This section introduces the DL models’ training and
evaluation details, including the k-fold cross-validation,
the DL framework, data augmentation methods, parameter
selections, and the evaluation criteria used.

TABLE 2: OCT imaging data used and splitting.

Number of 3D Images

Initial After data preparation

Train 168 152

Test 42 38

1) Training
Following image preprocessing, image quality assessment
and anomaly detection procedures, twenty images were
excluded from the initial OCT image dataset (see Table 2)
(fifteen images - image quality assessment and anomaly
detection, five images - image preprocessing). The final 3D
OCT images used for the training were of the size of 452 ×
204×49 px. The dataset was split uniformly into training and
test sets using random five-fold cross-validation with a ratio
of 80% and 20%. Specifically, each folded cross-validation
consisted of 152 and 38 for training and testing, respectively.
Furthermore, DL models were trained using the same

image size, with the use of single and multiple OCT image
slices (1, 3, 5, 7, 9, 11, 13, 17, 19, and 21) at the first
convolutional layer, centred around the mid-slice defined by
the 3D intensity weighted centre of mass. To train the nine DL
models used, we utilised Python 3.8.10, CUDA 11.4, cuDNN
8, PyTorch 1.9.0+cu102 running on a 64-bit Ubuntu operating
system using a 3.4 GHz Intel Core-i9 with 32 GB of RAM
and NVIDIA GTX 1080 Ti GPU with a frame buffer of 11
GB GDDR5X.

2) Data Augmentation
To enlarge the variety and amount of data artificially, a
range of image data augmentation techniques were employed,
helping overcome over-fitting issues while maintaining the
data properties that existed initially in the data. The data
augmentation techniques used were:

• Rotation: To estimate the eye orientation during the
scanning procedure and to define the data augmentation
range for the rotation, the orientation distribution across
the image dataset was measured and presented it in
Fig. 12. The dominant orientation is around±0 degrees,
with the rotation augmentation range between −22 and
15 degrees.

• Vertical and Horizontal Translation: Based on the
calculated intensity weighed centres of mass for all OCT
images (see Fig. 6), a range of vertical and horizontal
translation augmentations were defined, ±5px for the
vertical translation (up-down) and ±8px the horizontal
translation (right-left) respectively.

• Horizontal Flip: Reversing all rows and columns of an
OCT image’s pixels allowed a mirror image OCT to
be obtained, representing a fellow eye (right for left
and left for right) and allowing the model to learn this
unpredictable variability.

• Gaussian Blur: The calculated noise scores in
Section IV-A2 were used to guide a Gaussian blur data
augmentation technique.

3) Loss Function
The mean absolute error (MAE), the mean squared error
(MSE), and the Huber loss (HL) functions were separately
used. These functions are commonly used by the optimiser
to minimise training errors. While MAE presents the average
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(a)

(b) −22.46◦ (c) 15.33◦

FIGURE 12: Eye orientation distribution in the OCT imaging
dataset (a) and two sample images corresponding to the
eye orientations, −22.46◦ (b) and 15.33◦ (c), respectively.

of the absolute differences between the actual and predicted
visual acuity, scored as ETDRS letters,MSE loss is calculated
as the average of the squared differences. HL was utilised
as a combination of the MAE and the MSE, meaning that
HL represents a quadratic behaviour for minor errors and
a linear behaviour for significant errors. Moreover, HL and
MAE are more robust to data with outliers. Minor error values
calculated by these loss functions reflect a better model. In
addition, to further improve the performance of DL models,
the HL function was also modified, considering image quality
assessment to guide the optimization. Therefore, while the
optimizer considers the predictions at the first epochs, the
model at the late epoch focuses on the model’s robustness.
The term of δ in the HL function was updated during
model training based on the anomaly scores measured in
Section IV-A3 and Algorithm 1 ({d}). A smaller δ made the
loss function more sensitive to small errors, while a larger δ
made it more robust to anomalies.

Lδ =

{
1
2 (y− ŷ)

2 if |(y− ŷ)| < δ
δ((y− ŷ)− 1

2δ) otherwise
(4)

where δ = {d} is the adjusted parameter of the HL
function, which could provide more robustness to anomalies.

4) Parameter Selection
The stated loss functions were optimised via the ADAM
algorithm with a fixed number of epochs (nepoch = 1000),
resulting in sufficient learning within fewer epochs in our
experiments. The learning rate was set to 1×10−5 withweight
decay (w = 1×10−5) and momentums (β1 = 0.5, β2 = 0.9),
and an automatic learning schedule were added. The DL
models were trained by dividing the dataset into 38 batches.
Lastly, the parameters of each DLmodel were saved when the

model’s performance started to decrease since this reduction
is a strong indication of over-fitting.

D. EVALUATION METRICS
To evaluate the performance of the models to predict both pre
and postoperative visual acuity, this study used the following
metrics: R-squared, root-mean-square error (RMSE), mean
absolute error (MAE), and the Pearson correlation coefficient.
The R-squared value ranges from 0 to 1, with a higher
value indicating a better fit between the predicted and actual
values. RMSE and MAE values show better performance
when they are closer to zero. Pearson correlation coefficients
range between -1 and +1. A value of -1.0 shows a perfect
negative correlation, whilst + 1.0 shows a perfect positive
correlation. A zero correlation shows no relationship between
the predicted and actual values. These four metrics were used
to allow a comprehensive comparison with previous studies
in the literature.

V. EXPERIMENTAL DESIGN AND TEST RESULTS
This study presents results for both preoperative and
postoperative visual acuity. Preoperative visual acuity is
known before surgery, but we were interested in assessing the
model’s performances for both measurements. To ensure the
preoperative VA models were trained using the same data set
as the postoperative VA models, data augmentation methods
and model parameters for both tasks were kept the same.
However, five-fold cross-validation set-up were not keep the
same, where each fold contained 152 and 38 OCT images
as training and testing data sets, as the preoperative and
postoperative VA measurements had different distributions.
The modified HL function performed better than the other
mentioned loss functions; therefore, this study represented the
results of optimizing the modified HL function.

A. RESULTS BASED ON PREOPERATIVE VA
Table 3 shows the quantitative comparison between our
trained DL models using a different number of OCT image
slices, using MAE as the evaluation metric. All evaluation
metric values are the means obtained using five-fold cross-
validation. Statistically significant results are highlighted in
bold. The obtained results clearly show that the majority of
tested DL predictive models performed best with seven OCT
image slices.
Table 4 illustrates the performance of nine DL models

using the seven central OCT image slices, with all four
evaluation metrics given as means obtained using five-fold
cross-validation. The experimental results demonstrated that
ResNet-18 was the most predictive in all scores, achieving
0.47 for R-squared, 7.34 for RMSE, 0.65 for the Pearson
correlation coefficient, and 5.96 for MAE.
Table 5 shows the performance of the nine DL’s best

predictive models on the test dataset using seven input
OCT image slices, with all four evaluation metrics: R-
squared, RMSE, Pearson correlation coefficient, and MAE.
The experimental results demonstrated that ResNet-18 was
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TABLE 3: The mean absolute error values, based on preoperative VA measurements, were obtained for nine state-of-
the-art DL predictive models using a different number of OCT image slices through our designed loss function (the best
results are highlighted in bold). All evaluation metric values are given as the means and standard deviations obtained
using five-fold cross-validation.

MODELS
OCT IMAGE SLICES

1 3 5 7 9 11 13 17 19 21

VGG-11 6.72±1.07 6.88±1.11 7.09±0.98 7.21±0.89 7.48±0.82 7.21±0.83 7.67±0.69 7.56±0.87 7.42±0.62 7.46±0.77

VGG-19 6.56±1.12 6.51±0.99 6.74±0.97 6.88±0.82 7.07±0.55 6.94±0.91 7.20±0.66 7.41±0.89 7.05±0.78 7.11±0.77

ResNet-18 6.32±1.3 6.38±0.94 6.79±0.93 5.96±0.72 7.04±0.67 6.90±0.72 6.77±0.87 7.05±0.92 7.29±1.12 7.07±1.19

ResNet-34 6.27±1.20 6.60±1.23 6.78±1.17 6.01±0.78 6.96±0.79 7.03±0.68 7.26±0.65 6.72±0.89 6.94±0.91 6.75±0.97

ResNet-50 6.94±0.97 7.59±0.82 7.20±0.62 6.75±0.89 7.40±0.86 7.53±0.80 7.42±0.49 7.26±0.49 7.08±0.30 7.22±0.26

Inception v3 6.95±1.14 6.66±1.12 7.48±0.94 6.42±0.83 7.41±0.58 8.61±0.30 8.78±0.26 8.47±0.41 8.20±0.48 8.58±0.73

DenseNet-121 6.08±0.91 7.24±1.29 7.06±1.15 6.97±0.77 7.18±0.65 7.17±0.93 6.75±0.78 6.88±0.86 6.82±0.81 6.92±0.83

EfficientNetV2-L 6.58±1.01 6.83±0.97 6.82±1.01 6.57±0.89 6.90±1.15 6.98±1.23 6.95±1.18 7.00±0.93 6.97±0.95 7.06±1.11

ViT-B/16 7.05±0.70 6.88±0.62 6.93±0.62 6.90±0.63 6.98±0.60 6.82±0.64 6.70±0.58 6.71±0.51 6.87±0.51 6.95±0.52

TABLE 4: Quantitative comparison of nine state-of-
the-art DL predictive models with seven OCT image
slices, using four different evaluation metrics through
our designed loss function, as the means and standard
deviations obtained with five-fold cross-validation, based
on preoperative VA measurements (the best results are
highlighted in bold).

MODELS R2 RMSE Pearson MAE

VGG-11 0.27 9.70 0.52 7.21±0.89

VGG-19 0.34 9.227 0.58 6.88±0.82

ResNet-18 0.47 7.34 0.65 5.96±0.72

ResNet-34 0.40 7.75 0.62 6.01±0.78

ResNet-50 0.25 9.04 0.39 6.75±0.89

Inception v3 0.38 8.27 0.61 6.42±0.83

DenseNet-121 0.30 9.37 0.55 6.97±0.77

EfficientNetV2-L 0.37 8.49 0.59 6.57±0.89

ViT-B/16 0.39 9.48 0.52 6.90±0.63

again the most effective method, achieving 0.59 for R-
squared, 6.67 for RMSE, 0.73 for the Pearson correlation
coefficient, and 5.25 for MAE.

B. RESULTS BASED ON POSTOPERATIVE VA
Table 6 shows the quantitative comparison between our
trained DL models using a different number of OCT image
slices, with MAE as the evaluation metric (means obtained
using five-fold cross-validation). Statistically significant
results are highlighted in bold. The obtained results clearly
show that the majority of tested DL predictive models
performed best with the central seven OCT image slices.

Table 7 illustrates the performance of the nine DL models
using seven OCT image slices, using all four outcome
metrics: R-squared, RMSE, Pearson correlation coefficient,

TABLE 5: Quantitative comparison of nine state-of-the-art
DL’s best predictive models on a uniform test dataset with
seven OCT image slices, using four different evaluation
metrics through our designed loss function, based on
preoperative VA measurements (the best results are
highlighted in bold).

MODELS R2 RMSE Pearson MAE

VGG-11 0.47 7.64 0.68 6.06

VGG-19 0.48 7.55 0.69 5.93

ResNet-18 0.59 6.67 0.73 5.25

ResNet-34 0.35 6.76 0.59 5.35

ResNet-50 0.29 9.56 0.48 7.21

Inception v3 0.33 8.45 0.58 6.73

DenseNet-121 0.37 8.05 0.61 6.14

EfficientNetV2-L 0.41 7.45 0.61 6.13

ViT-B/16 0.35 8.95 0.52 6.91

and MAE. The experimental results demonstrated that
ResNet-50 was the most effective and superior in most
evaluation scores, achieving 0.46 for R-squared, 9.01 for
RMSE, 0.69 for the Pearson correlation coefficient, and 6.84
for MAE.
Table 8 shows the performance of the nine DL models on

a uniform test dataset using seven input OCT image slices
with all four evaluation metrics. The experimental results
demonstrated that ResNet-50 was again the most effective
and superior in most evaluation scores, achieving 0.52 for
R-squared, 9.23 for RMSE, 0.71 for the Pearson correlation
coefficient, and 6.47 for MAE.
In Fig. 13 and 14, we show descriptive results for the

relationship between ground truth and predicted VA values
and corresponding confidence intervals to show how close
our best-trained model was able to predict VA values on the
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TABLE 6: The mean absolute error values, based on postoperative VA measurements, were obtained for nine state-of-
the-art DL predictive models using a different number of OCT image slices through our designed loss function (the best
results are highlighted in bold). All evaluation metric values are the means and standard deviations obtained using the
five-fold cross-validation.

MODELS
OCT IMAGE SLICES

1 3 5 7 9 11 13 17 19 21

VGG-11 8.19±1.43 8.74±1.38 8.20±1.21 7.94±1.11 8.10±1.36 8.57±1.20 8.82±1.22 8.25±1.12 8.13±1.09 8.62±1.01

VGG-19 7.94±1.66 7.76±1.12 8.47±1.04 7.87±1.11 8.28±1.21 8.02±1.28 8.46±1.56 8.85±1.32 8.95±1.22 8.77±1.23

ResNet-18 7.29±1.76 7.31±1.25 7.67±1.01 6.81±0.81 7.52±1.24 8.09±1.47 7.45±1.50 7.45±0.95 7.57±1.12 7.35±0.80

ResNet-34 7.06±1.10 7.58±1.84 7.29±1.25 7.15±1.31 7.16±1.55 6.96±1.59 7.55±1.73 7.48±1.36 7.46±1.22 7.63±1.55

ResNet-50 7.37±1.61 7.70±1.56 7.37±1.51 6.84±0.37 7.26±0.54 7.58±0.90 7.59±1.23 7.64±1.30 7.41±1.14 7.75±1.62

Inception v3 7.38±1.41 7.57±1.28 8.01±1.43 7.57±1.51 7.60±1.12 7.78±1.01 8.01±1.51 7.66±1.60 8.07±1.35 7.91±1.23

DenseNet-121 7.87±1.19 7.75±1.27 7.68±1.01 7.64±0.88 8.02±1.22 7.79±1.37 7.60±1.41 8.01±1.29 7.67±1.41 7.90±1.39

EfficientNetV2-L 7.98±2.11 7.76±1.29 7.73±1.13 7.57±1.01 7.61±0.98 7.47±0.98 7.35±1.08 6.97±1.16 6.99±1.13 7.2±0.98

ViT-B/16 8.12±0.80 8.04±0.72 7.97±0.64 7.89±0.61 7.89±0.66 7.90±0.75 7.93±0.73 7.88±0.74 7.92±0.70 8.02±0.69

TABLE 7: Quantitative comparison of nine DL predictive
models using seven OCT image slices, showing four
different evaluation metrics through our designed
loss function (with means obtained by five-fold cross-
validation), as the means and standard deviations
obtained with five-fold cross-validation, based on
postoperative VA measurements (the best results are
highlighted in bold).

MODELS R2 RMSE Pearson MAE

VGG-11 0.27 10.77 0.52 7.94±1.11

VGG-19 0.25 11.52 0.45 7.87±1.11

ResNet-18 0.43 9.31 0.65 6.81±0.81

ResNet-34 0.36 9.95 0.60 7.15±1.31

ResNet-50 0.46 9.01 0.69 6.84±0.37

Inception v3 0.26 10.12 0.51 7.57±1.51

DenseNet-121 0.23 10.35 0.47 7.64±0.88

EfficientNetV2-L 0.36 10.05 0.53 7.57±1.01

ViT-B/16 0.38 10.79 0.60 7.89±0.61

test dataset. Overall, the results confirm that our proposed
fully automated image informatics framework can robustly
predict both preoperative and postoperative visual acuity
measurements for patients with idiopathic full-thickness
macular holes using a high-quality SD-OCT image dataset.

VI. DISCUSSION AND CONCLUSION
We present a full image informatics approach to predict visual
acuity outcomes in people undergoing surgery to treat MHs
using preoperative SD-OCT images and deep learning-based
predictive models.

To overcome the impact of high variations in real-
world image quality on the robustness of the deep learning
model, an extensive imaging data assessment and quality
assurance procedure was implemented. Data preparation

TABLE 8: Quantitative comparison of nine state-of-the-art
DL’s best predictive models on a uniform test dataset with
seven OCT image slices, using four different evaluation
metrics through our designed loss function, based on
postoperative VA measurements (the best results are
highlighted in bold).

MODELS R2 RMSE Pearson MAE

VGG-11 0.41 11.84 0.64 6.92

VGG-19 0.32 11.10 0.57 6.78

ResNet-18 0.49 9.99 0.70 6.00

ResNet-34 0.34 10.56 0.57 7.06

ResNet-50 0.52 9.23 0.71 6.47

Inception v3 0.41 10.17 0.64 6.20

DenseNet-121 0.17 10.74 0.40 7.55

EfficientNetV2-L 0.32 10.41 0.58 6.73

ViT-B/16 0.38 11.04 0.55 7.51

steps, including scaling, centre of mass detection, and
cropping, were used to unify the imaging dataset’s scale,
size and centration. Further, data quality assessment
measurements, including noise, blurriness, contrast, motion,
and brightness-darkness scores, were calculated to identify
and exclude abnormalities in the imaging dataset.
The resultant high-quality imaging dataset was then used to

train nine state-of-the-art 2D deep learning-based predictive
models for both pre and postoperative VA using multiple
channels (2D+), followed by a quantitative performance
comparison with our designed loss function.
All tested models were able to predict preoperative visual

acuity with less than an 8.78 MAE letter score, with the best
predictive model achieving a 5.96 MAE score with 0.47 for
R-squared, 7.34 for RMSE, 0.65 for the Pearson correlation
coefficient. Similarly, all tested models were able to predict
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FIGURE 13: The scatter plot visualises the relationship
between the ground truth and predicted postoperative VA
measurements obtained by the ResNet-50 model on the
test dataset (the highlighted result in Table 8). The red
dotted line depicts the gold standard.

postoperative visual acuity with less than an 8.95 letter MAE
score, with the best predictive model achieving a 6.84 MAE
score with 0.46 for R-squared, 9.01 for RMSE, 0.69 for the
Pearson correlation coefficient.

The CNN-based backbone networks mostly demonstrated
high predictive performance, as evidenced by their
competitive results in predicting preoperative and postoperative
VA measurements. The reason might be that they leverage
their inherent ability to analyse hierarchical features for
complex structure analysis on OCT images [65]. Another
might be that they likely recognize patterns regardless of the
location of relevant structures in the input OCT image [66].
On the contrary, a certain standard has not been achieved
regarding robustness when the number of input channels is
altered.

In addition, the ViTs model did not perform as effectively
as the CNN-based state-of-the-art models. This is likely
because the ViT-based models improve training efficiency on
large-scale datasets [35]. However, our dataset is relatively
small. Furthermore, the ViTs come with expensive overhead,
causing large parameter sizes [35], [67]. Hence, it is a
computationally expensive and time-consuming process.
On the contrary, the ViT models presented more robust
performance. This is also because the ViT-based models
may incorporate attention mechanisms to focus on the most
relevant part of images and disregard irrelevant noise [36].
However, the introduction of redundant information and
insufficient sparsity can impede the improvement of
robustness in ViT-based models, leading to performance
degradation [68].

As a result, ResNet architectures show slightly better
results among nine state-of-the-art DL models. One of the
reasons might be that it has residual blocks, leading to fewer
vanishing problems. Additionally, ResNet-50 obtained the
best results, which may be due to a deeper architecture and
having a bottleneck. Overall, the prediction of preoperative
visual acuity had better performance than postoperative VA

FIGURE 14: The 95% confidence interval between the
ground truth and predicted postoperative VA values is
shown with the red dotted lines (-8.02, 6.46) obtained by
the ResNet-50 model on the test dataset (the highlighted
result in Table 8). The solid red line depicts the gold
standard.

in most of the metrics. As other studies have shown, however,
preoperative VA is strongly correlated with postoperative VA.
Although other studies have reported similar results for

the important and informative prediction of postoperative
VA [17], [23], [24], our study provides more robust results,
as we validated our results using an independent data set.
Indeed, our best model achieved the highest metrics in
all evaluation scores, achieving 0.52 for R-squared, 9.23
for RMSE, 0.71 for the Pearson correlation coefficient,
and 6.47 for MAE, as shown in Table 1. These compare
very favourably to previous traditional regression modelling
methodologies. Furthermore, while the predictive model was
trained on a limited dataset acquired by only one type of OCT
imaging system, albeit in two hospitals and four different
devices, the proposed 2D DL-based predictive approach
contains a comprehensive image informatics framework with
our designed loss function that can be applied across a breadth
of many 3D medical image datasets.
To overcome those limitations, our future research work

will focus on adapting full 3D deep learning-based predictive
models, the uncertainty of 2D and 3D DL-based predictive
models, and a substantive scale-up of the OCT imaging data
size and types.
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