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Heterogeneity among patients commonly exists in clinical studies and leads to challenges in 
medical research. It is widely accepted that there exist various sub-types in the population 
and they are distinct from each other. The approach of identifying the sub-types and thus 
tailoring disease prevention and treatment is known as precision medicine. The mixture model 
is a classical statistical model to cluster the heterogeneous population into homogeneous sub-

populations. However, for the highly heterogeneous population with multiple components, its 
parameter estimation and clustering results may be ambiguous due to the dependence of the 
EM algorithm on the initial values. For sub-typing purposes, the finite mixture of regression 
models with concomitant variables is considered and a novel statistical method is proposed to 
identify the main components with large proportions in the mixture sequentially. Compared to 
existing typical statistical inferences, the new method not only requires no pre-specification on 
the number of components for model fitting, but also provides more reliable parameter estimation 
and clustering results. Simulation studies demonstrated the superiority of the proposed method. 
Real data analysis on the drug response prediction illustrated its reliability in the parameter 
estimation and capability to identify the important subgroup.

1. Motivation

The heterogeneity of patients in response to treatment is a common problem in practice, which challenges precision medicine 
and motivates more appropriate clinical strategies. For some tumor diseases, it is recognized that chemotherapy treatment may not 
be effective for every patient. However, since there are typically no standard criteria to clearly distinguish the patients who are not 
responsive to the treatment, these patients also have to suffer the chemotherapy pains and bear high medical costs even though 
they can not benefit from the treatment. The underlying reason that causes this fact is the complexity of tumor disease. In clinical 
practice, cancer patients are classified based on their tumor characteristics such as histology and morphology. However, more and 
more evidences indicate that one perceived disease may have various sub-types. The patients with different sub-types are distinct in 
etiology and pathogenesis, and therefore prognosis to systematic treatment (Curtis et al., 2012; Schlicker et al., 2012; Punt et al., 
2017; Fan et al., 2014). Assigning patients into different sub-populations to apply corresponding effective treatments is precision 

* Corresponding author at: School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
Available online 23 February 2024
0167-9473/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail address: hongsheng.dai@newcastle.ac.uk (H. Dai).

https://doi.org/10.1016/j.csda.2024.107942

Received 13 November 2022; Received in revised form 15 February 2024; Accepted 16 February 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/csda
mailto:hongsheng.dai@newcastle.ac.uk
https://doi.org/10.1016/j.csda.2024.107942
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2024.107942&domain=pdf
https://doi.org/10.1016/j.csda.2024.107942
http://creativecommons.org/licenses/by/4.0/


Computational Statistics and Data Analysis 194 (2024) 107942N. You, H. Dai, X. Wang et al.

medicine’s main task. In order to stratify the cancer patients according to their pharmacologic response to the drug intervention, 
the Cancer Cell Line EncyclopFedia (CCLE) project (https://portals .broadinstitute .org /ccle) acquired the responses of 24 chemical 
compounds on 504 cancer cell lines, along with their genetic profiles, including DNA mutations, DNA methylations, RNAseq gene 
expressions, mRNA expressions, etc. The drug responses show high heterogeneity among cell lines. It is of great interest to identify 
the subgroups of cell lines within which they show similar responsive patterns to the drug intervention.

In classical statistics, the mixture model is commonly used to handle the data heterogeneity due to subgroups among the popula-

tion (McLachlan and Peel, 2000; Fruhwirth-Schnatter, 2006). For the interesting outcome 𝑦 and its related risk factors 𝒙, the finite 
mixture of regression models (FMR) with 𝐾 components is denoted by

𝑓 (𝑦;𝒙) =
𝐾∑
𝑘=1
𝜌𝑘𝑔𝑘(𝑦;𝒙), (1)

where 𝑔𝑘(𝑦; 𝒙) in different components may belong to the same density family but with different parameters 𝜽𝑘, and thereafter 
𝑔𝑘(𝑦; 𝒙) = 𝑔(𝑦; 𝜽𝑘, 𝒙). For instance, in the mixture of Gaussian regression models, 𝑔(𝑦; 𝜽𝑘, 𝒙) is the normal density with mean 𝒙𝑇 𝜷𝑘
and standard deviation 𝜎𝑘, where the superscript 𝑇 indicates the transpose, and 𝜽𝑘 = (𝜷𝑇

𝑘
, 𝜎𝑘)𝑇 . Although this type of mixture model 

is extensively studied (Grün and Leisch, 2008; Benaglia et al., 2009; Balakrishnan et al., 2017), the previous works usually put 
more effort into revealing the heterogeneous relationship between the explanatory variables 𝒙 and the response 𝑦, but neglect the 
inference on partitioning criteria for subgroups. With the fitted model (1), if we want to stratify a new incoming patient into any 
subgroup, then we have to incorporate the response to calculate the posterior classification probability. However, this is not feasible 
for practical use since the response can not be known in advance in most cases. One of the research aims of the CCLE project is to 
classify a new cell line into a subgroup to predict how it would respond to different drugs and therefore help to choose the most 
appropriate treatment.

A more general type of FMR incorporates the patient’s individual characterization as the concomitant variable 𝒛 to model the 
mixing probabilities, that is

𝑓 (𝑦;𝒙,𝒛) =
𝐾∑
𝑘=1
𝜌𝑘(𝒛)𝑔(𝑦;𝜽𝑘,𝒙), (2)

where 𝜌𝑘(⋅) are unknown functions to be estimated (Grün and Leisch, 2008; Benaglia et al., 2009; Huang and Yao, 2012; Huang et al., 
2013, 2018). The covariates in 𝒛 may be the same, different, or overlapped with that in the explanatory variable 𝒙. It is remarkable 
that model (2) is crucially important to classify the heterogeneous population into subgroups. With the aid of the concomitant variable 
such as the expression of a set of genes, one can establish sub-typing criteria to assign the new patient to the appropriate subgroup, 
and then predict the response using the regression model of the corresponding component. Without the subgroup identification, the 
prediction can not be properly derived, no matter how precisely the component models are described. This motivates us to work on 
the finite mixture regression model with concomitant variables (general finite mixture regression, gFMR), i.e. model (2), rather than 
(1) in this paper.

EM algorithm (Dempster et al., 1977) is widely employed to calculate the maximum likelihood estimate (MLE) of the parameter 
in the mixture model (McLachlan and Peel, 2000; Fruhwirth-Schnatter, 2006; Grün and Leisch, 2008; Huang et al., 2013, 2018). 
The main issue about the EM-type iterative algorithms is that their computation results may depend on the setting of initial values 
(Biernacki et al., 2003; Balakrishnan et al., 2017), due to the fact that the objective function to be maximized, i.e., the likelihood of 
the mixture model, may not be concave. It is usually suggested to repeat the EM algorithm from multiple initial values and take the 
maximum of the converged likelihoods as the global maximum. In order to answer how many different initial points should be tried 
to achieve the global maximum, Jin et al. (2016) found the probability that the EM algorithm starting from a random initial value 
converges to the global maximum decreases exponentially as 𝐾 increases.

The number of components 𝐾 in the mixture model affects the computation complexity to a great extent. In addition to the label-

switching problem being commonly addressed in the literature (Papastamoulis, 2016), multiple components in the mixture model 
contribute to the non-concavity of the likelihood function with bad local maxima owing to the flexibility in the formulation of the 
FMR. Suppose that the data are from a mixture of three components 𝜌𝐴𝑔𝐴 + 𝜌𝐵𝑔𝐵 + 𝜌𝐶𝑔𝐶 . Even though we use the mixture model 
with the true value 𝐾 = 3, say 𝜌1𝑔1 + 𝜌2𝑔2 + 𝜌3𝑔3, to fit the data, the parameter value corresponding to 𝑔1 = 𝑔2 = 𝑔𝐴, 𝜌1 + 𝜌2 = 𝜌𝐴
and 𝜌3𝑔3 = 𝜌𝐵𝑔𝐵 + 𝜌𝐶𝑔𝐶 contributes a bad local maximum of the likelihood function. Furthermore, because of 𝑔1 = 𝑔2, the mixture 
(𝜌1 − 𝑐)𝑔1 + (𝜌2 + 𝑐)𝑔2 with any constant 𝑐 such that both 𝜌1 − 𝑐 and 𝜌2 + 𝑐 fall in [0, 𝜌𝐴] provides equal fitting to 𝜌1𝑔1 + 𝜌2𝑔2. These 
bad local maxima form a wave on the surface of the likelihood function. As 𝐾 increases, the waves become much more intensive and 
challenge the iterative algorithm to achieve the global maxima.

Since the definitions of sub-types are unclear, 𝐾 is usually unknown in reality. There have been many proposed methods for 
the determination of 𝐾 in the literature, such as AIC, BIC, and the likelihood ratio test (McLachlan and Peel, 2000), extended 
𝐾 -means approach Pelleg and Moore (2000) and some Bayesian approaches (Stephens, 2000a; Miller and Harrison, 2018). They 
consider all possible values of 𝐾 and choose the best one under certain criteria. Baudry and Celeux (2015) proposed a recursive 
algorithm to determine 𝐾 and considered different approaches to split a mixture component into two components to avoid irrelevant 
parameter estimation. Similar approaches of splitting a component or merging mixture components were also used in the Bayesian 
framework via reversible-jump MCMC (Richardson and Green, 1997). However, the problematic model fitting results can mislead 
the choice of 𝐾 . Ho et al. (2019) and Dwivedi et al. (2020) studied the singularity behaviours of EM algorithm with over-specified 
2

𝐾 . Moreover, as aforementioned, a reasonably large 𝐾 setting can not avoid the model fitting from bad local maxima and presents 
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initial-dependent results. When the study population is highly heterogeneous, it is appealing to develop a statistical method for the 
parameter estimation which is less initial-dependent to ensure stable inference.

In recent years, although there are substantive progresses on the global performance and convergence rate of EM algorithm for 
solving the mixture models, the conclusions were mainly drawn on those with two components (Xu et al., 2016; Balakrishnan et al., 
2017; Klusowski et al., 2019; Kwon et al., 2019; Ho et al., 2019; Dwivedi et al., 2020; Kwon et al., 2021). In this paper, for the gFMR 
(2) with large 𝐾 , we propose a sequential procedure based on a mixture model with two components for the parameter estimation 
and component identification. The basic 2-component mixture model is composed of one interested parametric component, and the 
mixture of all other components modelled via a nonparametric component. Therefore, it can deal with the problems with 𝐾 > 2, but 
still has the simplicity of a two-component mixture model. For a heterogeneous population, the proposed procedure runs sequentially. 
At each time, a set of subjects are classified into the interested component (the parametric component), and the rest are left for further 
partitioning (the non-parametric component). As more subjects are separated out, the algorithm stops until either no more interested 
component is identified or no sufficient samples remain. Therefore, we need not pre-specify 𝐾 to fit the gFMR. Meanwhile, the 
2-component mixture model used for each partitioning simplifies the gFMR at most efforts, providing a stabler parameter estimation 
than the directly fitting model (2). In summary, our method offers a novel alternative statistical strategy for the gFMR estimation 
to deal with the highly heterogeneous population. Unlike Baudry and Celeux (2015) and Richardson and Green (1997) which need 
to decide which component to be split, our recursive algorithm always splits the non-parametric component in every step into a 
combination of a Gaussian component and a non-parametric component. Therefore, our algorithm is simpler and bypasses the step 
to decide which component to split comparing to Baudry and Celeux (2015) and Richardson and Green (1997). Since our algorithm 
always split the non-parametric component, it means that any parametric components, once identified, will not change in later steps 
of iterations. Therefore, the samples identified from the non-parametric component will become smaller and smaller as the algorithm 
iterates. This will naturally provide a stopping criterion for our algorithm, e.g., it will stop when the non-parametric component does 
not have enough samples to be split further to identify another parametric component.

The remainder of this paper is structured as follows. In Section 2, we present the methodology of statistical inferences on the basic 
2-component mixture model. In Section 3, we introduce the sequential analysis procedure for the gFMR with 𝐾 > 2. The simulations 
are described in Section 4 and the analysis on a real data set is illustrated in Section 5. A short discussion is given in Section 6.

2. Two-component mixture model with concomitant variables

First, we consider a mixture regression model with two components. The response 𝑦 is associated with the explanatory variables 
𝒙 and the concomitant variable 𝒛 via

𝑓 (𝑦;𝚯, 𝑓1,𝒙,𝒛) = 𝜋0(𝜶;𝒛)𝑓0(𝑦;𝜽,𝒙) + 𝜋1(𝜶;𝒛)𝑓1(𝑦;𝒙,𝒛), (3)

where 𝑓0(𝑦; 𝜽, 𝒙) is our main research interest and is in some parametric form with unknown parameter 𝜽, and 𝑓1(𝑦; 𝒙, 𝒛) is unspeci-

fied, representing the mixture of other components. For notation simplicity, we drop unknown component parameters from 𝑓1(𝑦; 𝒙, 𝒛)
since they are not of the main research interests in this section. The mixing probabilities such that 𝜋0(𝜶; 𝒛) + 𝜋1(𝜶; 𝒛) = 1 are deter-

mined by 𝒛 via a function with unknown parameter 𝜶, for instance the logit function where 𝜋0(𝜶; 𝒛) = exp(𝒛𝑇𝜶)∕
(
1 + exp(𝒛𝑇𝜶)

)
, 

and 𝚯 = (𝜶𝑇 , 𝜽𝑇 )𝑇 . Note that the gFMR (2) can be written in the formula of (3) by setting 𝜋0(𝜶; 𝒛) = 𝜌1(𝒛), 𝑓0(𝑦; 𝜽, 𝒙) = 𝑔(𝑦; 𝜽1, 𝒙), 
and 𝑓1(𝑦; 𝒙, 𝒛) =

∑𝐾
𝑘=2 𝜌𝑘(𝒛)𝑔(𝑦;𝜽𝑘,𝒙)∕(1 − 𝜌1(𝒛)).

Let  = {𝒚,  , } denote the observed data of 𝑛 i.i.d. samples, with 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛)𝑇 ,  = (𝒙1, 𝒙2, … , 𝒙𝑛) and  =
(𝒛1, 𝒛2, … , 𝒛𝑛). The log-likelihood function of model (3) is

(𝚯;) = 1
𝑛

𝑛∑
𝑖=1

log
{
𝜋0(𝜶;𝒛𝑖)𝑓0(𝑦𝑖;𝜽,𝒙𝑖) + 𝜋1(𝜶;𝒛𝑖)𝑓1(𝑦𝑖;𝒙𝑖,𝒛𝑖)

}
. (4)

Since 𝑓1(𝑦; 𝒙, 𝒛) is unknown, (4) is not ready for optimization. We consider formulating it as

𝑓1(𝑦;𝝎) =
1
𝑛ℎ𝑛

𝑛∑
𝑗=1
𝜔𝑗𝕂

(
𝑦𝑗 − 𝑦
ℎ𝑛

)
, (5)

where 𝕂(𝑧) is a kernel function that satisfies the following Condition 2.1, ℎ𝑛 is the bandwidth, and 𝝎 = (𝜔1, … , 𝜔𝑛)𝑇 are nuisance 
parameters.

Condition 2.1. The kernel function 𝕂(𝑧) is such that ∫ 𝕂(𝑧)d𝑧 = 1, ∫ 𝕂(𝑧)𝑧d𝑧 = 0 and 𝜇𝕂 = ∫ 𝕂(𝑧)𝑧2d𝑧 <∞.

Note that the value of 𝜔𝑗 in (5) depends on the data point (𝑦𝑗 , 𝒙𝑗 , 𝒛𝑗 ), which should be denoted by 𝜔𝑗 (𝑦𝑗 , 𝒙𝑗 , 𝒛𝑗 ) exactly. However, 
in model (3), our main interest is to identify the parametric component 𝑓0(⋅). It is not our target to describe how the response 𝑦
depends on 𝒙 in 𝑓1(⋅), so we drop off this dependency in (5) and regard 𝜔𝑗 , 𝑗 = 1, … , 𝑛 as nuisance parameters to simplify the 
inference. In particular, (5) can be viewed as a weighted kernel density estimation of 𝑓1(⋅), which was utilized in different manner 
from existing literature (Wang and Wang, 2007). Instead of using the random samples from 𝑓1 to estimate the density function 𝑓1, 
we are using the samples from the mixture 𝑓 to estimate 𝑓1, and we show that 𝑓1 in (5) is asymptotically unbiased to 𝑓1. Such large 
3

sample properties are provided in the Supplementary Material.
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Replacing 𝑓1(𝑦; 𝒙) in (4) by (5), it is natural to consider the following working log-likelihood function for the estimation of the 
parameters 𝚯 and 𝝎, i.e.,

̃(𝚯,𝝎;) = 1
𝑛

𝑛∑
𝑖=1

log
{
𝜋0(𝜶;𝒛𝑖)𝑓0(𝑦𝑖;𝜽,𝒙𝑖) + 𝜋1(𝜶;𝒛𝑖)𝑓1(𝑦𝑖;𝝎)

}
. (6)

Denoted 𝚯∗ as the truth of 𝚯 and 𝑓 ∗1 as the truth of 𝑓1, we have the following theorem under mild conditions.

Condition 2.2.

1. Functions 𝜋0(𝜶; 𝒛), 𝜋1(𝜶; 𝒛) and 𝑓0(𝑦; 𝜽, 𝒙) are continuous and have second derivatives with respect to 𝜽, 𝜶.

2. There exists a constant 𝛿 ∈ (0, 1) such that

sup
𝜶,𝒛

𝜋1(𝜶;𝒛)
𝜋0(𝜶;𝒛)

∈ (𝛿, 𝛿−1).

3. The second derivative of 𝑓0(𝑦; 𝜽∗, 𝒙) and 𝑓 ∗1 (𝑦; 𝒙, 𝒛) with respect to 𝑦 exists such that for some 𝑀 > 0

sup
𝑦,𝒙

d2

d𝑦2
𝑓 ∗1 (𝑦;𝒙,𝒛) ≤𝑀, sup

𝑦,𝒙

d2

d𝑦2
𝑓 ∗0 (𝑦;𝜽

∗,𝒙) ≤𝑀.

∫ 𝑦2𝑓0(𝑦; 𝜽∗, 𝒙)d𝑦 <∞, ∫ 𝑦2𝑓 ∗1 (𝑦; 𝒙, 𝒛)d𝑦 <∞, and sup𝑦,𝜽,𝒙 𝑓0(𝑦; 𝜽, 𝒙) <∞, sup𝑦,𝒙 𝑓 ∗1 (𝑦; 𝒙, 𝒛) <∞.

Theorem 2.1. If Condition 2.1 holds and ℎ𝑛→ 0, 𝑛ℎ𝑛→∞ as 𝑛 →∞, under mild Conditions 2.2 and A.1 in the Supplementary Material, 
there exists 𝝎̂ such that the maximum 𝚯̂ of ̃(𝚯, ̂𝝎; ) in (6) converges to 𝚯∗ in probability.

Remark 2.1. Note that in a neighbourhood , the identifiability of 𝚯̂ is guaranteed by the conditions stated in the above theorem. 
Condition 2.2 says the mixing probability 𝜋0(𝜶; 𝒛) is bounded up and below for all 𝒛 and 𝚯 ∈, which means we can only identify 
the component that is large enough, and the component with very small weight can not be identified. The concavity in Condition 
A.1 guarantees the uniqueness of the parameter estimate.

Theorem 2.2. Under the same conditions as Theorem 2.1 and 
√
𝑛ℎ2𝑛 → 0 as 𝑛 →∞, 

√
𝑛(𝚯̂ −𝚯∗) is asymptotically normal with mean 𝟎

and covariance matrix 𝚺, with the detailed formula and its estimator provided in the Supplementary Material.

In order to obtain the maximum estimate 𝚯̂ and 𝝎̂, we implement an EM iterative algorithm. Let 𝚫 = (Δ1, … , Δ𝑛)𝑇 , where Δ𝑖 = 0
or 1 indicates whether the data point (𝒙𝑖, 𝒛𝑖, 𝑦𝑖) belongs to the parametric component 𝑓0(⋅) or the nonparametric component 𝑓1(⋅), 
and 𝑃 (Δ𝑖 = 𝑘|𝒛𝑖) = 𝜋𝑘(𝜶; 𝒛𝑖), 𝑘 = 0, 1. The complete working log-likelihood of (, 𝚫) is

̃𝑐(𝚯,𝝎;,𝚫) = 1
𝑛

𝑛∑
𝑖=1

{
𝕀(Δ𝑖 = 0) log𝜋0(𝜶;𝒛𝑖) + 𝕀(Δ𝑖 = 1) log𝜋1(𝜶;𝒛𝑖)

}
+ 1
𝑛

𝑛∑
𝑖=1

{
𝕀(Δ𝑖 = 0) log𝑓0(𝑦𝑖;𝜽,𝒙𝑖) + 𝕀(Δ𝑖 = 1) log𝑓1(𝑦𝑖;𝝎)

}
. (7)

Given the parameter estimates 𝝎(𝑚), 𝜽(𝑚) and 𝜶(𝑚) from the 𝑚th iteration, the E-step calculates the posterior probability that each 
sample belongs to the parametric component 𝑓0(⋅),

𝑢
(𝑚+1)
0,𝑖 =

𝜋0(𝜶(𝑚);𝒛𝑖)𝑓0(𝑦𝑖;𝜽(𝑚),𝒙𝑖)
𝜋0(𝜶(𝑚);𝒛𝑖)𝑓0(𝑦𝑖;𝜽(𝑚),𝒙𝑖) + 𝜋1(𝜶(𝑚);𝒛𝑖)𝑓1(𝑦𝑖;𝝎(𝑚))

. (8)

Substituting 𝕀(Δ𝑖 = 0) in (7) by 𝑢(𝑚+1)0,𝑖 and 𝕀(Δ𝑖 = 1) by 1 − 𝑢(𝑚+1)0,𝑖 , the maximization of the expected complete working log-likelihood 
in the M-step can be solved separately, i.e.,

𝜔
(𝑚+1)
𝑗

= 𝑛 ⋅

(
1 − 𝑢(𝑚+1)0,𝑗

)
𝜋1(𝜶(𝑚);𝒛𝑗 )−1∑𝑛

𝑖=1
(
1 − 𝑢(𝑚+1)0,𝑖

)
𝜋1(𝜶(𝑚);𝒛𝑖)−1

, (9)

𝜽(𝑚+1) = argmax
𝜽

1
𝑛

𝑛∑
𝑖=1

{
𝑢
(𝑚+1)
0,𝑖 log𝑓0(𝑦𝑖;𝜽,𝒙𝑖)

}
, (10)

𝜶(𝑚+1) = argmax 1
𝑛∑{
𝑢
(𝑚+1)
0,𝑖 log𝜋0(𝜶;𝒛𝑖) +

(
1 − 𝑢(𝑚+1)0,𝑖

)
log𝜋1(𝜶;𝒛𝑖)

}
. (11)
4

𝜶 𝑛
𝑖=1
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The updating equation (9) is derived based on (8) and equation (A13) in the Supplementary Material, from which we know 𝜔(𝑚+1)
𝑗

∝(
1 − 𝑢(𝑚+1)0,𝑗

)
𝜋1(𝜶(𝑚); 𝒛𝑗 )−1 and (9) is the normalised version.

Given initial assignments among two groups, the above E-step and M-step run iteratively until convergence. The whole procedure 
is summarized in Algorithm 1 as follows. To tackle bad local maxima, in practice we may rerun Algorithm 1 multiple times from 

Algorithm 1: The algorithm for 𝐾 = 2.

Result: the converged parameter estimates 𝚯̂;

Randomly divide the samples into two groups by assigning 𝑢(0)0,𝑖 ∼ 𝐵𝑖𝑛𝑜𝑚(1, 0.5), and calculate 𝝎(0) , 𝜽(0) and 𝜶(0) according to equation (9), (10) and (11)

respectively;

Compute the observed working log-likelihood (6);

repeat

E-step: Update the posterior probabilities 𝑢(𝑚+1)0,𝑖 by equation (8);

M-step: renew the parameter estimates according to (9), (10) and (11);

Compute the observed working log-likelihood (6);

until the observed working likelihood converges;

different initial values and take the parameter estimates corresponding to the largest likelihood as 𝚯̂. It is worth noting that, since 
there are only two components being considered in the mixture model (3), the probability that our algorithm is trapped by the bad 
local maxima is greatly decreased. Meanwhile, the inclusion of the nonparametric component aids its applicability in dealing with 
heterogeneous population.

3. Sequential partitioning for gFMR with 𝑲 > 𝟐

In real applications, there usually are multiple interested components in the gFMR (2), and even the number of components 𝐾
is unknown. In order to avoid the maximization of the likelihood function with plenty of bad local maxima and pre-specification of 
𝐾 , we propose a sequential EM (seqEM) procedure based on Algorithm 1 to identify the components 𝑔(𝑦; 𝜽𝑘, 𝒙) and its associated 
mixing probabilities 𝜌𝑘(𝒛) one by one.

First, the gFMR (2) can be written in the formula of the basic 2-component mixture model,

𝑓 (𝑦;𝒙,𝒛) = 𝜋0;1(𝜶1;𝒛)𝑔(𝑦;𝜽1,𝒙) + 𝜋1;1(𝜶1;𝒛)𝑓1;1(𝑦;𝒙,𝒛),

where 𝑓1;1(𝑦; 𝒙, 𝒛) =
∑𝐾
𝑘=2 𝜌𝑘(𝒛)𝑔(𝑦;𝜽𝑘,𝒙)∕(1 − 𝜌1(𝒛)), 𝜋0;1(𝜶1; 𝒛) = 𝜌1(𝒛), and 𝜋1;1(𝜶1; 𝒛) = 1 − 𝜋0;1(𝜶1; 𝒛). Note that 𝑓1;1(𝑦; 𝒙, 𝒛) can 

be further formulated as a 2-component mixture model, and this separation can be done recursively, i.e.,

𝑓1;𝜏−1(𝑦;𝒙,𝒛) = 𝜋0;𝜏 (𝜶𝜏 ;𝒛)𝑔(𝑦;𝜽𝜏 ,𝒙) + 𝜋1;𝜏 (𝜶𝜏 ;𝒛)𝑓1;𝜏 (𝑦;𝒙,𝒛), 𝜏 = 1,2,… ,𝐾, (12)

where 𝜋0;𝜏 (𝜶𝜏 ; 𝒛) = 𝜌𝜏 (𝒛)∕
(
1 −

∑
𝑘<𝜏 𝜌𝑘(𝒛)

)
, 𝜋1;𝜏 (𝜶𝜏 ; 𝒛) = 1 −𝜋0;𝜏 (𝜶𝜏 ; 𝒛) and 𝑓1;𝜏 (𝑦; 𝒙, 𝒛) =

∑
𝑘>𝜏 𝜌𝑘(𝒛)𝑔(𝑦; 𝜽𝑘, 𝒙)∕

(
1 −

∑
𝑘≤𝜏 𝜌𝑘(𝒛)

)
by 

defining 𝑓1;0(𝑦; 𝒙, 𝒛) = 𝑓 (𝑦; 𝒙, 𝒛) and 𝑓1;𝐾 (𝑦; 𝒙, 𝒛) = 0. Then the log-likelihood of the gFMR (2) can be expressed as

 =
1
𝑛

𝑛∑
𝑖=1

log

{∑
𝑘<𝜏

𝜌𝑘(𝒛𝑖)𝑔(𝑦𝑖;𝜽𝑘,𝒙𝑖) +
(
1 −

∑
𝑘<𝜏

𝜌𝑘(𝒛𝑖)
)
𝑓1;𝜏−1(𝑦;𝒙𝑖,𝒛𝑖)

}
(13)

for any 𝜏 = 1, … , 𝐾 . Suppose there are 𝜏 − 1 components being identified, say the first 𝜏 − 1 ones without loss of generality, with 
their parameter estimates ̂𝜽𝑘 and the corresponding mixing probabilities 𝜌𝑘(𝒛), 𝑘 = 1, 2, ⋯ , 𝜏 −1. Reformulating 𝑓1;𝜏 (⋅) in (12) by (5)

and then substituting it into (13) yields the working log-likelihood to identify the 𝜏th component,

̃(𝚯𝜏 ,𝝎𝜏 ;) = 1
𝑛

𝑛∑
𝑖=1

log

{∑
𝑘<𝜏

𝜌𝑘(𝒛𝑖)𝑔(𝑦𝑖; 𝜽̂𝑘,𝒙𝑖) +
(
1 −

∑
𝑘<𝜏

𝜌𝑘(𝒛𝑖)
)[
𝜋0;𝜏 (𝜶𝜏 ;𝒛)𝑔(𝑦;𝜽𝜏 ,𝒙) + 𝜋1;𝜏 (𝜶𝜏 ;𝒛)𝑓1;𝜏 (𝑦;𝝎𝜏 )

]}
, (14)

where 𝜋0;𝜏 (𝜶𝜏 ; 𝒛) = 𝜌𝜏 (𝒛)∕
(
1 −

∑
𝑘<𝜏 𝜌𝑘(𝒛)

)
. We still use the notation 𝜋0;𝜏 (𝜶𝜏 ; 𝒛) as that in (12) without cause of any confusion. The 

parameter estimate 𝚯̂𝜏 for 𝚯𝜏 is obtained by maximizing (14). As 𝜏 goes from 1 to 𝐾 , a series of components 𝑔(𝑦; ̂𝜽𝜏 , 𝒙) and their 
associated mixing probabilities 𝜌𝜏 (𝒛) =

(
1 −

∑
𝑘<𝜏 𝜌𝑘(𝒛)

)
𝜋0;𝜏 (𝜶̂𝜏 ; 𝒛) can be identified sequentially. Denoted by 𝚯∗ = (𝚯∗

1 , ⋯ , 𝚯∗
𝐾
) the 

truth of 𝚯 in (12), we can show that the parameter estimates 𝚯̂𝜏 , 𝜏 = 1, 2, ..𝐾 , enjoy the following statistical properties.

Corollary 3.1. Suppose we already have the consistent parameter estimates for the first 𝜏 − 1 components, 𝚯̂𝑘, 𝑘 = 1, ⋯ , 𝜏 − 1. If Condi-

tion 2.1 holds and ℎ𝑛→ 0, 𝑛ℎ𝑛→∞ as 𝑛 →∞, then under mild Conditions C.1 and C.2 in the Supplementary Material, there exists 𝝎̂𝜏 such 
that the maximum 𝚯̂𝜏 of the working log-likelihood function ̃(𝚯𝜏 , ̂𝝎𝜏 ; ) in (14) converges to 𝚯∗

𝜏 in probability.

Remark 3.1. The identification of the 𝜏th component can be viewed as the separation of the parametric part from a basic 2-
5

component model, therefore the uniqueness of the MLE is guaranteed similarly as in Section 2. However, when there are multiple 
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components to be separated, the order of 𝚯̂1, ⋯ , ̂𝚯𝐾 may alter due to possible label-switching, thus we only consider 𝚯̂𝜏 in the 
neighbourhood 𝜏 of 𝚯∗

𝜏 as Condition C.2 states in Corollary 3.1. In real applications, the initial value of the algorithm only affects 
the order of the components to be identified, but not their parameter estimation.

Corollary 3.2. Under the same conditions as Corollary 3.1 and 
√
𝑛ℎ2𝑛→ 0 as 𝑛 →∞, 

√
𝑛(𝚯̂𝜏 −𝚯∗

𝜏 ) is asymptotically normal with mean 𝟎
and covariance matrix 𝚺𝜏 , with the detailed formula being given in the Supplementary Material.

In order to maximize (14) to get 𝚯̂𝜏 , we utilize the EM iterations. Let Δ𝑖 = 𝑘 indicate that the 𝑖th data point (𝒙𝑖, 𝒛𝑖, 𝑦𝑖) belongs to 
the 𝑘th component, 𝑘 = 1, 2, … , 𝜏 , and Δ𝑖 = 𝜏 + 1 to stand for that it belongs to one of the latter (𝐾 − 𝜏) components. The complete 
working likelihood is

̃𝑐(𝚯𝜏 ,𝝎𝜏 ;,𝚫) =
𝑛∏
𝑖=1

{∏
𝑘<𝜏

(
𝜌𝑘(𝒛𝑖)𝑔(𝑦𝑖; 𝜽̂𝑘,𝒙𝑖)

)𝕀(Δ𝑖=𝑘)
[(

1 −
∑
𝑘<𝜏

𝜌𝑘(𝒛𝑖)
)

⋅
(
𝜋0;𝜏 (𝜶𝜏 ;𝒛𝑖)𝑔(𝑦𝑖;𝜽𝜏 ,𝒙𝑖) + 𝜋1;𝜏 (𝜶𝜏 ;𝒛𝑖)𝑓1;𝜏 (𝑦𝑖;𝝎𝜏 )

)]𝕀(Δ𝑖≥𝜏)}
∝

𝑛∏
𝑖=1

[(
𝜋0;𝜏 (𝜶𝜏 ;𝒛𝑖)𝑔(𝑦𝑖;𝜽𝜏 ,𝒙𝑖) + 𝜋1,𝜏 (𝜶𝜏 ,𝒛𝑖)𝑓1,𝜏 (𝑦𝑖;𝝎𝜏 )

)]𝕀(Δ𝑖≥𝜏)
,

given the parameter estimates for the first 𝜏 − 1 components, 𝚯̂𝑘, 𝑘 = 1, … , 𝜏 − 1. Let

𝜛𝑖;𝜏−1 = 𝑃
(
Δ𝑖 ≥ 𝜏|, 𝚯̂𝑘, 𝝎̂𝑘;𝑘 = 1,… , 𝜏 − 1

)
=
𝜏−1∏
𝑘=1
𝑃
(
Δ𝑖 ≥ 𝑘+ 1|Δ𝑖 ≥ 𝑘,, 𝜌𝑘, 𝜽̂𝑘, 𝝎̂𝑘)

=
𝜏−1∏
𝑘=1

𝜋1;𝑘(𝜶̂𝑘;𝒛𝑖)𝑓1;𝑘(𝑦𝑖; 𝝎̂𝑘)

𝜋0;𝑘(𝜶̂𝑘;𝒛𝑖)𝑔(𝑦𝑖; 𝜽̂𝑘,𝒙𝑖) + 𝜋1;𝑘(𝜶̂𝑘;𝒛𝑖)𝑓1;𝑘(𝑦𝑖; 𝝎̂𝑘)
. (15)

The conditional expectation of log ̃𝑐(𝚯𝜏 , 𝝎𝜏 ; , 𝚫), denoted by

𝑄(𝚯𝜏 ,𝝎𝜏 ;,𝚫) =
𝑛∑
𝑖=1
𝜛𝑖;𝜏−1 log

[(
𝜋0;𝜏 (𝜶𝜏 ,𝒛𝑖)𝑔(𝑦𝑖;𝜽𝜏 ,𝒙𝑖) + 𝜋1;𝜏 (𝜶𝜏 ,𝒛𝑖)𝑓1,𝜏 (𝑦𝑖;𝝎𝜏 )

)]
,

is the weighted log-likelihood of the basic 2-component mixture model. Therefore, the parameters 𝚯𝜏 and 𝝎𝜏 can be estimated using 
Algorithm 1 by assigning the weight 𝜛𝑖;𝜏−1 on the 𝑖th data point, 𝑖 = 1, 2, … , 𝑛.

The sequential procedure is concluded as Algorithm 2. It runs until 
∑𝑛
𝑖=1𝜛𝑖;𝜏−1 ≤ 𝜅, where 𝜅 is a tuning parameter to threshold 

the effective sample size for the 𝜏th partitioning. We set 𝜅 = 10 as default, i.e. there are at least 10 observations being left to fit the 
2-component mixture model for the identification of more components. This prevents the model from being over-fitted.

Remark 3.2. In the above algorithm, the weight 𝜔𝑗 will be updated in each iteration, which can be seen from (16). The multiplicative 
factor 𝜛𝑗;𝜏−1 in (16) is a value always less than one and will become smaller and smaller (see the definition in equation (15) and the 
last step of Algorithm 2). The factor 𝜛𝑗;𝜏−1 shows the probability that a sample does not belong to clusters 1, ⋯ , 𝜏 − 1. Therefore, ∑𝑛
𝑗=1𝜛𝑗;𝜏−1 can be viewed as the total number of samples that belong to clusters 𝜏, 𝜏 + 1, ⋯, which will be estimated by the non-

parametric kernel density. If this number is too small, then we should stop the algorithm since there are not enough data to further 
split this non-parametric cluster into a smaller parametric cluster and a smaller non-parametric cluster.

In practice, we can simply use a classical heuristic argument that from any parameter estimation, we will need at least 20 
observations. Therefore, we can stop the algorithm, if 

∑𝑛
𝑗=1𝜛𝑗;𝜏−1 ≤ 𝜅 = 20. In this paper, we set a smaller threshold value 𝜅 = 10, 

for the purpose to obtain more small clusters and showing that the small clusters identified are not needed. Note that, setting 𝜅 = 10
or 𝜅 = 20 does not affect the large clusters identified in the beginning. This is because once the algorithm identified a cluster, it will 
be fixed and will not change when identifying clusters in a later stage. For example, with 𝜅 = 20 the algorithm identified clusters 1, 
2, and 3, plus a non-parametric component. If we change 𝜅 = 10, we will still have exactly the same clusters 1, 2, and 3 as if we are 
using 𝜅 = 20, however, we may identify two smaller clusters 4 and 5, plus a smaller non-parametric cluster.

Please see Section F in the Supplementary Material for more simulations studies about the choice of 𝜅, to demonstrate that 
changing the value of 𝜅 will not affect the clusters we have identified.

4. Simulation studies

The subgroups to be identified by the parametric components using our method can be modelled with different density families. 
Considering the popularity of Gaussian models and their easy implementation using existing computational tools, we illustrate the 
proposed seqEM algorithm under the framework of the Gaussian model and compare its performance to that of the FlexMix (Grün 
and Leisch, 2008). For a given 𝐾 , Grün and Leisch (2008) started the EM algorithm by separating the samples into 𝐾 classes evenly 
6

at random to estimate the model parameters. Besides, they provided ready-for-use procedures to run EM algorithm repeatedly from 
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Algorithm 2: The sequential EM (seqEM) algorithm for gFMR with 𝐾 > 2.

Initialise 𝜅, set 𝜏 = 1 and 𝝕𝜏−1 = (𝜛1;0 , ⋯ , 𝜛𝑛;0) = (1, ⋯ , 1)𝑇 ;

while
∑
𝑖 𝜛𝑖;𝜏−1 > 𝜅 do

Randomly divide the samples into two groups by assigning 𝑢(0)0,𝑖 ∼𝐵𝑖𝑛𝑜𝑚(1, 0.5);
Set 𝑚 = 0, 𝑐(0) = 1, ̃(0)

𝜏
= 0;

while 𝑐(𝑚) > 𝜖 do

𝑚 =𝑚 + 1 ;

M-step: Calculate

𝜔
(𝑚)
𝑗 = 𝑛

𝜛𝑗;𝜏−1(1 − 𝑢
(𝑚)
0,𝑗 )𝜋1;𝜏 (𝜶

(𝑚)
𝜏

;𝒛𝑗 )−1∑𝑛

𝑖=1𝜛𝑖;𝜏−1(1 − 𝑢
(𝑚)
0,𝑖 )𝜋1;𝜏 (𝜶

(𝑚)
𝜏 ;𝒛𝑖)−1

, 𝑗 = 1,2,… , 𝑛, (16)

𝜽(𝑚) = argmax
𝜽

1
𝑛

𝑛∑
𝑖=1

{
𝜛𝑖;𝜏 𝑢

(𝑚)
0,𝑖 log𝑔(𝑦𝑖;𝜽,𝒙𝑖)

}
,

𝜶(𝑚) = argmax
𝜶

1
𝑛

𝑛∑
𝑖=1
𝜛𝑖;𝜏

{
𝑢
(𝑚)
0,𝑖 log𝜋0;𝜏 (𝜶,𝒛𝑖) + (1 − 𝑢(𝑚)0,𝑖 ) log𝜋1;𝜏 (𝜶,𝒛𝑖)

}
,

̃(𝑚)
𝜏

= 1
𝑛

𝑛∑
𝑖=1
𝜛𝑖;𝜏−1 log

{
𝜋0;𝜏 (𝜶(𝑚);𝒛𝑖)𝑔(𝑦𝑖;𝜽(𝑚),𝒛𝑖) + 𝜋1;𝜏 (𝜶(𝑚);𝒛𝑖)𝑓1;𝜏 (𝑦𝑖;𝝎(𝑚))

}
;

and update 𝑐(𝑚) = ̃(𝑚)
𝜏

− ̃(𝑚−1)
𝜏

;

E-step: compute the posterior probability of each sample

𝑢
(𝑚+1)
0,𝑖 =

𝜋0;𝜏 (𝜶(𝑚);𝒛𝑖)𝑔(𝑦𝑖;𝜽(𝑚),𝒙𝑖)

𝜋0;𝜏 (𝜶(𝑚);𝒛𝑖)𝑔(𝑦𝑖;𝜽(𝑚),𝒙𝑖) + 𝜋1;𝜏 (𝜶(𝑚);𝒛𝑖)𝑓1;𝜏 (𝑦𝑖;𝝎(𝑚))
;

end

Output 𝚯̂𝜏 = (𝜶(𝑚), 𝜽(𝑚)), 𝝎̂𝜏 = 𝝎(𝑚) , update 𝜛𝑖;𝜏 =𝜛𝑖;𝜏−1(1 − 𝑢(𝑚+1)0,𝑖 ), 𝑖 = 1, 2, … , 𝑛 and set 𝜏 = 𝜏 + 1;

end

different random initial values and for different numbers of components to pursue the global maximum of the likelihood as the MLE 
and determine a suitable 𝐾 .

We simulate the data according to the gFMR with 𝐾 components, i.e., 𝑔(𝑦; 𝜽𝑘, 𝒙) in (2) corresponds to the density of the Gaus-

sian regression model, with 𝜽′
𝑘
= (𝜷′

𝑘
, 𝜎𝑘) consisting of the regression parameter 𝜷𝑘 and the residual standard deviation 𝜎𝑘. The 

mixing probabilities are given by a multinomial logistic function 𝜌𝑘(𝒛) = exp(𝒛𝜸𝑘)∕
(
1 +

∑𝐾−1
𝑗=1 exp(𝒛𝜸𝑗 )

)
, with the parameters 𝜸𝑘, 

𝑘 = 1, … , 𝐾 −1. Since we are going to evaluate the parameter estimation of a mixture model, for the easiness of visualization, we set 
both 𝒙 and 𝒛 as 2-dimensional vectors, of which one element is discrete from the binomial distribution Binom (1, 0.5) and the other 
is continuous from the standard normal 𝑁(0, 1). To investigate the impact of 𝐾 on the parameter estimation, we fixed a dataset and 
fit the simpler FMR model (1) by both FlexMix and our seqEM. As shown by the numerical results in Section D of the Supplementary 
Material, our seqEM performs more stably than the FlexMix in the parameter estimation with random initial values. In this section, 
we focus on the simulation studies and comparisons of our proposed seqEM and the FlexMix under gFMR (2).

To make things clear, we refer to ‘component’ as the true component in the mixture model, and ‘cluster’ as the component being 
identified using FlexMix or the proposed seqEM. Note that our seqEM identifies the clusters one by one. When we talk about cluster 
1, it means the first cluster being identified, which may represent one of the other components rather than component 1. For the 
FlexMix, we include both FlexMix(K) whose number of components 𝐾 is given as the truth, and FlexMix(BIC) whose 𝐾 is selected 
from 2 to 10 according to BIC.

In order to mimic the real data analysis, we simulate the data from the gFMR with unevenly weighted components, where the 
main components with leading mixing probabilities are of more interest for treatment evaluation. More studies, such as the results 
of our method on the gFMR with equally weighted components, are provided in Section E of the supplementary Material. In the 
following, we start from the gFMR with a single main component and then move on to that with multiple main components. Through 
the simulation studies, we will show the advantages of seqEM, compared to FlexMix, in four aspects. The seqEM

a) is more reliable to identify the main components;

b) does not need to pre-specify 𝐾 ;

c) is more reliable to handle cases with outliers.

d) is more reliable to the choice of the initial values of the EM algorithms (see Section D in the Supplementary Material).

4.1. gFMR with single main component
7

We set 𝐾 = 5 and the random sample of size 𝑛 = 200 is generated by setting the parameters
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Table 1

Frequencies of numbers of clusters being identified by seqEM and FlexMix in 500 simulations of Section 4.1 and 4.2.

# of clusters 2 3 4 5 6 7 8

Simulation in Section 4.1
seqEM 5 72 151 147 113 11 1

FlexMix(BIC) 118 156 139 57 25 5

Simulation in Section 4.2
seqEM 12 46 156 192 94

FlexMix(BIC) 4 284 193 19

⎧⎪⎪⎨⎪⎪⎩
𝜸1 = (−1,−1,1)′,
𝜸2 = (2,1,−1)′,
𝜸3 = (−0.5,1,−1)′,
𝜸4 = (0,−1,−1)′,

⎧⎪⎪⎨⎪⎪⎩
𝜷1 = (1,−1,2)′, 𝜷2 = (1,1,1)′,
𝜷3 = (1,2,0)′, 𝜷4 = (1,0,−2)′,
𝜷5 = (1,−2,−1)′.
𝜎1 = 𝜎2 =⋯ = 𝜎5 = 0.1.

Such a setting leads to the samples from different components being well separated, and their proportions are about 0.06, 0.74,0.06,
0.05, and 0.08, respectively. The second component dominates all the others. Due to the limited sample size, other components 1, 3, 
4, and 5 only have a few observations and may be taken as outliers. This simulation is to mimic the real data analysis and it is more 
meaningful to distinguish the largest component from those negligible outliers than to identify every component.

The numbers of clusters being identified using our method in 500 simulations are summarized by their frequencies in Table 1. 
From the results in Table 1, we can see that seqEM is more likely to identify 3 to 6 clusters, however, FlexMix(BIC) has more than 
20% probability (118 out of 500 simulations) to identify 2 clusters, while the true number of components 𝐾 = 5. Thus seqEM is 
much better than FlexMix(BIC) for estimating 𝐾 .

In Fig. 1a, we show the violin plot of the number of samples being classified into each cluster in 500 simulations. There are 
around 154 samples being classified into cluster 1 in each repetition of the simulation, whose size is greatly larger than those of the 
others. The median proportion 0.77 of cluster 1 is very close to the proportion 0.74 of component 2 in the population. We calculated 
the proportion of samples in cluster 1 that come from component 2, and found that it ranges from 0.88 up to 1, with the median 0.96. 
Besides, the regression parameter estimates of the first 2 clusters from our method in 500 simulations are presented in Fig. 1b. To 
best visualise the results, we only show the estimates for slope parameters in 𝜷𝑖, 𝑖 = 1, 2. All parameter estimates of cluster 1 clearly 
gather around the true parameter of component 2. It is demonstrated that component 2 with the largest mixing probability is always 
firstly identified as cluster 1 by our method.

To evaluate the performance of seqEM in the component identification and compare it to the FlexMix, we search the permuted 
labels of the identified clusters for an optimal matching to the true components such that there are as many samples as possible 
being correctly classified into the matched pairs of clusters and components (Stephens, 2000b). We calculate the proportion of total 
samples in the matched pairs (PMS), as well as the well-known adjusted Rand index (ARI, (Hubert and Arabie, 1985)) and normalized 
variation of information (NVI, (Meilă, 2007)) for reference. Moreover, for each component, we define the classification accuracy rate 
(CAR) as the proportion of the samples in the best-matched cluster that come from this component, and the detection rate (DR) as the 
proportion of the samples in the component that are included by its best-matched cluster. The ARI, NVI, PMS, CARs, and DRs from 
different methods in 500 simulations are presented in Fig. 1c. FlexMix(BIC) presents significantly higher ARI and PMS, and lower 
NVI than FlexMix(K), indicating that 𝐾 should be determined by the data, rather than arbitrarily assigned, even though it is given 
as the truth. Our seqEM presents a higher ARI or PMS than FlexMix(BIC), but a slightly higher NVI than FlexMix(BIC). In addition, 
seqEM efficiently avoids those lower outliers in ARI and PMS results from FlexMix(BIC).

The boxplots of CAR and DR for each component reveal the different performance between our seqEM and the FlexMix. For the 
main component 2, our method achieves significantly higher DRs than FlexMix(𝐾), and avoids those extremely smaller values from 
FlexMix(BIC), while their CARs remain at similar levels. Those lower DRs appear in the results of FlexMix(𝐾) and FlexMix(BIC) 
because component 2 is split into two or more clusters by FlexMix, i.e., 𝑔(𝑦; 𝜽2, 𝒙) itself was fitted by a gFMR. However, our method 
is less likely to split the main component. For the others, due to limited sample size, all methods present variable CARs and DRs. 
Compared to the FlexMix, our seqEM provides more reliable clustering results with higher DR for the main component, leading to 
the advantage a).

Although multiple clusters are identified from our method, the research aim of this paper is not to estimate the total number of 
components in the mixture. When the population is highly heterogeneous, it may be infeasible to identify all components with a 
limited sample size. Instead, we propose to focus on the identification of the main component, which has sufficient data support. As 
illustrated in this simulation, the main component is identified by sequentially fitting the basic 2-component mixture model, with 
no need to specify 𝐾 , yielding the advantage b) of our method. In our opinion, the available sample size determines whether or 
not the partitioning continues, which is controlled by a tuning parameter 𝜅. In the beginning, there is a full sample, and the sample 
size decreases as more and more clusters are identified. It is shown that the main component is always identified as the first cluster, 
so that the setting of 𝜅 does not affect the clusters being identified in the beginning, but only those at the end. In Section F of the 
Supplementary Material, we present the clusters’ sizes and parameter estimation of cluster 1 using different 𝜅. While 𝜅 is set to be 
5, 10, or 20, the size of cluster 1 does not change and its parameter estimation always points to component 2. This performance 
also demonstrates the reliability of our method to outliers. As mentioned at the beginning of this subsection, the components except 
component 1 can be taken as outliers. Our method identifies the main component 2 more accurately with these non-negligible 
8

outliers, clarifying the advantage c).
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Fig. 1. (a) The numbers of samples being clustered into different clusters using seqEM in Section 4.1. Each violin plot is based on the results of 500 replicated 
simulation experiments. (b) Estimates for the regression parameters of clusters 1 and 2 from seqEM, where the grey dots indicate the estimates and plus signs (+) 
locate the true parameter values of components 1-5. (c) The obtained ARI, NVI, PMS, CARs, and DRs using seqEM, FlexMix(𝐾 = 5) and FlexMix(BIC).

4.2. gFMR with multiple main components

In this scenario, we set the parameters 𝜷𝑘 and 𝜎𝑘, 𝑘 = 1, 2, … , 𝐾 the same as that in section 4.1, but 𝜸1 = (−1, −1, 1)′, 𝜸2 =
9

(1, 1, −1)′, 𝜸3 = (0, −1, −1)′, and 𝜸4 = (0, 1, 1)′ to alter the mixing probabilities among different components. The average proportions 
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of components 1-5 in this scenario are 0.05, 0.5, 0.09, 0.26, and 0.1 respectively, where there are more than one main component with 
leading mixing probabilities, the second and the fourth, and the others may be taken as outliers.

We present the frequencies of numbers of clusters being identified using seqEM and FlexMix(BIC) in 500 simulations in Table 1. 
Our seqEM identifies 4 to 7 clusters with very large probabilities. Among the 500 simulations, seqEM identifies 5 or 6 clusters 
348 times. On the other hand, FlexMix(BIC) identifies 4 to 6 clusters with a very large probability. Among the 500 simulations, 
FlexMix(BIC) identifies 4 clusters 284 times, and 5 clusters 193 times. FlexMix(BIC) tends to identify less number of clusters, by 
merging small clusters into large clusters, which is why the parameter estimation from FlexMix(BIC) is not good. On the contrary, 
our seqEM tends to identify more clusters, but the parameter estimation for the main clusters is not distorted by the small clusters 
being identified (see Remark 3.2 and Section F in the Supplementary Material). Therefore seqEM is more reliable to handle the 
outliers from the small components.

The violin plot in Fig. 2a indicates that, the numbers of samples classified as cluster 1 from our seqEM have two modes, ones with 
the median 106 and the others with the median 62. That is to say, in all the simulations, there is either a sub-dataset of about 106 
samples being classified into cluster 1, or another sub-dataset of about 62 samples being classified into cluster 1. The proportions 
of these two sub-datasets, 0.53 and 0.31, are very close to the proportions of components 2 and 4 in the population, indicating that 
cluster 1 may correspond to components 2 or 4 in different simulation experiments. The numbers of samples being classified into 
cluster 2 also gather around two modes, ones with median 94.5 and the others with median 51, and their corresponding proportions 
0.47 and 0.26 are close to that of components 2 and 4, too. Besides, we present the estimates for the slope parameters in the 
regression models of the first 4 clusters from our method in 500 simulations in Fig. 2b. It is demonstrated that the first two clusters 
being identified by our method point to either component 2 or 4, with possible permutations in their orders in different simulation 
experiments. Subsequently, as the cluster sizes decrease, the parameter estimates for clusters 3 and 4 become more variable.

Our method shows a similar result compared to FlexMix in ARI or PMS, but a slightly higher NVI. A significant advantage of our 
method is that it avoids yielding extremely small ARI and PMS values, as shown in Fig. 2c. Comparisons for each component can also 
be seen in the last plot of Fig. 2c. For the main components 2 and 4, our method maintains higher DRs, while both FlexMix(𝐾) and 
FlexMix(BIC) may produce much lower ones, with their CARs at a similar level. The vanishing extremely lower DRs indicate that our 
method can fully identify the main components and avoid further splitting them into more clusters, resulting in the advantage c). On 
the other hand, both FlexMix(K) and FlexMix(BIC) are affected by the small components (the outliers) and their components 2 and 4 
have a very long tail in the boxplots. Since our procedure runs sequentially, the samples belonging to the overlapped components are 
more likely to be captured by the former cluster. This prevents us from over-splitting components and distinguishes us from FlexMix. 
In summary, our method provides more accurate and reliable clustering results for the main components than the FlexMix, referred 
to as advantage a). As the same as that in Section 4.1, our method identifies clusters sequentially according to the 2-component 
mixture model, which has nothing to do with 𝐾 and leads to the advantage b).

When the available sample size of a component is small, it may have to be treated as an outlier, even if there is a component. 
None of the existing methods can identify a component with a very small sample from it. This is also the exact idea that motivates 
us to set up the stopping criteria for our sequential algorithm. When the sample size is large, our method will identify components 
sequentially until there are not enough available data, for instance, less than 10 observations with 𝜅 = 10 (see Remark 3.2 for more 
details). In the situation that all the components’ weights are equal, they are not potentially classified as main or outlier components, 
but identified one by one as a sequence, with possible order switching as indicated by components 2 and 4 in section 4.2. Please 
refer to Section E of Supplementary Material for detailed results.

5. A cancer cell line study

In the treatment of tumor diseases, many drugs show highly heterogeneous responses due to the complexity of the disease. 
Certain treatments may significantly benefit some patients, but cause serious side effects and provide little benefit to some others. 
It is greatly valuable in clinical practice to identify patients who would best benefit from a specific treatment and exclude those 
who are not benefited, based on our increasing understanding of the molecular mechanism of tumors. For this purpose, the CCLE 
project generated the genomic profiles of 504 cancer cell lines and tested the drug responses of 24 chemical compounds on them. 
The heterogeneity of tumor disease makes the drug responses vary among cell lines. There are some more responsive, some less 
responsive, and others not responsive at all, which implies that the patient with a particular genetic feature will either benefit more 
or less from treatment or not benefit at all. Our research aim is to quantify how responsive a cell line is to a particular treatment 
and identify such a heterogeneous structure among the cell line population, to classify patients who potentially benefit from the 
treatment, with little side effects; or those who are not benefited from the treatment but have serious side effects; or those belonging 
to other subgroups.

The mixture of regression models is employed to account for the heterogeneous dependency of pharmacologic response on the 
genetic profiles of different cell lines. Li et al. (2019) presented a feature selection procedure using model (1) to choose the regression 
covariates from tens of thousands of genes for drug sensitivity prediction of the heterogeneous population. To illustrate the possible 
uncertainty of FlexMix due to initial values, for each drug, we took their selected genes as the explanatory variables and fitted model 
(1) by both seqEM and FlexMix 500 times from random initial values. Since the true value of 𝐾 is unknown, it is chosen from 
2, 3, … , 9 by BIC in the FlexMix. To eliminate the impact of label-switching and summarize the parameter estimation for comparison, 
we have an investigation on max𝐾

𝑘=1 𝜌𝑘, which is the estimate for the largest component weight. The histograms of max𝐾
𝑘=1 𝜌𝑘, that 

were obtained from both methods in 500 repetitions with random initial values, are presented in Fig. 3, with one compound PD-
10

0332991 being excluded because its selected genes given by Li et al. (2019) were not successfully matched in the database. For a 
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Fig. 2. (a) The numbers of samples being clustered into different clusters using seqEM in Section 4.2. Each violin plot is based on the results of 500 replicated 
simulation experiments. (b) Estimates for the regression parameters of clusters 1-4 from seqEM, where the grey dots indicate the estimates and plus signs (+) locate 
the true parameter values of components 1-5. (c) The obtained ARI, NVI, PMS, CARs, and DRs using seqEM, FlexMix(𝐾 = 5) and FlexMix(BIC).

number of compounds, both methods can provide consistent estimates max𝐾
𝑘=1 𝜌𝑘, although their results may be distinct. Besides, 

there are many others such as Nutlin-3, PF2341066, PLX4720, Sorafenib and TKI258, for which the estimates max𝐾
𝑘=1 𝜌𝑘 from the 

FlexMix with different initial values become more scattered than that from the seqEM, which means seqEM gives more reliable 
11

estimate for the largest component weight in these compounds, compared to the FlexMix.
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Fig. 3. Histogram of max𝐾
𝑘=1 𝜌𝑘 from our seqEM and FlexMix with random initial values for 23 compounds of CCLE database, where all the x-axes range from 0 to 1.

To illustrate the advantage of seqEM on the working model (2), we choose the data set of Sorafenib for further analysis. First, 
since there are no concomitant variables reported in the original analysis, we took the clusters identified by our seqEM using model 
(1) to label the samples into subgroups, and then apply the screening and random forest method to select the concomitant variables. 
In addition to 19 explanatory genes given by Li et al. (2019), five genes PPAN, STEAP1, KLRG1, DENND4A and JAG1 were chosen 
as the concomitant variables. With the selected explanatory and concomitant variables, we run our proposed algorithm 500 times 
with random initial values. The numbers of samples that were classified into different clusters in 500 repetitions were summarized 
in Fig. 4a. It is shown that cluster 1 is significantly larger than the others and the cluster sizes after the second one are particularly 
smaller. Considering there are 19 explanatory variables being involved, the parameter estimation for those clusters with limited 
sample sizes may be inaccurate and cluster 1 is the only important component. In all 500 repetitions of our method with random 
initial values, the estimates for the regression parameter 𝜷1 remain consistent, only with a few exceptions, as shown by the jitter 
plots in Fig. 4a. For comparison, we also repeated the FlexMix 500 times with random initial values. Although there were fewer 
numbers of clusters being identified, the clustering results from the FlexMix are very sensitive to the initial values. We also rank the 
identified clusters in each repetition by their sizes from the largest to the smallest, and present the cluster sizes in 500 repetitions 
in Fig. 4b, as well as the regression parameter estimates for cluster 1. It can be seen that both the cluster sizes and the parameter 
estimates from the FlexMix fluctuate in a significantly larger span than that from our method, demonstrating the robustness of our 
method to the initial settings in the model estimation.

To evaluate the accuracy of parameter estimation from our method, we conducted 5-fold cross-validation. With the parameter 
estimates obtained by fitting the training data, the drug responses in the test data are predicted by 𝑦𝑖 =

∑𝐾
𝑘=1 𝜌𝑘(𝒛𝑖)𝑓𝑘(𝒙𝑖), where 
12

𝑓𝑘(𝒙𝑖) = 𝒙𝑇
𝑖
𝜷𝑘 for the identified clusters with the regression parameter estimates 𝜷𝑘, but 

∑𝑛
𝑗=1 𝑦𝑖𝑤̂𝑗 for the last cluster of nonpara-
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Fig. 4. The jitter plots of the cluster sizes (left) that were obtained using (a) seqEM and (b) FlexMix in 500 repetitions with random initial values, and their parameter 
estimates (right) for the largest component in the analysis of compound Sorafenib.

metric component. The cluster that a sample in the test data belongs to is determined by argmax𝑘 𝜌𝑘(𝒛𝑖). In different folds, distinctive 
clusters may be produced using different training data, especially for the components with limited samples. It may be not feasible 
to match all the clusters from different folds. Our method focuses on the identification of important clusters, thus we summarize 
the results by clusters. As aforementioned, cluster 1 is the only important component, therefore we only present the averaged mean 
square error (MSE) and correlation between the prediction and the truth (𝑦𝑖, 𝑦𝑖) of cluster 1 in Table 2, together with that of the 
largest clusters obtained by the FlexMix. It is shown that the important cluster identified using our method involves more samples 
than the largest cluster from the FlexMix, with similar MSEs and correlations being achieved. Our method avoids the splitting of the 
important cluster and separates the largest subgroup. The results of FlexMix using model (1) were also included in Table 2. By uti-

lizing the concomitant variables to partition the samples into appropriate clusters for prediction, the working model (2) consistently 
presented smaller MSE and higher correlation than model (1), no matter either the proposed or FlexMix method was used for the 
model estimation.

In summary, our approach can identify a very significant cluster and the cell lines in this cluster show a common responsive 
pattern to the chemical compound Sorafenib. On the contrary, the existing FlexMix cannot identify a single cluster, since its results 
are not reliable in the sense that they highly depend on the initial values of the EM algorithm. The concomitant variables in our 
model can help doctors to identify this cluster before they apply treatment. For patients not belonging to this cluster, doctors may 
13

look for alternative treatments.
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Table 2

MSE and correlation between the prediction and the truth in the largest cluster of 
the test data in 5-fold cross-validation.

seqEM FlexMix of model (2) FlexMix of model (1)

MSE 0.18 0.17 0.25

Correlation 0.33 0.34 0.29

Cluster proportion 0.58 0.49 0.56

6. Discussion

Heterogeneity commonly exists in this era of big data, which changed the typical statistical analysis from the model foundation 
and challenges all the following inferences. In this paper, we contribute a novel statistical method to identify the components in 
the gFMR sequentially, providing an alternative way to estimate the gFMR. Compared to directly fitting the gFMR, our method not 
only avoids the need to pre-specify the number of components 𝐾 in the mixture but also can avoid local maxima in the parameter 
estimation and therefore provide more reliable clustering results. For the regression model of each component, we used the Gaussian 
model for illustration. The proposed method can be easily adapted to other parametric families. The convergence rate of the EM 
algorithm discussed in peer literature might be extended to our method but beyond the scope of this paper.

Identifiability is a common issue being widely discussed for mixture models. The gFMR (2) is quite general, and its identifiability 
has been thoroughly discussed by Wang et al. (2014) in parametric, semi-parametric and non-parametric settings. In this paper, we 
consider 𝑔(𝑦; 𝜽𝑘, 𝒙) in some known parametric form, and (2) is not subject to the identifiability issue. Note that the two-component 
mixture model (3) is nonidentifiable due to the fact that any arbitrary part excluding a parametric component can be regarded as a 
non-parametric component. However, the sequence of identified components from our algorithm is identifiable without consideration 
of label-switching due to the identifiability of gFMR (2).

In terms of computational complexity, our seqEM actually searches a small number of 𝐾 only, since it will stop automatically 
once enough clusters are identified. On the contrary, existing FlexMix EM algorithms for mixture models will need to specify a very 
large value for the maximum possible value of 𝐾 , then do a full search of the space and run EM algorithms for every possible value 
of 𝐾 . Thus FlexMix needs to run more EM algorithms in practice. However, in terms of real computational time, our seqEM does 
not show advantages, due to the computational cost in the kernel density estimation, for instance in the analysis of Sorafenib data 
set, it took about one second for each FlexMix EM. Thus FlexMix will take about half a minute if we do a deep search for 𝐾 up 
to 30, as suggested by Richardson and Green (1997). On the other hand, seqEM took about 6 minutes when we choose 𝜅 = 100 to 
identify 8 components. For these highly heterogeneous real data with possible outliers, we may have to run the EM algorithms much 
more times than the expected number of components in the population, when we use FlexMix. However, when these small outlier 
components are not of research interests, seqEM bypasses this challenge by setting a large 𝜅 and the computational burden will be 
significantly reduced. We would consider improving the computational efficiency of seqEM in future work.

Another common issue about big data analysis is the high dimensionality. Both the concomitant variable and the explanatory 
variable may be of high dimension. However, to focus on the discussions on the essential problems in solving the complex mixture 
model, we did not consider variable selection in this work. With more reliable model estimation, the proposed method can be 
extended to implement variable selection for both the concomitant and explanatory variables in each partitioning of the sequential 
procedure. For ultra-high dimensional data, appropriate univariate screening methods should be incorporated in advance to reduce 
their dimensions to a manageable size. We leave this to future research work.
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Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2024 .107942.

Appendix B. Computational codes

The R package SEMRflexmix implementing the proposed sequential analysis procedure was developed on the basis of flexmix
14

(Grün and Leisch, 2008) and publicly available at https://github .com /scrcss /SEMRflexmix.
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Computational Statistics and Data Analysis 194 (2024) 107942N. You, H. Dai, X. Wang et al.

References

Balakrishnan, S., Wainwright, M.J., Yu, B., 2017. Statistical guarantees for the EM algorithm: from population to sample-based analysis. Ann. Stat. 45 (1), 77–120.

Baudry, J.-P., Celeux, G., 2015. Em for mixtures: initialization requires special care. Stat. Comput. 25, 713–726.

Benaglia, T., Chauveau, D., Hunter, D.R., Young, D.S., 2009. mixtools: an R package for analyzing mixture models. J. Stat. Softw. 32 (6), 1–29.

Biernacki, C., Celeux, G., Govaert, G., 2003. Choosing starting values for the em algorithm for getting the highest likelihood in multivariate Gaussian mixture models. 
Comput. Stat. Data Anal. 41 (3–4), 561–575.

Curtis, C., Shah, S.P., Chin, S.F., Turashvili, G., Rueda, O.M., Dunning, M.J., et al., 2012. The genomic and transcriptomic architecture of 2,000 breast tumours reveals 
novel subgroups. Nature 486, 346–352.

Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. B 39, 1–38.

Dwivedi, R., Ho, N., Khamaru, K., Wainwright, M.J., Jordan, M.I., Yu, B., 2020. Singularity, misspecification and the convergence rate of EM. Ann. Stat. 48 (6), 
3161–3182.

Fan, J., Han, F., Liu, H., 2014. Challenges of big data analysis. Nat. Sci. Rev. 1, 293–314.

Fruhwirth-Schnatter, S., 2006. Finite Mixture and Markov Switching Models. Springer, New York.

Grün, B., Leisch, F., 2008. Flexmix version 2: finite mixtures with concomitant variables and varying and constant parameters. J. Stat. Softw. 28 (4), 1–35.

Ho, N., Yang, C.-Y., Jordan, M.I., 2019. Convergence rates for Gaussian mixtures of experts. ArXiv. arXiv :1907 .04377 [abs].

Huang, M., Yao, W., 2012. Mixture of regression models with varying mixing proportions: a semiparametric approach. J. Am. Stat. Assoc. 107 (498), 711–724.

Huang, M., Li, R., Wang, S., 2013. Nonparametric mixture of regression models. J. Am. Stat. Assoc. 108 (503), 929–941.

Huang, M., Yao, W., Wang, S., Chen, Y., 2018. Statistical inference and applications of mixture of varying coefficient models. Scand. J. Stat. 45 (3), 618–643.

Hubert, L., Arabie, P., 1985. Comparing partitions. J. Classif. 2, 193–218.

Jin, C., Zhang, Y., Balakrishnan, S., Wainwright, M.J., Jordan, M.I., 2016. Local maxima in the likelihood of Gaussian mixture models: structural results and algorithmic 
consequences. Adv. Neural Inf. Process. Syst. 29, 4116–4124.

Klusowski, J.M., Yang, D., Brinda, W., 2019. Estimating the coefficients of a mixture of two linear regressions by expectation maximization. IEEE Trans. Inf. Theory 65 
(6), 3515–3524.

Kwon, J., Qian, W., Caramanis, C., Chen, Y., Davis, D., 2019. Global convergence of the em algorithm for mixtures of two component linear regression. In: Conference 
on Learning Theory. PMLR, pp. 2055–2110.

Kwon, J., Ho, N., Caramanis, C., 2021. On the minimax optimality of the em algorithm for learning two-component mixed linear regression. In: International 
Conference on Artificial Intelligence and Statistics. PMLR, pp. 1405–1413.

Li, Q., Shi, R., Liang, F., 2019. Drug sensitivity prediction with high-dimensional mixture regression. PLoS ONE 14 (2), e0212108.

McLachlan, G., Peel, D., 2000. Finite Mixture Models. Wiley, New York.
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