
Future Generation Computer Systems 154 (2024) 251–265

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Review Article

Research allocation in mobile volunteer computing system: Taxonomy,
challenges and future work
Peizhe Ma a,∗, Saurabh Garg a, Mutaz Barika b

a University of Tasmania, Churchill Ave, Hobart, 7005, TAS, Australia
b Newcastle University , 1 Science Square, Newcastle, NE4 5TG, Newcastle upon Tyne, United Kingdom

A R T I C L E I N F O

Keywords:
Distributed computing
Resource management
Edge computing
Cloud computing
Volunteer computing
IoT

A B S T R A C T

The rise of mobile devices and the Internet of Things has generated vast data which require efficient processing
methods. Volunteer Computing (VC) is a distributed network that utilises idle resources from diverse devices for
task completion. VC offers a cost-effective and scalable solution for computation resources. Mobile Volunteer
Computing (MVC) capitalises on the abundance of mobile devices as participants. However, managing a large
number of participants in the network presents a challenge in scheduling resources. Various resource allocation
algorithms and MVC platforms have been developed, but there is a lack of survey papers summarising these
systems and algorithms. This paper aims to bridge the gap by delivering a comprehensive survey of MVC,
including related technologies, MVC architecture, and major finding in taxonomy of resource allocation in
MVC.
1. Introduction

The Internet of Things (IoT) enables communication and infor-
mation exchange between physical objects, such as self-driving cars,
through the internet [1]. This technology has greatly improved existing
computing networks and quality of life. With the increasing amount of
data generated by IoT devices, there is growing interest in extracting
valuable information from this data. Various technologies, including
cloud, edge computing, and volunteer computing, have been developed
to handle IoT data [2–5]. Volunteer Computing (VC) is a distributed
computing system that leverages crowdfunding to use idle resources
from participating devices for computationally intensive tasks in a
cost-effective manner. VC breaks down projects into smaller chunks,
providing affordable, scalable, and powerful computing power.

In a typical VC platform, millions of users contribute their idle
resources, such as memory and processing power [6]. For example,
Uber Driving serves as a real-world example of VC. When a person
needs a ride, they request a task through the Uber application. The
application acts as a central service, assigning the task to an available
and capable driver who uses their own idle resource, their car, to
provide the ride. The key distinction is that in VC, participants donate
their idle resources, while in the case of Uber, users pay to use the
application.

With the rise of mobile devices, which had an estimated 1.6 billion
users in 2013, computing power has become more accessible to indi-
viduals [7]. Mobile volunteer computing (MVC), a type of VC where all

∗ Corresponding author.
E-mail address: peizhe.ma@utas.edu.au (P. Ma).

participants are mobile devices, takes advantage of unique features of
mobile devices such as mobility and low cost. There exists a growing
trend in MVC, but there is a lack of surveys focusing on high-level
system structure and resource allocation in MVC.

In particular, a small number of survey papers related to crowd
computing have focused MVC, with only 11 papers including discus-
sions of MVC technologies [8–18]. However, these 11 papers tend
to concentrate on either sensors or application systems rather than
resource management. Only two of the papers briefly mention resource
management as one of the important challenges in the current industry,
but they lack a comprehensive taxonomy of resource management
techniques used by the current industry.

As a result, this paper aims to address the need for future research
and fill in the gap in this area by investigating the following research
questions in this article: (1) What are different technologies for crowd
computing and their differences? (2) What are the general structures
and systems for MVC?, and (3) What are current resource allocation
technologies for MVC?.

To solve the above resource questions and meet future needs, this
article makes the following contributions:

• A detailed taxonomy of mobile volunteer computing (MVC) with
a specific focus on crowd computing (CC) and volunteering com-
puting (VC) using mobile devices
vailable online 17 January 2024
167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2024.01.015
Received 15 July 2023; Received in revised form 16 December 2023; Accepted 10
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

January 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:peizhe.ma@utas.edu.au
https://doi.org/10.1016/j.future.2024.01.015
https://doi.org/10.1016/j.future.2024.01.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.01.015&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Future Generation Computer Systems 154 (2024) 251–265P. Ma et al.
• Discuss the architecture and famous MVC systems from
processing-based and sensing-based perspectives.

• Propose a resource allocation taxonomy in MVC environment
from the perspectives of application, target resource and schedul-
ing policy.

• Identify current open research issues in MVC systems and re-
source allocation algorithms based on the result of our scoping
review.

Based on the best of our knowledge, this paper is the first of its
kind to analyse both the taxonomies of MVC and resource allocation.
The rest of the paper is organised as follows. Section 2 reviews the
background for this survey paper, including the research strategy and
related survey. Section 3 MVC taxonomy is discussed. Following this,
Section 4 outlines the concept of MVC and the system taxonomy.
Section 5 provides a taxonomy of classifications of MVC resource al-
location. Section 6 illustrates the future directions based on this survey
paper and Section 7 concludes this paper.

2. Background

2.1. Research methodology

As this paper needs to examine emerging evidence in a specific topic
— a taxonomy of VC systems and resource allocation in VC, the scoping
review is selected compared with the systematic review. A scoring
review focuses on the general characteristics of certain topics, while
a systematic literature review summarises solutions to a specific ques-
tion [19]. Using the scoping review, an overview of a broad topic can
be presented within a short period of time [20]. As a result, the scoping
review is conducted to learn about the concepts of volunteer comput-
ing and resource allocation policies. Research keywords are defined
based on the project topic including ‘edge computing’, ‘fog computing’,
‘volunteer computing’, ‘mobile crowd computing’, ‘desktop computing’,
‘Internet of Things (IoT) applications’, ‘edge computing resource al-
location scheduling’, ‘fog computing resource allocation scheduling’,
‘volunteer computing resource allocation scheduling’, and ‘crowd com-
puting resource allocation scheduling’. A scoping review is conducted
using Google Scholar, IEEE Xplore, Science Direct and Springer, since
they includes a range of research articles, particularly in computer
science and offers a convenient way to search for literature across
multiple academic sources. Research papers for scheduling algorithms
and techniques are limited to 2014 to 2022 as the concept of volunteer
computing roughly came about around 2014. A set of protocols is
defined as the inclusion criteria to filter the research articles shown
below:

• The focus of the article is on resource allocation/scheduling in
VC/MVC environment

• Peer-reviewed publications
• Research articles written in the English language.

Our exclusion criteria are as follows:

• Research articles written in languages other than English.
• The duplicate of the same article retrieved by different databases.

After applying our selection criteria to the survey papers about
resource management policies in Mobile Volunteer Computing, we have
identified a total of 73 papers that align with our criteria. Moving for-
ward, these papers will form the foundation for our primary objective:
presenting the taxonomy. The mind mapping in Fig. 1 visually repre-
sents the research process, while the detailed taxonomy is discussed in
Section 5.
252
Fig. 1. Mind-mapping diagram.

2.2. Related surveys

Table 1 summarises 28 survey papers that exhibit similarities to our
research. These papers are collected based on the keywords ‘Volunteer
Computing Survey’, ‘Crowd Computing’, ‘Mobile Computing Survey’,
‘Mobile Crowd Computing Survey’, and ‘Mobile Cloud Computing Sur-
vey’. In addition, the current study delves into the concept of MVC
and categorises MVC systems based on sensors and applications. The
aforementioned table features three columns that indicate whether or
not the surveyed papers discuss MVC and MVC systems. Moreover,
since this paper also includes a taxonomy of classifications of resource
scheduling, an additional column has been incorporated at the end of
the table.

In general, 12 of the surveyed papers have referenced the con-
cept of MVC. However, not all of them have incorporated a system
taxonomy. For instance, Boubiche et al. (2019) only classify MCC
based on application types such as environment and social [12]. On
the other hand, Ali et al. (2021) include sensor technology as one of
the categories when categorising Mobile Crowding Sensing (MCS) for
traffic management systems but ignoring the applications [17]. Out of
these papers, only three have covered both the aspects of VC system and
resource management. Abualsaud et al. (2018) discussed MCC systems
from the perspective of sensing groups and applications, but did not
mention anything related to resource management [10]. Boubiche
et al. (2019) and Capponi et al. (2019) are the only two papers that
discussed all four areas, including MVC, sensing, applications, and
resource management [12,13]. However, Boubiche et al. (2019) only
briefly mentioned resource allocation as one of the challenges for MCC
and did not provide a detailed classification [12]. Similarly, Capponi
et al. (2019) only stated that resource allocation is one of the targets
of the MCC process [13].

To summarise, based on the review of existing survey papers, none
of them have given due attention to the system side of MVC and
resource allocation in the industry. Hence, this paper aims to fill this
gap by covering both these aspects through a detailed analysis of MVC
taxonomy and resource allocation classification.

3. Landscape of related technologies

3.1. Crowd computing

The concept of crowd computing is a relatively recent development
with early references dating back to the early 2000s, and most of the
research being conducted from 2009 onwards [38]. In simple terms,
crowd computing can be defined as the process of solving problems by
utilising crowdsourcing, which leverages the collective wisdom of the
crowd. Several authors have defined the concept of crowd computing
from various perspectives. Murray et al. (2010) seem to be the first au-
thors that introduce crowd computing as networks designed to spread



Future Generation Computer Systems 154 (2024) 251–265P. Ma et al.
Table 1
Related survey comparison.

Articles Mobile volunteer Sensors Application Resource management

Choi et al. (2007) [21] ✗ ✗ ✓ ✗

Yuen, King, and Leung (2011) [22] ✗ ✗ ✓ ✗

Enzai and Tang (2014) [23] ✗ ✗ ✗ ✓

La and Kim (2014) [24] ✗ ✗ ✗ ✓

Ahmed et al. (2015) [25] ✗ ✗ ✓ ✓

Guo et al. (2015) [8] ✓ ✗ ✓ ✗

Jaimes, Vergara-Laurens, and Raij (2015) [9] ✓ ✗ ✗ ✗

Liu et al. (2015) [26] ✗ ✗ ✗ ✓

Marosi and Lovas (2015) [27] ✗ ✗ ✗ ✓

Wang et al. (2015) [28] ✗ ✗ ✓ ✓

Zare et al. (2015) [29] ✗ ✗ ✗ ✓

Paranjothi et al. (2017) [30] ✗ ✗ ✗ ✓

Abualsaud et al. (2018) [10] ✓ ✓ ✓ ✗

Gu et al. (2018) [31] ✗ ✗ ✗ ✓

Noor et al. (2018) [32] ✗ ✗ ✓ ✗

Wang et al. (2018) [11] ✓ ✗ ✓ ✗

Zhou and Rajkumar (2018) [33] ✗ ✗ ✗ ✓

Boubiche et al. (2019) [12] ✓ ✓ ✓ ✓

Capponi et al. (2019) [13] ✓ ✓ ✓ ✓

Mengistu and Che (2019) [14] ✓ ✗ ✗ ✓

Vahdat-Nejad et al. (2019) [15] ✓ ✗ ✗ ✗

Aliyu et al. (2020) [34] ✗ ✗ ✓ ✓

Shamshirband et al. (2020) [35] ✗ ✗ ✓ ✗

Waheed et al. (2020) [16] ✓ ✗ ✓ ✗

Ali et al. (2021) [17] ✓ ✓ ✗ ✗

Rahmani et al. (2021) [36] ✗ ✗ ✗ ✓

Sisi and Souri (2021) [18] ✓ ✗ ✓ ✓

Maray and Shuja (2022) [37] ✗ ✗ ✓ ✓
computation and aggregate results [39]. Miller et al. (2010) propose
crowd computing as the human analogue to the cloud, combining
the strengths of both cloud computing and human [40]. Schneider
et al. (2012) provide an umbrella term for crowd computing as a
myriad of human interaction tools that enable individuals to exchange
ideas, make decisions and utilisation of the world’s resources [41].
Particularly, Muhammadi and Rabiee (2013) cited Wikipedia as one
of the most well-known examples of the crowdsourcing system [42].
Millions of internet users contribute and create this power-free online
encyclopedia. Additionally, crowd computing can be classified into
different application classes based on its characteristics, such as Web
2.0 and social computing, crowdsourcing, human computation, and
audience/crowd computer interaction [38,41]. Given that this paper
will concentrate on mobile volunteer computing, the following sections
will specifically propose some related sub-classes of crowd computing,
including desktop computing, crowdsensing, and volunteer computing.

3.1.1. Desktop computing
Desktop Computing (DC) is a form of distributed computing that

utilises idle computing resources on the Internet to run computationally
expensive projects over a low-speed network. Participating individuals
are typically unused desktop or laptop computer users who have agreed
to donate their resources [43–45]. DC uses only free resources and
does not interfere with users’ primary activities [46]. The idea of
DC was first introduced in 1987 by Litzkow (1987) [47]. In 1999,
Sarmenta and Hirano (1999) further discussed the concept of Volunteer
Computing (VC), which enhances the computational power of DC by
utilising VC [48]. DC is based on two main pillars: computational
pillars for managing and configuring DC, and participative pillars for
attracting more participants [43]. According to Choi et al. (2004), DC
consists of three major components: the client who requests the task,
volunteers who are idle desktops or laptops, and volunteer servers
that manage volunteers [44]. DC technology are also used by different
popular systems. For example, BOINC (Berkeley Open Infrastructure for
Network Computing) is one of the famous open-source platforms by
using DC technology and helps maintain several remarkable scientific
results such as the Einstein@home project [49]. Fig. 2 is summarised
based on the analysis above, particularly based on the idea from [21].
253
DC is categorised based on four dimensions, including centralised and
distributed organisation, web-based platform and middleware-based,
internet and local area network scale, as well as voluntary and non-
voluntary resource providers. Based on these features, DC provides
several benefits, including [50]:

• Cost-effectiveness: DC is relatively cheaper to run projects com-
pared to other computing systems.

• Scalability: DC can scale to thousands of computers, which makes
it a suitable option for computationally expensive tasks.

• Ease of deployment and support: DC is easy to set up and re-
quires minimal maintenance, which makes it a practical option
for organisations with limited resources.

Despite its benefits, DC also faces several challenges, which include:

• Limited resources: DC’s computing power is limited by the num-
ber of available resources, such as the number of participating
computers and their processing capabilities.

• Slow connection: DC’s performance can be affected by the slow
internet connection of some participants, which can result in
project delays.

• Lack of trust: DC relies on the trust of participants, which can be
challenging to establish and maintain.

• Heterogeneity: The heterogeneity of software and hardware used
by participants can lead to compatibility issues, which can com-
plicate project deployment and management.

3.1.2. Mobile crowd sensing
Traditionally, different sets of sensors have been deployed at fixed

locations to collect and transmit data. However, with the rapid devel-
opment of smart devices such as smartphones, a majority of individuals
now own and carry them wherever they go. In light of this, crowd
sensing has emerged as an alternative solution for enhancing the ca-
pabilities of sensing. This methodology distributes the sampling of
phenomena of interest across a large number of individuals [9,51].
Given that many of these individuals are mobile device users, this
approach is also referred to as mobile crowd sensing. Based on its name,
we can also discuss its characteristics from three aspects [52]:



Future Generation Computer Systems 154 (2024) 251–265P. Ma et al.
Fig. 2. A taxonomy of DC dimensions.

• Mobile: The resources utilised in mobile crowd sensing include
user-owned devices such as smartphones, wearable devices,
tablets, smart vehicles, and so on [13,51]. Given that these
devices are typically carried or worn by individuals, they are
likely to be in moving status during data collection, enabling a
large coverage area. However, controlling the quality of the data
collected from these devices can be challenging.

• Crowd: As a subclass of crowd computing, mobile crowd sensing
exhibits the defining characteristic of leveraging the collective
wisdom of the public to achieve its objectives [13]. A wide
range of smart devices can be incorporated into the network
to contribute to the sensing task. However, a major feature of
this approach is the inherent heterogeneity of the participating
devices, which can lead to diversity in the types and quality of
sensing data.

• Sensing: In mobile crowd sensing, the majority of participants
are typically assigned with sensing-related tasks, as opposed to
computational tasks. For instance, one of the real-world appli-
cations of this approach is noise mapping, which is a significant
problem in urban areas [53]. To monitor noise levels, a noise map
is generated to assess the level of pollution. Mobile crowd sensing
techniques can be employed in this context by using smartphones
to collect noise data along with location information, which can
be used to update the noise map.

Participants can join the mobile crowd sensing network using vari-
ous communication technologies. Capponi et al. (2019) provide a tax-
onomy of mobile crowd sensing based on its communication technolo-
gies [13]. This network is categorised into two main groups, namely
infrastructured and infrastructure-less. Infrastructured communication
relies on base stations or access points, such as cellular networks and
wireless local area networks. In contrast, infrastructure-less commu-
nication is a peer-to-peer technology in which devices can directly
communicate with each other using protocols such as WiFi, LTE-Direct,
and Bluetooth. Mobile crowd sensing is a multi-layer structure. Capponi
et al. (2019) separate them into application, data, communication,
sensing layers [13]. Guo et al. (2014) also propose a similar structure
for mobile crowd sensing including application, data processing, data
collection, and crowd sensing [51]. Mobile crowd sensing offers several
advantages, including:

• Mobility: Due to the mobility of participants and their devices,
mobile crowd sensing can provide higher coverage and collect
data from various locations [13].

• Scalability: As a form of crowd computing, mobile crowd sensing
is highly scalable and suitable for different types of projects. The
scales of mobile crowd sensing can be characterised into three
categories: group, community, and urban, according to the size
and scope of the sensing project [8].

• Low cost: The sensing task can be divided into small sensing
chunks, which reduces the cost of data collection and process-
254

ing [8].
• Use of human knowledge: Mobile crowd sensing can leverage the
intelligence of human participants to generate more contextual
and accurate data. For example, humans can easily identify free
parking spots and submit information into the system [13].

Mobile crowd sensing also has several limitations, including:

• Incentive methodologies: The success of mobile crowd sensing
relies on the participation of a large number of individuals, but it
can be difficult to find effective incentive methodologies to attract
and retain participants [9,13].

• Heterogeneity: Mobile crowd sensing also has the limitation of
heterogeneity, where different types of smart devices may gener-
ate data in different formats, making it difficult to manage and
analyse the data together [13,54].

• Personal preferences: As individuals are involved in the process,
they naturally have personal preferences which might not align
with the initial goal of the sensing project [54].

• Security: Security and privacy are important limitations in mobile
crowd sensing, as individuals’ devices are used in the network
and their security and privacy need to be considered. Addition-
ally, when aggregating results from different participants, data
integrity should also be checked [54].

In addition, there is a concept called ‘‘crowdsourcing’’ that can cause
confusion among people. Both mobile crowd sensing and mobile crowd-
sourcing are based on crowd computing, which involves distributing
tasks to a large group of participants. Mobile crowd sensing employs
mobile devices and sensors to collect data and complete environmental
tasks, such as creating an air pollution map, without the involvement
of humans in most cases. On the other hand, mobile crowdsourcing
involves humans as the main stakeholders [55]. When a task publisher
publishes a task, the central server distributes it to individual crowd
workers to complete and submit the task. There are two main types
of mobile crowdsourcing applications: human intelligence and human
sensor [56]. Human intelligence uses human knowledge, which is
easy for humans to solve but difficult for computers, such as natural
language processing. The human sensor uses humans as sensors to
collect data based on their observations apart from sensors on mobile
devices, such as the smart transportation system.

3.1.3. Volunteer computing
Volunteer Computing (VC) is a network-based distributed comput-

ing system, which utilises idle resources from participating devices
to complete some computational expensive programs and has gained
recognition under various names such as public fog. Heterogeneity is
one of the important characteristics of the VC system as a broad range
of devices can act as volunteer nodes. These nodes typically include but
are not limited to desktops, mobiles, tablets, network gateways, and
smart TVs that have heterogeneous hardware, operating systems, and
versions [4,14]. VC system consists of two entities which are resources
and controllers and can be classified into three categories: centralised,
decentralised and hybrid [14,57]. A centralised system, also referred
to as client/server, emphasises the existence of server machine(s) for
control. A decentralised system is also known as a peer-to-peer system
(P2P), in which each node can communicate with the others and
serve as a resource and controller simultaneously. A hybrid structure
merges the features of the previous two structures, allowing nodes to
communicate with each other while maintaining a global directory.
Additionally, VC uses master-worker parallel computing to complete
tasks [6,58]. Specifically, the master receives the task and divides it
into sub-tasks, which are then assigned to different workers. Workers
perform calculations for sub-tasks and transfer the results back to the
master, who validates and combines them. As for the master, it can
work as both a controller and a worker. Generally, VC systems are
classified by operating environment, including volunteer grid, volun-
teer cloud, volunteer mobile, and parallel volunteer computing [14,58].

There are several advantages provided by VC:



Future Generation Computer Systems 154 (2024) 251–265P. Ma et al.

s

t
i
r
e
u

3

m
t
t
s
a

• Scalability: VC is highly scalable as millions of volunteer nodes
can connect to the system at the same time [6,14]. For example,
one of the most famous VC platforms, Berkeley Open Infrastruc-
ture of Network Computing (BOINC), has the capacity to manage
1.1 million volunteer nodes [14,58].

• Cost-effective: As a distributed computing system, there is no cost
associated with purchasing a large amount of hardware to sup-
port computationally expensive projects. Instead, all participants
volunteer to join the network and the cost can be reduced [6].

• Speed: VC can accelerate the computation process by breaking
down the entire task into smaller chunks. Each participant can
work on a specific chunk in parallel with others to reduce the
overall time needed to complete the task.

• Accessibility: The nature of VC allows for broad accessibility, as
individuals and organisations can easily join the network through
the internet and utilise its resources.

Aside from some advantages mentioned above, several noticeable is-
ues also remain open in volunteer computing that should be addressed.

• Resource allocation: Due to the heterogeneity feature mentioned
above, volunteer nodes have a diverse range of hardware and
software. Moreover, the availability time and resources for these
nodes can change dynamically. Therefore, it is difficult to identify
patterns and group these devices to efficiently allocate resources.
Tapparello et al. (2016) discuss that an efficient algorithm is
needed to utilise resources and achieve the best possible results
through distributed computation [59].

• Incentive models: Most end devices participate in VC systems due
to their interest in or sense of belonging [14]. Useful incentive
models are critical to attracting more devices to join the system,
expand the capacity of the system, and perform more tasks.

• Result aggregation and validation: VC systems operate in master-
worker parallel computing in which the master divides tasks
among workers to perform calculations and send them back to the
master for aggregation and validation [6]. However, validation
of the results consumes a large number of computing resources.
Furthermore, it is not easy to aggregate and validate results from
heterogeneous nodes.

• Security: A secure environment is crucial to implement tasks using
idle devices. To ensure the security and privacy of these idle
devices during their participation in the VC system, as well as
the transformation between devices, a security mechanism must
be in place.

Resource allocation is selected as the primary target for this study
o categorise VC from the four open questions discussed above, since it
s the first thing to plan when setting up a VC environment. Efficient
esource allocation is crucial for setting up a VC environment as it
nables the system to determine available resources and plan their
sage to achieve the project’s goals.

.1.4. Comparative analysis of volunteer computing with other paradigms
Based on our analysis in the previous subsection, Table 2 sum-

arises the differences between the three technologies including desk-
op computing, mobile crowd sensing, and volunteer computing. Al-
hough they are all part of the crowd computing paradigm, their
pecific characteristics vary. The differences are categorised into four
spects as follows:

• Purpose: The purpose of each technology is different. Desktop
computing is mainly used for personal and business applica-
tions, while mobile crowd sensing is used for data sensing and
collection, particularly for monitoring purposes. Volunteer com-
puting is typically utilised for computationally expensive tasks
255

and scientific research projects.
• Resource: The differences in the types of participants for these
technologies are reflected in their names. Desktop computing uses
unused desktops or laptops. However, the participants in mobile
crowd sensing and volunteer computing are more varied. Mobile
crowd sensing uses user-owned devices such as mobile phones
and wearable devices, while volunteer computing can use any
type of device such as phones and computers.

• Connection: Desktop computing relies on low-speed network con-
nections, while mobile crowd sensing and volunteer comput-
ing can leverage any available communication methods such as
cellular networks and WiFi.

• Computation Power: Desktop computing and mobile crowd sens-
ing mainly rely on individual devices’ power to run the task or
sense the data. Volunteer computing combines resources from
different devices to provide a high-quality platform to run tasks.

3.2. Comparison between VC, edge computing and cloud

In addition to comparing the three subclasses of crowd computing,
it is also worthwhile to distinguish volunteer computing from edge
computing and cloud computing, as individuals often confuse them.
Edge computing aims to bring computational and storage resources
physically close to the end users, as well as reduce transformation cost
and response time [60]. It enables applications to access network infor-
mation in real time while maintaining low latency. Cloud computing
can rapidly deliver resources to users based on their demands through
the Internet [61]. Generally, cloud computing can be classified into
three service models, which are Software as a Service (SaaS), Platform
as a Service (PaaS) and Infrastructure as a Service (IaaS), as well as four
deployment models including private, public, community and hybrid.

Table 3 compares volunteer computing, edge computing, and cloud
computing with a focus on resource allocation. Despite being situ-
ated at different levels of the network, their resource locations differ
from their physical locations. Volunteer and cloud computing derive
resources from their respective levels, while edge computing sources
from all levels, as noted by [60]. Volunteer and edge computing,
positioned closer to end devices, exhibit lower network latency than
cloud computing. Notably, cloud computing provides unlimited on-
demand resources, billed according to usage, while volunteer and edge
computing face limitations in computational resources, storage, and
power. Edge computing adopts a pricing strategy similar to the cloud,
while volunteer computing, relying on donated resources from idle
devices, offers relatively cheaper rates. In volunteer computing, the
donating devices own the resources, setting it apart from edge and
cloud computing.

4. Mobile volunteer computing system

Mobile Volunteer Computing (MVC) is a type of distributed system
that shares the same characteristics as Volunteer Computing (VC).
The primary difference between the two is the type of participating
devices. While VC can include any device, such as computers, servers,
and mobile devices, MVC focuses specifically on mobile devices like
phones and tablets. The mobility and human intelligence of the MVC
network are improved due to the easy portability and user involve-
ment of mobile devices. Additionally, mobile devices have powerful
features like cameras and GPS, which make them ideal for diverse
tasks like sensing. However, MVC may require more participants to
complete large projects, as the computational power of mobile devices
is relatively limited compared to computers. Nonetheless, due to the in-
creasing usage and rapid development of mobile devices, it is essential
to research and focus on MVC. Therefore, this paper will discuss the

MVC architecture and system taxonomy in detail in this section.



Future Generation Computer Systems 154 (2024) 251–265P. Ma et al.
Table 2
Desktop computing vs. Mobile crowd sensing vs. Volunteer computing.

Characteristics Desktop computing Mobile crowd sensing Volunteer computing

Purpose Personal or business
applications

Data sensing and collection Computationally expensive tasks
and scientific projects

Resource Unused desktop or laptop
computer users

User-companioned devices (mobile
phones, wearable devices, and smart
vehicles, smart cards, and so on)

Any type of devices

Connection Low-speed network Infrastructured and infrastructure-less Any communication methods

Computation power Individual devices’ power Individual devices’ sensors Computing platform
Table 3
Summary of comparison between Volunteer, Edge and Cloud.

Characteristics Volunteer Edge Cloud

Size/Scalability 1,000,000,000s [14] 1000s 100s to 1000s [62]
Capacity Limited resources and storage Limited resources and storage [63] On demand provision
Major components level End device level Edge level Cloud level
Resource location End device level All levels [60] Cloud level
Resource management Distributed Distributed [64] Centralised [64]
Resource ownership Multiple Single Single [61]
Node operating system Multiple Multiple Multiple
Network Low latency Low latency High latency
Battery Limit Limit Not limit
Mobility Movable Movable Steady
Pricing Cheaper Based on the resources Based on the resources
Fig. 3. MVC high-level architecture.

4.1. System architecture

In this paper, we have collected and examined 23 well-known
mobile-related crowd-computing systems from the literature. After our
analysis, the high-level architecture of MVC systems is presented in
Fig. 3. This architecture consists of three primary components: users
who submit tasks, mobile devices that act as volunteers, and the central
MVC system. Our focus here is on the central system, which includes
seven major functions:

• Register and Security: The register function receives information
from both mobile devices and users, recording device availability
times and capacity, as well as information on submitted tasks
such as data size and time requirements. In some of the systems,
it can issue proof of certification to ensure network integrity,
particularly for security concerns. The registration authority of
the AnonySense system, for example, issues authenticity to its
scheduling server and aggregation server for participant verifi-
cation [65]. Therefore, the security function is discussed with
the register function. The Register function can be part of the
central server or a separate component within the system, such
256
as the Testbed authority component in CrownLab, or the control
server in CANDIS that includes all functions, including registering
devices [66,67].

• Database: The database function is simply used to store the data
collected from the register, such as information about participants
and tasks. Therefore, when the central server needs to distribute
tasks, it will retrieve the required data from the database. Ad-
ditionally, the database can be updated by the central server in
case of any changes occurring in the current network. For ex-
ample, in the designed architecture of GEMCloud, there are only
two components within the system: the server and the database,
where the server requests to update the database and receive the
updated version of information from the client when it receives
information from the devices [66].

• Partition Tasks: The partition tasks serve as splitting the tasks
submitted by the user into small chunks based on the current
network capability. However, not all of these 23 MVC systems
include the partition tasks function. ANGELS is the one that
considers partitioning tasks [68]. Its designed framework has a
component called the partition which will consider the capability
of current resources from the resource pool and then split the
tasks accordingly.

• Allocate Tasks: The allocation function is a critical component in
all MVC systems as it is responsible for managing and distributing
tasks to different participants based on various scenarios. Each
platform has its unique scheduling algorithm. For instance, Ocelot
has two servers, namely the database and scheduling server,
with the latter being responsible for allocating tasks to different
devices to ensure that user-submitted jobs are completed within
the specified time [69].

• Check updates and monitor Tasks: The functions of checking
updates and monitoring tasks are often combined to track the
progress of ongoing tasks and update the relevant information
in the database. This function facilitates communication between
the central server and the devices, allowing for changes such
as updating device availability times. Not all systems, however,
discuss these functions. For instance, the jUniGrid system includes
a job monitoring component to monitor the status of devices and
tasks [70].

• Aggregate results: The aggregation function is an essential com-
ponent of MVC systems, responsible for collecting and combining



Future Generation Computer Systems 154 (2024) 251–265P. Ma et al.

4

s
b
w
s
2
f
S
b
p
[
H
[
s
b
C
i
c
A
D
i

c
C
a
s
u
u
c
d
s
d
i
a
o

c
[
r
a
D
d
t
T
d
v
d
c

t
f

5

i
p
o
a
d
a
t
t
v
o
d

5

c
t
i

results from individual devices and returning them to the user.
Nearly all 23 MVC systems in this study include an aggregation
function. For instance, CANDIS employs a central server that
performs all functions, including aggregating results [67].

.2. Current state of the art in MVC platforms

Based on the aforementioned architecture, we categorise the MVC
ystem into two types: processing-based and sensing-based. Processing-
ased MVC systems are designed to handle large computational tasks,
hereas sensing-based MVC systems primarily collect and sense data,

uch as environmental data in a particular region. A categorisation of
3 well-known mobile-related crowd computing systems has been per-
ormed based on two categories: seven sensing-based systems (Anony-
ense [65], PRISM [71], Mobiscope [72], LiveCompare [73], Micro-
log [74], Bubble-sensing [75], AirShower@home [76]) and 15
rocessing-based systems (GEMCloud [77], CWC [78], Serendipity
79], FemtoClouds [80], Mobile Device Clouds [81], CellCloud [82],
yrax [83], Unity [84], Mobile OSGI.NET [85], jUniGrid [70], Ocelot

69], CANDIS [67], ANGELS [68], Honeybee [86], DRAP [87]). These
tatistics reveal that the majority of these systems are processing-
ased and intended to handle computation-related tasks. However,
rowdLab is the only system that emphasises both processing and sens-

ng aspects [66]. There are six systems among the 23 mobile-related
rowd computing systems that specifically target MVC (CrowdLab [66],
irShower@home [76], CWC [78], Serendipity [79], Ocelot [69],
RAP [87]). The details for each of these six systems will be discussed

n the below paragraphs:
CrowdLab: The first testbed architecture utilising volunteer mobile

resources is CrowdLab [66]. It integrates with existing infrastructure-
based testbeds without removing any functions. CrowdLab achieves this
by running virtual mobiles over volunteer nodes, protecting both data
and locations using isolating guest codes and decentralising testbed
services. The architecture comprises Testbed Authorities (TAs) and
Device Authorities (DAs). TAs, centralised components, handle exper-
iment registration, and resource distribution, and provide a root of
trust. DAs, decentralised, connect to single devices for resource control.
A geographic grouping of DAs is a site, communicating through ad-
hoc networks. During experiments, CrowdLab can run processing-based
tasks, including measurement and sensing tasks.

AirShower@home: The study by Gordienko et al. (2015) focuses
on the idea of transitioning from passive volunteer computing to other
forms of volunteer actions, such as measurement [76]. They highlight
a specific project called AirShower@home, which aims to solve the sci-
entific problem of estimating the possibility of identifying air showers
in the solar system and the frequency and distribution of air showers
in different cities to create a virtual online map. The measurements
are carried out using volunteers’ tools such as camera chips and GPS.
The workflow of AirShower@home consists of three parts, namely,
volunteers participating in the network, mobile applications used to
detect flashes and send data, and servers used to process data and
create an online map. The system has four components, including hard-
ware (various gadgets), brainware (human actions), software (mobile
applications), and the volunteer community.

Computing While Charging (CWC): Arslan et al. (2012) presented
a framework named CWC, which utilises mobile devices for distributed
computing [78]. The framework is designed to utilise mobile devices
provided by the company to perform tasks. The tasks will only be
executed when the mobile devices are charging. If the owner of the
device disconnects from a power outlet, the task will be suspended
and migrated to another charged device. The system design includes
a scheduler that minimises makespan by taking into account both CPU
and bandwidth, and an efficient migration approach for task migration.

Serendipity: In their work, Shi et al. (2012) proposed a processing-
based architecture named Serendipity, which aims to assist a mobile
257

device in executing computationally intensive tasks that surpass its own r
capabilities by utilising other mobile devices to minimise local power
consumption and computation time [79]. Serendipity is designed as a
decentralised structure, where an individual mobile device node con-
sists of three different components: a job engineer, a master, and several
worker processes, that communicate with others and request resources.
The general process begins with the job engine, which receives tasks
from users to construct a task profile and allocates tasks to workers by
initiating a job. Once workers complete tasks, the master aggregates
results and returns them back to the job engine.

Ocelot: Xu et al. (2013) proposed Ocelot, a distributed mobile
omputing platform based on Berkeley Open Infrastructure for Network
omputing (BOINC) [69]. Ocelot is designed to solve highly parallel
nd lightweight computational tasks in order to conserve energy re-
ources. Unlike BOINC, which uses servers and workstations, Ocelot
ses smartphones and tablets to reduce maintenance costs and power
sage. Ocelot can also be applied in wireless sensor networks to solve
omputational tasks. The Ocelot system is divided into two parts: the
atabase server and the scheduling/web/push server. The database
erver stores different types of information such as user information,
evice information, and task results. The scheduling/web/push server
s the core component of the system, responsible for managing tasks
nd devices, maintaining the system, handling requests, and performing
ther related functions.
DRAP: Agarwal and Nayak (2015) proposed DRAP, a decentralised

omputing system that groups volunteer mobile devices into a cloudlet
87]. DRAP relies entirely on volunteer-based services, which results in
educed costs. Each device in DRAP is considered a part of the cluster
nd must communicate with other devices and serve as middleware.
RAP consists of three main components: device manager, neighbour
iscovery, and cloud controls. The device manager detects devices
hat are suitable for serving requests and being part of the cloudlet.
he neighbour discovery component communicates with neighbouring
evices to determine if they can join the network and provide ser-
ices. The cloud controls component provides cloudlet services and
istributes tasks. DRAP is based on the general requirements of the
loudlet environment.

In this section, we provide a detailed review of MVC architecture
hat will be used to investigate different resource allocations in the
ollowing section.

. Taxonomy of resources allocation in MVC

The complexity and need for resource allocation in MVC are signif-
cant, as mobile devices have limited resources. An effective allocation
olicy is crucial for managing resources and achieving the final goal
f completing tasks successfully. However, due to the heterogeneity
nd unstable nature of volunteered resources, it is challenging to
evelop a resource allocation policy that can manage these resources
nd balance the workload effectively. Therefore, we present a research
axonomy that aggregates all related works for resource allocation into
he application, target resource and scheduling policy perspectives in
olunteer and edge paradigms. Fig. 4 shows the high-level structure of
ur resource allocation taxonomy. This taxonomy will be discussed in
etail in the following.

.1. Application

From the perspective of the application, we further divide it into
ategories of ‘types’ and ‘users’ as demonstrated in Fig. 5. ‘Types’ refer
o what the algorithm is scheduled for and allocated for, including
ndependent tasks, dependent tasks and stream applications. ‘Users’

epresent the number of users considered.



Future Generation Computer Systems 154 (2024) 251–265P. Ma et al.
Fig. 4. Resources allocation in MVC.

Fig. 5. Application-based classification of resources allocation algorithms.

5.1.1. Type
To design an efficient resource allocation method, it is crucial for

the process to know the type and properties of the application and thus
understand what it is being allocated for. The type of application can
be classified into independent tasks application (or bag-of-tasks appli-
cation), dependent tasks application and stream application. Research
works that discussed the aforementioned types of application will be
explained in detail in the following sections:

1. Independent Task
The tasks are the requests and data that are submitted by end
devices to the edge or volunteer computing system. End devices
can submit as many tasks as they need to reach their goals. There
are two types of tasks, independent tasks and dependent tasks,
which are further divided based on their relationships. A task
that is independent is one where there is no relationship between
the number of tasks submitted by the end devices. The data
needed for competing tasks are all provided by the end devices
at the beginning. For example, Li et al. (2019) proposed a video
processing application composed of independent tasks [88]. The
whole video is split into 10–20 MB clips, which corresponds to
video processing tasks. All of these tasks will arrive simultane-
ously at the edge, and they are independent of one another.
Based on our analysis for these research works, the majority of
research works have focused on the big-of-tasks application with
independent tasks.

2. Dependent/Splittable Task
Dependent/splittable tasks are different from independent tasks
because either some computationally intensive tasks can be
divided into sub-tasks with dependencies or the application
submits dependency-aware tasks. These tasks cannot be run
simultaneously as they might request the completion results
of certain tasks as input. This subcategory is more realistic
compared with the ‘independent task’ category but only 11
papers address dependencies among tasks [89–99]. Using the
assumption of splittable applications, Liu et al. (2020) [89]
developed a task scheduling algorithm for a vehicular appli-
cation, such as augmented vehicular reality which broadens a
vehicle’s horizontal scope through the sharing of information
with nearby vehicles and allocate dependent tasks belonging to
the same application [100]. An example of a tourism service
application considered by Ni et al. (2017) is the provision of
different services, such as transportation and ticketing, with low
258
Fig. 6. Target resources based classification of resource allocation.

latency, wide geographical distribution, and high mobility [90].
These applications assume that each task can be further divided
into subtasks.

3. Stream Application
Stream application is that edge or volunteer computing system
schedules resources for continuous incoming data. In this sce-
nario, the data arrival rate is a key feature to consider when
scheduling. In Zhao et al. (2017) work, the delay-sensitive mo-
bile applications are scheduled and the task arrival process is
assumed to be a Poisson process [101]. For example, when
simulating, a task’s arrival rate is randomly selected from the
range of 1 to 30. In Liu et al. (2018) work, streams of blockchain-
based video are scheduled with the same time interval between
segments [102]. In addition, they set the block size between 0.5
and 2 MB and the generating time between 10 and 20 s.

5.1.2. User
User category divided research works based on the number of

users/devices in the end device layer, including a single user and
multiple users.

1. Single User
The single user refers to the fact that there is only one user
or device submitting tasks at the end device layer. Due to the
rarity of this scenario in real life, only six papers take the single
user type into account [90,98,103–106]. Kuang et al. (2019)
assumed there is only one mobile user device to submit tasks
in the running environment [103].

2. Multi Users
Apart from the single user, multiple users are commonly consid-
ered because many end devices are typically included at the end
device layer in real-world scenarios. Both Yuan and Zhou (2020)
and Alameddine et al. (2019) considered different types of de-
vices at the end layer, such as phones, tablets and laptops [107,
108]. For example, in the experimental setup, Yuan and Zhou
(2020) designed five different types of IoT applications [107].

5.2. Target resources

Under the target resources perspective, there are two categories:
edge-oriented and volunteer-oriented, as shown in Fig. 6. Edge-oriented
resource allocation in MVC uses edge nodes as the main task processing
resources, while volunteer-oriented resource allocation involves volun-
teer devices participating in the network to help complete tasks. All
the research papers that have been collected and reviewed by this study
have been categorised based on the two categories of edge-oriented and
volunteer-oriented resource allocation. These papers have also been
analysed and discussed in detail in the subsequent sections of the study.

5.2.1. Edge-oriented
In the current industry, edge nodes are the primary resource con-

sidered when proposing resource allocation in MVC. Unlike volunteer-
oriented resources, edge devices are not donation-based, and the system
or central server has more control over these nodes. The entire re-
sources of edge nodes can be used only for processing tasks instead of
borrowing parts of resources from volunteer nodes. In addition, edge



Future Generation Computer Systems 154 (2024) 251–265P. Ma et al.
Fig. 7. Policy-based classification of resource allocation.
nodes can provide better security compared to volunteer nodes as the
server has full control over nodes and does not need to frequently
transfer data when volunteer nodes suddenly become unavailable. For
instance, Nath and Wu (2020) proposed a deep reinforcement learn-
ing methodology for offloading and scheduling mobile edge resources
in a cache-based system environment using machine learning tech-
niques [109]. Li et al. (2019) presented the Time Average Computation
Rate Maximisation (TACRM) algorithm to minimise task completion
time by utilising mobile edge nodes [110].

5.2.2. Volunteer-oriented
The volunteer-oriented methodology is less focused on the current

industry with only eight collected research papers [97,111–117]. How-
ever, compared with edge computing, volunteer computing provides
high scalability and flexibility. Volunteer computing can be easily
scaled up by adding more nodes inside the network to increase overall
network capacity. Additionally, as these resources are donated by
mobile devices, it is cost-effective compared to the costs of buying
edge nodes. Xu et al. (2019) proposed a dynamic task scheduling
algorithm that utilises heterogeneous volunteer computing platforms
to meet task deadlines [111]. Hoseiny et al. (2021) developed a cost-
effective scheduling algorithm by combining both edge and volunteer
computing environments [112].

5.3. Resource allocation policy

From the scheduling policy perspective, there are three categories:
objective for resource allocation, constraints considered by the applica-
tion, as well as algorithm types. Additionally, it is also possible for the
research works to fall into several types under the same category since
they can achieve multiple objectives, consider different constraints, and
combine several algorithms during the resource allocation process (see
Fig. 7).

5.3.1. Objective
The objective category is further divided into eight subcategories,

including energy consumption, average completion time, the number of
requested resources, cache placement value, balance dominant resource
sharing, security risk, delay and profit.

1. Energy Consumption
According to the analysis for these research works, minimising
energy consumption is targeted by the majority of research
papers with 27 papers, when proposing their resource allocation
algorithms [95,103,105,107–109,117–137]. Due to the nature of
end devices and edge devices, battery operations are commonly
adopted by them. It is important to schedule as many tasks as
possible within the energy limitations. Specifically, those papers
259
discuss the minimisation of energy consumption from two as-
pects which are the system and the devices. For example, Wang
et al. (2019) aimed at reducing the system energy consumption
when selecting edge computing and scheduling tasks [126].
Mao, Zhang and Letaief (2017) proposed their algorithm to
eliminate the energy consumption for the end devices when
offloading tasks to the edge [105].

2. Average Completion Time
TS-IoT applications require tasks to be completed within a lim-
ited time frame, otherwise, the results will be meaningless.
Therefore, minimising the average completion time of tasks is
another essential objective targeted by lots of paper. For exam-
ple, Yin, Luo and Luo (2018) constructed their task scheduling
algorithm to minimise the task completion time [138]. Mukher-
jee et al. (2019) proposed the strategy to maximise the number
of completed tasks within the deadline [139].

3. The Number of Requested Resources
Considering the limited computing and memory resources at
the edge, two of the research papers attempt to reduce the
number of resources requested while completing tasks on time.
A three-layer network architecture is designed by Wang et al..
(2021) [140] in the edge computing satellite network to reduce
resource wasting. The authors of [141] applied the deep rein-
forcement method to reduce the number of requested resources
and the average completion time.

4. Cache Placement Value
Maximise cache placement values are considered in two research
papers as well. Some edge devices might have certain cache
areas located in the memory to reduce transmission costs and
improve system performance by fast accessing the cache values.
The authors of [142] proposed a cache locality-aware method
for better cache values utilisation. Nath and Wu (2020) aimed
at reducing the fetch costs of cache contents by designing a
machine learning algorithm [109].

5. Balanced Dominant Resources Sharing
The balanced dominant resources sharing among tasks is crucial
for resource allocation since allocating excessive resources for
one particular task will result in the degradation of the system’s
performance. However, the fairness issue of task scheduling has
only been addressed in one research paper. Bian, Huang and
Shao (2019) designed a task scheduling scheme to learn from
experience to ensure multi-resource fairness among tasks [96].

6. Security Risk
Security is another important objective to achieve during the
resource allocation process. Due to heterogeneity and mobility
features for edge nodes/volunteer nodes, as well as the network
transmission environment, the security of these nodes and the
transmission channels can be easily hacked by others. On the



Future Generation Computer Systems 154 (2024) 251–265P. Ma et al.
other hand, only Daoud et al. (2019) recognised the existence
of security risks and privacy risks, as well as proposed a trust
access control and resource management mechanism to protect
the environment [143].

7. Delay
As with the average completion time objective, reducing the
delay in the process also addresses the deadline issue for TS-IoT
applications. By reducing the delay and responding to requests
on time, the total task completion time is reduced. In addition,
this category can be divided into three aspects including execu-
tion delay, network delay and response delay. Research papers
can target one or multiple aspects as well. For example, Wu
et al. (2021) design a fuzzy offloading strategy to minimise the
execution latency [93]. Ali et al. (2020) introduced a volunteer-
supported fog computing environment to minimise network and
response delay simultaneously [117].

8. Profit
Economic objectives are discussed in the research papers as some
edge computing service providers charge fees for the resources
they provide with 12 papers addressing this objective [90,97,
102,107,115,124,125,133,144–147]. For example, the authors
of [107] designed a profit-maximised collaborative computa-
tional offloading strategy to increase the profits of the system.
Huang, Li and Chen (2020) [144] discussed the specific objective
of maximising edge server revenue.

5.3.2. Constraints
When designing the solutions for the resource allocation problem,

lots of constraints are introduced. In particular, ten subcategories under
the constraints category are summarised, including network, trans-
mission cost, CPU cycle/computation resources, energy consumption,
memory, queue time, application movement, user behaviours, resource
balance, latency requirement, and cache value.

1. Network
In the running environment, the data/tasks are transferred to the
edge or cloud computing through the network. In the meantime,
the results calculated by edge/cloud are transferred back to
devices via the Internet. Therefore, the network, including the
bandwidth and transmission costs, is an important constraint to
consider when designing the architecture with the majority of
research papers that focus on this area. Specifically, transmission
costs include uploading and/or downloading time duration, the
money spent on transferring data, as well as the communication
cost among devices and edges. For example, as authors of [133]
believe that the data size of the output is much smaller than the
input data, they focused primarily on uploading time costs and
ignore downloading ones. When Ni et al. (2017) proposed the
resource allocation strategy based on priced timed Petri nets, the
transmission cost and time constraint are both defined [90].

2. CPU/Computation Resources
CPU/computation resources is the fundamental constraint to be
addressed since it is the most basic element needed for the edge
to complete the task. Because of this, the most of research papers
mention CPUs. In particular, CPU speed or processing speed,
computation time and resources all belong to this subcategory.
For instance, CPU cycle frequency is addressed by Mao, Zhang
and Letaief (2017) when designing the system model [105].
The authors of [148] considered the computing time in their
proposed task model.

3. Energy Consumption
Energy consumption constraint also appears to be a common
constraint to address since most papers aim to minimise energy
consumption as mentioned in Section 5.3.1. Furthermore, since
many devices and edge/volunteer nodes need power to oper-
260

ate, considering the energy consumption when designing the
system model is more realistic. The battery life is one of the
criteria when selecting the manager edge node mentioned in
Sun, Lin and Xu (2018) [149]. Power consumption for transfer-
ring the data and processing tasks is discussed by Feng et al.
(2020) [147].

4. Memory
As the edge/volunteer devices only have limited memory space
and computation resources, memory is another essential con-
straint to be addressed when allocating resources. When design-
ing system architectures, however, memory space is rarely con-
sidered. For example, both the authors of [150,151] discussed
the storage capacity for the edge servers when formulating the
problem.

5. Queue Time
Queue time is discussed in some of the papers since they assume
there is a queue subsystem in the edge server [88,95,107,112,
122,128,131,135,152]. A task will wait in the queue if there
are not enough resources to compute the task at the edge. The
authors of [95,135] mentioned the length of the queue and the
queueing time when proposing the system model.

6. Application Movement
The movement of applications is one of the major constraints
of mobile edge computing. A vehicular edge computing system,
in particular, allows mobile devices to be moved around the
environment. Dynamic changes are made to the location and
distance between a device and an edge. Four papers mention
this constraint when proposing their algorithm [89,98,106,153].
For example, Saleem et al. (2020) considered the human mobil-
ity feature when offloading tasks [106]. The authors of [153]
specifically proposed a vehicular edge computing algorithm by
considering vehicular movement.

7. User Behaviours
Only two research papers address user behaviours constraint as
they need to categorise users for different purposes [113,143].
Panadero et al. (2017) assigned different labels to the connected
nodes, such as low, middle and high, based on their proba-
bility of disconnection [113]. Daoud et al. (2019) is the only
research work that recognises the existence of security risks and
privacy risks [143]. Trust is computed by considering the user’s
behaviour such as their access history.

8. Resource Balance, Latency Requirement and Cache Value
Resource balance, latency requirement and cache value are ex-
plained in the same paragraph as all of them are separately cor-
responding to one of the scheduling objectives discussed in Sec-
tion 5.3.1. Resource balance constraint is considered by the same
paper when aiming for multi-resource fairness [96]. Some papers
address the latency requirement to minimise the delay through-
out the process [88,95,107,112,122,128,131,135,152]. For ex-
ample, Yi, Huang and Cai (2019) proposed the resource man-
agement framework considering deadline constraints [133]. Ad-
ditionally, cache value is discussed when the research work as-
sumes popular tasks or data can be cached on edge servers [109,
142,151,154]. The authors of [109] considered cache capacity,
size, and locality when allocating resources.

5.3.3. Algorithm
Various types of algorithms are proposed by researchers, including

graph algorithm, greedy algorithm, evolutionary algorithm, machine
learning, networking algorithm, mathematical optimisation, root find-
ing algorithm, augmented lagrangian method, network security, as well
as scheduling algorithm.

1. Graph Algorithm
Graph algorithm consists of a set of vertices that are connected
by edges. It can be used for traversing the whole graph to

find a specific node or find the path between nodes. Complex



Future Generation Computer Systems 154 (2024) 251–265P. Ma et al.
problems can be visualised and organised by using the graph
algorithm, but it can be complicated in terms of memory since
there are many vertices to handle at the same time. This al-
gorithm is adopted by some research papers as it is a useful
tool for searching and matching devices and edge nodes. For
example, the authors of [140] proposed a breadth-first-search-
based spanning tree algorithm to link devices with edges. An
extended Hungarian algorithm is introduced by Wang et al.
(2019) to provide an initial matching between resources and
data [154].

2. Greedy Algorithm
The greedy algorithm aims to make local optimal choices at each
stage without taking the whole picture into account. Therefore,
it provides a relatively simple solution to the optimisation prob-
lem and some researchers proposed it to achieve a near-optimal
solution. However, it only selects the sub-optimal option in the
short term, which may end up being the worst long-term choice.
Wang et al. (2019) designed an efficient greedy algorithm to ob-
tain task scheduling solutions with less time [126]. The authors
of [133] adopted the sub-optimal greedy algorithm to reduce
computational complexity.

3. Evolutionary Algorithm
Evolutionary algorithm is the type of algorithm inspired by
nature, such as mutation and natural selection, and emulates
the behaviours of nature to solve the problem. Any part of the
evolutionary algorithm can be tailored and adjusted according
to the problem, however, finding a suitable type of evolutionary
algorithm is difficult because different parameters provide differ-
ent results. It can be used for optimisation questions that cannot
be solved in polynomial time. For instance, Rafique et al. (2019)
combined the particle swarm optimisation and the cat swarm
optimisation to efficiently schedule tasks [155]. The genetic
algorithm proposed by the authors of [94] is designed to select
an efficient scheduling plan.

4. Machine Learning
Machine Learning (ML) focuses on using data and algorithms to
train the machine and predict the results without being explicitly
programmed. It is an efficient mechanism as it can indepen-
dently adopt the result based on a large amount of data. Deep re-
inforcement learning is a relatively common type of ML method
used by researchers. On the other hand, training and running the
model are time-consuming and resource-intensive. Yang et al.
(2018) employed the deep reinforcement learning by adopting
an intelligence agent in the edge server to dynamically allocate
resources [152]. Additionally, the authors of [93] proposed
fuzzy clustering for offloading tasks from TS-IoT applications.

5. Networking Algorithm
Lyapunov optimisation methodology is the only algorithm fall
under this category. It optimally controls the dynamic environ-
ment by using Lyapunov functions and is an efficient tool for
solving the NP-hardness problem. However, in some cases, it
is difficult to come up with an appropriate candidate for the
Lyapunov function. For instance, both the authors of [123,130]
adopted the Lyapunov optimisation techniques to decompose the
initial problem into several parts.

6. Mathematical Optimisation
In mathematical optimisation, the best element is selected from
several alternatives based on a set of criteria. A set of algorithms
under this category are adopted by research papers, includ-
ing convex optimisation, gradient descent/subgradient, interior
point method, and branch and bound. Mathematical optimisa-
tion can be used in conjunction with other types of algorithms
such as heuristics to combine both strengths but may be com-
putationally expensive as well. For example, Yu, Wang and Guo
(2018) proposed convex optimisation for optimising processing
261

capability and Newton algorithm for transmission power [131].
The authors of [152] proposed a deep reinforcement learning
for resource allocation and adopt gradient descent to train the
parameters.

7. Root Finding Algorithm
Typically, the 𝑥 where f(x) = 0 is referred to as the zeros, which
are also called roots. Root finding algorithm is the algorithm to
find the zeros. While this algorithm makes finding the root of the
equation easy and fast, its rate of convergence is slow, and some
types of root finding algorithms cannot guarantee convergence.
Two different root-finding algorithms, Newton’s approach and
the bisection search, are proposed in these works. For example,
Newton iterative method is proposed by Wang et al. (2019)
for transmission power allocation [128]. The authors of [122]
adopted the bisection search to achieve the optimal transmit
power and power allocation.

8. Augmented Lagrangian Method
The augmented Lagrangian method addresses nonlinear optimi-
sation problems by minimising augmented Lagrangian functions,
involving constraint functions and multipliers at each iteration.
However, like the Root Finding algorithm, it can be slow to
converge and computationally expensive. Two studies employ
the alternate direction method of multipliers (ADMMs) [102,
121], which breaks down convex optimisation into manage-
able parts. According to [121], ADMMs help determine task
offloading decisions. Liu et al. (2018) propose a low-complexity
ADMMs-based method for finding optimal solutions in resource
scheduling [102].

9. Network Security
Network security methodology is applied by Daoud et al. (2019)
as this is the only paper that aims to ensure the security access
of edge nodes [143]. They proposed access control manage-
ment and intrusion detection to monitor the process. These two
methodologies can increase the security of the whole environ-
ment. However, to prevent incidents, intrusion detection needs
security expertise to set the rules, and it is still possible for a
hacker to disguise himself as the person who has access to break
the access control management.

6. Future directions

The growing interest in MVC and IoT development has led to
significant advancements in technology. However, there are still several
areas that require further attention and development in the future. This
sentence provides an overview of the future directions based on the
above section, which will focus on future directions for MVC systems
and resource allocation algorithms.

6.1. Mobile volunteer computing

6.1.1. Incentive modules
Challenges: In MVC, participants contribute their idle resources to

create a resource pool for computational tasks. Their motivation to join
is often driven by personal interests or a sense of community belong-
ing [14]. However, participants can leave if they lose interest, making a
large number of participants crucial for the system’s success. Sufficient
resources from these devices are necessary to execute submitted tasks.

Significance: (1) Increase participants; (2) Utilise resources; (3)
Build long term relationship; (4) Building community.

Suggested Solutions: The industry must develop effective incentive
modules to retain existing participants and attract more devices to the
network. Five directions can be pursued for efficient incentive mod-
ules: reputation-based, monetary-based, social-based, game-based, and
volunteer-based. Reputation and penalty-based modules can reward
devices providing high-quality computations and penalise those with
poor quality. Social-based and game-based modules can offer social-

related badges or create a gaming system with ranks and challenging



Future Generation Computer Systems 154 (2024) 251–265P. Ma et al.
Table 4
Volunteer computing gap analysis.

Articles User Type Objectives Constraint Algorithm

Xu et al. (2019) [111] Multi Independent Completion time, Computation delay CPU, Latency Greedy

Hoseiny et al. (2021) [112] Multi Independent Completion time, Computation delay Network, Memory,
CPU, Queue

Graph

Zeng et al. (2020) [97] Multi Dependent Computation delay Network, CPU,
Energy

Graph, Evolutionary

Panadero et al. (2017) [113] Multi Independent Computation delay CPU, User
behaviour

Graph,
Mathematical
optimisation

Panadero et al. (2018) [114] Multi Independent Computation delay CPU Mathematical
optimisation

Pham et al. (2019) [115] Multi Independent Completion time, Computation delay,
Profit

Network, CPU Mathematical
optimisation

Rubab et al. (2015) [116] Multi Independent Computation delay CPU Graph

Ali et al. (2020) [117] Multi Independent Energy consumption, Completion time,
Response and network delay

CPU Greedy
v
t
S
r
S

D

c

tasks. Monetary-based modules can provide monetary rewards, while
volunteer-based modules allow participants to donate their resources
to specific fields of interest. For example, a participant interested in
astronomy can allocate their resources specifically to astronomy-related
tasks.

6.1.2. Manage heterogeneity
Challenges: The MVC system accepts different mobile devices to

form the system. However, the heterogeneity of mobile devices in the
MVC system poses a challenge due to differences in software, operat-
ing systems, and hardware [59]. Additionally, they might also have
different preferences when joining the network such as availability
time.

Significance: (1) Efficiently manage resources; (2) Enhanced scala-
bility; (3) Adaptability to dynamic environment.

Suggested Solutions: It is worthwhile to manage heterogeneity in
the system. One of the potential future directions that can be used is
to develop a uniform resource platform, such as an application that
can be installed on all mobile devices. The platform can then act as
an intermediary between the system and individual devices, facilitating
communication and resource management.

6.2. Evolution of resource allocation algorithms

Challenges: Based on our taxonomy of resource allocation, this
paper identifies four important areas that are neglected and can be
considered as the future directions: (a) the volunteer-supported edge
environment, (b) task dependencies, (c) memory constraint, (d) re-
sources fairness. In particular, the majority of existing research works
in the literature focus on resource allocation in edge computing rather
than volunteer computing. Table 4 summarises only eight volunteer
computing resource allocation research papers discussed from the per-
spectives of application, target resource and scheduling policy. Only
the authors of [112] considered dependencies among tasks but ignored
memory limitation and resource fairness. The authors of [115,117]
both proposed a volunteer-supported edge environment but only con-
sider CPU when designing the resource allocation policy. Apart from
these, none of these research works argues the importance of fairness
among resources in the volunteer network.

Significance: (1) Retentation participants; (2) Resource fairness,
particularly in the volunteer environment; (3) Task completion time
deduction; (4) Enhancing algorithm reliability to optimise real-world
scenarios.

Suggested Solutions: Develop the resource allocation algorithm by
considering the four aspects mentioned above and finding the balance
among them.
262

i

6.3. Enhancing security

Challenges: In the future of technology, security becomes increas-
ingly important as cyber security and data privacy gain significance.
Security in mobile crowd computing (MVC) can be divided into two as-
pects: system security and data transfer security. Ensuring the security
of participant devices within the MVC system is a challenge.

Significance: (1) Data and devices protection; (2) Network security;
(3) Enhance system dependability; (4) Assure result reliability.

Suggested Solutions: It is crucial to protect these devices from
malware and hackers, as well as prevent any malicious activity. Having
a contingency plan to respond to potential attacks is essential, and
implementing trust management can restrict access to only trusted
entities. Additionally, managing the security of data during transfer is
vital. Employing data encryption methods can protect the data, but it
may impact algorithm efficiency. Striking a balance between safety and
efficiency is necessary when enhancing system security.

7. Conclusion

This scoping review explores resource management in MVC, iden-
tifying gaps in taxonomy and algorithm/system classification. It ex-
amines differences among VC, DC, and MCS and also compares VC,
edge computing, and cloud regarding resource ownership. The study
proposes a high-level MVC structure and a taxonomy based on 23
mobile-related crowd-computing systems. Specific six MVC systems
are discussed. Additionally, a resource allocation taxonomy for MVC
is summarised based on application, target resource, and policy per-
spectives. Future directions include incentive modules, heterogeneity
management, resource management, and security.

CRediT authorship contribution statement

Peizhe Ma: Conceptualization, Data curation, Formal analysis, In-
estigation, Methodology, Project administration, Resources, Valida-
ion, Visualization, Writing – original draft, Writing – review & editing.
aurabh Garg: Formal analysis, Methodology, Supervision, Writing –
eview & editing. Mutaz Barika: Conceptualization, Formal analysis,
upervision, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.



Future Generation Computer Systems 154 (2024) 251–265P. Ma et al.
Data availability

No data was used for the research described in the article.

References

[1] Korala, et al., Managing time-sensitive IoT applications via dynamic application
task distribution and adaptation, Remote Sens. 13 (20) (2021) 4148.

[2] Bibi, et al., Secure distributed mobile volunteer computing with android, ACM
Trans. Internet Technol. (TOIT) 22 (1) (2021) 1–21.

[3] Bayliss, et al., Reliability in volunteer computing micro-blogging services,
Future Gener. Comput. Syst. 115 (2021) 857–871.

[4] Jauro, et al., Deep learning architectures in emerging cloud computing archi-
tectures: Recent development, challenges and next research trend, 96 (2020)
106582.

[5] Raabe, et al., Exploring grid computing & volunteer computing: Analyzing daily
computing runtimes on the world community grid, Issues Inf. Syst. 21 (3)
(2020).

[6] Durrani, et al., Volunteer computing: requirements, challenges, and solutions,
J. Netw. Comput. Appl. 39 (2014) 369–380.

[7] Dehlinger, et al., Mobile application software engineering: Challenges and
research directions, in: Workshop on Mobile Software Engineering, Vol. 2, 2011,
pp. 29–32.

[8] Guo, et al., Mobile crowd sensing and computing: The review of an emerging
human-powered sensing paradigm, ACM Comput. Surv. (CSUR) 48 (1) (2015)
1–31.

[9] Jaimes, et al., A survey of incentive techniques for mobile crowd sensing, IEEE
Internet Things J. 2 (5) (2015) 370–380.

[10] Abualsaud, et al., A survey on mobile crowd-sensing and its applications in the
IoT era, Ieee Access 7 (2018) 3855–3881.

[11] Wang, et al., Energy saving techniques in mobile crowd sensing: Current state
and future opportunities, IEEE Commun. Mag. 56 (5) (2018) 164–169.

[12] Boubiche, et al., Mobile crowd sensing–Taxonomy, applications, challenges, and
solutions, Comput. Hum. Behav. 101 (2019) 352–370.

[13] Capponi, et al., A survey on mobile crowdsensing systems: Challenges, solutions,
and opportunities, IEEE Commun. Surv. Tutor. 21 (3) (2019) 2419–2465.

[14] Mengistu, et al., Survey and taxonomy of volunteer computing, ACM Comput.
Surv. 52 (3) (2019) 1–35.

[15] Vahdat-Nejad, et al., Context-aware computing for mobile crowd sensing: A
survey, Future Gener. Comput. Syst. 99 (2019) 321–332.

[16] Waheed, et al., Volunteer computing in connected vehicles: opportunities and
challenges, IEEE Netw. 34 (5) (2020) 212–218.

[17] Ali, et al., Traffic efficiency models for urban traffic management using mobile
crowd sensing: A survey, Sustainability 13 (23) (2021) 13068.

[18] Sisi, et al., Blockchain technology for energy-aware mobile crowd sensing
approaches in Internet of Things, Trans. Emerg. Telecommun. Technol. (2021)
e4217.

[19] Munn, et al., Systematic review or scoping review? Guidance for authors when
choosing between a systematic or scoping review approach, BMC Med. Res.
Methodol. 18 (1) (2018) 1–7.

[20] Pham, et al., A scoping review of scoping reviews: advancing the approach and
enhancing the consistency, Res. Synth. Methods 5 (4) (2014) 371–385.

[21] Choi, et al., Characterizing and classifying desktop grid, in: Seventh IEEE
International Symposium on Cluster Computing and the Grid, CCGrid’07, IEEE,
2007, pp. 743–748.

[22] Yuen, et al., A survey of crowdsourcing systems, in: 2011 IEEE Third Interna-
tional Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third
International Conference on Social Computing, IEEE, 2011, pp. 766–773.

[23] Enzai, et al., A taxonomy of computation offloading in mobile cloud computing,
in: 2014 2nd IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering, IEEE, 2014, pp. 19–28.

[24] La, et al., A taxonomy of offloading in mobile cloud computing, in: 2014 IEEE
7th International Conference on Service-Oriented Computing and Applications,
IEEE, 2014, pp. 147–153.

[25] Ahmed, et al., Application optimization in mobile cloud computing: Motivation,
taxonomies, and open challenges, J. Netw. Comput. Appl. 52 (2015) 52–68.

[26] Liu, et al., Application partitioning algorithms in mobile cloud computing:
Taxonomy, review and future directions, J. Netw. Comput. Appl. 48 (2015)
99–117.

[27] Marosi, et al., Defining volunteer computing: a formal approach, Comput. Res.
Model. 7 (3) (2015) 565–571.

[28] Wang, et al., A survey of mobile cloud computing applications: Perspectives
and challenges, Wirel. Pers. Commun. 80 (2015) 1607–1623.

[29] Zare, et al., Resource scheduling in mobile cloud computing: taxonomy and
open challenges, in: 2015 IEEE International Conference on Data Science and
Data Intensive Systems, IEEE, 2015, pp. 594–603.

[30] Paranjothi, et al., Survey on three components of mobile cloud computing:
offloading, distribution and privacy, J. Comput. Commun. 5 (06) (2017) 1.
263
[31] Gu, et al., Partitioning and offloading in smart mobile devices for mobile cloud
computing: State of the art and future directions, J. Netw. Comput. Appl. 119
(2018) 83–96.

[32] Noor, et al., Mobile cloud computing: Challenges and future research directions,
J. Netw. Comput. Appl. 115 (2018) 70–85.

[33] Zhou, et al., Augmentation techniques for mobile cloud computing: A taxonomy,
survey, and future directions, ACM Comput. Surv. 51 (1) (2018) 1–38.

[34] Aliyu, et al., Mobile cloud computing: taxonomy and challenges, J. Comput.
Netw. Commun. 2020 (2020) 1–23.

[35] S. others, Computational intelligence intrusion detection techniques in mobile
cloud computing environments: Review, taxonomy, and open research issues,
J. Inf. Secur. Appl. 55 (2020) 102582.

[36] Rahmani, et al., Towards data and computation offloading in mobile cloud
computing: taxonomy, overview, and future directions, Wirel. Pers. Commun.
119 (2021) 147–185.

[37] Maray, et al., Computation offloading in mobile cloud computing and mobile
edge computing: survey, taxonomy, and open issues, Mob. Inf. Syst. 2022
(2022).

[38] K. Parshotam, Crowd computing: a literature review and definition, in: Pro-
ceedings of the South African Institute for Computer Scientists and Information
Technologists Conference, 2013, pp. 121–130.

[39] Murray, et al., The case for crowd computing, in: Proceedings of the Second
ACM SIGCOMM Workshop on Networking, Systems, and Applications on Mobile
Handhelds, 2010, pp. 39–44.

[40] Miller, et al., Heads in the cloud, XRDS: Crossroads, ACM Mag. Stud. 17 (2)
(2010) 27–31.

[41] Schneider, et al., CSCWD: Five characters in search of crowds, in: Proceedings
of the 2012 IEEE 16th International Conference on Computer Supported
Cooperative Work in Design, CSCWD, IEEE, 2012, pp. 634–641.

[42] Muhammadi, et al., Crowd computing: a survey, 2013, arXiv preprint arXiv:
1301.2774.

[43] Rahmany, et al., A review of desktop grid computing middlewares on
non-dedicated resources, J. Theor. Appl. Inf. Technol. 98 (10) (2020)
1654–1663.

[44] Choi, et al., Volunteer availability based fault tolerant scheduling mechanism in
desktop grid computing environment, in: Third IEEE International Symposium
on Network Computing and Applications, 2004.(NCA 2004). Proceedings, IEEE,
2004, pp. 366–371.

[45] Chien, et al., Entropia: architecture and performance of an enterprise desktop
grid system, J. Parallel Distrib. Comput. 63 (5) (2003) 597–610.

[46] Posypkin, et al., Using BOINC desktop grid to solve large scale SAT problems,
Comput. Sci. 13 (1) (2012) 25.

[47] M.J. Litzkow, Remote Unix: Turning idle workstations into cycle servers, in:
Proceedings of the Summer USENIX Conference, 1987, pp. 381–384.

[48] Sarmenta, et al., Bayanihan: Building and studying web-based volunteer com-
puting systems using Java, Future Gener. Comput. Syst. 15 (5–6) (1999)
675–686.

[49] D.P. Anderson, Boinc: A system for public-resource computing and storage, in:
Fifth IEEE/ACM International Workshop on Grid Computing, IEEE, 2004, pp.
4–10.

[50] Ivashko, et al., A survey of desktop grid scheduling, IEEE Trans. Parallel Distrib.
Syst. 29 (12) (2018) 2882–2895.

[51] Guo, et al., From participatory sensing to mobile crowd sensing, in: 2014
IEEE International Conference on Pervasive Computing and Communication
Workshops, PERCOM WORKSHOPS, IEEE, 2014, pp. 593–598.

[52] Liu, et al., Data-oriented mobile crowdsensing: A comprehensive survey, IEEE
Commun. Surv. Tutor. 21 (3) (2019) 2849–2885.

[53] Rana, et al., Ear-phone: an end-to-end participatory urban noise mapping
system, in: Proceedings of the 9th ACM/IEEE International Conference on
Information Processing in Sensor Networks, 2010, pp. 105–116.

[54] Ganti, et al., Mobile crowdsensing: current state and future challenges, IEEE
Commun. Mag. 49 (11) (2011) 32–39.

[55] Yang, et al., Security and privacy in mobile crowdsourcing networks: challenges
and opportunities, IEEE Commun. Mag. 53 (8) (2015) 75–81.

[56] Wang, et al., Mobile crowdsourcing: framework, challenges, and solutions,
Concurr. Comput.: Pract. Exp. 29 (3) (2017) e3789.

[57] Malo-Perisé, et al., The ‘‘socialized architecture’’: A software engineering
approach for a new cloud, Sustainability 14 (4) (2022) 2020.

[58] N. Kratzke, Volunteer down: How covid-19 created the largest idling
supercomputer on earth, Future Internet 12 (6) (2020) 98.

[59] Tapparello, et al., Volunteer computing on mobile devices: State of the art
and future research directions, in: Mobile Computing and Wireless Networks:
Concepts, Methodologies, Tools, and Applications, IGI Global, 2016, pp.
2171–2198.

[60] Toczé, et al., A taxonomy for management and optimization of multiple
resources in edge computing, Wirel. Commun. Mob. Comput. 2018 (2018).

[61] Dillon, et al., Cloud computing: issues and challenges, in: 2010 24th IEEE In-
ternational Conference on Advanced Information Networking and Applications,
Ieee, 2010, pp. 27–33.

http://refhub.elsevier.com/S0167-739X(24)00012-8/sb1
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb1
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb1
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb2
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb2
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb2
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb3
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb3
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb3
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb5
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb5
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb5
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb5
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb5
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb6
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb6
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb6
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb7
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb7
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb7
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb7
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb7
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb8
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb8
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb8
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb8
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb8
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb9
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb9
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb9
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb10
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb10
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb10
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb11
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb11
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb11
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb12
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb12
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb12
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb13
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb13
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb13
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb14
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb14
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb14
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb15
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb15
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb15
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb16
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb16
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb16
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb17
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb17
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb17
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb18
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb18
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb18
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb18
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb18
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb19
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb19
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb19
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb19
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb19
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb20
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb20
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb20
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb21
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb21
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb21
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb21
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb21
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb22
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb22
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb22
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb22
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb22
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb23
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb23
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb23
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb23
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb23
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb24
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb24
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb24
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb24
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb24
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb25
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb25
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb25
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb26
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb26
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb26
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb26
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb26
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb27
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb27
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb27
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb28
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb28
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb28
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb29
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb29
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb29
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb29
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb29
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb30
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb30
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb30
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb31
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb31
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb31
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb31
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb31
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb32
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb32
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb32
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb33
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb33
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb33
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb34
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb34
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb34
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb35
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb35
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb35
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb35
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb35
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb36
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb36
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb36
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb36
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb36
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb37
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb37
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb37
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb37
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb37
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb38
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb38
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb38
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb38
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb38
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb39
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb39
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb39
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb39
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb39
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb40
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb40
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb40
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb41
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb41
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb41
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb41
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb41
http://arxiv.org/abs/1301.2774
http://arxiv.org/abs/1301.2774
http://arxiv.org/abs/1301.2774
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb43
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb43
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb43
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb43
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb43
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb44
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb44
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb44
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb44
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb44
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb44
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb44
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb45
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb45
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb45
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb46
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb46
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb46
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb47
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb47
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb47
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb48
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb48
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb48
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb48
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb48
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb49
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb49
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb49
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb49
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb49
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb50
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb50
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb50
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb51
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb51
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb51
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb51
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb51
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb52
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb52
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb52
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb53
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb53
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb53
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb53
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb53
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb54
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb54
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb54
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb55
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb55
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb55
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb56
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb56
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb56
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb57
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb57
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb57
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb58
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb58
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb58
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb59
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb59
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb59
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb59
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb59
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb59
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb59
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb60
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb60
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb60
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb61
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb61
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb61
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb61
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb61


Future Generation Computer Systems 154 (2024) 251–265P. Ma et al.
[62] Buyya, et al., Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility, Future Gener. Comput. Syst.
25 (6) (2009) 599–616.

[63] Hong, et al., Resource management in fog/edge computing: a survey on
architectures, infrastructure, and algorithms, ACM Comput. Surv. 52 (5) (2019)
1–37.

[64] Khan, et al., Edge computing: A survey, Future Gener. Comput. Syst. 97 (2019)
219–235.

[65] Cornelius, et al., Anonysense: privacy-aware people-centric sensing, in: Proceed-
ings of the 6th International Conference on Mobile Systems, Applications, and
Services, 2008, pp. 211–224.

[66] Cuervo, et al., CrowdLab: An architecture for volunteer mobile testbeds, in:
2011 Third International Conference on Communication Systems and Networks,
COMSNETS 2011, IEEE, 2011, pp. 1–10.

[67] Schildt, et al., Candis: Heterogenous mobile cloud framework and energy cost-
aware scheduling, in: 2013 IEEE International Conference on Green Computing
and Communications and IEEE Internet of Things and IEEE Cyber, Physical and
Social Computing, IEEE, 2013, pp. 1986–1991.

[68] Datta, et al., ANGELS: A framework for mobile grids, in: 2014 Applications and
Innovations in Mobile Computing, AIMoC, IEEE, 2014, pp. 15–20.

[69] Xu, et al., Ocelot: A wireless sensor network and computing engine with com-
modity palmtop computers, in: 2013 International Green Computing Conference
Proceedings, IEEE, 2013, pp. 1–8.

[70] Parmar, et al., JUniGrid: A simplistic framework for integration of mobile
devices in heterogeneous grid computing, Int. J. Multidiscip. Sci. Eng. 4 (1)
(2013) 10–15.

[71] Das, et al., PRISM: platform for remote sensing using smartphones, in: Proceed-
ings of the 8th International Conference on Mobile Systems, Applications, and
Services, 2010, pp. 63–76.

[72] Agapie, et al., Seeing Our Signals: Combining location traces and web-based
models for personal discovery, in: Proceedings of the 9th Workshop on Mobile
Computing Systems and Applications, 2008, pp. 6–10.

[73] Deng, et al., Livecompare: grocery bargain hunting through participatory
sensing, in: Proceedings of the 10th Workshop on Mobile Computing Systems
and Applications, 2009, pp. 1–6.

[74] Gaonkar, et al., Micro-blog: sharing and querying content through mobile
phones and social participation, in: Proceedings of the 6th International
Conference on Mobile Systems, Applications, and Services, 2008, pp. 174–186.

[75] Lu, et al., Bubble-sensing: Binding sensing tasks to the physical world, Pervasive
Mob. Comput. 6 (1) (2010) 58–71.

[76] Gordienko, et al., Synergy of volunteer measurements and volunteer comput-
ing for effective data collecting, processing, simulating and analyzing on a
worldwide scale, in: 2015 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics, MIPRO, IEEE,
2015, pp. 193–198.

[77] Ba, et al., Mobile computing-A green computing resource, in: 2013 IEEE
Wireless Communications and Networking Conference, WCNC, IEEE, 2013, pp.
4451–4456.

[78] Arslan, et al., Computing while charging: Building a distributed computing
infrastructure using smartphones, in: Proceedings of the 8th International
Conference on Emerging Networking Experiments and Technologies, 2012, pp.
193–204.

[79] Shi, et al., Serendipity: Enabling remote computing among intermittently
connected mobile devices, in: Proceedings of the Thirteenth ACM International
Symposium on Mobile Ad Hoc Networking and Computing, 2012, pp. 145–154.

[80] Habak, et al., Femto clouds: Leveraging mobile devices to provide cloud service
at the edge, in: 2015 IEEE 8th International Conference on Cloud Computing,
IEEE, 2015, pp. 9–16.

[81] Mtibaa, et al., Towards resource sharing in mobile device clouds: Power
balancing across mobile devices, ACM SIGCOMM Comput. Commun. Rev. 43
(4) (2013) 51–56.

[82] Al Noor, et al., Cellcloud: A novel cost effective formation of mobile cloud
based on bidding incentives, in: 2014 IEEE 7th International Conference on
Cloud Computing, IEEE, 2014, pp. 200–207.

[83] E.E. Marinelli, Hyrax: Cloud Computing on Mobile Devices Using Mapreduce,
Tech. Rep., Carnegie-mellon univ Pittsburgh PA school of computer science,
2009.

[84] Jassal, et al., Unity: Collaborative downloading content using co-located so-
cially connected peers, in: 2013 IEEE International Conference on Pervasive
Computing and Communications Workshops, PERCOM Workshops, IEEE, 2013,
pp. 66–71.

[85] Chu, et al., Mobile ogsi. net: Grid computing on mobile devices, in: Fifth
IEEE/ACM International Workshop on Grid Computing, IEEE, 2004, pp.
182–191.

[86] Fernando, et al., Honeybee: A programming framework for mobile crowd
computing, in: Mobile and Ubiquitous Systems: Computing, Networking, and
Services: 9th International Conference, MobiQuitous 2012, Beijing, China,
December 12-14, 2012. Revised Selected Papers 9, Springer, 2013, pp. 224–236.

[87] Agarwal, et al., DRAP: A decentralized public resourced cloudlet for Ad-hoc
networks, in: 2015 IEEE 4th International Conference on Cloud Networking,
CloudNet, IEEE, 2015, pp. 309–314.
264
[88] Li, et al., A hybrid computing solution and resource scheduling strategy for
edge computing in smart manufacturing, IEEE Trans. Ind. Inform. 15 (7) (2019)
4225–4234.

[89] Liu, et al., Dependency-aware task scheduling in vehicular edge computing,
IEEE Internet Things J. 7 (6) (2020) 4961–4971.

[90] Ni, et al., Resource allocation strategy in fog computing based on priced timed
petri nets, Ieee Internet Things J. 4 (5) (2017) 1216–1228.

[91] Wadhwa, et al., TRAM: Technique for resource allocation and management in
fog computing environment, J. Supercomput. 78 (1) (2022) 667–690.

[92] Agarwal, et al., An efficient architecture and algorithm for resource provisioning
in fog computing, Int. J. Inf. Eng. Electron. Bus. 8 (1) (2016) 48.

[93] Wu, et al., An evolutionary fuzzy scheduler for multi-objective resource
allocation in fog computing, Future Gener. Comput. Syst. 117 (2021) 498–509.

[94] Liu, et al., A framework of fog computing: Architecture, challenges, and
optimization, IEEE Access 5 (2017) 25445–25454.

[95] Liu, et al., A task scheduling algorithm based on classification mining in fog
computing environment, Wirel. Commun. Mob. Comput. 2018 (2018).

[96] Bian, et al., Online task scheduling for fog computing with multi-resource
fairness, in: 2019 IEEE 90th Vehicular Technology Conference, VTC2019-Fall,
IEEE, 2019, pp. 1–5.

[97] Zeng, et al., Volunteer assisted collaborative offloading and resource allocation
in vehicular edge computing, IEEE Trans. Intell. Transp. Syst. 22 (6) (2020)
3247–3257.

[98] Liu, et al., Joint optimization of path planning and resource allocation in mobile
edge computing, IEEE Trans. Mob. Comput. 19 (9) (2019) 2129–2144.

[99] Ren, et al., Collaborative cloud and edge computing for latency minimization,
IEEE Trans. Veh. Technol. 68 (5) (2019) 5031–5044.

[100] Qiu, et al., Avr: Augmented vehicular reality, in: Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services, 2018,
pp. 81–95.

[101] Zhao, et al., Tasks scheduling and resource allocation in heterogeneous cloud for
delay-bounded mobile edge computing, in: 2017 IEEE International Conference
on Communications, ICC, IEEE, 2017, pp. 1–7.

[102] Liu, et al., Distributed resource allocation in blockchain-based video streaming
systems with mobile edge computing, IEEE Trans. Wireless Commun. 18 (1)
(2018) 695–708.

[103] Kuang, et al., Partial offloading scheduling and power allocation for mobile
edge computing systems, IEEE Internet Things J. 6 (4) (2019) 6774–6785.

[104] Xing, et al., Joint task assignment and resource allocation for D2D-enabled
mobile-edge computing, IEEE Trans. Commun. 67 (6) (2019) 4193–4207.

[105] Mao, et al., Joint task offloading scheduling and transmit power allocation for
mobile-edge computing systems, in: 2017 IEEE Wireless Communications and
Networking Conference, WCNC, IEEE, 2017, pp. 1–6.

[106] Saleem, et al., Mobility-aware joint task scheduling and resource allocation
for cooperative mobile edge computing, IEEE Trans. Wireless Commun. 20 (1)
(2020) 360–374.

[107] Yuan, et al., Profit-maximized collaborative computation offloading and re-
source allocation in distributed cloud and edge computing systems, IEEE Trans.
Autom. Sci. Eng. 18 (3) (2020) 1277–1287.

[108] Alameddine, et al., Dynamic task offloading and scheduling for low-latency IoT
services in multi-access edge computing, IEEE J. Sel. Areas Commun. 37 (3)
(2019) 668–682.

[109] Nath, et al., Deep reinforcement learning for dynamic computation offloading
and resource allocation in cache-assisted mobile edge computing systems, Intell.
Converged Netw. 1 (2) (2020) 181–198.

[110] Li, et al., Radio and computing resource allocation with energy harvesting
devices in mobile edge computing environment, Comput. Commun. 145 (2019)
193–202.

[111] Xu, et al., Dynamic task scheduling algorithm with deadline constraint in
heterogeneous volunteer computing platforms, Future Internet 11 (6) (2019)
121.

[112] Hoseiny, et al., Joint QoS-aware and cost-efficient task scheduling for fog-
cloud resources in a volunteer computing system, ACM Trans. Internet Technol.
(TOIT) 21 (4) (2021) 1–21.

[113] Panadero, et al., A simheuristic approach for resource allocation in volunteer
computing, in: 2017 Winter Simulation Conference, WSC, IEEE, 2017, pp.
1479–1490.

[114] Panadero, et al., Multi criteria biased randomized method for resource alloca-
tion in distributed systems: Application in a volunteer computing system, Future
Gener. Comput. Syst. 82 (2018) 29–40.

[115] Pham, et al., Joint node selection and resource allocation for task offloading in
scalable vehicle-assisted multi-access edge computing, Symmetry 11 (1) (2019)
58.

[116] Rubab, et al., Bin packing multi-constraints job scheduling heuristic for hetero-
geneous volunteer grid resources, in: The Fourth International Conference on
Computer Science & Computational Mathematics, ICCSCM 2015, 2015.

[117] Ali, et al., A volunteer-supported fog computing environment for delay-sensitive
iot applications, IEEE Internet Things J. 8 (5) (2020) 3822–3830.

[118] Feng, et al., Joint optimization of radio and computational resources allocation
in blockchain-enabled mobile edge computing systems, IEEE Trans. Wireless
Commun. 19 (6) (2020) 4321–4334.

http://refhub.elsevier.com/S0167-739X(24)00012-8/sb62
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb62
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb62
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb62
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb62
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb63
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb63
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb63
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb63
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb63
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb64
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb64
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb64
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb65
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb65
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb65
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb65
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb65
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb66
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb66
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb66
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb66
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb66
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb67
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb67
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb67
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb67
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb67
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb67
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb67
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb68
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb68
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb68
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb69
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb69
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb69
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb69
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb69
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb70
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb70
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb70
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb70
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb70
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb71
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb71
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb71
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb71
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb71
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb72
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb72
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb72
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb72
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb72
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb73
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb73
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb73
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb73
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb73
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb74
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb74
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb74
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb74
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb74
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb75
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb75
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb75
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb76
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb76
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb76
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb76
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb76
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb76
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb76
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb76
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb76
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb77
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb77
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb77
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb77
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb77
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb78
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb78
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb78
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb78
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb78
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb78
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb78
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb79
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb79
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb79
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb79
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb79
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb80
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb80
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb80
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb80
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb80
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb81
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb81
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb81
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb81
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb81
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb82
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb82
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb82
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb82
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb82
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb83
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb83
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb83
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb83
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb83
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb84
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb84
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb84
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb84
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb84
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb84
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb84
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb85
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb85
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb85
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb85
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb85
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb86
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb86
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb86
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb86
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb86
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb86
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb86
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb87
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb87
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb87
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb87
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb87
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb88
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb88
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb88
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb88
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb88
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb89
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb89
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb89
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb90
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb90
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb90
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb91
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb91
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb91
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb92
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb92
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb92
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb93
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb93
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb93
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb94
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb94
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb94
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb95
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb95
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb95
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb96
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb96
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb96
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb96
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb96
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb97
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb97
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb97
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb97
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb97
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb98
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb98
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb98
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb99
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb99
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb99
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb100
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb100
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb100
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb100
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb100
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb101
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb101
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb101
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb101
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb101
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb102
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb102
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb102
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb102
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb102
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb103
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb103
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb103
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb104
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb104
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb104
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb105
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb105
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb105
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb105
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb105
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb106
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb106
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb106
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb106
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb106
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb107
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb107
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb107
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb107
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb107
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb108
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb108
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb108
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb108
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb108
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb109
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb109
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb109
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb109
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb109
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb110
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb110
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb110
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb110
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb110
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb111
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb111
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb111
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb111
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb111
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb112
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb112
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb112
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb112
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb112
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb113
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb113
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb113
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb113
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb113
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb114
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb114
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb114
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb114
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb114
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb115
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb115
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb115
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb115
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb115
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb116
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb116
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb116
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb116
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb116
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb117
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb117
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb117
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb118
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb118
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb118
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb118
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb118


Future Generation Computer Systems 154 (2024) 251–265P. Ma et al.
[119] Guo, et al., Energy-efficient resource allocation for multi-user mobile edge com-
puting, in: GLOBECOM 2017-2017 IEEE Global Communications Conference,
IEEE, 2017, pp. 1–7.

[120] Hu, et al., Dynamic request scheduling optimization in mobile edge computing
for IoT applications, IEEE Internet Things J. 7 (2) (2019) 1426–1437.

[121] Zhang, et al., Stochastic computation offloading and trajectory scheduling for
UAV-assisted mobile edge computing, IEEE Internet Things J. 6 (2) (2018)
3688–3699.

[122] Yu, et al., Joint subcarrier and CPU time allocation for mobile edge computing,
in: 2016 IEEE Global Communications Conference, GLOBECOM, IEEE, 2016, pp.
1–6.

[123] Zhang, et al., Dynamic task offloading and resource allocation for mobile-
edge computing in dense cloud RAN, IEEE Internet Things J. 7 (4) (2020)
3282–3299.

[124] Zhang, et al., Joint computation offloading and resource allocation optimization
in heterogeneous networks with mobile edge computing, IEEE Access 6 (2018)
19324–19337.

[125] Samanta, et al., Dyme: Dynamic microservice scheduling in edge computing
enabled IoT, IEEE Internet Things J. 7 (7) (2020) 6164–6174.

[126] Wang, et al., Joint deployment and task scheduling optimization for large-scale
mobile users in multi-UAV-enabled mobile edge computing, IEEE Trans. Cybern.
50 (9) (2019) 3984–3997.

[127] Hu, et al., UAV-assisted relaying and edge computing: Scheduling and trajectory
optimization, IEEE Trans. Wireless Commun. 18 (10) (2019) 4738–4752.

[128] Wang, et al., Energy-efficient computation offloading and resource allocation
for delay-sensitive mobile edge computing, Sustain. Comput.: Inform. Syst. 21
(2019) 154–164.

[129] Zhang, et al., Computation-efficient offloading and trajectory scheduling for
multi-UAV assisted mobile edge computing, IEEE Trans. Veh. Technol. 69 (2)
(2019) 2114–2125.

[130] Liu, et al., Dynamic task offloading and resource allocation for ultra-reliable
low-latency edge computing, IEEE Trans. Commun. 67 (6) (2019) 4132–4150.

[131] Yu, et al., Energy-efficient task offloading and resource scheduling for mo-
bile edge computing, in: 2018 IEEE International Conference on Networking,
Architecture and Storage, NAS, IEEE, 2018, pp. 1–4.

[132] Li, et al., Optimizing resources allocation for fog computing-based internet of
things networks, IEEE Access 7 (2019) 64907–64922.

[133] Yi, et al., Joint resource allocation for device-to-device communication assisted
fog computing, IEEE Trans. Mob. Comput. 20 (3) (2019) 1076–1091.

[134] Lei, et al., Multiuser resource control with deep reinforcement learning in IoT
edge computing, IEEE Internet Things J. 6 (6) (2019) 10119–10133.

[135] Guo, et al., Energy-efficient and delay-guaranteed workload allocation in
IoT-edge-cloud computing systems, IEEE Access 7 (2019) 78685–78697.

[136] Liu, et al., Resource allocation with edge computing in IoT networks via
machine learning, IEEE Internet Things J. 7 (4) (2020) 3415–3426.

[137] Luo, et al., HFEL: Joint edge association and resource allocation for cost-
efficient hierarchical federated edge learning, IEEE Trans. Wireless Commun.
19 (10) (2020) 6535–6548.

[138] Yin, et al., Tasks scheduling and resource allocation in fog computing based on
containers for smart manufacturing, IEEE Trans. Ind. Inform. 14 (10) (2018)
4712–4721.

[139] Mukherjee, et al., Deadline-aware fair scheduling for offloaded tasks in fog
computing with inter-fog dependency, IEEE Commun. Lett. 24 (2) (2019)
307–311.

[140] Wang, et al., A dynamic resource scheduling scheme in edge computing satellite
networks, Mob. Netw. Appl. 26 (2) (2021) 597–608.

[141] Xiong, et al., Resource allocation based on deep reinforcement learning in IoT
edge computing, IEEE J. Sel. Areas Commun. 38 (6) (2020) 1133–1146.

[142] Li, et al., Collaborative cache allocation and task scheduling for data-intensive
applications in edge computing environment, Future Gener. Comput. Syst. 95
(2019) 249–264.

[143] Daoud, et al., TACRM: trust access control and resource management
mechanism in fog computing, Hum.-Cent. Comput. Inf. Sci. 9 (1) (2019) 1–18.
265
[144] Huang, et al., Revenue-optimal task scheduling and resource management for
IoT batch jobs in mobile edge computing, Peer-to-Peer Netw. Appl. 13 (5)
(2020) 1776–1787.

[145] Choudhari, et al., Prioritized task scheduling in fog computing, in: Proceedings
of the ACMSE 2018 Conference, 2018, pp. 1–8.

[146] Mutlag, et al., MAFC: Multi-agent fog computing model for healthcare critical
tasks management, Sensors 20 (7) (2020) 1853.

[147] Feng, et al., Dynamic network slicing and resource allocation in mobile edge
computing systems, IEEE Trans. Veh. Technol. 69 (7) (2020) 7863–7878.

[148] Meng, et al., Dedas: Online task dispatching and scheduling with bandwidth
constraint in edge computing, in: IEEE INFOCOM 2019-IEEE Conference on
Computer Communications, IEEE, 2019, pp. 2287–2295.

[149] Sun, et al., Multi-objective optimization of resource scheduling in fog computing
using an improved NSGA-II, Wirel. Pers. Commun. 102 (2) (2018) 1369–1385.

[150] Zeng, et al., Joint optimization of task scheduling and image placement in fog
computing supported software-defined embedded system, IEEE Trans. Comput.
65 (12) (2016) 3702–3712.

[151] Tang, et al., Dynamic resource allocation strategy for latency-critical
and computation-intensive applications in cloud–edge environment, Comput.
Commun. 134 (2019) 70–82.

[152] Yang, et al., Deep reinforcement learning based resource allocation in low
latency edge computing networks, in: 2018 15th International Symposium on
Wireless Communication Systems, ISWCS, IEEE, 2018, pp. 1–5.

[153] Sun, et al., Joint communication and computing resource allocation in vehicular
edge computing, Int. J. Distrib. Sens. Netw. 15 (3) (2019) 1550147719837859.

[154] Wang, et al., Coupling resource management based on fog computing in smart
city systems, J. Netw. Comput. Appl. 135 (2019) 11–19.

[155] Rafique, et al., A novel bio-inspired hybrid algorithm (NBIHA) for efficient
resource management in fog computing, IEEE Access 7 (2019) 115760–115773.

Peizhe Ma received the B.ICT. degree in software devel-
opment in 2022, and currently in her final semester of
B. ICT. (Hons.) degree with a focus on resource allocation
challenges in the edge computing and volunteer computing
to meet the time requirement of time sensitive Internet of
Things.

Saurabh Garg received a Ph.D. degree from The University
of Melbourne. He is currently a Lecturer at the University
of Tasmania, Australia. He has authored over 40 papers in
highly cited journals and conferences. His research interests
include resource management, scheduling, utility and grid
computing, cloud computing, green computing, wireless
networks, and ad hoc networks. He received various special
scholarships for his Ph.D. candidature.

Mutaz Barika has a Ph.D. in Information Technology from
the University of Tasmania, Australia. He is currently a
Lecturer and Unit Coordinator at Crown Institute of Higher
Education, Australia. He holds Microsoft Certified Solutions
Expert: Cloud Platform and Infrastructure Charter Member
Certificate. He has published more than 20 scientific papers
in international conferences and journals, and looks forward
to developing collaborative projects in the IoT-cloud con-
tinuum. His current research interests include Big Data, Big
Data Workflow, IoT, Cloud Computing and Data Security.

http://refhub.elsevier.com/S0167-739X(24)00012-8/sb119
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb119
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb119
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb119
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb119
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb120
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb120
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb120
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb121
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb121
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb121
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb121
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb121
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb122
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb122
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb122
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb122
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb122
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb123
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb123
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb123
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb123
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb123
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb124
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb124
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb124
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb124
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb124
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb125
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb125
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb125
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb126
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb126
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb126
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb126
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb126
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb127
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb127
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb127
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb128
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb128
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb128
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb128
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb128
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb129
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb129
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb129
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb129
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb129
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb130
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb130
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb130
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb131
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb131
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb131
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb131
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb131
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb132
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb132
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb132
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb133
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb133
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb133
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb134
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb134
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb134
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb135
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb135
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb135
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb136
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb136
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb136
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb137
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb137
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb137
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb137
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb137
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb138
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb138
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb138
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb138
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb138
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb139
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb139
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb139
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb139
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb139
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb140
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb140
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb140
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb141
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb141
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb141
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb142
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb142
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb142
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb142
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb142
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb143
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb143
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb143
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb144
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb144
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb144
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb144
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb144
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb145
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb145
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb145
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb146
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb146
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb146
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb147
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb147
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb147
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb148
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb148
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb148
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb148
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb148
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb149
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb149
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb149
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb150
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb150
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb150
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb150
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb150
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb151
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb151
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb151
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb151
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb151
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb152
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb152
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb152
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb152
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb152
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb153
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb153
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb153
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb154
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb154
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb154
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb155
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb155
http://refhub.elsevier.com/S0167-739X(24)00012-8/sb155

	Research allocation in mobile volunteer computing system: Taxonomy, challenges and future work
	Introduction
	Background
	Research Methodology
	Related Surveys

	Landscape of Related Technologies
	Crowd Computing
	Desktop Computing
	Mobile Crowd Sensing
	Volunteer Computing
	Comparative Analysis of Volunteer Computing with Other Paradigms

	Comparison between VC, Edge Computing and Cloud 

	Mobile Volunteer Computing System
	System Architecture
	Current State of the Art in MVC Platforms

	Taxonomy of Resources Allocation in MVC
	Application
	Type
	User

	Target Resources
	Edge-oriented
	Volunteer-oriented

	Resource Allocation Policy
	Objective
	Constraints
	Algorithm


	Future Directions
	Mobile Volunteer Computing
	Incentive Modules
	Manage Heterogeneity

	Evolution of Resource Allocation Algorithms
	Enhancing Security

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


