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Abstract 
ArIficial Intelligence (AI) in research and clinical contexts is transforming the areas of medical 
and life sciences permanently. Aspects like findability, accessibility, interoperability, and 
reusability are o[en neglected for AI-based inference services. The Open Medical Inference 
(OMI) protocol aims to support remote inference by addressing the aforemenIoned aspects. 
Key component of the proposed protocol is an interoperable registry for remote inference 
services, which addresses the issue of findability for algorithms. It is complemented by 
informaIon on how to invoke services remotely. Together, these components lay the basis for 
the implementaIon of distributed inference services beyond organizaIonal borders. The OMI 
protocol considers prior work for aspects like data representaIon and transmission standards 
wherever possible. Based on Business Process Modeling of prototypical use cases for the 
service registry and common inference processes, a generic informaIon model for remote 
services was inferred. Based on this model, FHIR resources were idenIfied to represent AI-
based services. The OMI protocol is first introduced using AI-services in radiology but is 
designed to be generalizable to other applicaIon domains as well. It provides an accessible, 
open specificaIon as blueprint for the introducIon and implementaIon of remote inference 
services. 

Zusammenfassung 
Anwendungen der Künstliche Intelligenz (KI) im Forschungs- und klinischen Bereich werden 
die Medizin- und Biowissenscha[en nachhalIg verändern. Aspekte wie Auffindbarkeit, 
Zugänglichkeit, Interoperabilität und Wiederverwendbarkeit werden bei KI-basierten 
Inferenzdiensten derzeit jedoch o[ vernachlässigt. Das Open Medical Inference (OMI) 
Protokoll zielt darauf ab KI-Algorithmen als Service über insItuIonelle Grenzen hinweg 
verfügbar zu machen, indem es die o.g. Aspekte adressiert. Schlüsselkomponente des 
Protokolls ist ein interoperables Register für Inferenzdienste, welches die Auffindbarkeit von 
Algorithmen erleichtert. Enthalten sind InformaIonen, wie Dienste aus der Ferne aufgerufen 
werden können. Zusammen bilden diese Komponenten die Grundlage für den Auaau und die 
Umsetzung von verteilten Inferenzdiensten. Das OMI-Protokoll berücksichIgt akIve 
IniIaIven und Standards für Aspekte wie Datentransport und Datendarstellung. Basierend auf 
Geschä[sprozessmodellen für Anwendungsfälle innerhalb der Service Registry und 
Inferenzprozessen wurde ein generisches InformaIonsmodell abgeleitet. Auf der Grundlage 
des InformaIonsmodells wurden FHIR-Ressourcen idenIfiziert, um KI-Dienste zu 
repräsenIeren. Diese Ressourcen werden profiliert, um erwartete Ein- und 
Ausgabedatentypen und -formate zu definieren. Das OMI-Protokoll wird zunächst anhand von 
Anwendungsfällen in der Radiologie beispielha[ abgebildet, ist aber generisch ausgelegt, 
sodass auch andere Anwendungsdomänen unterstützt werden. Es bietet eine zugängliche, 
offene SpezifikaIon als Grundgerüst für die Einführung und Umsetzung von Fern-Inferenz. 
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Introduc5on and background 
The Open Medical Inference (OMI) project aims to support clinical- and research use cases 
where remote inference can be applied. OMI, as a methodological plaeorm, is embedded 
within the German Medical InformaIcs IniIaIve (MII) [1]. It is closely interlinked and interacts 
with the Radiological CooperaIve Network (RACOON) [2] as well as the Network University 
Medicine (NUM) [3]. IniIally, the primary focus lies on radiological use cases. However, future 
use cases are not limited to radiological applicaIons as OMI wants to be use case agnosIc and 
integrate various digital ecosystems. For this purpose, the OMI protocol is being developed. It 
lays the groundwork for inter-insItuIonal remote invocaIon of inference services by 
providing a repository of suitable algorithms in combinaIon with machine processable 
informaIon about services and access to the remote inference infrastructure. The proposed 
protocol is designed as open-source specificaIon, and this whitepaper is intended to lay the 
basis for discussion between stakeholders. 
 
Ar#ficial Intelligence in medical sciences 
ArIficial Intelligence (AI) and machine learning are on the verge of revoluIonizing medical 
and life-sciences. Medical imaging is considered the most important field for AI applicaIons 
[4], [5]. Specialized AI applicaIons already outperform experts at certain tasks like skin lesion 
assessment [6] and surgical audits [7] in a research context. Clinical adopIon is sIll limited 
due to regulatory and technical hurdles but also human reservaIons towards the technology 
[8]. While development of new AI algorithms is happening fast, regulaIon and quesIons 
about data quality and model validaIon are o[en deferred [9]. Currently most AI algorithms 
are developed in a research context, but maturity levels can indicate readiness for usage 
outside of the research context [10]. 

Descrip5on of the problem 
For radiological use cases, AI-based algorithms typically operate on one or more images or 
series of images acquired through different modaliIes like x-ray, computed tomography (CT), 
magneIc resonance imaging (MRI) amongst others. There are several use cases for AI 
algorithms described across various medical fields [11], [12]. Conceptually, algorithms within 
radiological use cases can be broadly categorized into four domains, as shown in Table 1. 
 
Table 1 – Overview of categories for AI based algorithms in medical imaging, following classifica<on of Litjens et al. [11]. 

Category Generalized goal Examples 
SegmentaIon Predict the segmentaIon 

of structures, like organs 
or pathologies. 

• Segmentator [13], 
• nnUnet [14], 

ClassificaIon Predict a certain 
classificaIon(s) related to 
an image. 

• classificaIon of a lung lesion as 
metastases or benign nodule [15], 

• classificaIon of tumor type or 
malignancy, 

• classificaIon of primary tumor from 
metastases appearance [16]. 
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DetecIon LocalizaIon of organs or 
landmarks as well as 
detecIon of lesions. 

• (Brain) Tumor segmentaIon algorithms 
[17]. 

GeneraIon Create a new image 
based on exisIng images. 

• Using GeneraIve Adversarial Networks 
(GANs) or a denoised image [18]. 

 
Currently, there is no harmonizaIon and common data model how to represent and interact 
with algorithms. These circumstances hinder interoperability and put a barrier on anyone that 
wants to publish or find algorithms. This fact stands in direct contrast to the FAIR principles 
promoted by the scienIfic community since 2016 to improve Findability, Accessibility, 
Interoperability, and Reuse of digital assets [19]. 
 
As AI-based services mature and their accuracy improves, more confident results are being 
achieved. However, the applicaIon of these algorithms within a clinical seqng is o[en not 
considered or thought about by the developers iniIally, which consequently leads to 
difficulIes when transiIoning these services from research to clinical care seqng. Moreover, 
every research insItuIon tends to have their own catalogue(s) of algorithms, which may lead 
to scienIsts and clinicians not being aware of which kind of algorithms are available to answer 
a given research- or clinical quesIon. When stepping outside of the borders of a single 
organizaIon, this challenge is worsened, such that it becomes a necessity to find suitable, 
applicable algorithms to answer a research- or clinical quesIon.  
 

 
Figure 1 – Requirements for the OMI Protocol: data bundles consis<ng of image- and metadata (leK) are transferred via an 
API to a service which consists of ai- or non-ai algorithms that act in a pipeline (right). The result is received by the recipient 

asynchronously. 

With the progressive development of algorithms and services, the topic of orchestraIon and 
workflow integraIon becomes increasingly relevant for pipelines consisIng of one or more 
AI-based services as shown in Figure 1. These developments and requirements are to be 
considered while elaboraIng the OMI protocol. 
 
Established system and imaging formats in radiology 
Hospitals already have established infrastructure for healthcare delivery and research in 
radiology: Picture Archiving and CommunicaIon Systems (PACS), which store medical images, 
e.g. in the common Digital Imaging and CommunicaIons in Medicine (DICOM) format, a[er 
they have been acquired using different modaliIes like x-ray, CT, MRI and more. These systems 
may operate only within a care delivery context. AddiIonally, there might be a separate PACS 
system which enables research and the applicaIon of AI-Algorithms on images within the 
research context. 
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Transi#oning from pipelines and models to inhouse- and distributed services 
Currently, a lot of AI related development and inference provision is happening within a single 
organizaIon or department, someImes even only on a single workstaIon computer. Given 
the increasing requirements for AI training data, compuIng power and inference response 
Imes, it becomes clear that no single insItuIon can handle all these requirements alone. 
CollaboraIons and networks must be formed where resources and knowledge are shared 
among stakeholders. We must transiIon from AI-based models to AI-based services, which 
can be accessed safely and securely from within any organizaIon that is part of the network. 
This implies a fundamental change in the way we develop AI-based services as we must define 
interfaces and parameters that support the operaIon of a given algorithm. The subsequent 
challenge is findability of services within the network beyond text-based lists, in parIcular as 
machine processable semanIcally interoperable enIIes. As developments progress and new 
fields are going to be covered by AI-based services, we need to make sure that users can find 
the right service for the desired task. To overcome the challenges outlined, we need new 
architectures, new standards, and new coherent workflows. We outline a possible soluIon in 
the following chapters. 

Current state of the art 
The problems outlined above are not unique and efforts such as registries for AI-based 
algorithms to enhance accessibility, reproducibility and usability of models for biomedical 
research were already described in the literature [20], [21]. While using an open specificaIon 
for the descripIon of AI models, plaeorms such as the AIMe registry1 do not consider the use 
of widespread interoperability standards or any semanIc machine processing approaches. 
AddiIonally, the aspect of how to access inference services is not covered, users must set up 
their own environment and pipeline integraIons. The data model employed for the register’s 
database does not support finding algorithms and models based on their in- and output 
parameters. 
 
StandardizaIon enIIes like IntegraIng the Healthcare Enterprise (IHE) and Digital Imaging 
and CommunicaIons in Medicine (DICOM) already published proposals on how to handle 
certain workflows of AI based services, by designing the use-case of remote inference in 
exisIng standards and definiIons [22], [23], [24]. However, to date there has been no proposal 
on how to handle searchability and discoverability for AI-based algorithms between 
insItuIons.  
 
ExisIng soluIons and specificaIons only address a subset of use cases, and none of them 
manages to provide a comprehensive approach to the issue of providing a structured and 
semanIcally interoperable way to describe and apply AI-based services, especially providing 
methods to I) register, II) find, III) request inference and IV) train AI-based algorithms. 
 
The Fast Healthcare Interoperability Resources (FHIR) communicaIon standard released by 
Health Level 7 (HL7) enables interoperable data representaIon supported by a well-
documented, open ApplicaIon Programming Interface (API). It also enables efficient querying 
and discovering of services through standardizaIon. It joins established standards like DICOM 

 
1 hOps://aime-registry.org/, last accessed on 15.10.2023 
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and enriches them with semanIcally interoperable, non-image data. On an internaIonal level, 
there are iniIaIves that evaluated the level of FAIRness for FHIR ImplementaIons which can 
serve as a guideline for the proposed OMI protocol [25].  

Proposed solu5on 
A[er reviewing the literature and to achieve the goals outlined by the FAIR principles, we 
follow a workflow-driven mulI-step process including Business Process Modeling (BPM) 
combined with the usage of FHIR as interoperable communicaIon standard. A FHIR 
ImplementaIon Guide (IG) is being created giving guidance and addressing challenges that 
arise when trying to find and to apply algorithms to datasets beyond insItuIonal boundaries, 
independently if they are based on AI or not. As a communicaIon standard, FHIR supports 
and encourages the use of state-of-the-art web and transport layer security technologies. 
Dikici et al. [10] proposes the integraIon of AI into the radiology workflow based on maturity 
levels. Based on this descripIon, we derived an architectural overview, as shown in Figure 2. 
 

 
Figure 2 – Architectural overview of ac<vi<es: (1) registra<on: the service provider (upper) has an algorithm and hardware 

to process requests from external sources as a service. He provides informa<on about his algorithm in the registry, adds 
informa<on on how to access this service and gets approved by the registry. The service is now part of the registry and can 

be found by any user. (2) search and request: a service consumer (e.g. a hospital, but also a medical specialist in private 
prac<ce) has pictures and addi<onal informa<on in his research Picture Archiving and Communica<on System (PACS) and 

wants to request a service outside of his ins<tu<on. He searches for a service within the OMI registry. A service suitable for 
his data is provided by Hospital 1. He then sends a data bundle to the service provider and receives an asynchronous 

answer. (3) training an algorithm: a service consumer sends the links on where to access images to the API of Hospital 1. 
AKer a certain <me, he receives an asynchronous answer provided by the service provider containing the results. 

In order to share data for the remote inference in a secure and efficient manner between 
organizaIons, developments like the MII Data Sharing Framework (DSF) [26] will be evaluated 
to handle any generic workflow or pipeline, even in distributed architectures [27]. DSF 
supports feasibility queries [28] as well as record linkage for more advanced use cases [29] 
this will be especially important for the use-case of training image-based inference models 
but may introduce unneeded overhead for the service consumer of inference services in a 
care seqng for a paIent.  
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Managing workflows using business process models 
This secIon outlines the workflows supported by the first version of the OMI protocol and 
registry: in addiIon to basic methods to create (register), read (search), update (modify), 
delete and deacIvate services, more workflows like invoking remote inference and request 
training data shall be supported. This paper shows only a selecIon of workflows, and we refer 
the interested reader to the more complete and up-to-date material that is provided on 
Github2.  Outlined processes currently represent an ideal case without deeper error handling. 
Generally, there are three main actors involved in the workflows I) the registry itself – which 
holds informaIon about which (potenIally AI-based) services are available and which input 
parameters are required for inference, II) service providers (SP) – which offer the 
aforemenIoned services, and III) service consumers – such as researchers/clinicians, which 
want to trigger remote services on their datasets. Modularity of proposed processes allows 
for an easier integraIon into more complex use cases such as scienIfic data usage or potenIal 
clinical therapy planning. 
 
Register a new service in the registry 
For a service to be discoverable, it needs to be properly documented within the registry. In 
addiIon to name and metadata like service maturity levels, responsible organizaIon as well 
as the endpoint itself, it is key to also represent in- and output parameters and technical 
precondiIons for services. This enables us of finding suitable services by filtering them by their 
technical precondiIons and their input parameters. Figure 3 shows the process of registering 
a new service. 

 
Figure 3 - Registra<on of a new service: a Service Provider (upper pool) registers his service by sta<ng data characterizing the 
algorithm and its in- and output parameters. The Service Registry (lower pool) receives the registra<on, validates it technically 
but then waits for the approval of a human user. Once this ac<vity is completed the Service Provider receives a no<fica<on 
that the registra<on process is complete. 

The main actors of this process are the registry itself and the service provider. A[er defining 
metadata as well as the in- and output parameters and technical precondiIons, the service 

 
2 hOps://github.com/medizininforma)k-ini)a)ve/OMI-Protokoll-WP1, last accessed on 22.11.2023 
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registry receives the request. Parameters are automaIcally validated, and the new service is 
iniIally approved in a manual process accordingly. The service will then be acIvated and can 
be found by the search funcIon. AddiIonally, a noIficaIon is sent to the service provider to 
finish the registraIon process.  
 
Modify and update informa7on related to an inference service within the registry 
Services are under constant development and new versions of algorithms might be released 
frequently. The registry needs to support changes for algorithms metadata to reflect these 
developments. The envisioned process includes a two-step change/update process (see Figure 
4): firstly, the service provider needs to select the service he wants to modify. A[er manually 
providing the service details, he triggers an automated validaIon as well as manual re-
authorizaIon. If both steps are successful, the modified version is enabled within the service 
registry. 

 
Figure 4 – Upda<ng informa<on regarding a service e.g. due to a new version it can be necessary to change the required 
input parameters. Service Providers (upper) can do this by logging into their registry account and selec<ng their service to 

modify. AKer finishing modifica<ons, the request to change is sent towards the registry (lower) where it is validated, 
authorized (manual process) and finally enabled within the registry. A no<fica<on is sent towards the Service Provider when 

the process terminates.   

Finally, the service provider is noIfied about the accepted changes, which terminates the 
process. 
 
Find and use services in the OMI Registry 
A[er registering, one might want to request remote inference provided by a service, which is 
registered in the service registry. For this reason, we established a process model which 
accommodates this use case (see Figure 5). We differenIate between an already known 
service versus one that must be found by the researcher first. If the service is already known, 
the service consumer can go on to request the service over the known endpoint. If not, the 
service consumer has to look up a suitable service in the registry. A[er selecIng a service, he 
then requests the execuIon of this service with his data, in direct communicaIon with the 
service provider and independent from the registry itself. 
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Figure 5 - Request remote inference services: a Service Consumer (middle pool) decides whether he already knows where the 
service he wants to request is located. If the endpoint is not known he does a lookup within the Service Registry (lower pool). 
AKer triggering the service the Service Provider (upper pool) receives the request, executes the service remotely and creates 
the defined response objects asynchronously. The service response is then sent to the Service Consumer. 

A[er receiving the service request, the service provider can process the request in his pipeline 
and create the corresponding response object whenever the inference service finishes. Lastly 
the service response is sent back to the service consumer.  
 
Train a service with annotated images from data providers 
The necessity for acquiring site-specific training data to enhance algorithm accuracy depends 
on the maturity level of a service. The registry plays a crucial role in facilitaIng dataset 
querying by connecIng (image) data providers with service providers (see Figure 6). Upon 
establishing the requirements for the necessary training datasets, a request is submiSed to 
the OMI Service Registry. AuthorizaIon for the training data request is subsequently granted 
by the responsible personnel at the OMI registry. Once authorizaIon is granted, a query for 
datasets is iniIated with the data providers. Subsequently, links to datasets or relevant 
informaIon about these datasets are consolidated and transmiSed to the service provider. 
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Figure 6 - Train Algorithm: A Service Provider (upper pool) wants to train an algorithm, so he manually defines training 
datasets that support his use case. He then sends this request towards the OMI Service Registry (middle pool), which receives 
the request, authorizes it, and queries Image Data Providers (lower pool) for datasets. Once the ac<vity concludes data sets 
are aggregated and sent back to the Service Provider, who goes on to train his algorithm and concludes the process.  

If successful, the service provider receives one or more data sets, trains his service, and 
terminates the process if a desired accuracy for the service is reached.  
 
Deriving a generalized informa#on model 
To narrow down a funcIonal specificaIon and operaIonalize a service registry and 
communicaIon protocol, a generic informaIon model was derived (see Figure 7). It contains 
a minimal dataset to represent the informaIon needed by processes outlined before. 
 

 
Figure 7 – UML like generic informa<on model for inference services and related informa<on. It consists of algorithm creator, 
his algorithm(s) and their in- and output parameters as well as available services, their endpoints and service providers. 
Services are characterized by maturity levels, which indicate if they can be used in an experimental, research or clinical context. 

The main component of this informaIon model is the algorithm, which is characterized 
through a name, descripIon amongst other informaIon like its version. An algorithm has one 
or more authors as well as many in- and output parameters. It can be part of one or more 
services. ASributes of the service include the name, maturity level of the service, which 
provides an overview of the service’s development status and indicates in which context the 
service can be used. A service has one or more endpoints, which are characterized through 
informaIon about the specific URL and used protocol. A service has one or more service 
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providers. A service provider points to the organizaIon primarily responsible for developing 
and managing this service. It includes aSributes like the name and other relevant informaIon 
such as contact informaIon and address. An endpoint is linked to a service and describes an 
access point in the form of an API or other web service. Its aSributes include things like name, 
specific URL where the endpoint is located and the communicaIon protocol that the endpoint 
uses. 
 
When thinking about scalability, we must design the protocol such that services are agnosIc 
about where they are running physically. Eventually mulIple endpoints of the same service 
are made available by different providers. When execuIng inference requests, the service 
should provide informaIon about the specific version from which the results were derived, 
including informaIon like the versions of the algorithms that were run. 
 
Outlining in- and output parameter paDerns 
Based on the example use-cases within scope of the OMI project, we can broadly categorize 
diverse types of input parameters: 1) images – acquired by different modaliIes, 2) 
segmentaIon layers, 3) image metadata and clinical metadata, such as laboratory results, 
histology, age, sex, Ime of survival amongst others. Outputs are heterogeneous and differ 
between algorithms: from numerical values for predicIons like survival Ime over segmented 
images, diagnosis codes and more. We can establish abstract paSerns that represent these 
parameters as shown in Table 2.  
 
Table 2 - Overview of in- and output pa]erns for image related Services within the OMI protocol. Services can ingest images 
(#1), images and segmenta<on data (#2) as well as metainforma<on (#3) e.g. in textual form. Brackets indicate op<onal 
parameters. 

PaSern DescripIon Image 
Data 

SegmentaIon 
Data 

Meta-
informaIon 

#1 Images are provided/produced ✓ ✘ ✘ 
#2 Image- and or segmentaIon data 

are provided/produced 
(✓) ✓ ✘ 

#3 Image-, segmentaIon- and 
metadata are provided/produced 

(✓) (✓) ✓ 

 
Parameter paSerns are agnosIc if they are uIlized as in-put or output parameters, so e.g. an 
AI-based service that consumes paSern #1 can produce a paSern #2 and vice versa. 
SegmentaIon data can be stored e.g. in DICOM SEG or NIFTI image format. Image data is 
hereby independent of the acquisiIon modality (e.g. MRI sequence). SegmentaIon data 
always needs a point of reference, i.e. an image or coordinate points of the contour. 
MetainformaIon about pictures or the paIent also needs references to where it belongs to. 
Some parameters for AI-based algorithms may require temporal informaIon as an input like 
follow-up values over Ime (e.g. bodyweight) as an input. Therefore, the protocol should be 
able to represent requested parameters, for instance the last five measurements of 
bodyweight over a period not longer than 3 weeks in total. 
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FHIR profiles ensuring conformance and interoperability 
From the abstract process and data model definiIons above, we derived a FHIR specificaIon 
(see Figure 8 and Table 3). An algorithm is represented as Device resource which is remote 
inference calling enIty. A service is represented as a HealthcareService Resource which links 
to a device resource. The resource’s capability to represent virtual services is a crucial factor 
for its applicability for the OMI registry. It holds informaIon on how to access the service via 
the Endpoint resource. In addiIon, services represented as HealthcareService resources, can 
be part of referral networks and service directories. An extension for maturity level of the 
HealthcareService resource provides the ability to evaluate the development stage of a 
service. 

 
Figure 8 – FHIR R4 model for the representa<on of OMI-Services and their characterizing aspects like Organiza<on, Endpoint 
as well as In- and Output Parameter. 

A Service-Provider is represented by an Organiza?on resource and can be used to support 
other resources that need to reference organizaIons. In this case, each AI Service has a 
reference to the managing organizaIon of the Service. The Organiza?on resource has all the 
necessary aSributes to idenIfy the responsible Organiza?on for an AI Service and does not 
require further extensions to represent the Service-Provider. 
For the Service-Endpoint, the Endpoint resource is chosen for its capability to describe the 
technical details of connecIon points and their usage for delivery or retrieval of informaIon. 
Each service will have to have some sort of interface like an API or a web service. Each Endpoint 
will contain the technical details of these interfaces, such as the used protocol and the locaIon 
of the endpoint in the form of a URL. 
In- and Output-Parameters are defined by Parameters resources. Its flexibility allows it to 
handle different types of data. The Parameters resource does not need to be extended to 
represent the necessary aSributes for this use case. It is versaIle enough, enabling the usage 
of both raw FHIR data types and FHIR resources. While generaIng profiles for resources adds 
an addiIonal layer of workload, it significantly enhances semanIc interoperability. 
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Table 3 - FHIR base resources overview: their derived profiles, and a descrip<on of their purpose. 

Base Resource Profile name Descrip3on 
Device OMI-

Algorithm 
Represents an algorithm itself, including informa3on about 
name and version as well as responsible organiza3on, 
maturity, and technical precondi3ons. 

HealthcareService OMI-Service Holds informa3on about a service offered by an 
organiza3on, including met informa3on such as status, 
type, specialty, maturity, and available endpoints. It also 
references in- and output parameters. 

Endpoint OMI-Service-
Endpoint 

Holds informa3on about an endpoint and how to interact 
with it.  

Parameters OMI-Service 
Input/Output 
Parameter 

Holds the in- and output parameters of the algorithm which 
is provided as a service. 

 
Conclusions, limita#ons, and further ac#ons 
This whitepaper aims to provide a basis for discussion connecIng stakeholders like (AI) service 
providers and potenIal users. The OMI framework aims to empower people who are looking 
for an inference service for their data, but who do not have the capacity to overcome the 
infrastructural challenges of seqng up AI services in their own insItuIon. The outlined 
methodology for the OMI protocol specificaIon covers processes of registering, finding, and 
applying inference services for biomedical research quesIons based on open interoperability 
standards beyond the scope of a single organizaIon. Leveraging the FHIR standard enables 
machine processable interoperability without losing semanIc context when traversing 
between different services and insItuIons. 
 
The methodology outlines the representaIon of services as well as the process of finding 
suitable services in a machine processable way. AddiIonally, a process on how to find data for 
algorithm training was presented. However, the protocol does not establish a way for data 
transport itself. Here, established open standards are employed. Mechanisms for data transfer 
like the usage of the DSF [26], [30] as part of the MII [1] will be used. 
 
Currently, the protocol definiIon is missing procedures on how services are billed and how 
the infrastructure for the provisioning of services is organized. RequesIng remote inference 
is associated with costs and latency Imes when receiving the results from a service call, which 
must be considered by both the requester and the service provider in their technical 
implementaIon. As adopIon gets more widespread, queues for inference will get longer and 
upgrading compuIng infrastructure will likely become a necessity for service providers. Some 
steering of traffic could be achieved via status aSributes within the registry. However, it cannot 
replace efforts and management soluIons to acIvely manage the remote infrastructure and 
endpoints in regards of traffic and computaIon load. These are aspects for the future 
development and revision of the OMI framework. 
 
Concerns regarding data and privacy protecIon emerge, parIcularly in healthcare seqngs but 
also within research scenarios. It must be carefully thought about what kind of data is shared 
or accessed to provide inference. It also must be guaranteed that data is reliably managed 
a[er usage for inference on the remote locaIon. Other aspects like re-idenIficaIon of 
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individuals based on images of different modaliIes is also a possible risk. Current defacing 
algorithms, which are available for some imaging modaliIes [31] miIgate this problem, but 
they may interfere with the applicaIon of AI based algorithms [32]. We plan to collaborate 
with the broader scienIfic community in order to integrate new methodologic developments 
in this domain into the OMI framework. 
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