
TinyGenius: Intertwining Natural Language Processing with
Microtask Crowdsourcing for Scholarly Knowledge Graph

Creation
Allard Oelen

allard.oelen@tib.eu
TIB Leibniz Information Centre for

Science and Technology
Hannover, Germany

Markus Stocker
markus.stocker@tib.eu

TIB Leibniz Information Centre for
Science and Technology
Hannover, Germany

Sören Auer
soeren.auer@tib.eu

TIB Leibniz Information Centre for
Science and Technology
Hannover, Germany

Figure 1: Graphical abstract. Workflow of the TinyGenius methodology. Scholarly articles are processed by NLP tools to form
a scholarly knowledge graph (machine intelligence part). Afterwards, the extracted statements are validated by humans by
means of microtasks (human intelligence part). User votes are stored as provenance data as part of the original statements.

ABSTRACT
As the number of published scholarly articles grows steadily each
year, new methods are needed to organize scholarly knowledge
so that it can be more efficiently discovered and used. Natural
Language Processing (NLP) techniques are able to autonomously
process scholarly articles at scale and to create machine readable
representations of the article content. However, autonomous NLP
methods are by far not sufficiently accurate to create a high-quality
knowledge graph. Yet quality is crucial for the graph to be useful
in practice. We present TinyGenius, a methodology to validate
NLP-extracted scholarly knowledge statements using microtasks
performed with crowdsourcing. The scholarly context in which the
crowd workers operate has multiple challenges. The explainability
of the employed NLP methods is crucial to provide context in order
to support the decision process of crowd workers. We employed
TinyGenius to populate a paper-centric knowledge graph, using
five distinct NLP methods. In the end, the resulting knowledge
graph serves as a digital library for scholarly articles.

KEYWORDS
Crowdsourcing Microtasks, Knowledge Graph Validation, Scholarly
Knowledge Graphs, Intelligent User Interfaces

1 INTRODUCTION
Every year, the number of published scholarly articles grows [8],
making it increasingly difficult to find and discover relevant lit-
erature. One of the key challenges is the ability of machines to

interpret the knowledge presented within scholarly articles. With-
out machine actionable scholarly knowledge, machines are severely
limited in their utility to effectively organize this knowledge [13].
Knowledge graphs are a possible solution, as they enable knowl-
edge to be represented in a machine readable manner. Knowledge
graphs are foundational to scholarly digital libraries as they provide
a means to efficiently discover and retrieve knowledge presented
within research articles.

In order to create a scholarly knowledge graph, structured knowl-
edge has to be either extracted from the unstructured documents or
produced directly upfront in the research workflow [18]. We distin-
guish between two different strategies to support the extraction pro-
cess. Firstly, there is manual structured knowledge extraction with
human labor. This will most likely result in high-quality data, how-
ever this approach does not scale well. Secondly, there is automatic
extraction using machine learning techniques. Specifically, Natural
Language Processing (NLP) is able to interpret natural language
and transform unstructured content into a structured, machine
readable representation. However, NLP tools are not sufficiently
accurate to generate a high-quality knowledge graph, in particular,
due to the complexity of the conveyed information, the required
context-awareness or the varying levels of semantic granularity.
In this work, we propose a hybrid method where we combine hu-
man and machine intelligence via microtasks to create a structured
scholarly knowledge graph.

We present TinyGenius, a methodology to create a scholarly
knowledge graph leveraging intertwined human and machine in-
telligence. Firstly, NLP tools are used to autonomously process
scholarly articles. Secondly, the NLP results are transformed into a

ar
X

iv
:2

20
5.

04
50

4v
1 

 [
cs

.D
L

] 
 9

 M
ay

 2
02

2

https://orcid.org/0000-0001-9924-9153
https://orcid.org/0000-0001-5492-3212
https://orcid.org/0000-0002-0698-2864


Conference’17, July 2017, Washington, DC, USA Oelen et al.

Figure 2: TinyGenius methodology intertwining human and machine intelligence to create a scholarly knowledge graph.
ArXiv articles are imported, processed by a set of NLP tools, and the results are stored. From the results, a knowledge graph is
generated. Afterwards, humans validate the knowledge graph by means of microtasks.

paper-centric scholarly knowledge graph. Finally, the statements
are presented to humans in the form of microtasks. Humans can
vote to determine the correctness of the statements. Based on the
votes, an aggregated score is computed to indicate the correctness
of a statement. TinyGenius is specifically designed to be integrated
into the Open Research Knowledge Graph (ORKG) [7]. The ORKG
leverages a crowdsourcing approach to curate a scholarly knowl-
edge graph [14].

2 RELATEDWORK
Large complex tasks can be decomposed into a set of smaller, in-
dependent microtasks [11]. These microtasks are context-free, are
more manageable, and are generating higher quality results [3].
While microtasks can be beneficial on an individual level, such as
microwork [20], they are commonly performed in a crowdsourced
setting by unskilled users [16]. In a crowdsourced setting, a large
task, too big in scope for a single person, can be completed collabo-
ratively. Microtask crowdsourcing has been successfully employed
for various tasks, for example, writing software programs [11], val-
idating user interfaces [9], labeling machine learning datasets [2],
ontology alignment [16], and knowledge graph population [5].

Machine learning tools are able to process data at scale without
the need for human assistance. Therefore, such tools are especially
suitable to handle large quantities of data, such as scholarly article
corpora. The Natural Language Processing (NLP) domain focuses
specifically on understanding natural language for machines [4]. In
our methodology, we employ a set of five NLP tools to process schol-
arly article text. These tools perform four different NLP tasks, which
we will now discuss in more detail. First, Named Entity Recognition
(NER) is a task to identify entities within text belonging to a prede-
fined class [12]. Second, Entity Linking is the task of linking entities
to their respective entry in a knowledge base [17]. Third, Topic
Modeling is the task to identify and distinguish between common
topics occurring in natural text [1]. Finally, Text Summarization is
the task of compressing text into a shorter form, while preserving
the key points from the original text [19].

3 ARCHITECTURE AND USER INTERFACE
We now discuss the TinyGenius methodology. First, we focus on
the technical infrastructure that is responsible for data storage and
processing. Afterwards, we explain the user interface in more detail.

The data model relies on triple statements using the W3C Resource
Description Framework (RDF) [10]. By using a standardized data
representation model, the data interchange between machines is fa-
cilitated. RDF data can be queried using the SPARQL language [15].

3.1 Technical Infrastructure
One of the key benefits of using NLP tools to process data is the
ability to perform this analysis at scale. Therefore, the infrastructure
is designed to handle large quantities of data while still performing
well. We outline the methodology depicted in Figure 2:

(1) In the first step, the complete metadata corpus from the open-
access repository service arXiv1 is imported. This includes
article titles and abstracts. To reduce the required computa-
tional resources and ensure a consistent level of semantic
granularity, only paper titles and abstracts are processed by
NLP tools (i.e., the full-text is excluded).

(2) Afterwards, the papers are processed by different NLP tools,
which are listed in Table 1.

(3) In the third step, the output of the paper import process
and the resulting data from the NLP tools are stored in a
document-based JSON data store. Notably, the NLP results
are stored in their native data model and are not transformed
to make them suitable for knowledge graph ingestion.

(4) The semantic transformation process takes place in the fourth
step, i.e. semantification. This step converts the native NLP
data models to a triple format, as required by the RDF data
model.

(5) In the fifth step, the data is ingested in a triple store. We
adopted an RDF* [6] provenance data model. Therefore, a
GraphDB2 triple store is used, which supports RDF* natively.
To increase machine-actionability, existing ontologies con-
cepts are used when possible.

3.2 User Interface
The user interface consists of two main components: the view paper
page and the voting widget. Figure 3 shows a screenshot of the
view paper page. It shows how a single paper is displayed when
integrated within the ORKG. All data displayed on the page is com-
ing from the TinyGenius knowledge graph and is fetched using
1https://arxiv.org/
2https://graphdb.ontotext.com/

https://arxiv.org/
https://graphdb.ontotext.com/


TinyGenius: Intertwining NLP and Crowdsourced Microtasks Conference’17, July 2017, Washington, DC, USA

Table 1: List of employed NLP tools and their corresponding task and scope. The question template shows how the microtask
is presented to the user.

Tool name NLP task Scope Question template

CSO classifier Topic Modeling Domain-specific Is this paper related to the topic {topic}?
Ambiverse NLU Entity Linking Generic Is the term {entity} related to {wikidata concept}?
Abstract annotator Named Entity Recognition Domain-specific Is this statement correct? This paper {type} {entity}
Title parser Named Entity Recognition Domain-specific Is {entity} a {type} presented in this paper?
Summarizer Text Summarization Generic Does this summarize the paper correctly?

Figure 3: View paper page, showing the integrated voting widget and NLP statements. Node 1 displays the metadata related to
the selected paper. Node 2 shows the voting widget. Node 3 is the score tooltip. Node 4 shows a tooltip that displays the context
and provenance data related to a single statement. Node 5 lists the NLP-generated statements grouped by the tool. Finally,
node 6 shows the use of a resource grouped by year, which is displayed when clicking on a resource.



Conference’17, July 2017, Washington, DC, USA Oelen et al.

Table 2: Overview of the data evaluation statistics.

Description Measure

General statistics Number
Processed articles 95,376
Triples metadata 1,521,492
Triples provenance 47,595,706
Triples total 65,608,902
Average number of triples per article 688

Processing time Seconds

CSO classifier 27,803
Ambiverse NLU 137,060
Abstract annotator 62,056
Title parser 87
Summarizer N/A

SPARQL. The voting widget is the key interface component and
integrates the microtasks to perform the NLP validation. It is dis-
played in Figure 3 node 2. Each NLP tool has a different question
template, as listed in Table 1. This question template is used to
display the microtask in the widget. The widget itself displays the
context required to make an informed decision about the correct-
ness of the statement. In most cases, the context displays an excerpt
of the abstract and highlights the words used by the NLP tool to
extract the data. Finally, users are able to vote about the correct-
ness. A vote can either be correct, incorrect, or unknown. The next
statement is automatically displayed after voting. Statements are
selected in random order and statements are only displayed once to
a specific user. By default, statements with a score below a certain
threshold (40%) are hidden within the user interface.

4 DATA EVALUATION
We conduct a data evaluation to gather general statistics about our
approach and to assess the technical performance of the system.
To this end, we imported the arXiv corpus and processed a subset
with selected NLP tools. All articles classified as “Machine Learning”
by arXiv are processed. This results in a total amount of 95, 376
processed articles, which is approximately 5% of the complete arXiv
corpus. We consider this a sizable amount to estimate statistics such
as processing time per article, number of extracted statements per
article, and to determine the performance of the setup. We chose
the machine learning field because several NLP tools are trained
specifically on machine learning abstracts. The processing time in
seconds per NLP tool is listed in Table 2. In addition to the total
number of triples, an approximation of the number of metadata
and provenance triples is listed. The tools ran on a machine with 40
CPU cores and no dedicated GPUs. As the summarizer tool requires
GPUs to run efficiently, we did not apply this tool to the dataset.

5 DISCUSSION AND CONCLUSION
We presented TinyGenius, a methodology to validate NLP state-
ments using microtasks. The method combines machine and human
intelligence resulting in a synergy that utilizes the strengths of both
approaches. Firstly, a set of NLP tools is applied to a corpus of paper

abstracts. Afterwards, the resulting data is ingested in a scholarly
knowledge graph. Finally, the data is presented to users in the form
of microtasks. By utilizing microtasks, the data is validated using
human intelligence. We envision our approach to be integrated
within the ORKG, presenting the microtasks to ORKG users (gen-
erally researchers). The ORKG already leverages crowdsourcing
to curate knowledge and by introducing microtasks we lower the
barrier to become a content contributors for users that are normally
merely content consumers.

The preliminary data evaluation results indicate that the pre-
sented method is promising and the proposed setup and infrastruc-
ture are suitable for the task. When the methodology is deployed
in a real-life setting, the knowledge graph quality can be substan-
tially improved. Over time, more visitors will vote on the presented
statements, increasing the overall data accuracy. The user votes
are stored as provenance data on the statement level, providing
the opportunity for downstream applications to decide how to in-
corporate the validation data. Incorrect data can simply be filtered
out, but it is also possible to perform more complex analysis on the
validation data.

Within this work, we laid the foundation for a comprehensive
scholarly knowledge infrastructure. A more in-depth evaluation
is part of future work, including an analysis of the system per-
formance, a user evaluation in a controlled environment, and an
evaluation when deployed in scholarly knowledge platform. Espe-
cially, the latter evaluation will give insights on how the approach
provides benefits to researchers and how it can be used to form a
digital library for scholarly articles. We will specifically focus on
creating tools and interfaces to support scholarly knowledge dis-
covery, for example via dynamic faceted search tools. Additionally,
we will focus on trend analysis, in the form of scientometrics.

The approach has been evaluated with machine learning articles
from the arXiv corpus. Some of the selected NLP tools are domain
models, specifically trained on Computer Science. However, our
approach is not limited to this domain. By design, the system is mod-
ular and can be generalized to support other domains and NLP tools.
Future work will focus on importing the complete arXiv corpus,
which increases the number of triples approximately tenfold.

We deem this work to be one of the first, which truly combines
human and machine intelligence for knowledge graph creation and
curation. This combination needs much more attention, since there
are many use cases, where machine intelligence alone can (due to
the missing training data) not produce useful results.

ACKNOWLEDGMENTS
This work was co-funded by the European Research Council for
the project ScienceGRAPH (Grant agreement ID: 819536) and the
TIB Leibniz Information Centre for Science and Technology. We
would like to thank Mohamad Yaser Jaradeh and Jennifer D’Souza
for their contributions to this work.

REFERENCES
[1] Rubayyi Alghamdi and Khalid Alfalqi. 2015. A Survey of Topic Modeling in Text

Mining. International Journal of Advanced Computer Science and Applications 6
(01 2015). https://doi.org/10.14569/IJACSA.2015.060121

[2] Joseph Chee Chang, Saleema Amershi, and Ece Kamar. 2017. Revolt: Collaborative
Crowdsourcing for Labeling Machine Learning Datasets. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado,

https://doi.org/10.14569/IJACSA.2015.060121


TinyGenius: Intertwining NLP and Crowdsourced Microtasks Conference’17, July 2017, Washington, DC, USA

USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA,
2334–2346. https://doi.org/10.1145/3025453.3026044

[3] Justin Cheng, Jaime Teevan, Shamsi T. Iqbal, and Michael S. Bernstein. 2015.
Break It Down: A Comparison of Macro- and Microtasks. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul,
Republic of Korea) (CHI ’15). Association for Computing Machinery, New York,
NY, USA, 4061–4064. https://doi.org/10.1145/2702123.2702146

[4] Gobinda G. Chowdhury. 2003. Natural language processing. Annual Review of
Information Science and Technology 37, 1 (2003), 51–89. https://doi.org/10.1002/
aris.1440370103

[5] Benjamin M. Good and Andrew I. Su. 2013. Crowdsourcing for bioinfor-
matics. Bioinformatics 29, 16 (06 2013), 1925–1933. https://doi.org/10.1093/
bioinformatics/btt333

[6] Olaf Hartig. 2017. Foundations of RDF* and SPARQL* : (An Alternative Approach
to Statement-Level Metadata in RDF). In Proceedings of the 11th Alberto Mendelzon
International Workshop on Foundations of Data Management and the Web 2017
: (CEUR Workshop Proceedings, Vol. 1912). Article 12. http://ceur-ws.org/Vol-
1912/paper12.pdf

[7] Mohamad Yaser Jaradeh, Allard Oelen, Kheir Eddine Farfar, Manuel Prinz, Jen-
nifer D’Souza, Gábor Kismihók, Markus Stocker, and Sören Auer. 2019. Open
research knowledge graph: Next generation infrastructure for semantic scholarly
knowledge. K-CAP 2019 - Proceedings of the 10th International Conference on
Knowledge Capture (2019), 243–246. https://doi.org/10.1145/3360901.3364435

[8] Arif Jinha. 2010. Article 50 million: An estimate of the number of scholarly
articles in existence. Learned Publishing 23, 3 (2010), 258–263. https://doi.org/
10.1087/20100308

[9] Steven Komarov, Katharina Reinecke, and Krzysztof Z. Gajos. 2013. Crowd-
sourcing Performance Evaluations of User Interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Paris, France)
(CHI ’13). Association for Computing Machinery, New York, NY, USA, 207–216.
https://doi.org/10.1145/2470654.2470684

[10] Ora Lassila, Ralph R Swick, et al. 1998. Resource description framework (RDF)
model and syntax specification. (1998).

[11] Thomas D. LaToza,W. Ben Towne, ChristianM. Adriano, and André van der Hoek.
2014. Microtask Programming: Building Software with a Crowd. In Proceedings

of the 27th Annual ACM Symposium on User Interface Software and Technology
(Honolulu, Hawaii, USA) (UIST ’14). Association for Computing Machinery, New
York, NY, USA, 43–54. https://doi.org/10.1145/2642918.2647349

[12] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. 2022. A Survey on Deep
Learning for Named Entity Recognition. IEEE Transactions on Knowledge and
Data Engineering 34, 1 (2022), 50–70. https://doi.org/10.1109/TKDE.2020.2981314

[13] Barend Mons and Jan Velterop. 2009. Nano-publication in the e-science era. CEUR
Workshop Proceedings 523 (2009).

[14] Allard Oelen, Markus Stocker, and Sören Auer. 2021. Crowdsourcing Scholarly
Discourse Annotations. In 26th International Conference on Intelligent User In-
terfaces (College Station, TX, USA) (IUI ’21). 464–474. https://doi.org/10.1145/
3397481.3450685

[15] Eric Prudhommeaux and Andy Seaborne. 2008. SPARQL query language for RDF.
(2008). http://www.w3.org/TR/rdf-sparql-query/

[16] Cristina Sarasua, Elena Simperl, and Natalya F. Noy. 2012. CrowdMap: Crowd-
sourcing Ontology Alignment with Microtasks. In The Semantic Web – ISWC 2012,
Philippe Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tudorache, Jérôme Eu-
zenat, Manfred Hauswirth, Josiane Xavier Parreira, Jim Hendler, Guus Schreiber,
Abraham Bernstein, and Eva Blomqvist (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 525–541. https://doi.org/10.1007/978-3-642-35176-1_33

[17] Wei Shen, JianyongWang, and Jiawei Han. 2015. Entity Linkingwith a Knowledge
Base: Issues, Techniques, and Solutions. IEEE Transactions on Knowledge and Data
Engineering 27, 2 (2015), 443–460. https://doi.org/10.1109/TKDE.2014.2327028

[18] Markus Stocker, Pauli Paasonen, Markus Fiebig, Martha A Zaidan, and Alex
Hardisty. 2018. Curating Scientific Information in Knowledge Infrastructures.
Data Science Journal 17 (2018). https://doi.org/10.5334/dsj-2018-021

[19] Oguzhan Tas and Farzad Kiyani. 2007. A survey automatic text summariza-
tion. PressAcademia Procedia 5, 1 (2007), 205–213. https://doi.org/10.17261/
Pressacademia.2017.591

[20] Jaime Teevan, Daniel J. Liebling, and Walter S. Lasecki. 2014. Selfsourcing
Personal Tasks. In CHI ’14 Extended Abstracts on Human Factors in Computing
Systems (Toronto, Ontario, Canada) (CHI EA ’14). 2527–2532. https://doi.org/10.
1145/2559206.2581181

https://doi.org/10.1145/3025453.3026044
https://doi.org/10.1145/2702123.2702146
https://doi.org/10.1002/aris.1440370103
https://doi.org/10.1002/aris.1440370103
https://doi.org/10.1093/bioinformatics/btt333
https://doi.org/10.1093/bioinformatics/btt333
http://ceur-ws.org/Vol-1912/paper12.pdf
http://ceur-ws.org/Vol-1912/paper12.pdf
https://doi.org/10.1145/3360901.3364435
https://doi.org/10.1087/20100308
https://doi.org/10.1087/20100308
https://doi.org/10.1145/2470654.2470684
https://doi.org/10.1145/2642918.2647349
https://doi.org/10.1109/TKDE.2020.2981314
https://doi.org/10.1145/3397481.3450685
https://doi.org/10.1145/3397481.3450685
http://www.w3.org/TR/rdf-sparql-query/
https://doi.org/10.1007/978-3-642-35176-1_33
https://doi.org/10.1109/TKDE.2014.2327028
https://doi.org/10.5334/dsj-2018-021
https://doi.org/10.17261/Pressacademia.2017.591
https://doi.org/10.17261/Pressacademia.2017.591
https://doi.org/10.1145/2559206.2581181
https://doi.org/10.1145/2559206.2581181

	Abstract
	1 Introduction
	2 Related Work
	3 Architecture and User Interface
	3.1 Technical Infrastructure
	3.2 User Interface

	4 Data Evaluation
	5 Discussion and Conclusion
	Acknowledgments
	References

