
University of Exeter

Department of Computer Science

Diversity and generalisation error in

classification ensembles

Carina Ivaşcu

June, 2023

Supervised by Professor Jonathan Fieldsend

and Professor Richard Everson

Submitted by Carina Ivaşcu, to the University of Exeter as a thesis for the degree of

Doctor of Philosophy in Computer Science , June, 2023.

This thesis is available for Library use on the understanding that it is copyright material

and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identi-

fied and that no material has previously been submitted and approved for the award of a

degree by this or any other University.

(signature) ...

Abstract

Ensembles are important tools in machine learning because they are often more accurate

than single predictors. Although it has been shown that an accurate ensemble would

benefit from having both accurate and diverse predictors, some studies in the literature

could not support the influence that diversity has on the overall accuracy of an ensemble.

In this thesis we are investigating the influence that diversity has on improving accuracy

or equivalently reducing the generalisation error.

There have been many diversity measures introduced in the literature, however as outlined

in [1] the only one that had a strong negative correlation with generalisation error, was

a diversity measure called ambiguity. The ambiguity measure was obtained by using the

bias-variance decomposition of classifiers along with the 0-1 loss. As a result, our first

set of experiments focuses on this type of diversity measure. We analyse the effect that

the ambiguity measure has on decreasing the generalisation error of forests created by

bootstrapping. We compare the effect of the ambiguity by having bootstrapping with or

without replacement, by varying the number of trees, by varying the patterns or features

used in building each tree. Our results show that bootstrapping without replacement

yields lower test errors. A similar effect has been seen on bigger ensembles or by providing

more data to the classifiers. We propose pruning approaches that involve ambiguity and

compare their effect on the generalisation error versus a pruning method that promotes

randomness. Our results show that there is no significant difference between the two types

of approaches.

Next, we define two new ambiguity measures derived from the cross entropy and hinge

loss. We analyse their properties and find that out of the three ambiguity measures defined

for classifiers (including the 0-1 loss introduced earlier), the only one that achieves all the

desired properties of a diversity measure is the one obtained from the cross entropy (being

always positive, and zero if and only if all the classifiers agree). We build ensembles

by using bagging and by varying the sampling rates, we find that there is a negative

correlation between generalisation error and diversity at high sampling rates; conversely

generalisation error is positively correlated with diversity when the sampling rate is low

and the diversity high. We use an evolutionary algorithm in order to maximise ambiguity

and we find that the evolved ensemble in general has lower generalisation error than the

initial ensemble. We define the term “ambiguous ensembles” as ensembles with high values

of ambiguity. Additionally, we investigate the effect of pruning on larger ensembles and

propose several pruning methods that prioritize ambiguity, as well as others that promote

less ambiguous ensembles. Our results show that the approaches the prefer ambiguous

ensembles reduce the generalisation error. Hence, our overall results support the influence

that the diversity has on minimising generalisation error.

Finally, we define diverse forests by building trees with different impurities. We choose

families of impurities which are characterized by different parameters and we analyse

the effect of choosing different parameters has on the generalisation performance. By

tuning the parameters we can define symmetric or asymmetric impurities. In the case

of imbalanced datasets the use of asymmetric impurities has been proven beneficial in

predicting the minority class which usually is of big interest. We contrast the behaviour

of the forests by using symmetric, asymmetric impurities with forests of trees built with

different impurities (different parameters). Our results do not show a significant difference

in performance.

To my mother

Acknowledgements

I am very grateful to many people I have encountered throughout my PhD journey. With-

out their help, support and enthusiasm the PhD journey would have been much more

difficult.

First, I would like to express my gratitude to my supervisors, profs Jonathan Fieldsend

and Richard Everson, for their continuous help, support and guidance. It was a amazing

opportunity for me to be guided by such wonderful academics.

I have been blessed with many friends who have supported me throughout this period.

I would like to thank Aylin, Cristina, Canan and Cynthia for the lovely memories we

spent together throughout our PhD journeys. Such bonds cannot be forgotten and will

be life-long friendships.

I had the pleasure of sharing the office with wonderful colleagues. I would like to thank

Tim, John, Amjad, Aziz, Ola for being such helpful, kind and amazing colleagues.

I am extremely grateful to my mother and grandmother, to which I owe everything in my

life and without their sacrifices, I wouldn’t have been writing this thesis now.

Last but not least, I would like to thank God and all the saints that helped me in my life

and eased my way to achieving this career goal.

Contents

List of figures iv

List of tables xvi

Nomenclature and Abbreviations xvii

Publications xviii

1 Introduction 1

1.1 Supervised learning . 1

1.2 Ensembles of classifiers . 2

1.3 Accuracy and diversity . 4

1.4 Research Questions . 4

1.5 Contributions of the Thesis . 5

1.6 Outline of the thesis . 5

2 Background and related work 8

2.1 Supervised learning . 8

2.2 Bias and variance trade off . 9

2.3 Ensembles . 11

2.4 Ensemble learning techniques . 11

2.4.1 Boosting . 11

2.4.2 Bagging (Bootstrap aggregating) . 13

2.4.3 Negative correlation learning algorithm 13

2.4.4 Random forests . 14

2.4.5 Impurity functions . 15

2.4.6 Symmetric impurities . 16

2.4.7 Asymmetric impurities . 16

2.4.8 Applications of impurities . 19

2.5 Accuracy and diversity . 21

2.5.1 Accuracy . 21

2.5.2 Diversity . 22

2.6 Multi-objective optimisation . 26

2.7 Multi-objective optimisation within ensembles 27

2.8 Ensemble pruning . 30

2.9 Conclusion . 33

3 Correlation between test error and different diversity measures 35

i

3.1 Introduction . 35

3.2 Coherence diversity measure . 37

3.3 Correlation between diversity and test error 39

3.3.1 All features considered . 39

3.3.2 Varying the subfeatures . 43

3.3.3 Varying the size of the forest . 43

3.3.4 Diversity versus AUC . 44

3.4 Diversity zones . 45

3.5 Pruning methods . 49

3.6 Ambiguity pruning methods . 51

3.7 Conclusion . 56

4 Optimising diversity in ensembles of classification trees 57

4.1 Introduction . 57

4.2 Ambiguity measures . 58

4.2.1 Ambiguity measure for log loss . 58

4.2.2 Ambiguity measure for hinge loss . 59

4.3 Correlation between ambiguity and generalisation error 60

4.4 An Evolutionary Algorithm to Optimise Ambiguity 62

4.5 Experiments . 63

4.6 Conclusion . 69

5 Optimising diversity by tree selection 71

5.1 Introduction . 71

5.2 Pruning methods . 72

5.3 One in, One Out approach . 75

5.4 Evolving ensemble membership . 78

5.5 Conclusion . 85

6 Asymmetric impurities 86

6.1 Introduction . 86

6.2 Experiments . 86

6.2.1 Beta distribution . 87

6.2.2 hm impurity . 91

6.2.3 p− pα impurity . 94

6.3 Conclusion . 99

7 Conclusion and future work 100

Appendices 105

A.1 Pruning plots involving the coherence diversity measure 106

A.2 Ambiguity measures . 106

A.2.1 Ambiguity measure obtained from the cross-entropy 107

A.2.2 Ambiguity measure obtained from the hinge loss 109

A.3 Random splits . 113

A.4 Critical diagrams . 113

ii

Bibliography 131

iii

List of Figures

1.1 Schematic representation of ensemble predictions 3

2.1 Bias and variance relationship . 11

2.2 The figure on the left illustrates the ensemble prediction process, when

subpatterns of the data are selected when creating individual models. The

figure on the right denotes the same process when subfeatures are used. . . 11

2.3 The values of the Gini index are plotted on the y-axis, whereas the corre-

sponding probabilities are shown on the x-axis. 16

2.4 The values of the h impurity function from Equation 2.9 are plotted on the

y-axis, whereas the corresponding probabilities are shown on the x-axis.

This plot was obtained for w = 0.8 . 17

3.1 Example of diverse predictions in a 3-dimensional space 38

3.2 Correlation of the training or test amb01 with the test error, evaluated on

different datasets. The first row from the panel corresponds to the values

obtained by having bootstrapping with replacement, whereas bootstrap-

ping without replacement in the second row respectively. The relationship

between test amb01 and test error is shown in the first column, whereas

training amb01 and test error in the second column. The points on the

curves represent the sampling rates used for selecting portions of data for

training the decision trees. 40

3.3 Correlation of the training or test COH with the test error, evaluated on

different datasets. The first row from the panel corresponds to the values

obtained by having bootstrapping with replacement, whereas bootstrap-

ping without replacement in the second row respectively. The relationship

between test COH and test error is shown in the first column, whereas

training COH and test error in the second column. The points on the

curves represent the sampling rates used for selecting portions of data for

training the decision trees. 41

3.4 Comparison between bootstrapping with and without replacement. The

left plot in the panel shows the training error versus the sampling rates for

the two types of bootstrapping. The right panel presents the relationship

between the sampling rates and the test error. The results for the bootstrap-

ping without replacement are presented in green and blue for bootstrapping

with replacement, respectively. These results were obtained for the Sonar

dataset. 41

iv

3.5 Correlation of the training or test amb01 with the test error, evaluated on

different datasets. The forests were obtained from varying the subset of

features. The first row from the panel corresponds to the values obtained

by having bootstrapping with replacement, whereas bootstrapping without

replacement in the second row respectively. The relationship between test

amb01 and test error is shown in the first column, whereas training amb01

and test error in the second column. The points on the curves represent the

sampling rates used for selecting portions of data for training the decision

trees. 44

3.6 Correlation of the training or test CFD with the test error, evaluated on

different datasets. The forests were obtained from varying the subset of

features. The first row from the panel corresponds to the values obtained

by having bootstrapping with replacement, whereas bootstrapping without

replacement in the second row respectively. The relationship between test

CFD and test error is shown in the first column, whereas training CFD

and test error in the second column. The points on the curves represent the

sampling rates used for selecting portions of data for training the decision

trees. 45

3.7 Correlation of the training or test amb01 with the test error, evaluated on

different datasets. The test ambiguity is plotted in the first row, whereas

the training ambiguity on the second row. The first column displays the

relationship between ambiguity and test error for 10 trees, the middle for 100

trees and the last one for 1000 trees. The points on the curves represent the

sampling rates used for selecting portions of data for training the decision

trees. 46

3.8 ROC curve of a forest of 3 trees obtained on the GMM5 dataset. 46

3.9 Correlation of the training or test ambiguity with the test AUC, evaluated

on different datasets. The forests were obtained from varying the subset of

features. The first row from the panel corresponds to the values obtained

by having bootstrapping with replacement, whereas bootstrapping without

replacement in the second row respectively. The relationship between test

ambiguity and test AUC is shown in the first column, whereas training

ambiguity and test AUC in the second column. The points on the curves

represent the sampling rates used for selecting portions of data for training

the decision trees. 47

3.10 Correlation of the training or test CFD with the test AUC, evaluated on

different datasets. The forests were obtained from varying the subset of

features. The first row from the panel corresponds to the values obtained

by having bootstrapping with replacement, whereas bootstrapping without

replacement in the second row respectively. The relationship between test

CFD and test AUC is shown in the first column, whereas training CFD and

test AUC in the second column. The points on the curves represent the

sampling rates used for selecting portions of data for training the decision

trees. 48

v

3.11 These plots present the behavior of the ensemble ambiguity, average error

of the classifiers and ensemble error versus different sampling rates. In the

first plot the training data was used in order to evaluate these quantities,

whereas the test data in the second plot. These results were obtained for

the Australian dataset. 48

3.12 The figure in the left represents the test ambiguity versus test error of

forests obtained by fitting a proportion of the data. The plot in the middle

shows for the same forests their training ambiguity versus test error. The

right presents the relationship between the training error and the training

ambiguity of the same forests. These results were obtained for the GMM5

dataset . 49

3.13 Cloud of classifier error vs classifier ambiguity 50

3.14 Comparisons of the pruning approaches for the Gmm5test dataset, for sam-

pling rates 0.1 and 0.75. The results for the 0.1 sampling rate are presented

in the first column, whereas the 0.75 sampling rate in the second column.

The top figure of each column displays the results when the same data was

used, whereas the bottom plot when different data was used. 53

3.15 Comparisons of the pruning approaches for the Heart dataset, for sampling

rates 0.1 and 0.75. The results for the 0.1 sampling rate are presented in

the first column, whereas the 0.75 sampling rate in the second column. The

top figure of each column displays the results when the same data was used,

whereas the bottom plot when different data was used. 53

3.16 Comparisons of the pruning approaches for the Sonar dataset, for sampling

rates 0.1 and 0.75. The results for the 0.1 sampling rate are presented in

the first column, whereas the 0.75 sampling rate in the second column. The

top figure of each column displays the results when the same data was used,

whereas the bottom plot when different data was used. 53

3.17 Comparisons of the pruning approaches for the Ionosphere dataset, for sam-

pling rates 0.1 and 0.75. The results for the 0.1 sampling rate are presented

in the first column, whereas the 0.75 sampling rate in the second column.

The top figure of each column displays the results when the same data was

used, whereas the bottom plot when different data was used. 54

3.18 Comparisons of the pruning approaches involving the coherence diversity

measure for the Ionosphere dataset, for sampling rates 0.1 and 0.75. The

results for the 0.1 sampling rate are presented in the first column, whereas

the 0.75 sampling rate in the second column. The top figure of each column

displays the results when the same data was used, whereas the bottom plot

when different data was used. 55

vi

4.1 Curves of the three types of ambiguities versus the corresponding losses

that were derived from these. The test error versus the training ambiguity

was plotted for different sampling rates for ensembles formed of 5 trees (left

column) and 100 tress (right column) for the GMM5 dataset. The first row

shows the behaviour of the test cross entropy versus the training cross en-

tropy ambiguity, in the second row the test 0-1 loss versus its corresponding

training ambiguity is plotted, respectively the behaviour of the hinge loss is

presented in the third row of panels. The optimal sampling rate is indicated

in red. 61

4.2 The figure in the left of the panel represents the cross entropy generalisation

error versus the size of the ensemble and the sampling rate. On the right

hand side the training ambiguity derived from the cross entropy versus

the size of the ensemble and the sampling rate is plotted. The plots were

obtained for the Sonar data. 63

4.3 Example results on the Liver dataset, using an evolutionary algorithm to

optimise the cross-entropy ambiguity. 65

4.4 Frequency of patterns selected by the evolutionary algorithm at the final

generation for the GMM5 dataset, for the 0.1 sampling rate. On the x-

axis is the maximum posterior probability of a pattern belonging to each of

the two classes. The y-axis represents the average proportion each pattern

was selected over the 30 runs of the evolutionary algorithm. The values

from the x-axis have been divided into 20 equally-sized bins. The green

lines represent the medians of the number of occurrences of the patterns

belonging to each bin. 67

4.5 Optimised weights for the GMM5 dataset, obtained by using a sampling

rate of 0.05. The first plot corresponds to the box plots of the valida-

tion ambiguity, the blue box plots for the validation ambiguity with initial

weights whereas the red box plots with optimised weights. The second

plot represents the box plots for the test error, the colors having the same

meaning. The third plot represents the average behaviour of the valida-

tion ambiguity versus the test error for all sampling rates, blue denotes the

case when unoptimised weights were used, whereas red when the optimised

weights were used. 69

5.1 The top set of curves displays the variation of the test error with the ensem-

ble size for each of the mentioned pruning approaches. The middle figure

shows the variation of the training error, whereas the bottom plot shows for

the training ambiguity. The results displayed are for the German dataset

and for the 0.05 sampling rate . 75

5.2 Curves of the average tree training/test error versus ensemble training/test

error and ensemble training/test ambiguity. These plots were obtained for

the German dataset and the 0.05 sampling rate. 76

vii

5.3 These set of curves displays the variation of the test error with the ensemble

size for each of the mentioned pruning approaches. The top plots shows the

rsults for the 0.1 sampling rate, whereas the bottom plot for the 0.5 sampling

rate, both for the Australian dataset. 77

5.4 Box plots of the test CE for the tree selection approaches versus the pattern

selection approach (the evolutionary algorithm from Section 4.4) on the

German dataset for the 0.05 sampling rate. The first plot in the panel

displays the results for 5 trees, the second plot for 10 trees, the third of

20 trees, whereas the last one of 50 trees. The symbols from the x-axis

correspond to the tree selection methods and pattern selection approaches

and their meaning is displayed in Table 5.1. 80

5.5 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the German

dataset for the 0.05 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 81

5.6 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the German

dataset for the 0.3 sampling rate, for 10 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 83

5.7 Comparisons of the tree selection approaches versus the pattern selection

approach(the evolutionary algorithm from Section 4.4) on the German

dataset for the 0.5 sampling rate, for 20 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 83

6.1 The values of the beta distribution are plotted on the y-axis, whereas the

corresponding probabilities are shown on the x-axis. 88

6.2 Results obtained on the Gmm5test dataset. The ROC plots for the sym-

metric and the asymmetric case are presented in blue, respectively green.

The parameters used for the beta distribution were α = β = 1.5 for the

symmetric case and α = 1.9 and β = 1.1 for the asymmetric case. 89

6.3 Results obtained on the Gmm5test dataset.The parameters used for the

beta distribution were α = β = 1.6 for the symmetric case and α = 1.1 and

β = 1.8 for the asymmetric case. 89

6.4 Results obtained on the Australian dataset for the true positive rate. . . . 90

6.5 The values of the hm distribution are plotted on the y-axis, whereas the

corresponding probabilities are shown on the x-axis. This plot was obtained

for m = 0.8 . 91

viii

6.6 Results obtained on the Hepatitis dataset. The ROC plots for the sym-

metric and the asymmetric case are presented in blue, respectively green.

These results were obtained for m = 0.12. 92

6.7 Results obtained on the Satimage dataset. The ROC plots for the sym-

metric and the asymmetric case are presented in blue, respectively green.

These results were obtained for m = 0.12. 93

6.8 Comparison of the ROC curves of the forests obtained for different sample

weight ranges. The line in orange denotes the case when the weights were

uniformly distributed between 10−3 and 103. The other ROC curves were

obtained when the weights were equal. We have compared for the following

weight values: 0 denoted by the blue curve, -3 by the green line and 3 by

the red line. The results are obtained on the GMM5 dataset. 93

6.9 Comparison of the ROC curves of the forests obtained for equal weights (de-

noted in red), random weights (orange), optimised random weights (blue),

optimised equal weights (green), optimised random weights and threshold

(purple) and optimised equal weights and threshold (brown). The results

are obtained on the GMM5 dataset. 94

6.10 The values of the p−pα are plotted on the y-axis, whereas the corresponding

probabilities are shown on the x-axis. This plot was obtained for α = 9. . . 95

6.11 Hepatitis dataset . 95

6.12 The left plot shows the mean ROC curves for the ensemble build with

different values of α and for the sub-ensembles built with the same values

of α. The values for α ranged between [3,4,5,6,7,8,9]. The right figure

presents the average FPR vs TPR for each ensemble built with a specific

α. These results were obtained for the Satimage dataset. 96

6.13 Comparison ROC curves for ensembles built with random α in turquoise,

Gini index in blue or α = 7 in green. There results were obtained for the

Satimage dataset. 97

6.14 The left plot shows the mean ROC curves for the ensemble build with

different values of α and for the sub-ensembles built with the same values

of α. The values for α ranged between [3,4,5,6,7,8,9]. The right figure

presents the average FPR vs TPR for each ensemble built with a specific

α. These results were obtained for the Hepatitis dataset 97

6.15 Comparison ROC curves for ensembles built with random α in turquoise,

Gini index in blue or α = 7 in green. There results were obtained for the

Hepatitis dataset. 97

6.16 Bracketing of the impurity f = p− pα, where α = 8 98

A.1 Comparisons of the pruning approaches involving the coherence diversity

measure for the Heart dataset, for sampling rates 0.1 and 0.75. The results

for the 0.1 sampling rate are presented in the first column, whereas the 0.75

sampling rate in the second column. The top figure of each column displays

the results when the same data was used, whereas the bottom plot when

different data was used. 106

ix

A.2 Comparisons of the pruning approaches involving the coherence diversity

measure for the GMM5 dataset, for sampling rates 0.1 and 0.75. The results

for the 0.1 sampling rate are presented in the first column, whereas the 0.75

sampling rate in the second column. The top figure of each column displays

the results when the same data was used, whereas the bottom plot when

different data was used. 107

A.3 Comparisons of the pruning approaches involving the coherence diversity

measure for the Sonar dataset, for sampling rates 0.1 and 0.75. The results

for the 0.1 sampling rate are presented in the first column, whereas the 0.75

sampling rate in the second column. The top figure of each column displays

the results when the same data was used, whereas the bottom plot when

different data was used. 107

A.4 Curves of the three types of ambiguities versus the corresponding losses

that were derived from these. The test error versus the training ambiguity

was plotted for different sampling rates for ensembles formed of 5 trees (left

column) and 100 tress (right column) for the Australian dataset. The first

row shows the behaviour of the test cross entropy versus the training cross

entropy ambiguity, in the second row the test 0-1 loss versus its correspond-

ing training ambiguity is plotted, respectively the behaviour of the hinge

loss is presented in the third row of panels. The optimal sampling rate is

indicated in red. 113

A.5 Curves of the three types of ambiguities versus the corresponding losses

that were derived from these. The test error versus the training ambiguity

was plotted for different sampling rates for ensembles formed of 5 trees (left

column) and 100 tress (right column) for the Cancer dataset. The first row

shows the behaviour of the test cross entropy versus the training cross en-

tropy ambiguity, in the second row the test 0-1 loss versus its corresponding

training ambiguity is plotted, respectively the behaviour of the hinge loss is

presented in the third row of panels. The optimal sampling rate is indicated

in red. 114

A.6 Curves of the three types of ambiguities versus the corresponding losses

that were derived from these. The test error versus the training ambiguity

was plotted for different sampling rates for ensembles formed of 5 trees (left

column) and 100 tress (right column) for the Heart dataset. The first row

shows the behaviour of the test cross entropy versus the training cross en-

tropy ambiguity, in the second row the test 0-1 loss versus its corresponding

training ambiguity is plotted, respectively the behaviour of the hinge loss is

presented in the third row of panels. The optimal sampling rate is indicated

in red. 115

x

A.7 Curves of the three types of ambiguities versus the corresponding losses

that were derived from these. The test error versus the training ambiguity

was plotted for different sampling rates for ensembles formed of 5 trees (left

column) and 100 tress (right column) for the Ionosphere dataset. The first

row shows the behaviour of the test cross entropy versus the training cross

entropy ambiguity, in the second row the test 0-1 loss versus its correspond-

ing training ambiguity is plotted, respectively the behaviour of the hinge

loss is presented in the third row of panels. The optimal sampling rate is

indicated in red. 116

A.8 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Australian

dataset for the 0.05 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 117

A.9 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Australian

dataset for the 0.1 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 117

A.10 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Australian

dataset for the 0.2 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 118

A.11 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Australian

dataset for the 0.3 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 118

A.12 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Australian

dataset for the 0.4 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 119

xi

A.13 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Australian

dataset for the 0.5 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 119

A.14 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the German

dataset for the 0.1 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 120

A.15 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the German

dataset for the 0.2 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 120

A.16 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the German

dataset for the 0.3 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 121

A.17 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the German

dataset for the 0.4 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 121

A.18 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the German

dataset for the 0.5 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 122

A.19 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Cancer

dataset for the 0.05 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 122

xii

A.20 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Cancer

dataset for the 0.1 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 123

A.21 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Cancer

dataset for the 0.2 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 123

A.22 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Cancer

dataset for the 0.3 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 124

A.23 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Cancer

dataset for the 0.4 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 124

A.24 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Cancer

dataset for the 0.5 sampling rate, for 5 trees. The top plot shows the

ranking and the statistical similarities for all the approaches except for the

evolutionary algorithm from Section 4.4. The bottom plot analyses all the

approaches. 125

A.25 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Liver dataset

for the 0.05 sampling rate, for 5 trees. The top plot shows the ranking and

the statistical similarities for all the approaches except for the evolutionary

algorithm from Section 4.4. The bottom plot analyses all the approaches. . 125

A.26 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Liver dataset

for the 0.1 sampling rate, for 5 trees. The top plot shows the ranking and

the statistical similarities for all the approaches except for the evolutionary

algorithm from Section 4.4. The bottom plot analyses all the approaches. . 126

xiii

A.27 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Liver dataset

for the 0.2 sampling rate, for 5 trees. The top plot shows the ranking and

the statistical similarities for all the approaches except for the evolutionary

algorithm from Section 4.4. The bottom plot analyses all the approaches. . 126

A.28 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Liver dataset

for the 0.3 sampling rate, for 5 trees. The top plot shows the ranking and

the statistical similarities for all the approaches except for the evolutionary

algorithm from Section 4.4. The bottom plot analyses all the approaches. . 127

A.29 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Liver dataset

for the 0.4 sampling rate, for 5 trees. The top plot shows the ranking and

the statistical similarities for all the approaches except for the evolutionary

algorithm from Section 4.4. The bottom plot analyses all the approaches. . 127

A.30 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Liver dataset

for the 0.5 sampling rate, for 5 trees. The top plot shows the ranking and

the statistical similarities for all the approaches except for the evolutionary

algorithm from Section 4.4. The bottom plot analyses all the approaches. . 128

A.31 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Sonar dataset

for the 0.1 sampling rate, for 5 trees. The top plot shows the ranking and

the statistical similarities for all the approaches except for the evolutionary

algorithm from Section 4.4. The bottom plot analyses all the approaches. . 128

A.32 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Sonar dataset

for the 0.2 sampling rate, for 5 trees. The top plot shows the ranking and

the statistical similarities for all the approaches except for the evolutionary

algorithm from Section 4.4. The bottom plot analyses all the approaches. . 129

A.33 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Sonar dataset

for the 0.3 sampling rate, for 5 trees. The top plot shows the ranking and

the statistical similarities for all the approaches except for the evolutionary

algorithm from Section 4.4. The bottom plot analyses all the approaches. . 129

A.34 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Sonar dataset

for the 0.4 sampling rate, for 5 trees. The top plot shows the ranking and

the statistical similarities for all the approaches except for the evolutionary

algorithm from Section 4.4. The bottom plot analyses all the approaches. . 130

xiv

A.35 Comparisons of the tree selection approaches versus the pattern selection

approach (the evolutionary algorithm from Section 4.4) on the Sonar dataset

for the 0.5 sampling rate, for 5 trees. The top plot shows the ranking and

the statistical similarities for all the approaches except for the evolutionary

algorithm from Section 4.4. The bottom plot analyses all the approaches. . 130

xv

List of Tables

3.1 Dataset characteristics . 39

3.2 Mean correlation between different diversity measures and test error, across

all datasets from Table 3.1. The diversity was measured on the test data.

The correlation was evaluated using the non-parametric Spearman’s rank

method. The first column displays the results for bootstrapping without

replacement, whereas the second for bootstrapping with replacement. . . . 42

3.3 Mean correlation between different diversity measures and test error, across

all datasets from Table 3.1. The diversity was measured on the training

data. The correlation was evaluated using the non-parametric Spearman’s

rank method. The first column displays the results for bootstrapping with-

out replacement, whereas the second for bootstrapping with replacement. . 42

4.1 Dataset characteristics . 64

4.2 Results on datasets, mean over 30 runs given (lower and upper quartile in

brackets). Bold mean value indicates significant difference (Wilcoxon signed

rank two-tailed test, p = 0.05). 66

5.1 Symbols denoting the tree selection methods from Figure 5.4 81

5.2 Statistical comparisons of the tree selection schemes and the evolutionary

algorithm that selects patterns from Section 4.4. For each method the me-

dian of the test cross entropy over the 50 runs is displayed. The columns

of the tree selection methods from Sections 5.2, 5.3 have two values, with

the following meaning: the first one denotes the median of the test cross

entropy for the pruning method, whereas the second the value indicates the

median of the corresponding OIOO approach. Dark shading indicates the

best approach across all methods, whereas the lighter grey the ones statis-

tically indistinguishable. The blue underlining denotes the best approach

across the tree selection methods, whereas the red underlining indicates

the approaches statistically similar. The results shown are for the German

dataset. 82

6.1 Dataset characteristics . 91

xvi

The list of the symbols used is the following:

Symbol Meaning

M number of classifiers

N number of patterns

X datapoints

xn nth pattern

x′n nth feature

t target vector

tn ∈ {0, 1} nth target

ci, i ∈ {1..M} weights of the classifiers

ymn ≡ ym(xn) prediction of the mth classifier of the nth pattern

ym the mth classifier

Yn ≡ Y (xn) =
∑M

i=1 ciyin ensemble prediction of the nth pattern

Yn = {yin = yi(xn)}Mi=1 outputs of the ensemble members

Y ensemble

L01(Yn · tn) =

0 if Yn · tn ≥ 0

1 if Yn · tn < 0.
ensemble 0-1 loss for the nth target

amb01(Yn) = 1
2

∑M
i=1(

1
M Yn − ciyin)tn ensemble ambiguity derived from the 0-1 loss

Llog(Yn, tn) = −[tn log(Yn) + (1− tn) log(1− Yn)] ensemble log loss

ambCE(Yn) =
∑M

i=1 ciLlog(yin, tn)− Llog(Yn, tn) ensemble ambiguity derived from the log loss

LH(Yn, tn) = max(0, 1− tnYn) ensemble hinge loss

Cn class of functions with continuous nth derivative

xvii

Publications

The materials presented in chapters 3, 4 have been published in:

Carina Ivaşcu, Richard M Everson, and Jonathan E Fieldsend. Optimising diver-

sity in classifier ensembles of classification trees. In Applications of Evolutionary

Computation: 24th International Conference, EvoApplications 2021, Held as Part

of EvoStar 2021, Virtual Event, April 7–9, 2021, Proceedings 24, pages 634–648.

Springer, 2021. 128

The materials presented in chapter 5 have been published in:

Carina Ivaşcu, Richard M Everson, and Jonathan E Fieldsend. Optimising diversity

in classifier ensembles. SN Computer Science, 3(3):191, 2022.

xviii

Chapter 1

Introduction

1.1 Supervised learning

Machine learning is a popular field, widely used in our daily lives. From applications

ranging from voice or facial recognition to image processing or medical diagnosis, machine

learning is becoming a useful tool in our lives.

Supervised learning is a branch of machine learning that aims to find a mapping between

some input and output data [2]. According to the type of output data, supervised learning

is divided into to two sub-categories: classification and regression. Supervised learning

is used to answer questions such as: “How the weather is going to be tomorrow?”, “Is

the patient likely to have a specific illness?”, “Are the property prices going to increase

next year, taking into account the economic fluctuation?”, etc. Classification problems

are concerned with assigning the input vectors to a finite number of discrete categories

or classes. On the other hand, in regression problems the output contains one or more

continuous variables [3].

Machine learning techniques involve training a model to “learn” the patterns of the data,

in order to be able to recognise similar patterns on new, unseen data (called test data),

action called generalisation. A model is assessed according to its predictive capability,

which is quantified by the generalisation ability from the training patterns to the test

data.

The unseen data is supposed to have the same distribution as the training data, so that

the patterns learned during the training stage can be identified in the test data. If the

test data does not follow the same distribution, the model might fail to recognize the data

patterns correctly and may not generalise well [3],[4], [5], [6]. One way of ensuring that

training and test data have the same distribution, is by generating them from the same

data by using stratified k-fold cross validation [5],[7]. Formally in the case of supervised,

we can define a model in the following way:

Let f be a model, defined as a function f : X → Y , where X represents the data, as a

sequence of examples and Y the true classes of the examples (in the classification case), or

the targets (regression case). There can be many mappings that associate the data X with

1

1. Introduction

the targets Y , let us denote the family of models as F . The functions f belonging to the

family are defined on a set of random independent identically distributed examples drawn

from a probability distribution P (x, y), which is unknown, where x ∈ X and y ∈ Y . In

the classification case, Y is a discrete set, whereas in the regression case it is a continuous

set. In this thesis we will focus on classification.

Given all these possible models, the question arises, which model to choose? In order

to answer this question, we will evaluate each of these candidates models by using a loss

function, L. A loss (error) function quantifies the amount of incorrectly classified examples

or patterns. The best candidate model will be the one with the lowest average loss. The

average loss of a classifier can be defined in the following way:

R[f] =

∫
X,Y

L(y, f(x))P (x, y)dxdy (1.1)

where R is called the expected risk. Obviously, the best classifier will be the one that

minimises this quantity:

f∗ = arg min
f∈F

R[f] (1.2)

Since the distribution P is unknown, another metric in order to quantify the performance

of a model was defined, called the empirical risk minimization. The empirical risk mini-

mization method was firstly introduced in [8] and evaluates the loss on the training data:

Rerm[f] =
1

N

N∑
i=1

L(y, f(xn)) (1.3)

The empirical risk is an approximation to R because the data samples are presumed to

be drawn from P (x, y). The empirical risk minimization method is the closest metric we

have for assessing the model’s performance from the training process, since the test data

is unknown and the distributions of the two types of data are known.

1.2 Ensembles of classifiers

Obviously, the most important feature of a model is its prediction capabilities. Another

technique that has been shown to produce successful predictions is called ensemble aggre-

gation. An ensemble is a collection of classifiers, which combines their predictions into

one. It has been shown that a collection of classifiers performs better than a single one [9].

Ensemble predictions are obtained by combining the predictions of individual classifiers.

The most popular methods used in classification are majority voting or weighted voting.

Majority voting implies that each predictor assigns a class to a specific pattern and the

class that gets the most votes, will be the ensemble’s prediction for that particular example.

Mathematically, majority voting can be defined as:

Yn = argmaxclass

M∑
i=1

I(yin = class) (1.4)

2

1. Introduction

where Yn is the ensemble prediction and yin is the prediction of the ith classifier, both for

the nth pattern, M is the number of classifiers and I is the identity function.

Weighted voting requires assigning different weights to the predictions of individual base

models before combining them. The ensemble prediction via weighted voting can be

defined in the following way:

Yn =

M∑
i=1

ciyin (1.5)

where ci are the non-negative weights, that sum up to 1. The aggregating of the classifiers’

predictions is illustrated in Figure 1.1.

Figure 1.1. Schematic representation of ensemble predictions

Ensembles were introduced by Hansen and Salamon in [9], who have shown the improve-

ment in generalisation performance in an ensemble of neural networks. Many successful

ensemble techniques have been suggested in literature: bagging [10], boosting [11], random

forests [12] and negative correlation learning [13]. Bagging involves sampling different parts

of the data and feeding it to the classifiers in order to produce different models. After-

wards their predictions are averaged. Data can be divided into rows (patterns) or columns

(features). In the case of bagging, all features are considered, whereas the patterns are

randomly selected. Boosting gradually builds ensembles by training the models in mul-

tiple iterations. At each iteration the examples that are misclassified at an earlier stage

are given higher priority. Random forests on the other hand, train the trees with random

subsets of features. Each of these ensemble methods have been used in real-world appli-

cations. For example, random forests and boosting techniques have been used intensively

in classification and regression problems, with applications in the field of bioinformatics

[14], medical research [15], [16], forecasting stock prices [17], [18] etc. Neural-networks

have also been used successfully in deep learning problems, such as: object detection [19],

handwritten digit recognition [20], etc. Even though all these ensemble methods can be

suitable for machine learning tasks, the characteristics of the data, the computational

resources might lead to some of these ensemble techniques to be preferred.

3

1. Introduction

1.3 Accuracy and diversity

In the previous section, we emphasized the importance of ensembles. However, one ques-

tion that arises is how to select the component classifiers? It has been shown that an

ensemble with good generalisation performance should contain members which differ in

their predictions [21],[22]. Therefore, accuracy and diversity are main features to take into

account when building an ensemble.

It has also been shown that ensembles containing a large number of classifiers achieve a

good generalisation performance. However the computational time necessary to produce

the prediction is influenced by the number of models in the ensemble, therefore having a

large number of predictors is not always beneficial.

In this thesis, we will explore the effect that different diversity measures have on the

generalisation error of small ensembles. Our experiments show that the benefit of having

a larger ensemble is not significantly higher in terms of generalisation error, compared to

the one of a small ensemble. We have analysed diversity measures defined on the input or

output space. Diversity measures defined on the input space quantify differences amongst

the data selected to build the predictors. Whereas diversity measure defined on the output

space measure the differences between the models’ predictions.

There is no universal formula for diversity, therefore many types of diversities have been

introduced in the literature. Some studies could not support the influence that diversity

has on generalisation error, e.g. [23]. This aspect was explained in [1] which found that

different diversity measures have a different correlation level with the test error. The

authors found that there is a high correlation between diversity and generalisation error

when diversity is small, however the correlation decreases after diversity surpasses a certain

threshold.

A new diversity measure based on the ambiguity decomposition of regression ensembles

and the bias-variance decomposition was introduced in [21]. Based on this idea, we will

introduce new diversity measures, also called ambiguities. We will explore their theoretical

characteristics and evaluate their use empirically.

1.4 Research Questions

This thesis focuses on the effect that diversity has on reducing the generalisation error. We

have analysed the correlation of different diversity measures with the test error and have

introduced two new diversity measures based on the bias-variance decomposition, by using

the cross-entropy or hinge losses. We investigate the effect that the ambiguity obtained

from the cross-entropy (ambCE) has on reducing the generalisation error, with the aid of

an evolutionary algorithm. We have conducted our analysis in the case of random forests,

due to their high generalisation performance. Next, we suggest pruning methods that

involve the ambiguity based on the cross-entropy measure and study the effects on the

generalisation error. Finally, we inject diversity in a random forest by building trees with

different asymmetric impurities and investigate the impact that it has on the generalisation

error. Therefore, the research questions that the thesis focuses on are:

1. What is the correlation between various diversity measures and generalisation error?

4

1. Introduction

2. Which diversity measure has the most impact on generalisation error reduction?

3. Does pruning according to diversity measures have a positive impact on generalisa-

tion error?

4. Does injecting diversity in a random forest by building trees with different impurities,

contribute to error reduction?

1.5 Contributions of the Thesis

This thesis includes the following contributions to the field of evolutionary optimisation

and machine learning.

1. The derivation of two new ambiguity measures, based on the bias-variance decom-

position by using the cross-entropy error or hinge loss

2. An analysis of the properties of the above mentioned ambiguities. Out of the three

ambiguity measures, only the one derived from the cross-entropy, ambCE , satisfies

all the desired properties (is always positive and zero if and only if the predictions of

all the constituent classifiers agree). We prove that the ambiguity obtained from the

hinge loss, ambHL does not satisfy the property if it is equal to 0, then all classifiers

predict the same.

3. An evolutionary algorithm is developed which favours ambiguous ensembles, which

empirically is shown to decrease the generalisation error for small ensembles over a

range of different classification problems

4. A series of ensemble pruning techniques that incorporate the ambCE diversity mea-

sure are introduced, which are shown to be efficient in reducing the generalisation

error.

5. An analysis of the effects of building trees with asymmetric impurities, as a method

of injecting diversity is provided. Impurity functions are used in building decision

trees, by determining the optimal split of a node. Asymmetric impurities bias the

predictions of a tree to a specific class and are used in the case of imbalanced datasets.

1.6 Outline of the thesis

This chapter briefly presents some basic knowledge for the subsequent chapters. We have

also presented the research questions that this thesis focuses on and the main contributions

of the thesis.

Chapter 2 reviews basic concepts from the literature. Section 2.1 describes the concepts

of supervised learning. The bias-variance decomposition is described in section 2.2 along

with some methods of reducing each of these components. In section 2.3 ensembles are

defined, whereas section 2.4 reviews some popular ensemble techniques such as bagging

and boosting. Section 2.4.4 presents a popular ensemble method, also used in our ex-

periments, random forests. The main factors in building successful ensembles, accuracy

and diversity are presented in section 2.5. Finally, since diversity and accuracy are key

features in designing ensembles, a multi-objective approach can be used. Techniques for

multi-objective optimisation are presented in section 2.6. Some state of the art algorithms

5

1. Introduction

which involve multi-objective optimisation are summarized in Section 2.7. Another impor-

tant aspect to consider when building ensembles, is computational costs. While in some

cases having a large ensemble would be beneficial in terms of accuracy, it would increase

the computational time and memory used. Ensemble reduction techniques, which aim to

reduce ensemble size without compromising too much on ensemble accuracy, are presented

in section 2.8.

Chapter 3 investigates the correlation between different diversity measures and the general-

isation error. We considered the following diversity measures: coincidence failure diversity

(CFD) [24], disagreement (DIS) [25], Kohavi-Wolpert (KW) [26], ambiguity [1]. We also

introduce a new diversity measure, called coherence, which measures the angle between

the predictions of each classifier and the ensemble prediction. Ensembles obtained by

using bagging are employed in this investigation. We analyse the relationship between

these diversity measures and the generalisation error in ensembles obtained by varying

features or patterns, in Section 3.3. Our results empirically demonstrate the superiority

of the ambiguity measure defined in [1], which has a negative correlation with the test er-

ror. In Section 3.6 we study the effect that different ambiguity based pruning techniques

have on the generalisation error. Pruning methods involve reducing the size of an model,

by discarding non-essential components which do not have a high impact on the model’s

performance. Our results show that pruning according to diversity does not yield better

generalisation errors than random ensembles.

In Chapter 4 we continue to investigate the correlation between ensemble generalisation

error and diversity. We introduce two new ambiguity measures derived from the log

loss or hinge loss. We analyse their properties. We characterize the trade off between

ensemble training ambiguity and generalisation error on ensembles of decision trees, by

using different sampling rates. The sampling rates represent the percentage of the training

data that is randomly selected in order to build models. We find that generalisation error

is negatively correlated with low diversity at high sampling rates; conversely generalisation

error is positively correlated with high diversity and low sampling rates. We performed

this experiment on multiple datasets and for each of them there was a different sampling

rate for which the lowest test error was achieved. Also, our experiments showed that it is

impossible to predict from the training data, the sampling rate that would yield the lowest

test error. As a result, we designed an evolutionary algorithm which maximises ambiguity

to obtain this rate. Our results show that the generalisation error decreases at the end of

the optimisation, which demonstrates empirically the positive effect that ambiguity has

on reducing ensemble error.

In the previous chapter our experiments were based on small ensembles, however in some

cases a higher number of predictors might make the ensemble more stable and robust to

variations in the training data or to noisy data. If individual members make errors on

specific patterns due to noise, ensembles having more predictors might overcome the issue.

A drawback of having big ensembles, is that a big number of predictors would increase

linearly the execution time. As a result, determining the right number of predictors

is not straightforward, therefore Chapter 5 focuses on pruning techniques, in order to

determine the optimal number of trees. We define pruning methods that favour ambiguity

6

1. Introduction

(the one derived from the log loss, ambCE). We have developed two methods, one that

starts with a forest of trees and at each iteration a tree is discarded according to different

criteria and one that has a fixed number of trees, m and tries to add and discard a tree

at each iteration. We have also designed a new evolutionary algorithm that randomly

selects m trees and keeps always the more ambiguous forest. We have compared all these

approaches and concluded that the techniques that favour ambiguous ensembles, along

with the evolutionary algorithms yielded the best generalisation errors.

Chapter 6 explores a different path of ensuring diversity in a forest. We investigate the

effect that building trees with the different impurities has on the ensemble error. We

analyse in the case of imbalanced datasets, where the minority class is of more interest.

It has been proven that asymmetric impurities that bias the prediction in the direction

of the minority class, are more beneficial in the case of imbalanced classes. We compare

the behaviour of trees built with asymmetric impurities against forests built with sym-

metric impurities. Our results show that there is no significant difference between the two

approaches.

7

Chapter 2

Background and related work

This chapter summarizes the literature related to this thesis. Section 2.1 describes a

sub-class of machine learning, called supervised learning. Section 2.2 presents the bias-

variance trade off and its importance in the prediction process. Section 2.3 describes

into more detail the concept of ensembles, while Section 2.4 presents popular ensemble

methods. Section 2.5 reviews two key aspects in building successful ensembles, accuracy

and diversity. These two factors are successfully combined in multi-objective algorithms,

presented in Sections 2.6 and 2.7. Section 2.8 reviews ensemble reduction methods from

the literature.

2.1 Supervised learning

One of the aims of machine learning is to develop computer algorithms and techniques

“that are able to learn i.e. to improve automatically through experience” [2]. Any machine

learning technique is formed of two stages: it first selects a candidate model and then

in the second stage it estimates the parameters of the model with the aid of available

data and a learning algorithm [2]. A widely used type of machine learning is supervised

learning. The algorithms belonging to this class select a model that approximates the

mapping between the input and output data [2]. Supervised learning is divided into two

sub-categories: classification and regression. Both types of supervised learning can be

described mathematically as being able to train a machine F , such that:

F : x→ t

t = F(x,w)

where x is the input vector, t is the target vector and w are the parameters of the model

that can be adjusted to control the behaviour of F [27]. However, this is not always

possible, and F is just an approximation of the required mapping.

Classification problems are concerned with assigning the input vectors to a finite number of

discrete categories. On the other hand, in regression problems the output contains one or

more continuous variables [3]. Another difference between classification and regression is

the fact that they have different error functions. The regression error function is often the

8

2. Background and related work

sum of squared errors [27], which is used in conjunction with the assumption of Gaussian

distributed noise:

LMSE(y) =
1

2σ2

N∑
n=1

(tn − y(xn))2 (2.1)

where tn are the targets, y the model, σ the standard deviation of the samples, xn the nth

pattern.

In the classification case where the targets are discrete, a suitable error function would have

to minimize the difference between the predicted values and the true classes. Therefore a

good candidate would be the cross entropy error (log loss). In this thesis we only consider

binary classification, in which case the output of the supervised machine, y(xn) is the

estimated probability of belonging to one class. The log loss in a binary classification case

would be defined as [27]:

Llog(y) = −
N∑
n=1

[tn log y(xn) + (1− tn) log(1− y(xn))] (2.2)

In this thesis we will focus on supervised learning, using classification.

Another goal of machine learning techniques is to ensure generalisation. Generalisation is

the ability of a learner to perform well when predicting on unseen data [28]. Learning the

exact mapping that would fit training data and recognize an unseen pattern is difficult in

practice, due to the noise present in the training data.

Since a learning algorithm receives only a subset of training data, the learning goal is to

create a statistical model that will fit as much as possible the training data, but at the

same time given another related data set (generated by the same process as the training

data), the error of the model will not become significantly different [28]. This statement

describes two important terms in machine learning: bias and variance, which are the

causes of prediction error.

Understanding these two sources of error is important, because by taking measures to

minimize them as much as possible, we would obtain more accurate models. However, by

trying to reduce one of them, it will increase the other one and vice-versa, also known as

the bias and variance trade-off. In the next section we will present these two sources of

errors into more detail and also suggest techniques to balance them.

2.2 Bias and variance trade off

The bias and variance decomposition was firstly introduced in [29]. These two quantities

were defined in the regression case, by using the mean squared error (see Eq 2.1). Let y

9

2. Background and related work

be the approximated function and t the targets. From Equation 2.1 we will obtain:

MSE(y) = E[(y − t)2] = E[(y − E(y) + E(y)− t)2]

= E[(y − E(y))2 + 2(y − E(y))(E(y)− t) + (E(y)− t)2]

= E[(y − E(y))2] + E[2(y − E(y))(E(y)− t)] + E[(E(y)− t)2]

= E[(y − E(y))2] + 2(E(y)− t)E(y − E(y)) + (E(y)− t)2

= E[(y − E(y))2] + 2(E(y)− t)(E(y)− E(y)) + (E(y)− t)2

= E[(y − E(y))2] + (E(y)− t)2

where E is the expectation over all possible training sets. The above equality proves that

the mean squared error is can be expressed as the sum of two terms: the bias and the

variance.

The bias is the defined as:

Bias2 = (E(y)− t)2 (2.3)

The formula for variance is:

E[(y − E(y))2] (2.4)

The error due to bias is based on the difference between the model suggested by the

algorithm (on an average over all data sets and initial conditions) and the correct mapping

[28]. The simplifying assumptions made by a model to make the desired mapping easier

to learn are a source of bias [30].

If we consider a simple model F , which is independent of the data and differs from t, the

bias term will be very high. On the other hand, complex models have a low bias [28].

The variance error refers to the variability of the model for a given pattern, given all

possible weight initialization and choice of input parameters. The target function is de-

termined from the training data by a machine learning algorithm, therefore the algorithm

it is expected to have some variance. Ideally, the target function should not change too

much when switching from one dataset to another, meaning that the algorithm is good at

determining the hidden underlying mapping between the inputs and the output variables.

Machine learning algorithms with high variance are strongly influenced by the charac-

teristics of the training data. Therefore, the number and types of parameters used to

characterize the mapping function are influenced by the specifics of the training data [30].

For a simple model f , the variance will be zero (f being independent of the data), whereas

for a complex model the variance will be high [28].

As a result, algorithms that suggest small changes to the estimate of the target func-

tion with changes to the training dataset, have low variance. Conversely, algorithms that

suggest large changes to the estimate of the target function with changes to the training

dataset, have high variance [30].

Figure 2.1 illustrates the relationship between the complexity of the algorithm and the

error due to bias and variance.

Similar decompositions have been suggested in the classification case [31], [32], [33] how-

10

2. Background and related work

Figure 2.1. Bias and variance relationship

ever none of them provided decompositions similar to the regression case, with the same

obvious interpretations (i.e loss = bias+variance) [1]. In our work we have also suggested

a series of decompositions by using different loss functions.

Methods of reducing bias and variance

Bias and variance can be reduced by several ensemble methods. For example, both of

them can be reduced by using boosting algorithms [34], whereas variance can be reduced

by using bagging or ensembles [35]. Next we will present the ensemble concept.

2.3 Ensembles

Ensemble methods are collections of predictors, that obtain better prediction performance

than a single predictor, by reducing the variance. The models are trained on the same

data and their predictions are combined for the final prediction of the ensemble. Figure

2.2 describes how an ensemble is built in the case of classification .

Figure 2.2. The figure on the left illustrates the ensemble prediction process, when subpatterns of
the data are selected when creating individual models. The figure on the right denotes the same
process when subfeatures are used.

In the next section we will present popular ensemble learning techniques, such as bagging

and boosting. We will consider M to be the number of base classifiers and N the total

number of patterns.

2.4 Ensemble learning techniques

2.4.1 Boosting

Boosting is an ensemble meta-algorithm that converts weak learners to strong ones. A

weak learner is considered a classifier that can label data better than random guessing

11

2. Background and related work

[34].

Boosting algorithms contain weak classifiers that learn iteratively and these classifiers are

combined to form a strong classifier. After being added, they are weighted according to

their accuracy. After the addition of a weak learner, the data are given different weights:

the misclassified examples gain weight, whereas correctly classified examples lose weight.

As a result, the examples that were misclassified by previous learners will be used the

most by future weak learners [34]. In this way the ensemble corrects the errors made by

earlier models, reducing bias. Additionally by combining multiple weak learners into a

strong model, boosting can also help reduce variance.

A frequently used boosting algorithm is called ADABOOST. The pseudocode for AD-

ABOOST is presented in Algorithm 1, where I(true) = 1 and I(false) = 0 and yj(xi) is

the prediction of the jth classifier of the ith pattern, xi [36]. ADABOOST starts by assign-

ing equal weights to all examples in line 1. At each iteration, a new model is being built

according to the current weights. The total error of the current model is being calculated

in line 5. If the error is worse than random guessing, then the weights are reinitialised

from a uniform distribution and the process starts again (lines 7-9). If the error is less

than random guessing, then the amounts of say/importance of the predictor, αj is being

calculated, defined in line 10. After this step the new weights are being calculated (line

11). If a pattern was correctly classified by the model, then the new weights given to this

particular datapoint will be wj+1(i) = wj(i)e
αj and wj+1(i) = wj(i)e

−αj if it was miss-

classified. In this way, patterns that were correctly classified are given less importance

in the prediction process and the new model will focus more on more difficult to predict

examples. Finally, the model with the highest importance will be returned. The test

data will be passed to trained ensemble and the final prediction will be made according

to majority voting.

12

2. Background and related work

Algorithm 1 ADABOOST

Input: X = {xi}Ni=1 . training data
Input: t = {ti}Ni=1 . targets
Input: NoTrials
Input: WeakLearner . a weak learner
Output: yf . ADABOOST classifier

1: w1(i) = 1
N ∀i . initially a uniform distribution

2: for j = 1→ NoTrials do

3: pj(i) =
wj(i)∑
i wj(i)

4: yj = WeakLearner(pj)
5: εj =

∑
i pj(i)I(yj(xi) 6= ti) . total error

6: if εj > 0.5 then
7: restart with uniform weights
8: wj(i) = 1

N
9: go to line 3

10: αj = 1
2 log

(
1−εj
εj

)
. amount of say/importance

11: wj+1(i) = wj(i)

{
eαj , if pattern i is correctly classified

e−αj , otherwise
. reinitialize weights

12: return yf (x) = argmaxy∈t
∑NoTrials

j=1 αjI(yj(X) = t)

2.4.2 Bagging (Bootstrap aggregating)

Bagging is an ensemble meta-algorithm used in statistical classification and regression.

Bagging as a technique splits the training set X of size N , into m training sets Xi of size

n by sampling from X uniformly with replacement. As a result, some observations can

appear several times in Xi. This type of sampling is called bootstrap sampling. Then

m models are generated by fitting the m bootstrap samples and their predictions are

combined by averaging the output (in the regression case) or by voting (in the classification

case) [35].

This technique improves the accuracy and stability of algorithms and it is used to prevent

overfitting and to reduce variance [35]. It reduces variance by making the model less sen-

sitive to fluctuations in the training data. This is achieved by training multiple diverse

models from bootstrap samples and averaging their predictions.

2.4.3 Negative correlation learning algorithm

A different type of ensemble learning algorithm, called negative correlation learning was

introduced in [13], [37]. This approach focuses on creating biased learners, whose errors

are negatively correlated and therefore tend to cancel when averaged in the ensemble. It

was developed for neural networks, the error of each neural network being defined as:

ei =
N∑
i=1

(yin − tn)2 + λpi (2.5)

13

2. Background and related work

where yin is the prediction of ith network of the nth pattern, tn the corresponding target,

λ the weighting parameter of the correlation penalty term, given by:

pi = −
N∑
i=1

(yin − Yn)2 (2.6)

where Yn is the ensemble prediction for the nth pattern.

Rather than training individually all the ensemble members, which would produce uncor-

related errors, these learners are trained simultaneously, through the correlation penalty

term. The λ term controls the degree of correlation between the members, a value of λ = 0

would imply that the networks are trained individually and uncorrelated.

Brown et al [38] offered a statistical interpretation of the efficiency of this method and

also found an upper bound for the penalty term, by using the properties of the Hessian

matrix. In order for the errors of the networks to converge to a local minima and therefore

contribute to a potential decrease in ensemble error, the authors have shown that the

penalty term should satisfy the following inequality:

λ <
M

M − 1

where M is the number of predictors

2.4.4 Random forests

Another well-known example of ensembles is random forests. A random forest is an en-

semble of randomly trained decision trees, used in classification, regression and other tasks

[39], [40]. A decision tree is a binary tree, where each non-leaf node represents a binary

partition of the feature space.

A decision tree consists of a sequence of nodes, starting from the first node, called the

root. Nodes can be split into one or two branches, called the left or the right child or

cannot be split anymore, in which case they are called leaves.

A split consists of an attribute of the data and a value or threshold that determines the

split. For each pattern that will be evaluated by the tree, the value of its corresponding

attribute will be compared to the threshold, if it is lower, then the pattern will go down

the left branch and otherwise on the right.

In order to determine the best split, an impurity function is used.

The splitting process is repeated until a leaf is reached. In every leaf a final prediction

is stored. In the classification case each leaf contains the empirical distribution over

the classes associated with the training data that reached the leaf. The leaf prediction

model for the tth tree from the forest is: pt(c|X), where c ∈ ck represents the class. All

trees are trained independently in a forest. In the testing phase each pattern is pushed

simultaneously through all trees starting from root until it reaches the leaves [40]. The

14

2. Background and related work

ensemble prediction will be the average over all leaf predictions:

p(c|X) =
1

M

M∑
t=1

pt(c|X)

for a forest formed of M trees. By averaging the predictions the effect of noise is reduced

[40].

The “randomness” refers to the fact that the trees from the forest are randomly different

from each other. This ensures de-correlation between tree predictions, leading to improved

generalisation. Randomness is ensured during the training phase and two of the most

popular methods are:

• bagging

• randomized node optimisation

Bagging (short form for bootstrapping aggregation learning) is an ensemble technique,

which involves providing each predictor a different training data, obtained by sampling

uniformly with replacement from the original data.

Randomized node optimisation for a specific node j is based on selecting a subset of

parameters, Tj , from the set of all possible parameters θ which we denote by T , and train

that specific node with those parameters. The optimisation is done by finding for each

split node j the parameters that maximise the information gain:

θ∗j = arg max
θj∈Tj

Ij

where Ij is the information gain. The information gain [41] is a metric to establish which

would be the best split for a decision tree in terms of class separation and predictabil-

ity performance. Other metrics can be used like Gini index [42] and different impurity

functions. Next we will present the concept of impurity functions, as the experiments in

Chapter 6 are based on these concepts.

2.4.5 Impurity functions

Definition 2.4.1. An impurity function, f : [0, 1]→ R, is a concave function, satisfying

the following properties [43]:

1. f is continuous on [0, 1] and C3 on (0, 1);

2. f ′′ < 0 on (0, 1)

3. f(0) = f(1)

where C3 means that the 3rd derivative of the function is continuous.

An impurity function can be used on all the attributes and for all possible thresholds, and

the pair that would yield the lowest value of the impurity will be chosen as the optimal

split. f maps the re-scaled data on the chosen attribute/feature to impurity.

15

2. Background and related work

Figure 2.3. The values of the Gini index are plotted on the y-axis, whereas the corresponding
probabilities are shown on the x-axis.

The impurity functions can be divided into two categories: symmetric and asymmetric.

Next, we will present the two types of impurities into more detail.

2.4.6 Symmetric impurities

Symmetric impurities are given by symmetric functions on [0, 1] . A function f is sym-

metric if:

f(p) = f(1− p) (2.7)

One of the most used impurity functions in building decision trees is the Gini index,

defined as:

g(p) = 2p(1− p), p ∈ [0, 1] (2.8)

The Gini impurity evaluates how mixed the classes are from each of the groups, determined

by the split. A perfect separation would yield a score of 0, whereas in the worst case the

classes would be distributed equally in both groups, yielding a score of 0.5 [44].

The Gini function is plotted in Figure 2.3.

2.4.7 Asymmetric impurities

Asymmetric impurities as opposed to symmetric impurities do not satisfy Equation (2.7).

They are used in the case of imbalanced classes, where one class occurs much more fre-

quently than the other, the minority class usually being the one of interest. Asymmetric

impurities bias the predictions towards one class, which can be the minority class in the

case of imbalanced classes.

A family of asymmetric impurity functions was defined in [45], defined by the following

equation:

h(p) =
p(1− p)

(−2w + 1)p+ w2
(2.9)

where p is the probability of the minority class from the leaves and w is a parameter

specified by the user. The plot for this impurity can be found in Figure 2.4. Standard

decision trees would reach maximum uncertainty when the probability of a class is 0.5.

However, in the case of imbalanced datasets this scenario is rarely encountered, due to

16

2. Background and related work

Figure 2.4. The values of the h impurity function from Equation 2.9 are plotted on the y-axis,
whereas the corresponding probabilities are shown on the x-axis. This plot was obtained for w = 0.8

the fact that the minority class appears in fewer samples. In such cases, since the focus

is on correctly predicting the minority class, the level of maximum uncertainty should be

decreased as much as possible. Marcellin et al [45] have defined parameter w as being

the value for which the maximum uncertainty would be achieved for the predictions. The

effect that these asymmetric functions would have in terms of recall and precision in

comparison with a symmetric impurity was analysed, by using different classifiers (C45

[46] and Random forests). The experiments showed that the most effective classifier was

the random forest with an asymmetric impurity. A similar analysis was done in [47], where

the performance of asymmetric versus symmetric impurities was compared by using ROC

curves, also in the case of imbalanced classes.

In [43] the authors characterize different impurity functions formally, providing different

theorems that aid the comparison between different impurity functions. First of all, they

introduce the notion of a preimpurity function, which is a function f : [0, 1]→ R, satisfying

the following conditions:

1. f is continuous on [0,1] and C3 on (0, 1)

2. f
′′
< 0 on (0,1)

If f(0) = f(1) = 0, then f is an impurity function. The authors use this notion of preim-

purity functions in order to have more flexibility in fixing the values of the end points.

They define the notion of positive prevalence of a node, as being the weighted proportion

of the positive class in that node, denoted by c, respectively a and b for the left and right

child.

The authors provide the following mathematical framework in order to characterize im-

purity functions.

Proposition 1. Given a node n, with positive prevalence c and total weight W , with left

and right positive prevalences a and b and weights Wl and Wr, then:

Wl = W
b− c
b− a

, Wr = W
c− a
b− a

17

2. Background and related work

and the total impurity of the split given the preimpurity function f is:

W

(
b− c
b− a

f(a) +
c− a
b− a

)
f(b)

Definition 2.4.2. Let f, g be two preimpurity functions. f is equivalent to g if for every

node n and every set of possible splits, the optimal split with respect to f is the same as

the one for g. Mathematically, this condition can be written as:

f ⇔ g if ∀c ∈ (0, 1) ∀finite subsets S ⊆ ([0, c)× (c, 1]) ∪ (c, c)

we have

arg
(a,b)∈S

min

(
b− c
b− a

f(a) +
c− a
b− a

f(b)

)
= arg

(a,b)∈S
min

(
b− c
b− a

g(a) +
c− a
b− a

g(b)

)

Definition 2.4.3. Let f, g be two preimpurity functions. f splits more positively than

g if for every node n and every set of possible splits, there exist an optimal split with

respect to f that produces a rights child with positive prevalence greater than or equal to

the positive prevalence of every node produced by every optimal splits of n with respect to

g. Mathematically, this condition can be written as:

if ∀c ∈ (0, 1) ∀finite subsets S ⊆ ([0, c)× (c, 1]) ∪ (c, c)

we have

max

{
arg

(a,b)∈S
min

(
b− c
b− a

f(a) +
c− a
b− a

f(b)

)}
≥ max

{
arg

(a,b)∈S
min

(
b− c
b− a

g(a) +
c− a
b− a

g(b)

)}

Equivalently, g splits more negatively purely than f if :

min

{
arg

(a,b)∈S
min

(
b− c
b− a

g(a) +
c− a
b− a

g(b)

)}
≤ min

{
arg

(a,b)∈S
min

(
b− c
b− a

f(a) +
c− a
b− a

f(b)

)}

In [43] the authors have used class weighting as a technique to bias a tree’s prediction to-

wards one class. They show that the optimal splits given by weighting a class is equivalent

to applying a transformation to an impurity function.

Definition 2.4.4. Given w > 0, define the following function φw : [0, 1]→ [0, 1] by:

φw(p) =
wp

1 + (w − 1)p

Definition 2.4.5. Define the transformation Tw for w > 0 on a set of functions f defined

on [0,1] by:

(Twf)(p) = (1 + (w − 1)p)(f ◦ φw)(p)

18

2. Background and related work

where ◦ denotes the function composition operator

Definition 2.4.6. Given f a preimpurity function, f respects class weighting if for all

w1, w2 > 0, we have:

w1 ≤ w2 → Tw1f splits more positively purely than Tw2f

Impurity functions like Gini and the entropy respect class weighting. Another example of

impurity function that respects the class weighting is f(p) = p − pα, α > 1 and f(p) =

pα − p, 0 < α < 1.

The authors define also the notion of cost-insensitive function as being a function insen-

sitive to class weighting, meaning that class weighting does not affect the optimal splits.

More formally: f is a cost insensitive if f is equivalent to Twf, ∀w > 0.

Another interesting result about a family of impurity functions is the following:

Theorem 1. Let f be an impurity function, which f ∈ C4 on (0,1). Then f is cost-

insensitive if and only if f is equal to a positive multiple one of the functions from the

family fα given by:

fα(p) = pα(1− p)1−α, α ∈ (0, 1)

Also, fα splits more positively purely than fβ if and only if α ≥ β.

Next we will present examples from the literature when asymmetric impurities were used

in conjunction with imbalanced datasets.

2.4.8 Applications of impurities

A frequent situation in real world problems is when the classes have different misclassi-

fication costs. For example in the case of cancer datasets, a false negative might result

in the death of a patient and would have much higher consequences than a false positive.

One method of dealing with these issues is the use of asymmetric impurity functions when

determining the splits, in the case of decision trees. These asymmetric impurities bias

the predictions to a specific class, as opposed to the symmetric impurities for which the

predictions are random.

Real world applications often exhibit class imbalance, when one class occurs much more

frequently than the other. In some cases the minority class is of great interest, in which

case the accuracy of a learner might not suffice in calculating its performance. In such situ-

ations, the best approach would be to evaluate the true positive rate and the false positive

rate and maximise the AUC (area under the receiver operating characteristic curve). The

positive class is considered to be the minority class. Class imbalance and asymmetric mis-

classification costs are connected to one another. Imbalance could be tackled by increasing

the cost of misclassifying the minority class, whereas one way to force an algorithm to be

cost sensitive could be done by deliberately imbalancing the classes during training [106].

In order to counteract imbalanced classes, approaches like under-sampling the majority

class (reducing its appearance) or over-sampling the minority class have been developed.

One way of doing this could be done by class weighting (the weights of the chosen class

for all examples is scaled by a factor) [43].

19

2. Background and related work

In [48] the authors tackle the imbalanced datasets problem by combining external ap-

proaches with internal approaches and comparing their performances. External methods

of dealing with imbalanced classes imply under-sampling or oversampling. Numerous

methods to reduce the imbalance have been developed, for example for the oversampling

strategies, algorithms like SMOTE [49] and Borderline2-SMOTE [50] have been developed,

which involve selecting randomly a minority class instance and its k nearest minority class

neighbours. In the case of under-sampling clusters including the majority classes instances

could be built, and each cluster could be represented by its centroid. Internal methods

refer to learning methods that incorporate some bias towards the minority class. Also

some hybrid methods that combine the two approaches (internal and external) have been

developed. In the case of the decision trees, internal methods of dealing with imbalanced

class include:

1. Adapting the split criteria

2. Using a particular pruning scheme

3. The assignment rule of a class to each example

Guermazi et al considered adapting the split criteria by using three asymmetric impurity

functions:

1. The off-centered entropy, defined by: η(p) = −π log2(π)− (1− π) log2(1− π)

where π =

p
2w , if 0 ≤ p ≤ w
p+1−2w
2(1−w) , w ≤ p ≤ 1

and w is a parameter defined by the user, which

represents as before the maximum level of uncertainty

2. Weighted information entropy (IEW), IEW (pw) = −pw log2 pw − (1− pw) log2(1−
pw)

where pw(Di) = qi|Di|∑|D|
i=1 qi|Di|

and qi is the weighted coefficient of the class Di, which

is defined as qi = |U |
|UDi |

, where U is the set of objects and UDi contains the elements

from the Di class

3. The asymmetric entropy defined in equation 2.9

Chaabane et al [48] also studied the particularities of the minority instances, by classifying

them into safe and unsafe minority patterns (which are also divided into borderline, rare

and outlier examples). Unsafe patterns represent the ones that are more likely to be mis-

classified [51]. Borderline examples represent the instances close to the decision boundary.

Outlier examples are considered to be single minority examples which are inside the ma-

jority class region, whereas rare examples are isolated few minority instances also located

in the majority class region [48]. The authors combined the three asymmetric impuri-

ties with the over-sampling, under-sampling techniques mentioned above and with hybrid

method SMOTE-ENN. SMOTE-ENN uses the techniques from the SMOTE method, but

after that performs a cleansing of the data, by using the ENN method. The ENN tech-

nique implies removing from the dataset any training example that is misclassified by its

three nearest neighbours [52]. In order to asses the performance of each method, the true

20

2. Background and related work

positive rate, true negative rate and IBA (Index of Balanced Accuracy) metric were used

with the aid of statistical tests. The IBA metric is defined as:

IBA = (1 + 0.1× (TPR− TNR))× TPR× TNR

where TPR stands for true positive rate and TNR for true negative rate.

The authors’ findings include that the undersampling methods are more efficient when

dealing with unsafe data, however when IBA is used as a metric, this method is more

performant in the case of outlier data. In this case, there was not a significant improvement

in the case of oversampling techniques of hybrid methods. In the case of safe data sets,

non-sampling seemed to be the most effective.

After introducing the properties of some state-of-the-art ensemble methods, next we will

present two key factors in building successful ensembles.

2.5 Accuracy and diversity

When constructing ensembles two essential features should be taken into account, which

are accuracy and diversity. The more accurate the classifiers are, the more similar their

predictions are likely to be. Since ensembles are needed for better generalisation, similar

accurate ensembles would exclude the need for ensembles, therefore diversity between

members is needed. The more diverse the classifiers are, the more spread their predictions

will be around the desired output, ensuring that the mean value of their predictions will

be close to the target value. Diversity has also been shown to be effective in reducing

the variance of ensembles. In order for the outputs of the members to be around the

target value, accuracy is required. Therefore, in order for an ensemble to be performant

in generalising, the members have to be accurate and diverse. This aspect describes the

accuracy and diversity trade off [53]. Next we will present these two concepts.

2.5.1 Accuracy

Accuracy calculates the rate of correctly classified patterns. In order to calculate the

accuracy of an ensemble formed of M predictors, we first combined the predictions of the

base classifiers by majority voting :

Yn =

0 1
M

∑M
j=1 yjn ≤ 0.5

1 otherwise
(2.10)

where yjn is the prediction of the nth pattern by the jth base classifier

Then the training accuracy of the ensemble is calculated by using the following formula:

acc(Y) =

N∑
i=1

Yi(+)/N, (2.11)

where Yi(+) denotes if the ith pattern is correctly classified, Y the ensemble, N is the

total number of patterns [54].

21

2. Background and related work

2.5.2 Diversity

In [55] there are presented four methods for creating diverse ensembles. Diversity can be

achieved by: using different learning algorithms, initializing learning models with different

structures or weights, supplying different training data [54].

Since a unique definition for diversity does not exist, many diversity measures have been

proposed. Next we will present a list of them.

1. Coincident failure diversity (CFD)

The coincident failure diversity is the property of different learners missclasifying

different patterns. This diversity measure uses the value pn which is the probability

that n classifiers predict incorrectly kn patterns. Therefore, we have:

pn = kn/N,

The formula of the CFD measure is :

divCFD =

0 if p0 = 1

1
1−p0

∑M
i=1

M−i
M−1pi if p0 < 1

(2.12)

This diversity measure ranges from 0 to 1. 0 corresponds to the least diverse ensemble

(when they simultaneously classify correctly or incorrectly the same patterns) and

1 to the most diverse (when the learners missclasify different patterns). The CFD is

a non-pairwise diversity measure on the objective space [54].

2. Disagreement measure (DIS)

DIS uses the elements of an oracle matrix, which is defined as:

oi,j =

+ if xi is correctly classified by hj ,

− otherwise.

Lets consider two base classifiers hi and hj , then let ni,j(a,b) be the number of patterns

on which the oracle output of hi and hj is a and b.

The DIS measure is defined as:

divDIS =
2

NM(M − 1)

M∑
i=1

M∑
j=i+1

ni,j(+,−) + ni,j(−,+) (2.13)

Basically this diversity measure calculates for each two classifiers how many times

their predictions differ and then averages over all pairs. It is a pairwise diversity

measure on the objective space. Its values also range from 0 to 1, 0 being the least

diverse ensemble and 1 corresponding to the maximum diversity.

3. Hamming distance diversity measure (HD)

The HD diversity measure is defined on the input space and it calculates how different

22

2. Background and related work

every two features or pattern vectors are from each other. The formula is:

divHD =
2

NM(M − 1)

M∑
i=1

M∑
j=i+1

N∑
k=1

(x′i(k)⊕ x′j(k)) (2.14)

where x′i(k) is the kth element of the feature vector x′i and ⊕ is the logical exclusive

operator or [54]. Its values range also from 0 to 1.

4. Double fault measure

This measure, as the DIS measure, uses the term ni(a, b) and the idea behind it is

that two classifiers in order to be diverse, should perform differently. It was proposed

by Giacinto and Roli [56] and their idea was that two different classifiers will have

few coincident misclassifications between them. The formula is [57]:

DF =
2

NM(M − 1)

M∑
j=1

M∑
k=j+1

nj,k(−1,−1) (2.15)

5. Kohavi-Wolpert variance

This measure is based on the bias-variance decomposition of the error of a classifier.

The variability of the predicted class yi for a pattern xi is:

variancexi =
1

2

1−
C∑
j=1

P (y = ωj |xi)2

where C is the number of classes

Kuncheva and Whitaker elaborated a modified version of the above formula in [58]:

KW =
1

NM2

N∑
i=1

li(M − li)

where li is the product between the M classifiers and the sum of the weights of the

classifiers that misclassify the pattern xi. Formally, li can be written as:

li = M
∑

oi,j=−1
wj

where the oi,j is the oracle matrix that also the Disagreement diversity measure uses

and wj are the weights of the learners that misclassify pattern xi.

6. Generalised diversity

The assumption behind this diversity measure is that given two classifiers the maxi-

mum diversity is achieved when a misclassification of one classifier is followed by

a correct classification of the other classifier. Conversely, minimum diversity is

achieved when two classifiers fail simultaneously [57].

Let xi be a sample drawn randomly from the training set, Tj be the probability that

23

2. Background and related work

li = j (li has the same meaning as for the Kohavi-Wolpert diversity measure), then

the formula for the generalised diversity is [57]:

GD = 1−
∑M

j=1
j(j−1)
M(M−1)Tj∑M
j=1 Tj

j
M

(2.16)

7. Measurement of inter-rater agreement

The idea behind this diversity measure is that in order to have a diverse ensemble,

the set of classifiers should disagree with each other. The formula is:

K = 1−
∑N

i=1(M − li)li
NM(M − 1)P (1− P)

(2.17)

where P denotes the average classification accuracy of the base classifiers on the

training data and li again is the product between the M classifiers and the sum of

the weights of the classifiers that misclassify the pattern xi [57].

8. Kappa statistics

Given two classifiers, yp and yq from a range of M classifiers and a dataset formed

of N patterns, a contingency matrix, T can be formed, where Tij represents the

number of examples x, for which yp(x) = i and yq(x) = j. Obviously, Tii will be the

number of examples for which the two classifiers agree.

Let Θ1 be:

Θ1 =

∑M
i=1 Tii
N

Θ1 can be seen as a probability of how much two classifiers agree [36]. A disadvan-

tage of this measure would appear in the case of imbalanced classes, where the two

classifiers will tend to agree on the dominant class.

In order to correct this issue, let Θ2 “be the probability that two classifies agree by

chance” [36]:

Θ2 =

M∑
i=1

 M∑
j=1

Tij
N
·
M∑
j=1

Tji
N

Hence, the k statistic can be defined as:

k =
Θ1 −Θ2

1−Θ2
(2.18)

k ranges between 0 and 1, a low values of k indicates low agreement, whereas a high

value represents high agreement.

9. Q statistics

Let’s define two classifiers yj and yq and zi,j = 1 if yj correctly classifies pattern i

24

2. Background and related work

and 0 otherwise. Let N qp be the number of patterns for which zi,j = q and zi,q = p.

Then the Q-statistics between the classifiers yj and yq is defined as:

Qj,k =
N11N00 −N01N10

N11N00 +N01N10
(2.19)

The Q statistics measure ranges between -1 and 1. For classifiers that agree on many

examples, the value of the Q statistics will be positive, and negative otherwise.

10. Another type of diversity could be considered the penalty term from the NCL [13],

[37]:

pi = −
N∑
i=1

(yin − Yn)2 =
N∑
i=1

(yik − Yi)
[N∑
j 6=k,j=1

(yij − Yi)
]

(2.20)

11. In [59] a new diversity formula was defined for neural networks. The diversity of the

ith network is calculated as:

Di =
∑
x

[σi(x)− σ̂(x)]2 (2.21)

where σ̂ =
∑

i∈N ci ·σi,
∑

i∈N ci = 1 and σi are the predicted outputs of the network .

This diversity measure was obtained as a results of the bias-variance decomposition

in the regression case, introduced by [21].

12. Ambiguity

In [1] the authors have defined another diversity measure, called ambiguity, by us-

ing the bias-variance decomposition from [21] and the 0-1 loss. Chen’s ambiguity

measure, amb01 is defined as:

amb01(Yn) =
1

2

M∑
i=1

(
1

M
Yn − ciyin

)
tn (2.22)

where Yn is the ensemble prediction of the nth pattern and Yn is the set of outputs

of the ensemble members.

In this section we have presented a range of diversity measures. Some are operating on the

feature space, like the Hamming distance or on the prediction space like the rest. Diversity

measures have been used in real-world applications such as cryptography (the Hamming

distance [60], [61]), social sciences and psychology (Kappa statistics [62], Q statistics [63],

Inter-rater agreement [64], medicine (Inter-rater agreement and Kappa statistics [65]),

DNA classification (Hamming distance [66], [67]). The coincidence failure measure can

be used in the field of reliability engineering and system safety analysis. The concept

of simultaneous failures has been discussed in the following papers [68],[69]. The CFD,

DIS, GD, Double fault measure, KW and Generalized diversity have also been employed in

studies to check their impact on the generalisation error. A comparison of their correlation

with the ensemble error has been conducted in [58] and [70]. In [58] the authors could

not empirically demonstrate a strict correlation between these diversity measures and

generalisation error, however the amb01 measure has been shown to have a positive impact

25

2. Background and related work

on the generalisation error [70]. We will continue this analysis in Chapter 3.

Since an ensemble has to be accurate and diverse, we are faced with a multi-objective

optimisation problem. We will now introduce the basic concepts related to multi-objective

optimisation.

2.6 Multi-objective optimisation

As the name suggests, multi-objective optimisation deals with finding solutions that op-

timise more than one objective. Mathematically a multi-objective optimisation problem

can be formulated without loss of generality as [71]:

minF (z), F = {f1(z), f2(z), . . . fn(z)} (2.23)

where z = (z1 . . . zp) is the parameter vector in the decision space.

One method of dealing with multi-objective optimisation is by combining the objectives

into a scalar function. For example, in a 2-objective optimisation problem, we would have:

F = f1 + λf2,

where λ > 0 takes a value that has to be defined by the user.

This approach has been used in machine learning in regularizing neural networks, creat-

ing interpretable fuzzy rules and generating negatively correlated ensemble members [2].

However this method has some drawbacks. Firstly, it is not easy to determine the hy-

perparameter λ. Secondly, a single solution is obtained, from which little insight can be

gained [2]. Combining the objectives into a weighted sum, can lead to a loss of detailed

information about specific objectives. In some cases, the objectives can be conflicting

and by aggregating them into a sum, might oversimplify the trade-off and the complex

relationship between them.

An alternative approach to deal with multi-objective optimisation is to use the Pareto

approach. In this method the objective function is a vector. As an example, in the case

of a multi-objective optimisation minimisation problem (see Equation2.23), a solution z

dominates another solution y if fj(z) ≤ fj(y) ∀j = 1 . . . n and ∃i ∈ 1 . . . n such that

fi(z) < fj(y), which is denoted by z ≺ y.

A solution z is called Pareto-optimal if it is not dominated by any other feasible solution.

All Pareto-optimal solutions in decision space form the Pareto set. The set containing the

image of Pareto-optimal solutions in the objective space is called the Pareto front [2].

Multi-objective optimisation can be done with the aid of a genetic algorithm. In genetic

algorithms, a population of candidate solutions (called individuals) for an optimisation

problem is evolved to find better solutions. Each candidate solution is represented by a

set of properties (chromosomes) [72].

There are a number of operators used in genetic algorithms to help the algorithms to obtain

a solution. These operators are: mutation, crossover and selection. These operators are

usually used together, forming the so-called evolution strategies (ES) [73]. Let’s denote

by µ the number of parents and by λ the number of children involved in evolution, where

26

2. Background and related work

µ < λ. We can distinguish two types of evolution strategies (ES):

• (µ+λ)-ES, where the parents for the next population can be selected from both the

parents and children population, also known as “plus” selection

• (µ, λ)-ES, where the parents for the next population can be chosen only from the

children population

Better solutions are given preference by the selection operator, allowing them to pass their

genes to the next generation. The solutions are ranked using a fitness function.

The crossover operator combines the genes of the parents to generate offsprings. By

combining parts of good solutions, it is more likely to generate a better solution [73].

The mutation operator changes the chromosomes encouraging genetic diversity amongst

solutions. By mutating the genes of a parent the new solution may be completely different

from the parent. Genes can be represented a string of 0s and 1s. There are different types

of mutations: bit mutation (modifies random bits in a binary string with low probability)

or more complex mutation methods which may use random values chosen from a uniform

or Gaussian distribution to replace the genes in the parent [73].

Evolutionary computation techniques are used to find the optimal or near optimal param-

eters which have unknown or complex mappings from parameters to objectives [74].

2.7 Multi-objective optimisation within ensembles

As mentioned in the previous sections, effective ensembles should be both accurate and di-

verse, suggesting the need of using multi-objective optimisation. Regardless of the method

used for ensuring diversity, the methods for constructing ensembles require two steps: first

multiple classifiers are trained and then a subset of them are selected for building the en-

semble.

Diversity should be evaluated for all ensemble members, which is difficult to achieve if the

ensemble members are selected one by one [54]. In order to overcome this issue, in [54]

the authors suggest a method that combines the generation and selection steps, ensuring

that all members are generated simultaneously with the aid of a MOEA(Multi-Objective

Evolutionary Algorithm). By using this method, the algorithm optimises the accuracies

of the base classifiers and finds subsets of them with maximum diversity. In this way,

the diversity of the final solution can be evaluated accurately and the trade-off between

diversity and accuracy can be taken into account in the ensemble generation stage [54].

The authors ensured diversity by selecting a subset of features or patterns and used the

CFD (Eq. 2.12), DIS (Eq. 2.13) and HD (Eq. 2.14) diversity measures.

The accuracy was calculated using majority voting and the formulae used are (2.10) and

(2.11). The learners used in this method are SVMs (support vector machines) [8] and

the evolutionary algorithm used is NSGA-II [75]. The authors have compared the testing

performance of the generated ensembles versus the generalisation error of a single classi-

fier. In most of the cases, the ensembles outperformed the single classifiers, however the

approach was only tested for one run/one split of the data. In order to provide a more

27

2. Background and related work

general conclusion, the algorithm should have been tested on multiple splits of the data

and statistical tests should have been performed in order to validate the comparisons.

Another algorithm for creating diverse and accurate ensembles was presented in [53]. This

algorithm called DIVACE (Diverse and Accurate Ensemble learning algorithm) it is based

on the memetic Pareto ANN (MPANN) algorithm, but it uses the Pareto differential evo-

lution and the negative correlation algorithm (NCL). MPANN is used for the evolutionary

process and diversity is minimised by using the negative correlation penalty function of

NCL (see Equation 2.20).

The reason for choosing this diversity measure is due to its link to mutual information.

Mutual information is a measure of correlation between two random variables. Therefore,

by minimizing the mutual information between the outputs of two ensemble members, we

can obtain diversity. It has also been shown that NCL can minimize mutual information

between ensemble members (due to the use of this penalty function) [53]. The algorithm

was implemented using neural networks, but it can be adapted to any learner. The au-

thors have compared empirically the performance of the algorithm against the MPANN

algorithm, their results have shown an improvement in performance. However, the algo-

rithms were only tested on two small datasets from the UCI Machine learning repository,

Australian and Diabetes [76], therefore in order to properly assess its superiority more

datasets and algorithms should be compared.

Another method called ADDEMUP (Accurate and Diverse Ensemble-Maker giving United

Predictions) was suggested in [59] and it is implemented using neural networks. This

algorithm creates an initial population which is evolved using genetic operators (crossover

and mutation), creating in this way new networks. The main idea of this method is that

during the training step, a set of networks that are accurate are kept as long as they

disagree with each other as much as possible [77].

The fitness of each member is calculated in the following manner:

Fitnessi = acci + λ · divi

where acci is the network i’s validation set accuracy and the diversity of the ith network

is defined in Equation 2.21. At each iteration new networks are generated and the first

M are kept according to their fitness. If the ensemble error is not increasing and the

diversity is decreasing, then the λ value will be increased. Conversely, if the ensemble is

increasing, but the diversity is not, then λ will be decreased. Even though, the authors

have demonstrated empirically the algorithm’s superiority compared to other state-of-the

art algorithms, the fact that λ has to be defined beforehand and keeps changing, is a

disadvantage.

In [78] a new method was suggested, called MRNCL (multi-objective regularized negative

correlation learning). This algorithm is a multi-objective regularizer NCL algorithm that

contains an additional regularization term for the ensemble [78]. As in the previous two

algorithms the learners used were neural networks. In this algorithm a correlation penalty

term to the cost function of each network is added. Then each neural network minimizes

28

2. Background and related work

the mean square error together with the correlation [78]. The algorithm has reduced the

overfitting of the ensemble, as opposed to other state-of-the-art algorithms, which is a

promising result.

In [79] another multi-objective problem is discussed which has as objectives to be opti-

mised, the reduction on the training set and the performance obtained after this reduction

with a given set of SVM hyper-parameters. By training an SVM a constrained quadratic

programming optimisation should be solved, which has a complexity of O(|N |3), where

|N | is the number of instances in the training set. As a result, when dealing with large

databases the computational cost might be an issue. This drawback induces the need of

finding ways of reducing the training size that would not affect the effectiveness of the

SVM. The effectiveness of the SVM is controlled by a set of hyper-parameters and the

choice of the kernel function. The authors have used as genetic algorithm the MOEA/D

[80] algorithm and as methods of reducing the training size, they used a filter or a wrapper.

They constructed ensembles from the solutions of the Pareto front in 5 different ways:

1. Global Pareto Ensemble (GPE)

2. Incremental Error Reduction Ensemble (IERE)

3. Complementary Incremental Ensemble (CIE)

4. Margin Distance-Based Ensemble (MDE)

5. Boosting

The GPE approach supposes combining all the solution from the Pareto front into one

ensemble.

The IERE approach builds the ensemble in an incremental manner. In the first step, the

solution with the lowest training error is included in the ensemble. In the next step, the

solution that minimizes the error of the partial ensemble is added to the ensemble and so

on.

In CIE, at each iteration the classifier with the performance the most complementary

to the partial ensemble is added. The first classifier included is the one with the lowest

training error, the next classifiers selected are the ones that have the lowest error rate on

the samples missclassified by the partial ensemble.

The MDE approach defines a signature vector c
(k)
i of a classifier k, which is equal to 1

if the classifier predicts correctly the ith instance or -1 otherwise. The average signature

vector is defined as:

c̄i =
1

M

M∑
k=1

c
(k)
i , ∀i ∈M

The condition for a pattern to be correctly classified by the ensemble is c̄i > 0. The aim

of this approach is to minimize the distance of the average signature vector to a positive

reference point.

29

2. Background and related work

This results show that in terms of classification accuracy both the wrapper and filter

were similar. Also the type of ensemble that achieved the highest performance in both

objectives was the one obtained via boosting. The authors have compared the ensemble

generalisation errors against other state-of-the-art algorithms, such as random forests.

Statistical tests have shown the superiority of these approach, which is a promising result.

Another important aspect when building ensembles is computational costs. In some cases

it has been shown that the more predictors in an ensemble, the better its performance

will be [81]. However the amount of time needed for training such an ensemble, increases

linearly with the number of models. In [81] the authors have shown that the ensemble size

can be reduced substantially and still obtain a similar performance. In the next section

we will present a number of state of the art ensemble reduction methods, which are also

called ensemble pruning methods.

2.8 Ensemble pruning

The process of ensemble pruning refers to reducing the number of predictors, by discarding

those with little contribution and which will determine an accurate ensemble. Next we will

summarise a number of papers from the literature, in which the pruning techniques used

take into account diversity and have presented evidence to generate accurate ensembles.

Margineantu and Dietrich [36] suggest ensemble pruning as a method of reducing classifi-

cation time with the effect of obtaining similar performance to the unpruned ensemble, i.e.

a more parsimonious ensemble with equivalent performance. In their paper they suggest

5 pruning methods for ensembles produced by the ADABOOST algorithm (see Algorithm

1). The goal is to obtain an ensemble of M members, by using the following techniques:

1. Early stopping: In this method the first M classifiers generated by ADABOOST are

kept. The disadvantage of this approach is that the classifiers produced later could

be more useful and they will not be considered

2. KL-divergence pruning: This approach focuses on the diversity of the classifiers,

quantified by the KL (Kullback-Leibler) distance of the probability distributions

obtained from ADABOOST (see Algorithm 1, line 3). The KL-divergence is defined

as:

DKL(R||S) =
∑
x∈X

R(x) log

(
R(x)

S(x)

)

where R, S are probability distributions and X is the probability space.

A greedy algorithm is used in order to find the sub-ensemble (of M members) that

would maximise the summed pairwise KL divergence, given by:

J(Y) =
M∑
i,j

DKL(pi||qj) (2.24)

where pi and qj are the probability distributions of members yi, yj . The ensemble

contains at the beginning the first classifier generated by ADABOOST and at each

30

2. Background and related work

iteration adds the member that would maximise the quantity from equation (2.24)

until M classifiers are found.

3. Kappa pruning: The Kappa pruning method orders the pairs of classifiers in increas-

ing order of their k value, where k is obtained by using the Kappa statistics (see

Equation (2.18)). The pairs are added until an ensemble of M classifiers is formed.

Kappa statistics measures the level of agreement of different classifiers and can be

considered a measure of diversity.

4. Kappa-error convex hull pruning: In this method the k value of each pair of classifiers

is plotted against the average error of the pair and the convex hull of the points is

considered as the pruned ensemble. A drawback to this method is that not always

the desired ensemble size can be kept (M). However, by using this method, the

convex hull will include the most accurate and most diverse classifiers.

5. Reduce-error pruning with backfitting: In this method, the data is divided into a

training set and a pruning set which will be used to select the ensemble that would

minimise the error. The algorithm starts by selecting the classifier with the lowest

error on the pruning set, y1. After that, the classifier y2 that along with y1 would

form the ensemble with the lowest error, is selected. In the next steps, each of the

previously chosen classifiers will be replaced by other classifiers that would minimize

the ensemble error on the pruning set. The algorithm will stop when the classifiers

will not be changed anymore or when a number of iterations, Q has been reached.

These methods were tested on 10 datasets, by using 10-fold cross validation. The results

showed that ensembles can be pruned up to 60-80% and achieve similar performance as the

unpruned ensemble. The best pruning approaches were Kappa pruning and Reduce-error

pruning with backfitting [81].

In [82] a pruning algorithm that takes into account both accuracy and diversity of classifiers

is considered (the Q statistics measure is used, see equation (2.19)). The algorithm, called

Accuracy-Diversity Pruning (dubbed ADP) at each iteration increases the ensemble size

by adding a pair of diverse classifiers, as long as the accuracy of the new formed ensemble

is higher than the previous one. In order to assess the performance of the algorithm, the

authors count how many times the ADP algorithm generates the optimal ensemble. Their

results show that in most cases the pruned ensembles are optimal and whenever this is not

the case, the loss of accuracy is not significant. This conclusion highlights the importance

that diversity has on improving the accuracy of an ensemble.

Another pruning algorithm which uses diversity was defined in [83] (called Forward En-

semble Selection, dubbed FES). The authors defined a diversity measure which focuses on

the strength of the decision of the current ensemble and takes into account the predictions

of individual members. The following quantities for the pair (xi, yi), where xi is the ith

pattern, yi the ith target, yki the prediction of the kth classifier of the ith pattern and Yi

the ensemble’s prediction of the ith pattern, have been defined:

1. NTi-the proportion of ensemble members that correctly classify the ith pattern.

31

2. Background and related work

2. NFi-the proportion of ensemble members that misclassify the ith pattern.

3. For the kth classifier the following quantities are defined:

a) etfi: yi = yki and yi 6= Yi

b) efti: yi 6= yki and yi = Yi

c) etti: yi = yki and yi = Yi

d) effi: yi 6= yki and yi 6= Yi

The algorithm starts with an ensemble formed of all the possible members and gradually

removes the member that would minimise the following diversity measure:

fes(ht) =

N∑
i=1

(NTi · I(etfi)−NFi · I(efti) +NFi · I(etti)−NTi · I(effi))

where I(true) = 1 and I(false) = 0

If an example is misclassified by most of the ensemble members, then it could be a hard

example and it should not influence the ensemble selection. On the other hand, if the

pattern is misclassiffied by about half of the ensemble components, meaning that the result

of the ensemble is close to the decision boundary which might lead to a misclassification,

then it should strongly influence ensemble selection. For example, in the case of the event

etfi, if the number of classifiers that correctly classify example xi, NTi is small, then it

means that xi is a hard example. Since NTi is small, the contribution NTi · I(etfi) will

be small, therefore it will increase the chances of this classifier to be discarded. On the

other hand, if many predictors already classify this example correctly (NTi is large) and

the ensemble prediction is close to the decision boundary, then this potential member

might change the ensemble prediction into making the correct classification. As a result,

its contribution should be rewarded (NTi · I(etfi) will be larger) and decrease the chances

of this classifier being discarded.

The authors have chosen to use heterogeneous ensembles, formed of different models

(SVMs, decision trees, kNNs Näıve Bayes or decision trees) and have compared the per-

formance of their algorithm against other state of the art algorithms. Their results show

that the FES can reach competitive performances by reducing the ensemble size from 200

to 15 on average.

In [84] the authors consider bagging as an ensemble method and suggest 3 pruning meth-

ods.

1. Reduce error pruning, similar to [36] but without backfitting.

2. The complementariness method which gradually adds a model to an ensemble, in

order to improve the ensemble’s prediction. This is done by choosing the models

that correctly predict a pattern, when the ensemble is wrong. Mathematically it can

32

2. Background and related work

be expressed as [85]:

COM(yk, Y) =
N∑
i=1

I(etfi). (2.25)

The model with the lowest error is considered at the first iteration. In the next

iterations the model that maximises the quantity from equation (2.25) will be added.

3. Margin Distance Minimization. In this method each model is assigned a signature

vector, defined as following:

(ct)i = yiyti, i ∈ 1 · · ·N.

In a binary classification, for classes ±1, the element on the ith position of the

signature vector will be 1, if the ith example is correctly classified by model yt and

−1 otherwise.

The method also requires defining a desired vector, o which would correspond to the

ideal case when all the examples are correctly classified.

The classifier that will be chosen at each iteration, would be the one that minimises

the following distance, called the margin:

MARD(yk;S) = d

(
o;

1

k
(ck +

k−1∑
i=1

ci)

)

where d is the Euclidian distance.

The authors generated bagging ensembles of 200 CART trees and pruned them according

to the above 3 methods. They compared these approaches and their results showed that

the best method was the Margin Distance Minimization, followed by Complementariness.

The last two methods could be considered as diversity measures, highlighting once more

the influence that diversity has on pruning ensembles and enhancing ensemble accuracy.

2.9 Conclusion

In this chapter we revise the main background information on which this thesis is based.

The main goal of machine learning is to build models which generalise well on unseen

data, meaning that their generalisation error is as low as possible. Our research is done

in the case of supervised learning which is presented in Section 2.1. The main causes of

error, bias and variance are discussed in Section 2.2. One of the most popular machine

learning techniques are ensembles. Ensembles are collection of predictors whose perfor-

mance has been shown to surpass the ones of individual models, the ensemble concepts

are presented in Section 2.3. We present ensemble models in Section 2.4. It has been

shown that ensemble error or the opposite of error, accuracy, is positively influence by

the diversity of the ensemble’s constituent classifiers. We present the notions of accuracy

and different diversity measures in Sections 2.5.1 and 2.5.2 respectively. One method of

building ensembles which are accurate and diverse at the same time is to optimise these

two factors at once. A general method of optimising multiple objectives at ones, is done

33

2. Background and related work

via evolutionary algorithms which are presented in Section 2.6. We revise a number of

popular multi objective optimisation algorithms from the literature in Section 2.7. Along

with ensemble accuracy, another important aspect to consider when building ensembles is

computational costs. In section 2.8 we present ensemble pruning methods, which reduce

the number of ensemble models without compromising ensemble accuracy too much.

Optimising diversity and accuracy together has been shown to be beneficial for the ensem-

ble’s overall performance. However, since many authors have suggested different diversity

measures, it shows the difficulty of finding the right diversity measure. In the next chap-

ter we will investigate the impact that different diversity measures have on the ensemble’s

accuracy.

34

Chapter 3

Correlation between test error and

different diversity measures

3.1 Introduction

A principal concern of supervised machine learning is to ensure a predictor demonstrates

good generalisation. A predictor is considered to have the ability to generalise, if it has a

good performance in predicting on unseen data drawn from the same process that it was

trained on [3, 6].

Ensembles are collections of predictors, each of which is trained on a different subset of

patterns or features. Some ensemble methods such as bagging [10] or boosting [11] have

been seen to be very successful in pattern classification tasks [22], due to their efficiency

in reducing ensemble variance and bias and consequently improving the generalisation

error. Random forests are one of the main applications of bagging, each of the component

trees are being trained on bootstrap samples of the data and their predictions are being

aggregated. Boosting has been successfully used in predictive analysis in medical research

[16], or in forecasting stock prices [18]. Ensembles have been shown in general to predict

better than a single predictor [86, 87].

In this chapter we consider classification of patterns xn, n = 1, . . . , N into two classes, the

positive and the negative class. Each of the M members of the ensemble yields a score

yin ≡ yi(xn), i = 1, . . . ,M indicating how likely it is that xn belongs to the positive class,

and the ensemble score Yn ≡ Y (xn), which may be converted to a decision by thresholding

is, in general, the weighted average of the constituent predictor scores [88]:

Yn ≡ Y (xn) =
M∑
i=1

ciyin (3.1)

where ci are the non-negative weights assigned to the constituent ensemble members,∑M
i ci = 1. Here we assume throughout that the ensemble members carry equal weight

so that ci = 1/M for all i. When the constituent classifiers produce a hard decision and

the weights are equal this amounts to the often used majority voting.

35

3. Correlation between test error and different diversity measures

Clearly, an accurate ensemble requires accurate members. However, Krogh and Vedelsby

[21] have shown that an ensemble with good generalisation performance consists of mem-

bers which disagree in their predictions [89]. As a result, diversity and accuracy are key

factors in building successful ensembles.

Although the role of diversity has long been recognised, many ways of quantifying the

diversity of an ensemble have been proposed. Kuncheva and Whitaker [23] empirically

compared different diversity measures in order to assess the impact that diversity has on

an ensemble’s generalisation performance. However, their results could not support the

influence of diversity on the overall performance of the ensembles. This aspect was partially

explained in [1], which showed that different diversity measures have different degrees of

correlation with generalisation error. It was also shown that there tends only to be high

(negative) correlation between diversity and generalisation error when diversity is low and

generalisation error is high; as diversity increases the correlation with generalisation error

decreases [1]. We explore this aspect in more detail below.

In [21] Krogh and Vedelsby introduced a new diversity measure based on the ambiguity

decomposition of regression ensembles and the bias-variance decomposition. The ambi-

guity term is obtained by subtracting the ensemble error from the average error of the

predictors. The average error of the individual models has been proven to be greater than

the ensemble error [90],[21], as a result from the ambiguity decomposition we can conclude

that the ambiguity measure is always positive. The ambiguity measures how much the

predictions of the ensemble members differ from the ensemble prediction and as a result

can be considered a type of diversity. Chen [1] defined another ambiguity measure in

a similar fashion as to [21], but for classifiers and using the 0-1 loss. Chen’s ambiguity

measure, amb01 is defined as:

amb01(Yn) =
1

2

M∑
i=1

(
1

M
Yn − ciyin

)
tn (3.2)

where Yn is the ensemble prediction of the nth pattern and Yn is the set of outputs of the

ensemble members. In his work, Chen demonstrated that out of all the diversity mea-

sures tested (Q-statistics (Equation 2.19), Kappa statistics (Equation 2.18), Correlation

coefficient ([91]), Disagreement (Equation 2.13), Entropy [92], Kohavi-Wolpert variance

(Equation 5), the measure of difficulty [93], generalised diversity (Equation 2.16), coinci-

dent failure diversity (Equation 2.12), the ambiguity measure had the highest correlation

with the generalisation error [1]. We will use the term ambiguity to refer to a measure of

ensemble diversity.

In this chapter we will investigate the effect that different diversity measures have on

the test error. The diversity measures considered are the Coincidence Failure, Kohavi-

Wolpert, Disagreement, Generalised Diversity and the amb01 measure introduced in [1].

We also present a new diversity measure, called coherence in Section 3.2 which measures

the minimum angle between the predictions of one classifier and those of the rest of the

classifiers. The coherence measure is also included in our analysis of the effect that diversity

measures have on the test error, in Section 3.3. In Section 3.5 we write the bias-variance

36

3. Correlation between test error and different diversity measures

decomposition of the amb01 measure in a different manner, which leads to a series of

pruning methods based on this type of ambiguity. Section 3.7 presents the conclusions of

this chapter.

The main contributions of this chapter are the following:

1. The definition of a new diversity measure, called coherence, which quantifies the

minimum angle between the predictions of one classifier and those of the rest of the

classifiers

2. The analysis of the correlation between diversity and generalisation error across the

following cases: when varying the features of the trees, when setting the bootstrap-

ping to false or when varying the ensemble or data size

3. The analysis of the correlation between diversity and the area under the curve

4. The derivation of different pruning techniques which involve ambiguity or coherence

3.2 Coherence diversity measure

Since there is no universal definition for diversity, many ways of quantifying diversity

have been introduced. One possible way of quantifying diversity in an ensemble, is to

calculate how different the vectors of predictions of each classifier are. We can quantify

this difference as the angle between the vector of predictions of each classifiers. We would

like these angles to be as big as possible (the prediction vectors to be far away/different

from each other). The prediction vectors would be in a N dimensional space, hence these

angles could be represented in a N -sphere. However, for illustration purposes, we present

an example of ”diverse predictions” on a sphere, as seen in Figure 3.1. As such, we can

start by measuring the minimum angle between the prediction of a classifier and the rest

of the predictions:

div(yi) = min
j
θi,j = α (3.3)

where θi,j is the angle between the vectors yi and yj of the predictions of the ith and jth

classifiers on N test cases.

One way of determining the angle between vectors would be by using dot products, ob-

taining:

cos θi,j =
yTi yj
‖yi‖‖yj‖

=
yTi yj
N

(3.4)

where N is the number of patterns. In the case of binary classification, we will consider

the targets to be ±1 , therefore we will have ‖yi‖2 = N .

In order for the rest of the vectors to be spread out, the minimum angles of the rest of

the predictions should be greater than α, as such we are aiming to maximise those angles.

Next, lets define the coherence function as being:

37

3. Correlation between test error and different diversity measures

Figure 3.1. Example of diverse predictions in a 3-dimensional space

Γ(yi) = max
j
yTi yj (3.5)

By applying equations (3.4), (3.5) we obtain

Γ(yi)

N
= max(cos(θi,j)) = cos(min(θi,j)) = cos(div(yi)) (3.6)

As a result the coherence is the inverse of diversity. Since the coherence decreases as

the ensemble members become more diverse, in a multi-objective setting, we will need to

minimise the coherence and maximise accuracy for all the classifiers from the ensemble.

One equivalent way to do this is to minimise both coherence and the error of each classifier.

However, it is impossible to obtain a Pareto front of classifiers using this definition, because

there will always be two classifiers with the same minimum angle (being the angle from

one to another). As a result, we add the angle between a classifier’s prediction and

the prediction of the ensemble containing all the classifiers. Therefore the definition of

coherence becomes :

Definition 3.2.1. Given an ensemble of M classifiers, where Y represents the ensemble

outputs and yi, i = 1..M , denote the individual classifier predictions. Then, the coherence

of the ith classifier can be defined as:

COH(yi) = max(yTi yj) +
yTi Y

N
(3.7)

38

3. Correlation between test error and different diversity measures

Datasets Patterns Features Feature Type Positive samples

Australian 690 14 Categorical, Integer, Real 44%
Cancer 569 30 Real 35%
Heart 270 13 Categorical, Real 44%
Sonar 208 60 Real 53%

Ionosphere 351 34 Integer, Real 64%

Table 3.1. Dataset characteristics

Hence, we can define the coherence of the ensemble as being:

COH(Y) =
1

M

M∑
i=1

COH(yi) =
1

M

M∑
i=1

max(yTi yj) +
yTi Y

N
(3.8)

We would like to note that the coherence diversity measure is not sensitive to data scaling.

Even though we considered the case, yi ∈ {±1}, the coherence measure maximizes the

scalar product between vectors, which could be of any magnitude or range.

3.3 Correlation between diversity and test error

Inspired by Chen’s work [1], we investigate the correlation of different diversity measures

with the test error. In addition, we will also assess the correlation of these diversity

measures with the area under the curve.

We generate ensembles of decision trees, by using bagging with a sampling rate ranging

between [0.1, 1] with the interval 0.05. For each sampling rate a forest of 100 trees is

generated. We use 5 fold cross validation and the training set for fitting the models and

the test set is used to asses the error and the diversity of the ensembles. We generate

100 ensembles and the average test error and test diversity over these runs were used to

measure the correlation. The experiment was conducted twice, once for bootstrapping

with replacement and once without (Chen [1] used bootstrapping without replacement).

The datasets used in these experiments were Australian credit card [94], Wisconsin Breast

Cancer [95], Heart disease [96], Sonar [97] and Ionosphere [98] from the UCI Machine

learning repository [76]. The characteristis of these datasets can be found in Table 3.1.

The decision trees can be formed by varying the number of patterns selected (in such a

manner that the sampling rate is kept) and at the same time considering all the features,

as in [1]. Equivalently, another way of building trees could be, by varying the number of

features.

We ran the experiment described above in both cases, when considering all features or

just a random number of them. We will present the results of these cases in the following

two sections.

3.3.1 All features considered

The first case analysed is the one when all the features are considered and subsets of

patterns are selected for each tree. We plot for each diversity measure the test error

versus the test diversity per dataset. Since we usually do not have access to the testing

data, we tried to assess the correlation between the training diversity and the test error,

to see if we can predict from the training data how the test error would be, see Figures 3.2,

39

3. Correlation between test error and different diversity measures

3.3. The first row of panels corresponds to the results obtained by having bootstrapping

with replacement, whereas the bootstrapping without replacement plots are on the second

row. In the first column the test error versus test diversity is plotted, whereas in the

second column the test error versus training diversity is shown.

0.05 0.10 0.15 0.20 0.25

Test error

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Te
st

 a
m

bi
gu

ity

With replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.05 0.10 0.15 0.20 0.25

Test error
0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Tr
ai

ni
ng

 a
m

bi
gu

ity

With replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.05 0.10 0.15 0.20 0.25

Test error
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Te
st

 a
m

bi
gu

ity

Without replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.05 0.10 0.15 0.20 0.25

Test error
0.00

0.05

0.10

0.15

0.20

Tr
ai

ni
ng

 a
m

bi
gu

ity
Without replacement

Cancer
Ionosphere
Sonar
Heart
Australian

Figure 3.2. Correlation of the training or test amb01 with the test error, evaluated on different
datasets. The first row from the panel corresponds to the values obtained by having bootstrapping
with replacement, whereas bootstrapping without replacement in the second row respectively. The
relationship between test amb01 and test error is shown in the first column, whereas training amb01

and test error in the second column. The points on the curves represent the sampling rates used
for selecting portions of data for training the decision trees.

For each dataset we tried to determine the threshold values up to which diversity was

negatively correlated with the test error. However, these thresholds varied per dataset.

Therefore it is difficult to determine the threshold after which the correlation ceases to

exist. However, for all these datasets considered, the curves generated displayed an ap-

proximate correlation of the test error with the diversity measure, emphasized by the knee

of the curve. The variation in actual test errors across datasets can be justified by the fact

that each dataset may have a different Bayes error. The Bayes error is the lowest possible

error that any classifier can achieve for a given classification problem. These plots show

that in general, at low diversity there is negative correlation between diversity and test

error. The same behaviour can be noticed also from the plots of the training diversity

versus the test error.

We have also compared the performance of bootstrapping with or without replacement

on the test error in Figure 3.4. We can observe from these plots that in the case of the

training error, the bootstrapping with no replacement achieves the lowest error. When the

40

3. Correlation between test error and different diversity measures

0.05 0.10 0.15 0.20 0.25

Test error

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 C
OH

With replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.05 0.10 0.15 0.20 0.25

Test error
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Tr
ai

ni
ng

 C
OH

With replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.05 0.10 0.15 0.20 0.25

Test error

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 C
OH

Without replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.05 0.10 0.15 0.20 0.25

Test error

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 C
OH

Without replacement
Cancer
Ionosphere
Sonar
Heart
Australian

Figure 3.3. Correlation of the training or test COH with the test error, evaluated on different
datasets. The first row from the panel corresponds to the values obtained by having bootstrapping
with replacement, whereas bootstrapping without replacement in the second row respectively. The
relationship between test COH and test error is shown in the first column, whereas training COH
and test error in the second column. The points on the curves represent the sampling rates used
for selecting portions of data for training the decision trees.

sampling rate is the highest, r = 1, therefore the whole data is used in fitting the trees,

the training error is 0, which makes sense. However, in the case of the test error, the two

types of bootstrapping have similar behaviour for most of the sampling rates, except the

high ones.

0.2 0.4 0.6 0.8 1.0

Sampling rates
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

ni
ng

 e
rro

r

without replacement
With replacement

0.2 0.4 0.6 0.8 1.0

Sampling rates

0.21

0.22

0.23

0.24

0.25

0.26

0.27

Te
st

 e
rro

r

without replacement
With replacement

Figure 3.4. Comparison between bootstrapping with and without replacement. The left plot in the
panel shows the training error versus the sampling rates for the two types of bootstrapping. The
right panel presents the relationship between the sampling rates and the test error. The results
for the bootstrapping without replacement are presented in green and blue for bootstrapping with
replacement, respectively. These results were obtained for the Sonar dataset.

In order to check the previous results, we calculated the correlation levels of these diversity

41

3. Correlation between test error and different diversity measures

measures with the test error. We used non-parametric Spearman’s rank correlation [99] in

order to assess the correlation. Spearman’s correlation is used to assess the monotonicity

between two pairs of observations, X, Y . These observations are ranked from lowest to

highest and in the case there are no ties in the ranking, the formula for the Spearman’s

rank correlation is the following:

ρ = 1−
6
∑N

i=1 d
2
i

n(n2 − 1)
(3.9)

where di = R(Xi)−R(Yi) and R(Xi) is the rank of the ith value of observation X.

In the case there are ties in the ranking, the following formula is being used:

ρ =

∑
(Xi − X̄)(Yi − Ȳ)√∑
(Xi − X̄)2(Yi − Ȳ)2

(3.10)

where X̄ is the mean value of all the observations from X. The rank rs ∈ [−1, 1], positive

values showing a positive correlation, negative a negative one and 0 no correlation. The

correlation between test diversity and test error was calculated on all the datasets from

Table 3.1. The values were then averaged across all datasets and the results are presented

in Table 3.2. The same experiments were done in the case of training diversity and test

error; the results are presented in Table 3.3.

Test diversity
Ensemble test error

Without replacement With replacement

amb01 -0.52 -0.03

CFD -0.65 -0.08

DIS -0.51 -0.001

KW -0.51 -0.001

GD -0.55 -0.07

COH 0.55 0.04

Table 3.2. Mean correlation between different diversity measures and test error, across all datasets
from Table 3.1. The diversity was measured on the test data. The correlation was evaluated
using the non-parametric Spearman’s rank method. The first column displays the results for
bootstrapping without replacement, whereas the second for bootstrapping with replacement.

Training diversity
Ensemble test error

Without replacement With replacement

amb01 -0.47 0.065

CFD 0.23 0.0003

DIS -0.51 -0.0003

KW -0.51 -0.0003

GD 0.44 0.0008

COH 0.55 0.0017

Table 3.3. Mean correlation between different diversity measures and test error, across all datasets
from Table 3.1. The diversity was measured on the training data. The correlation was evaluated
using the non-parametric Spearman’s rank method. The first column displays the results for
bootstrapping without replacement, whereas the second for bootstrapping with replacement.

By analysing these two tables, we can observe that the amb01 has a one of the strongest

correlations with the test error, in the case of bootstrapping without replacement. It is

42

3. Correlation between test error and different diversity measures

not well understood why this diversity measure has the strongest correlation with the

generalisation error, one possible empirical justification could be found in [1]. The au-

thors have generated a vector of 181 sampling rates, generated ensembles and for each of

them, calculated the ensemble diversity and test error. The diversity measures considered

were the same ones as in Table 3.2, except for the COH measure. They have projected

these 181 element vectors in a two dimensional plane, by using the multidimensional scal-

ing technique [100]. In general the amb01 measure was the closest in the plane to the

generalisation error, than the other diversity measures, showing a stronger correlation.

There is a strong negative correlation between the diversity measures and the test error for

the bootstrapping without replacement. However this correlation decreases significantly

for the bootstrapping with replacement. This phenomenon could be explained by the fact

that bootstrapping with replacement can allow some data points to be selected multiple

times, leading to a decrease in diversity and an increase in the bias of the model. In con-

trast, bootstrapping without replacement enhances diversity in the ensemble and reduces

the bias, contributing to a better generalisation performance. It has lower variance being

more similar to the original dataset than bootstrapping with replacement and ensures

greater stability by giving robust models.

Next we will present the results obtained by selecting a random subset of features.

3.3.2 Varying the subfeatures

More diverse decision trees can be created by selecting a random subsets of features. There-

fore, we repeated the experiment in the case of a random number of features. However,

the results were similar, as shown in Figures 3.5, 3.6.

In our experiments the number M of trees was fixed, therefore a natural question could be

“is M = 100 a representative number for this analysis?”. In the next section, we varied the

number of trees in the forest and analysed the effect on the correlation between diversity

and test error.

3.3.3 Varying the size of the forest

We repeated the experiments described in Section 3.3.1, by varying the number of clas-

sifiers. We ran the experiment for M ∈ {10, 100, 1000}, results are presented in Figure

3.7.

The first row of panels shows the relationship between test diversity and test error for all

the datasets considered before. The second row illustrates the relation between training

diversity and test error across all datasets. The first column presents the results for

M = 10 trees, the middle for M = 100, whereas the last for M = 1000.

The results showed that there was a stronger correlation between diversities and test

error for ensembles of 100 or 1000 trees and also the lowest ensemble test errors were

obtained for the forests of 100 or 1000 trees. Increasing the number of trees and combining

their predictions can contribute to reducing overfitting and variance, which will make the

ensemble’s predictions more robust and reduce generalisation error. At the same time,

increasing the number of trees in the forest might lead to a better coverage of the feature

space. The ensemble can capture the relationship between different features and patterns

43

3. Correlation between test error and different diversity measures

0.05 0.10 0.15 0.20 0.25

Test error

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 a
m

bi
gu

ity

With replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.05 0.10 0.15 0.20 0.25

Test error

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Tr
ai

ni
ng

 a
m

bi
gu

ity

With replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.05 0.10 0.15 0.20 0.25 0.30

Test error
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Te
st

 a
m

bi
gu

ity

Without replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.05 0.10 0.15 0.20 0.25 0.30

Test error
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Tr
ai

ni
ng

 a
m

bi
gu

ity

Without replacement
Cancer
Ionosphere
Sonar
Heart
Australian

Figure 3.5. Correlation of the training or test amb01 with the test error, evaluated on different
datasets. The forests were obtained from varying the subset of features. The first row from
the panel corresponds to the values obtained by having bootstrapping with replacement, whereas
bootstrapping without replacement in the second row respectively. The relationship between test
amb01 and test error is shown in the first column, whereas training amb01 and test error in the
second column. The points on the curves represent the sampling rates used for selecting portions
of data for training the decision trees.

combinations, making it more sensitive to capturing the diversity of the data, which can

lead to a stronger correlation between diversity and predictions.

Our results showed that diversity was correlated with the test error only up to a threshold

as in [1]. An alternative metric of performance for a classifier could be the AUC (area under

the Receiver Operating Characteristic curve, which is a measure of how well a classifier is

able to separate the classes over the full range of misclassification costs [101]), therefore in

the next section we analysed the relationship between diversity and area under the curve,

to check if there was a different behaviour.

3.3.4 Diversity versus AUC

The receiver operating characteristic curve (ROC) connects the points of the true positive

rates versus the false positive rate of a classifier, obtained for a range of thresholds. The

AUC measures the area under the ROC curve. A classifier that has a good classification

rate will have the AUC close to 1, whereas an AUC= 0.5 denotes a behaviour similar to

random guessing. An example of ROC curve with its corresponding AUC is displayed in

Figure 3.8. The ROC curve obtained for a forest fitted on the GMM5 dataset is denoted

in blue, whereas random guessing is displayed in red with an AUC of 0.5.

44

3. Correlation between test error and different diversity measures

0.05 0.10 0.15 0.20 0.25

Test error

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 C
FD

With replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.05 0.10 0.15 0.20 0.25

Test error

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Tr
ai

ni
ng

 C
FD

With replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.05 0.10 0.15 0.20 0.25 0.30

Test error

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 C
FD

Without replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.05 0.10 0.15 0.20 0.25 0.30

Test error
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 C
FD

Without replacement
Cancer
Ionosphere
Sonar
Heart
Australian

Figure 3.6. Correlation of the training or test CFD with the test error, evaluated on different
datasets. The forests were obtained from varying the subset of features. The first row from
the panel corresponds to the values obtained by having bootstrapping with replacement, whereas
bootstrapping without replacement in the second row respectively. The relationship between test
CFD and test error is shown in the first column, whereas training CFD and test error in the
second column. The points on the curves represent the sampling rates used for selecting portions
of data for training the decision trees.

We plot the test diversity versus the test AUC and the training diversity versus test AUC

in Figures 3.9, 3.10. However the behaviour encountered was similar to the previous case,

when using test error.

3.4 Diversity zones

In [1] the author presented the following relationship between the ensemble generalisation

error, test ambiguity and average test error of the classifiers.

L01(Yntn) =
M∑
i=1

ciL01(yintn)− tn
2

M∑
i=1

(
1

M
Yn − ciyin) (3.11)

where L01 is the 0-1 loss, M is the number of trees/classifiers, Yn the ensemble prediction

for the data point xn and ci are the weights of the classifiers. In [1] the authors have com-

pared the ensemble error with the average error of the classifiers and ensemble diversity.

Their analysis was conducted in the case of training and test data and for a variety of

ranges. We have repeated the experiment. For 20 sampling rates ranging between 0.05

and 1, we generated ensembles of 100 trees. By using 5-fold cross validation, we evaluated

the ensemble ambiguity and error and the average error of the trees, evaluated on the

train or test data. This process was repeated 20 times. The average for each sampling

45

3. Correlation between test error and different diversity measures

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Test error
0.00

0.05

0.10

0.15

0.20

Te
st

 a
m

bi
gu

ity

10 trees

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Test error
0.00

0.05

0.10

0.15

0.20

Te
st

 a
m

bi
gu

ity

100 trees

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Test error
0.00

0.05

0.10

0.15

0.20

Te
st

 a
m

bi
gu

ity

1000 trees
Cancer
Ionosphere
Sonar
Heart
Australian

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Test error
0.00

0.05

0.10

0.15

0.20

Tr
ai

ni
ng

 a
m

bi
gu

ity

10 trees

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Test error
0.00

0.05

0.10

0.15

0.20

Tr
ai

ni
ng

 a
m

bi
gu

ity

100 trees

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Test error
0.00

0.05

0.10

0.15

0.20

Tr
ai

ni
ng

 a
m

bi
gu

ity

1000 trees
Cancer
Ionosphere
Sonar
Heart
Australian

Figure 3.7. Correlation of the training or test amb01 with the test error, evaluated on different
datasets. The test ambiguity is plotted in the first row, whereas the training ambiguity on the
second row. The first column displays the relationship between ambiguity and test error for 10
trees, the middle for 100 trees and the last one for 1000 trees. The points on the curves represent
the sampling rates used for selecting portions of data for training the decision trees.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ROC curve

Chance
ROC (AUC = 0.94)

Figure 3.8. ROC curve of a forest of 3 trees obtained on the GMM5 dataset.

46

3. Correlation between test error and different diversity measures

0.800 0.825 0.850 0.875 0.900 0.925 0.950

Test AUC

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Te
st

 a
m

bi
gu

ity

With replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.800 0.825 0.850 0.875 0.900 0.925 0.950

Test AUC
0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Tr
ai

ni
ng

 a
m

bi
gu

ity

With replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.70 0.75 0.80 0.85 0.90 0.95

Test AUC
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Te
st

 a
m

bi
gu

ity

Without replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.70 0.75 0.80 0.85 0.90 0.95

Test AUC
0.00

0.05

0.10

0.15

0.20

Tr
ai

ni
ng

 a
m

bi
gu

ity

Without replacement
Cancer
Ionosphere
Sonar
Heart
Australian

Figure 3.9. Correlation of the training or test ambiguity with the test AUC, evaluated on different
datasets. The forests were obtained from varying the subset of features. The first row from
the panel corresponds to the values obtained by having bootstrapping with replacement, whereas
bootstrapping without replacement in the second row respectively. The relationship between test
ambiguity and test AUC is shown in the first column, whereas training ambiguity and test AUC
in the second column. The points on the curves represent the sampling rates used for selecting
portions of data for training the decision trees.

rate of these three quantities versus the sampling rates are plotted in Figure 3.11. We

have analyzed how diversity changes according to different sampling rates and divided

the space into different diversity zones (similar to the ones in [1]). Taking into account

Equation (3.11) (how diversity evolves along with ensemble error and average error), we

obtained the following conclusions:

• Low diversity zone -when the sampling rate is high (r ∈ [0.9, 1]). The generalisation

error decreases when changing the rate from 1 to 0.9, because the average error will

not change too much whereas the diversity of the trees will increase.

• Medium diversity zone, which corresponds to medium sampling rates (r ∈ [0.2, 0.9]).

The generalisation error will not change too much, as the average error and diversity

will change at the same speed.

• High diversity zone, corresponding to low sampling rates (r < 0.2). In this zone

the generalisation error will increase the most, because the average error will change

faster than diversity.

Since the generalisation error decreases when the sampling rate is high, it suggests that

47

3. Correlation between test error and different diversity measures

0.800 0.825 0.850 0.875 0.900 0.925 0.950

Test AUC

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 C
FD

With replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.800 0.825 0.850 0.875 0.900 0.925 0.950

Test AUC
0.60

0.65

0.70

0.75

0.80

0.85

0.90

Tr
ai

ni
ng

 C
FD

With replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.70 0.75 0.80 0.85 0.90 0.95

Test AUC
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 C
FD

Without replacement
Cancer
Ionosphere
Sonar
Heart
Australian

0.70 0.75 0.80 0.85 0.90 0.95

Test AUC
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 C
FD

Without replacement
Cancer
Ionosphere
Sonar
Heart
Australian

Figure 3.10. Correlation of the training or test CFD with the test AUC, evaluated on different
datasets. The forests were obtained from varying the subset of features. The first row from
the panel corresponds to the values obtained by having bootstrapping with replacement, whereas
bootstrapping without replacement in the second row respectively. The relationship between test
CFD and test AUC is shown in the first column, whereas training CFD and test AUC in the second
column. The points on the curves represent the sampling rates used for selecting portions of data
for training the decision trees.

0.2 0.4 0.6 0.8 1.0
Sampling rate

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Training data

Ensemble ambiguity
Average error
Ensemble error

0.2 0.4 0.6 0.8 1.0
Sampling rate

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Test data

Ensemble ambiguity
Average error
Ensemble error

Figure 3.11. These plots present the behavior of the ensemble ambiguity, average error of the
classifiers and ensemble error versus different sampling rates. In the first plot the training data
was used in order to evaluate these quantities, whereas the test data in the second plot. These
results were obtained for the Australian dataset.

the more data that are given, the more the error will decrease. In order to test this

hypothesis, we split the training data into different slices and evaluated the ensemble

error and ambiguity. We generated forests of 100 trees, trees that were fitted on one

sixteenth of the data, one eighth, one quarter, one half and the whole data. The whole

test data was used. We plot the ensemble test error versus the ensemble test ambiguity, the

48

3. Correlation between test error and different diversity measures

test error versus the training ambiguity and finally the training error versus the training

ambiguity in Figure 3.12. The reason why we produced these three plots was to see if

it’s possible to predict from the training data the point (the knee of the curve) where the

negative correlation between ambiguity and error ceases to exist. Also on the plots are

the sampling rates for which the specific values for ambiguity and error were obtained.

The results confirmed the hypothesis, the more data is given the more the error will

decrease. However, these experiments show that it is very difficult to reliably predict from

the training data the position of the knee for the test data, for both of them the knee

being found for different values:

0.10 0.15 0.20 0.25 0.30 0.35

Test Error
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Te
st

 a
m

bi
gu

ity

0.05

0.10.15
0.20.250.3
0.350.4
0.45
0.50.550.6

0.65
0.7
0.75
0.80.85

0.9
0.951.0

0.05

0.1

0.15
0.20.250.3
0.350.4

0.45
0.5
0.550.6

0.650.7
0.75
0.8

0.85
0.90.95

1.0

0.05

0.1

0.15

0.2
0.25
0.3
0.35
0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.80.85

0.9
0.95

1.0

0.05

0.1

0.15

0.2

0.25

0.3
0.35
0.4
0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9
0.95
1.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
0.55

0.6
0.65

0.7
0.75
0.8

0.85
0.9

0.95
1.0

0.10 0.15 0.20 0.25 0.30 0.35

Test Error
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.05

0.10.150.20.250.30.350.4
0.45
0.50.55
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

0.05

0.1
0.150.20.250.30.350.4
0.45
0.50.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

0.05

0.1

0.15

0.2
0.250.30.350.4

0.45
0.50.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

0.05

0.1

0.15

0.2

0.25

0.30.350.40.45
0.5

0.55
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.40.450.50.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Training Error
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.05

0.10.150.20.250.30.350.4
0.45

0.50.55
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

0.05

0.1
0.150.20.250.30.350.4

0.45
0.50.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

0.05

0.1

0.15

0.2
0.250.30.350.4

0.45
0.50.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

0.05

0.1

0.15

0.2

0.25

0.30.350.40.45
0.5

0.55
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.40.450.50.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

Entire data
Half data
Quarter data
1/8 data
1/16 data

Figure 3.12. The figure in the left represents the test ambiguity versus test error of forests obtained
by fitting a proportion of the data. The plot in the middle shows for the same forests their training
ambiguity versus test error. The right presents the relationship between the training error and the
training ambiguity of the same forests. These results were obtained for the GMM5 dataset

In this section we analyzed the effect that different diversity measures have on the gen-

eralisation error. The diversity measure that had the strongest negative correlation with

the test error, was the ambiguity. We have generated ensembles by using bagging with

different sampling rates. Our results show that ensemble test error is negatively correlated

with diversity, when diversity is low. We have tried to determine the threshold up to which

ensemble error is negatively correlated with diversity. We have generated ensembles by

varying the features or the patterns considered. For both these experiments, we plotted

the ensemble training error versus generalisation error, in order to determine that specific

threshold. Our results showed that it is impossible to determine from the training data,

what would this threshold be. We have repeated the experiment in the case of AUC,

however the conclusion remained the same. Another conclusion of our experiments was

that test error decreases at high sampling rates, implying that the more data is given,

the lower the error will become. Therefore, we varied the ensemble size and evaluated the

ensemble error on ensembles of different sizes. Our empirical results showed that larger

ensembles yielded lower test errors.

In our experiments we fixed number of M = 100 trees. It has been shown that decreasing

the number of trees can induce similar performance as well as decreasing the computational

time when training models or predicting new data. Next we will present a number of

pruning methods which involve ambiguity.

3.5 Pruning methods

In our next set of experiments we start with large ensembles and remove trees one by one

with the goal of maintaining generalisation accuracy. Based on the decomposition from

equation (3.11) we derive pruning methods which involve ambiguity. Next we will present

49

3. Correlation between test error and different diversity measures

a mathematical relation between classifier error and ambiguity, which we will use in our

pruning methods.

Equation (3.11) can be modified by adding a summation over all the patterns and obtaining

the following equation:

L01(Y) =
1

N

N∑
n=1

M∑
i=1

ciL01(yintn)− 1

N

N∑
n=1

tn
2

M∑
i=1

(1

M
Yn − ciyin

)
(3.12)

where M is the number of classifiers (trees) and N the total number of patterns

By swapping the two summations, we obtain:

L01(Y) =
M∑
i=1

ci
1

N

N∑
n=1

L01(yintn)−
M∑
i=1

1

N

N∑
n=1

tn
2

(1

M
Yn − ciyin

)
(3.13)

This equation can be interpreted that the ensemble error is equal to the average error of

all the classifiers minus the sum of individual ambiguities for each classifier. As a result,

we obtained:

L01(yi) =
1

N

N∑
n=1

L01(yintn) (3.14)

where i ∈ 1..n

amb01(yi) =
1

N ·M

N∑
n=1

tn
2

(Yn − yin) (3.15)

In our experiments all classifiers have equal weights, ci = 1
M .

Based on Equation (3.11), we can hypothesise that by removing the classifier with the

higher difference between its individual error and its ambiguity, the ensemble error will be

reduced. To investigate this we plotted the individual error of each classifier versus their

individual ambiguity in Figure 3.13.

0.100 0.125 0.150 0.175 0.200 0.225 0.250
Error per classifier

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

Am
big

uit
y p

er
 cl

as
sif

ier

Figure 3.13. Cloud of classifier error vs classifier ambiguity

The square at the top of the line corresponds to the classifier with the highest difference

between its individual error and its ambiguity. We investigated the reason why all the

points were situated on a straight line and found the following result:

50

3. Correlation between test error and different diversity measures

Theorem 2. Given an ensemble of M classifiers, where Y represents the ensemble outputs

and yi, i = 1..M , denote individual classifier outputs. Let L01 denote the 0-1 loss function

and amb01 represent the ambiguity derived from this loss. Then, the following statement

holds:

L01(yi)−M · amb01(yi) = L01(Y) (3.16)

Proof. If we define the error function as in [1]:

L01(x) =

1 ifx = −1

0.5 ifx = 0

0 ifx = 1

where x = 0 means the classifiers gave equal votes for both classes

Following the above definition of L01(x), we find that:

L01(x) = −1

2
(x− 1)⇒ 2 · L01(x) + x = 1 (3.17)

Using Equations (3.14), (3.15) in (3.16), we obtain:

L01(yi)−M · amb01(yi) =
1

N

N∑
n=1

L01(yintn)− tn
2
Yn +

tn
2
yin| · 2

2L01(yi)− 2M · amb01(yi) =
1

N

N∑
n=1

2 · L01(yintn) + tnyin︸ ︷︷ ︸
1

− tnYn︸︷︷︸
1− 2 · L01(tnYn)

| · 2

2L01(yi)− 2M · amb01(yi) =
1

N

N∑
n=1

2 · L01(tnYn)︸ ︷︷ ︸
2 · L01(Y)

| : 2

L01(yi)−M · amb01(yi) = L01(Y)

In our experiments we used forests of M = 100 trees, however is has been shown in [81]

that a similar performance in a forest can be achieved with a smaller number of trees, via

pruning. Generalisation error is very important in machine learning, but also the compu-

tational time for training/predicting new data is important, which increases proportionally

with the number of models. Therefore finding the optimal number of classifiers is impor-

tant in the classification process. In the next section, we will analyse different ambiguity

based pruning techniques.

3.6 Ambiguity pruning methods

Large ensembles increase the computational time, when making new classifications or

when building the model. Therefore, smaller ensembles would be preferred as long as the

generalisation error is not severely affected. Smaller ensembles are also preferred due to

the memory footprint.

In order to minimise the computational time and to achieve similar classification per-

51

3. Correlation between test error and different diversity measures

formance we have developed a series of pruning techniques. We will use the following

notations. Let Ym = {yi}mi=1 be a collection of m classifiers, where 2 ≤ m ≤ M and M is

the number of classifiers from the unpruned ensemble. A new ensemble Ym−1 is formed

by removing one of the classifiers. We define different approaches to select the classifier

to be removed from Ym:

• Remove successive worse. Inspired by the previous hypothesis, the trees that have the

highest difference between individual error and individual ambiguity are removed,

in order to reduce ensemble error. Mathematically, this approach can be expressed

as

Ym−1 = Ym \ argmaxy∈Ym (L01(y)− amb01(y))

• Linear random. At each iteration a random tree is removed. Formally, this method

can be defined as

Ym−1 = Ym \RandomChoice(Ym)

• Remove successive best. Opposite to the first method, it removes the tree with the

smallest difference between individual error and individual ambiguity. In the previ-

ous method, the hypothesis was that removing the trees with the smallest difference

between individual error and ambiguity would decrease the ensemble training er-

ror. This approach tests the opposite effect in order to determine if the previous

method overfits and if the current one would have a more significant impact on the

generalisation error. Mathematically, this method can be described as :

Ym−1 = Ym \ agminy∈Ym (L01(y)− amb01(y))

We have pruned a forest of 100 trees according to these methods and evaluated the training

and test error of the new formed ensembles.

We have used 5-fold cross validation and repeated the process 20 times. We have plotted

the mean test error, along with the 25th and 75th quartile versus the number of trees.

Our results showed a large variability between the two quartiles. Therefore, in order to

determine if the variability was due to the change in the data used to fit the models, we

repeated the experiment in two scenarios: when the same data was used for building the

models, or when different data was used. By using the same data we mean, that the same

training and test data was used, 4/5th for training and 1/5th for testing of the original

data, (we chose the last fold of the 5-fold cross validation). In this case the variability

was given by the ensembles created, which we term conditional variability, because it’s

conditioned on knowing the data set. The different data scenario implied using the training

and test data of each fold, to fit and evaluate the models.

The evolution of the average ensemble error versus the number of trees is presented in

Figures 3.14-3.17.

We chose to investigate the effect of providing more or less data has, when applying the

pruning methods, therefore, we run the experiment for initial forests generated using low

52

3. Correlation between test error and different diversity measures

0.10

0.15

0.20

0.25

En
se

m
bl

e
te

st
 e

rr

Same data

0 20 40 60 80 100
Number trees

0.10

0.15

0.20

0.25

En
se

m
bl

e
te

st
 e

rr

Different data

0.10

0.15

0.20

0.25

Same data
remove successive worse
linear random
remove succesive best

0 20 40 60 80 100
Number trees

0.10

0.15

0.20

0.25

Different data

Figure 3.14. Comparisons of the pruning approaches for the Gmm5test dataset, for sampling rates
0.1 and 0.75. The results for the 0.1 sampling rate are presented in the first column, whereas the
0.75 sampling rate in the second column. The top figure of each column displays the results when
the same data was used, whereas the bottom plot when different data was used.

0.1

0.2

0.3

0.4

0.5

En
se

m
bl

e
te

st
 e

rr

Same data

0 20 40 60 80 100
Number trees

0.1

0.2

0.3

0.4

0.5

En
se

m
bl

e
te

st
 e

rr

Different data
0.1

0.2

0.3

0.4

0.5
Same data

remove successive worse
linear random
remove succesive best

0 20 40 60 80 100
Number trees

0.1

0.2

0.3

0.4

0.5
Different data

Figure 3.15. Comparisons of the pruning approaches for the Heart dataset, for sampling rates 0.1
and 0.75. The results for the 0.1 sampling rate are presented in the first column, whereas the 0.75
sampling rate in the second column. The top figure of each column displays the results when the
same data was used, whereas the bottom plot when different data was used.

0.2

0.3

0.4

0.5

0.6

En
se

m
bl

e
te

st
 e

rr

Same data

0 20 40 60 80 100
Number trees

0.2

0.3

0.4

0.5

0.6

En
se

m
bl

e
te

st
 e

rr

Different data

0.2

0.3

0.4

0.5

0.6
Same data

remove successive worse
linear random
remove succesive best

0 20 40 60 80 100
Number trees

0.2

0.3

0.4

0.5

0.6
Different data

Figure 3.16. Comparisons of the pruning approaches for the Sonar dataset, for sampling rates 0.1
and 0.75. The results for the 0.1 sampling rate are presented in the first column, whereas the 0.75
sampling rate in the second column. The top figure of each column displays the results when the
same data was used, whereas the bottom plot when different data was used.

53

3. Correlation between test error and different diversity measures

0.35

0.40

0.45

0.50

0.55

En
se

m
bl

e
te

st
 e

rr

Same data

0 20 40 60 80 100
Number trees

0.35

0.40

0.45

0.50

0.55

En
se

m
bl

e
te

st
 e

rr

Different data
0.35

0.40

0.45

0.50

0.55

Same data
remove successive worse
linear random
remove succesive best

0 20 40 60 80 100
Number trees

0.35

0.40

0.45

0.50

0.55

Different data

Figure 3.17. Comparisons of the pruning approaches for the Ionosphere dataset, for sampling rates
0.1 and 0.75. The results for the 0.1 sampling rate are presented in the first column, whereas the
0.75 sampling rate in the second column. The top figure of each column displays the results when
the same data was used, whereas the bottom plot when different data was used.

and high sampling rates (0.1 and 0.75).

In the left hand side of each panel, we have plotted the results obtained for the 0.1 sampling

rate. The results for the 0.75 sampling rate are presented in the right side of the figures.

The first row of each panel, displays the results when the same data was used to build

ensembles. The results obtained when different data was used, are presented on the second

row.

For the 0.75 sampling rate the number of trees needed seems to be generally fewer than

about 40 (although different in exact number for different data sets). So all the errors

with more than this number of trees are about the same, regardless of how you remove

the trees. Presumably this is because the high sampling rate means that with about 20

or 40 trees the ensemble has effectively seen all the data.

With the 0.1 sampling rate, the “remove successive best” is always worse on the test data

than the other methods. This could be explained by the fact that if you remove the tree

with the smallest error then the remaining ensemble is made of trees with larger errors,

so the resulting ensemble error is larger. Note that removing the tree with the largest

difference between individual error and individual ambiguity is equivalent to removing

the tree with the largest individual error because the individual error and ambiguity are

proportional to each other (see Equation (3.16)).

With the 0.1 sampling rate, “remove successive worse” (the blue line) is better than the

other methods in some cases (for the same data case and for small ensembles), but at high

sampling rates there is not a statistical difference.

The variability in both cases seems to be smaller for higher sampling rates, due to the fact

that higher sampling rates imply providing more data to the models, therefore having a

better view of the data and being able to make a better classification.

Overall the average test errors are similar for all cases, however in the case of smaller

54

3. Correlation between test error and different diversity measures

sampling rates, you need more trees — which makes sense because you need more trees

to “see” the entire dataset and there is more diversity in the ensemble because the trees

see more different slices of the data. In general, the two approaches (using the same or

different data) seem to provide similar results, in terms of the effect on ensemble test error

across the three pruning methods discussed.

We have repeated the same experiment in the case of the coherence diversity measure

(see equation 3.8). The pruning approaches considered were the same, with the only

differences that the ”remove successive best” and ”remove successive worst” methods

involved coherence instead of ambiguity. These approaches are defined as follows:

• Remove successive worse:

Ym−1 = Ym \ argmaxy∈Ym (L01(y)− COH(y))

• Remove successive best:

Ym−1 = Ym \ agminy∈Ym (L01(y)− COH(y))

The results of the experiment for the Ionosphere dataset are displayed in Figure 3.18.

These plots show that the same conclusions as before hold, that there is no statistical

difference between the random approach and the ones involving a diversity measure (co-

herence or ambiguity). Even though Figure 3.18 displays the results in the case of the

Ionosphere dataset, similar results were obtained for the other datasets considered (the

remaining plots are presented in the Appendix A.1).

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

En
se

m
bl

e
te

st
 e

rr

Same data

0 20 40 60 80 100
Number trees

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

En
se

m
bl

e
te

st
 e

rr

Different data
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

En
se

m
bl

e
te

st
 e

rr

Same data
remove successive worse
linear random
remove succesive best

0 20 40 60 80 100
Number trees

0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

En
se

m
bl

e
te

st
 e

rr

Different data

Figure 3.18. Comparisons of the pruning approaches involving the coherence diversity measure for
the Ionosphere dataset, for sampling rates 0.1 and 0.75. The results for the 0.1 sampling rate are
presented in the first column, whereas the 0.75 sampling rate in the second column. The top figure
of each column displays the results when the same data was used, whereas the bottom plot when
different data was used.

In this section, we have defined a series of pruning techniques that involved removing either

random classifiers, either the ones with the highest/smallest difference between individual

error and ambiguity/coherence. We have investigated the effect of these techniques in two

scenarios: when the same training/test data was provided to the models or when different

55

3. Correlation between test error and different diversity measures

data was used. We have compared the results obtained, when more data was provided

(0.75 sampling rate) or when less data was used (0.1 sampling rate).

Our results have shown that in the case of the higher sampling rates, the approaches

are not statistically different, whereas when less data was used, the ”remove successive

worse” approach was slightly better than the other approaches. However, in general

the pruning approaches that favour diverse ensembles, are not statistically different than

random ensembles.

3.7 Conclusion

We have investigated the correlation that different diversity measures have on the gen-

eralisation error. The diversity measures considered were: ambiguity, coincident failure,

disagreement, Kohavi-Wolpert and a new measure, called coherence. The coherence mea-

sures the angle between the prediction of a classifier and the ensemble’s prediction. Our

results show that the diversity measure that had the strongest negative correlation with

the generalisation error was Chen’s ambiguity, followed by the DIS and KW. Another con-

clusion of these experiments was that at high diversity there is little consistent correlation

with the test error.

We have compared these correlations in the case of ensembles formed by bootstrapping

with or without replacement. Our results show that at low diversity there is a negative

correlation between diversity and test error, particularly for ensembles with bootstrap

without replacement. Another conclusion was that bootstrapping with replacement leads

to ensembles for which the test error is not correlated with diversity. On the whole

bootstrapping without replacement generates ensembles with lower test error. We have

also investigated the effect that providing more data has on the generalisation error. The

conclusion was that by increasing the size of the dataset the generalisation error will

decrease.

Our next set of experiments focused on analysing the effect of different pruning techniques

on the generalisation error. The pruning methods considered involved either discarding

random trees or selecting trees based on the lowest or highest difference between individual

error and ambiguity/coherence. Our results show that, in general, there is no significant

difference between removing random trees and the approaches involving ambiguity or

coherence.

56

Chapter 4

Optimising diversity in ensembles

of classification trees

4.1 Introduction

In the previous chapter we examined the relationship between the 0-1 loss ambiguity

measure defined by Chen (equation 3.2, [1]) and the generalisation error.

In this chapter we further explore the connection between ensemble diversity and gen-

eralisation error. Following [21, 1], we define and characterise new ambiguity measures

appropriate for the log loss and hinge loss. We investigate empirically the relationship

between these ambiguities and the generalisation error. This leads to an evolutionary

algorithm for the direct maximisation of the ensemble ambiguity, and indirectly the gen-

eralisation error, by optimisation of the patterns that each ensemble member is trained

on.

The principal contributions of this chapter are as follows:

1. the derivation of a cross-entropy-based ambiguity measure for ensemble diversity;

2. the derivation of a hinge-loss-based ambiguity measure for ensemble diversity;

3. the empirical assessment of the ambiguity/generalisation error trade-off on a number

of widely used classification data sets, using decision trees ensembles;

4. the exploration of the effect of ensemble sampling rates on this trade-off;

5. the exploration of the direct maximisation of ensemble ambiguity via an evolu-

tionary optimisation of the training patterns as a way to maximise generalisation

performance.

In the next section we present different diversity measures for ensembles using log and

hinge losses and establish some of their properties. Section 4.3 analyses the correlation

between the ambiguity measures presented and ensemble test error. Section 4.4 presents

an evolutionary algorithm for the optimisation of the cross-entropy diversity. Section

57

4. Optimising diversity in ensembles of classification trees

4.5 illustrates the performance of the evolutionary optimiser on a range of classification

problems. Section 4.6 presents the conclusions.

4.2 Ambiguity measures

Extending the idea of quantifying diversity in regression ensembles [21], Chen [1] by using

the 0-1 loss defined a new classifier ensemble diversity measure in terms of how diverse the

outputs of the constituent classifiers are compared with the ensemble prediction. Following

this line, by employing the log and hinge loss we define new diversity measures as the

difference between the average error of the individual classifiers forming the ensemble and

the ensemble error; that is we define the ambiguity through the simple relation:

Ensemble error = Average error − Ambiguity (4.1)

In line with [1], we call these measures of diversity ambiguity measures. We define new

ambiguities for the log loss and hinge loss and present their properties in the following

sections.

4.2.1 Ambiguity measure for log loss

The cross-entropy error or log loss measures the discrepancy between the output of the

classifier and the true class when the classifier produces an output between 0 and 1 which

may be interpreted as a posterior probability; for convenience we denote the classes as 0

and 1, tn ∈ {0, 1}.

Definition 4.2.1. The ambiguity measure derived from the log loss has the following

formula:

ambCE(Yn) , tn log

(∑M
i=1 ciyin∏M
i=1 y

ci
in

)
+ (1− tn) log

(∑M
i=1 ci(1− yin)∏M
i=1(1− yin)ci

)
. (4.2)

Note that for any tn only one of the terms will not be zero, so ambCE(Yn) is the logarithm

of the ratio between the arithmetic and geometric means of the proximity of the classifiers’

outputs to the desired targets. The cross entropy ambiguity for many patterns is just the

ambiguity averaged over patterns (4.3):

amb(Y) =
1

N

N∑
n=1

amb(Yn) (4.3)

We note Woodhouse [102] shows that the ratio of the arithmetic mean to the geometric

mean is equivalent to a cross-entropy quantifying the amount of information added in an

image processing problem. In addition in [103], [104] the ratio of the arithmetic to geomet-

ric mean is used to measure homogeneity. A ratio close to 1 might indicate homogeneity

between the samples, whereas a value greater than 1 indicates heterogeneity.

Next we will enumerate and prove the properties of the ambCE ambiguity.

Theorem 3. The log loss ambiguity, ambCE, has the following properties:

58

4. Optimising diversity in ensembles of classification trees

1. ambCE(Yn) ≥ 0,∀n ∈ 1, N

2. ambCE(Yn) = 0, ⇔ yin = yjn∀i, j ∈ 1,M

In conclusion, we can see that the ambCE ambiguity has the desirable property of always

being non-negative in contrast to amb01 which, as mentioned in [105] can be negative if the

ensemble prediction is incorrect. The proofs for Theorem 3 can be found in the Appendix,

section A.2.1.

4.2.2 Ambiguity measure for hinge loss

Following the same route, an ambiguity measure can be obtained appropriate for the hinge

loss. The hinge-loss is defined as:

LH(yin, tn) = max(0, 1− tnyin). (4.4)

Here yin is the ith classifier score for the nth pattern and tn is the target, where it is

convenient to label the targets as {±1}. From straightforward substitution we obtain the

following formula for the ambiguity measure derived from the hinge loss.

Definition 4.2.2. The ambiguity measure obtained for the hinge loss is defined as:

ambHL(Yn) =
M∑
i=1

ci max(0, 1− tnyin)−max

(
0,

M∑
i=1

ci(1− tnyin)

)
. (4.5)

Theorem 4.

The hinge loss diversity has the following properties:

1. ambHL(Yn) ≥ 0 ∀n ∈ {1 . . . N}

2. If for the pattern xn we have ∀ i, j ∈ {1 . . .M}, yin = yjn ⇒ ambHL(Yn) = 0

3. If for the pattern xn we have ambHL(Yn) = 0 6=⇒ that all the classifiers predict the

same class.

We provide an example of the last case, illustrating that ambHL(Yn) = 0 does not imply

that all the classifiers predict the same class. Consider one pattern x1 belonging to class

1, so t1 = 1 and 3 classifiers of equal weights, having the following scores: y11 = −2, y21 =

0.5, y31 = 1. Then, we have :

ambHL(Y1) =
1

3

3∑
i=1

max(0, 1− t1yi1)−max

(
0,

1

3

3∑
i=1

(1− t1yi1)

)
.

The first term is:

1

3

3∑
i=1

max(0, 1− t1yi1) =
1

3
max(0, 1− 1 · (−2)) +

1

3
max(0, 1− 1 · 0.5) +

1

3
max(0, 1− 1 · 1)

=
1

3
max(0, 3) +

1

3
max(0, 0.5) +

1

3
· 0 =

3.5

3
.

59

4. Optimising diversity in ensembles of classification trees

The second term is:

max

(
0,

1

3

3∑
i=1

(1− t1yi1)

)
= max

(
0,

1

3
(3 + 0.5 + 0)

)
= max

(
0,

3.5

3

)
=

3.5

3
.

As a result, we have ambHL(Y1) = 0 even though the first classifier predicts the negative

class and the other two predict the positive class.

In this section we have analysed the properties of the three ambiguity measures presented.

We can conclude that out of all of them, the ambCE measure satisfies all the desired

properties of a diversity measure (being always positive and 0 if and only if all the classifiers

predict the same class). Not all of these properties are satisfied by the other two ambiguity

measures. While the amb01 ambiguity is 0 if and only if all the classifiers predict the

same, it can be negative when the ensemble classifies incorrectly a pattern [105]. On the

other hand the ambHL ambiguity is always positive, but if the ambiguity is 0 it doesn’t

necessarily imply that all the classifiers predict the same. The proofs for Theorem 4 are

presented in the Appendix, section A.2.2.

4.3 Correlation between ambiguity and generalisation error

Previous studies have investigated the relationship between diversity (measured in a va-

riety of ways) and the error/loss, see Chapter 3, [23, 1]. However, although a negative

correlation between generalisation error and ambiguity has been reported [1], it is clear

that this cannot be true for all ambiguities. We therefore empirically investigate the rela-

tionship between the ambiguity measured on a training data set and the error/loss on a

test data set (approximating the generalisation error).

Bagging was used in order to control the diversity by sampling different independent

samples to train the classifiers in the ensemble. We use 30 sampling rates in the range

[0.01, 1]. For each sampling rate an ensemble of decision trees, forming a random forest

[10], was trained on the sampled patterns. From the 2000 available observations, 1000 were

drawn at random and used for training, while the remaining 1000 were used for evaluating

the generalisation error; the roles of the training and testing sets were then swapped and

the corresponding ambiguities and losses calculated. This process was repeated 50 times

and the ambiguities and errors averaged over the resulting 100 instances.

We used the GMM5 dataset [106] which comprises two-dimensional features generated by

a Gaussian mixture model with 5 components (an extension of the 4-component model of

[107]) allowing a large quantity of data to be synthesised and the Bayes error rate to be

calculated exactly. The Bayes error is the lowest possible error that can be achieved for a

specific problem and it can be calculated by using the following formula:

LBayes = 1−
C∑
i=1

∫
Ci

P (ti)P (x|ti) [108]

where C is the number of classes, P (ti) is the a priori class probability of class i, P (x|ti) is

the class likelihood and Ci is the region where class i has the highest posterior probability.

Figure 4.1 show the variation of the generalisation error with the diversity of the ensemble

60

4. Optimising diversity in ensembles of classification trees

5 trees 100 trees

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Test Log loss

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.04

0.52

0.76

1.0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Test Log loss
0.00

2.00

4.00

6.00

8.00

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.04

0.52

0.76

1.0

0.12 0.14 0.16 0.18 0.20
Test 0-1 loss

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.150.52

0.76

1.0
0.11 0.12 0.13 0.14 0.15

Test 0-1 loss
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.28
0.52

0.76

1.0

0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500
Test Hinge loss

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.15

0.52

0.76

1.0
0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

Test Hinge loss
0.00

0.10

0.20

0.30

0.40
Tr

ai
ni

ng
 a

m
bi

gu
ity

0.01

r=0.18
0.52

0.76

1.0

Figure 4.1. Curves of the three types of ambiguities versus the corresponding losses that were
derived from these. The test error versus the training ambiguity was plotted for different sampling
rates for ensembles formed of 5 trees (left column) and 100 tress (right column) for the GMM5
dataset. The first row shows the behaviour of the test cross entropy versus the training cross
entropy ambiguity, in the second row the test 0-1 loss versus its corresponding training ambiguity
is plotted, respectively the behaviour of the hinge loss is presented in the third row of panels. The
optimal sampling rate is indicated in red.

measured on the training dataset for each of the ambiguity measures discussed. The first

column of panels in Figure 4.1 corresponds to a small ensemble of M = 5 trees the second

column shows the variation for a large ensemble of M = 100 trees. Although there is

considerable variation between the curves for the different ambiguity measures, they all

display common characteristics. At high sampling rates the ambiguity and test error are

negatively correlated, as also reported by [1]. In this regime, as the sampling rate increases

member classifiers are trained on increasingly similar views of the data and therefore di-

versity decreases. Since the average error per classifier is approximately constant (because

adding more data does not appreciably increase their accuracy), equation (4.1) shows that

the ensemble error increases.

Decreasing the sampling rate means that the members of the ensemble are trained on dif-

ferent views of the data, leading to increasing diversity/ambiguity and therefore a smaller

ensemble error, c.f. (4.1). However, as the sampling rate is reduced to even lower levels,

each component classifier is trained on a very small number of patterns and therefore starts

to become inaccurate. In (4.1) the average error increases more rapidly than the diversity

and the result is that the ensemble error begins to rise again. Unfortunately, determin-

61

4. Optimising diversity in ensembles of classification trees

ing the sampling rate that yields the optimum generalisation error is not straightforward

or susceptible to a priori analysis. In section 4.4 we therefore describe an evolutionary

algorithm to determine this rate.

The same pattern is apparent for both small (M = 5, Figure 4.1 left column) and large

(M = 100, Figure 4.1 right column) ensembles, although the larger ensemble achieves a

lower generalisation error. This generalisation error is very close to the Bayes error (0.11

misclassification rate) for this data set. It might be expected that the optimum sampling

rate would be at least 1/M , so that each classifier in the ensemble is trained on N/M

examples and each example is used on average in the training of at least one classifier.

However, as the panels in Figure 4.1 show, the optimum sampling rate is well below 1/M ,

meaning that some of the data is not used at all by the ensemble. This indicates the

significant role played by diversity: to achieve best generalisation performance it is better

to ensure diversity by exposing classifiers to very different views of the data than to better

train them individually by providing more data.

Although only shown here for the GMM5 dataset we emphasise that very similar relation-

ships between ambiguity and generalisation error were observed on a number of additional

datasets (Table 4.1, see Appendix, section A.3).

In our next set of experiments we investigated the variation of generalisation error with

the number of classifiers forming the ensemble. This was achieved by generating ensembles

with 2 to 100 members and training them, as before, with samples at a given rate. This

was repeated 20 times for each ensemble size and sampling rate. The average (test) cross

entropy error plotted against size of ensemble and sampling rate is shown in the panel

of Figure 4.2 for the Sonar data set (Table 4.1, [109, 110]). This figure plainly shows

the benefit of a large ensemble: the optimum generalisation error with a large ensemble

is obtained over a wide range of sampling rates. The average training cross entropy

ambiguity is plotted against size of ensemble and sampling rate in the right panel of

Figure 4.2. These two figures together show the relationship between generalisation error

and training ambiguity; high ambiguities yield lower test errors, provided the sampling

rate is not too small. However, these two plots show the difficulty of predicting from the

training ambiguity the optimal rate that will yield the lowest generalisation error.

4.4 An Evolutionary Algorithm to Optimise Ambiguity

As we have shown, provided that the sampling rate is not too low, the generalisation error

is reduced for ensembles with high diversity. We therefore use an evolutionary algorithm

to maximise the ambiguity of an ensemble of classifiers by selecting the patterns; i.e the

particular training examples on which the constituent optimisers are trained. Pseudocode

for the algorithm is presented in Algorithm 2.

We use ensembles of M classifiers, each of which is trained on a fraction ρ of the N available

training patterns. In common with standard bagging ensembles, each of the classifiers is

trained on all the available features. The patterns on which each classifier is trained

are represented by a string of N 0s and 1s, where a 1 indicates that the corresponding

pattern is used to train the classifier, so that there are exactly [ρN] 1s in each string

and [·] indicates rounding to the nearest integer. The strings representing the training

62

4. Optimising diversity in ensembles of classification trees

20 40 60 80 100
Size of ensemble

0.5

0.6

0.7

0.8

0.9

1.0

Ra
te

0.3
1.2
2.1
3.0
3.9
4.8
5.7
6.6
7.5
8.4

20 40 60 80 100
Size of ensemble

0.5

0.6

0.7

0.8

0.9

1.0

Ra
te

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

Figure 4.2. The figure in the left of the panel represents the cross entropy generalisation error versus
the size of the ensemble and the sampling rate. On the right hand side the training ambiguity
derived from the cross entropy versus the size of the ensemble and the sampling rate is plotted.
The plots were obtained for the Sonar data.

patterns are initialised using stratified random sampling without replacement so that the

class ratios are preserved.

A single ensemble is evolved through mutation. Between 1 and M strings are mutated

in one of two ways, chosen with equal probability (line 3 in Algorithm 2). Then a type

of mutation is chosen with equal probability (line 5, U(0, 1) generates a random number

between 0 and 1):

1. A proportion up to N
2 of 1s and 0s are flipped at random. This is performed in a

stratified manner to preserve the class ratio and so as to maintain the sampling rate

as ρ (line 6).

2. The current string is discarded and replaced with a new string chosen in the same

way as the initialisation, preserving the class ratio and the sampling rate (line 8).

Following mutation the Npop members with the largest ambiguity are retained to proceed

into the next generation. In case of equality, the forest with the lower error will be preferred

(line 9).

4.5 Experiments

We ran our algorithm on six standard classification datasets from the UCI Machine Learn-

ing Repository: Australian, Cancer, Liver, Heart, Sonar, Ionosphere [76] and an additional

synthetic dataset GMM5 [107, 111]. Table 4.1 summarises the dataset characteristics.

Since the results in Fig. 4.2 show that for large ensembles, the generalisation error is small

for sufficiently low sampling rates, we concentrate on small ensembles. We used ensembles

of M = 5 trees, which were implemented by using the DecisionTreeClassifier function

from the sklearn library [112] in Python and the ambiguity measure ambCE(·) derived

from the log loss (4.2).

63

4. Optimising diversity in ensembles of classification trees

Algorithm 2 Evolutionary algorithm for evolving a diverse ensemble

Input: X = {xn}Nn=1 . training data
Input: t = {tn}Nn=1 . targets
Input: M . number of trees
Input: g . number of generations
Input: ρ . sampling rate
Output: T . evolved forest

1: T ← initialize(X, t,M) . generate a random ensemble/forest
2: for i = 1→ g do
3: m← random(1,M) . choose m trees to be changed
4: indices← indicesToChange(M,m) . choose the indices of the m trees
5: if U(0, 1) < 0.5 then
6: T ′ ← mutate(T , indices, ρ) . mutation type 1
7: else
8: T ′ ← genNewTrees(T , indices, ρ) . mutation type 2

9: if (ambCE(T ′) > ambCE(T)) or

(ambCE(T ′) = ambCE(T) andLlog(T ′, t) < Llog(T , t)) then
10: T ← T ′
11: return T

Table 4.1. Dataset characteristics

Datasets Patterns Features

GMM5 1000 2
Australian 690 14

Cancer 569 10
Liver 345 6
Heart 270 75
Sonar 208 60

Ionosphere 351 34

64

4. Optimising diversity in ensembles of classification trees

0.05 0.1 0.2 0.3 0.5
Sampling rates

1

2

3

4

5

Cr
os

s e
nt

ro
py

 e
rro

r

Validation set (initial)
Validation set (final)
Test set (initial)
Test set (final)

Figure 4.3. Example results on the Liver dataset, using an evolutionary algorithm to optimise the
cross-entropy ambiguity.

Evolutionary algorithm

Data was partitioned into the following stratified parts as follows: one half for the test data,

a quarter of the data for the training and the remaining quarter for the validation data.

The evolutionary algorithm was run using the training data and the resulting ensemble

evaluated on the validation data. The forest with the sampling rate that yields the lowest

validation error was evaluated on the test data to assess the algorithm’s performance.

Figure 4.3 shows example results obtained on the Liver dataset. The optimisation was

repeated 30 times for each sampling rate and the figure shows the mean and interquartile

range of the cross entropy generalisation error. We have run the experiment for 30 times, 30

being a standard number used in statistical testing, in order for calculating a meaningful

statistics. Having a smaller number of repeats might not provide meaningful results,

whereas a higher number would provide similar results.

We compared the ensemble’s validation error for the initial generation with the optimised

ensemble’s validation error, for the following sampling rates: 0.05, 0.1, 0.2, 0.3, 0.5.

The green dashed line in Figure 4.3 corresponds to the mean of the 30 runs for the initial

population, whereas the purple dashed line represents the mean for the final population.

Shading indicates the interquartile range. The blue box plot corresponds to the test error

for the initial populations, whereas the red box plots represents the test error for the

corresponding final populations. These box plots were generated just for the sampling

rate that yielded the lowest average validation error.

We also performed non-parametric statistical tests to assess the significance of the results.

We used the Wilcoxon signed rank two-tailed test, p = 0.05. In Table 4.2 the mean test

error of the initial ensemble for the sampling rate that yielded the smallest validation error

65

4. Optimising diversity in ensembles of classification trees

Table 4.2. Results on datasets, mean over 30 runs given (lower and upper quartile in brackets).
Bold mean value indicates significant difference (Wilcoxon signed rank two-tailed test, p = 0.05).

Datasets Initial cross entropy Final cross entropy

GMM5 1.32 (0.82, 1.75) 0.73 (0.6003, 0.852)

Australian 1.35 (1.11, 1.52) 1.26 (0.92, 1.39)

Cancer 0.63 (0.35, 0.74) 0.421 (0.32, 0.45)

Liver 2.41 (1.91, 2.92) 1.37 (0.98, 1.61)

Heart 1.76 (1.195, 2.17) 1.32 (0.94, 1.55)

Sonar 2.19 (1.52, 2.953) 1.21 (0.91, 1.52)

Ionosphere 1.32 (0.97, 1.57) 1.01 (0.83, 1.195)

is shown, along with the mean test error of the corresponding final evolved ensemble. The

values in the parenthesis correspond to the 25th quartile and 75th quartiles. These results

show that, in general, the EA performs significantly better than the random sampling

from the initial population, and never worse. The ambiguity optimised ensembles have

lower test errors on average than the initial ensemble across all test problems.

What patterns are selected?

In our evolutionary algorithm we evolved the patterns that were selected in each tree. As

such it would be interesting to see which patterns were actually chosen, and if they have

any particular properties. In order to gain an understanding of which are the selected

patterns, we analyse a two dimensional case.

A preliminary experiment was to plot the evolved patterns from the final generations

of the evolutionary algorithm with their frequency of appearance. We performed this

experiment just for the GMM5 dataset, because the distribution of these data are known

and we have access to the posterior probabilities. We characterised the patterns according

to their distance from the decision boundary. In order to determine how far a pattern

is from the decision boundary, we calculated the maximum posterior probability of the

pattern belonging to each of the two classes. The patterns belonging to the decision

boundary have a minimum maximum posterior probability of 0.5. We averaged the number

of appearances for the patterns from the final generation throughout the 30 runs. On

the x-axis of Figure 4.4 the maximum of the posterior probability for both classes for

each pattern is represented in 20 bins. On the y-axis, the proportion of occurrences is

plotted. The green horizontal lines represent the medians of the number of occurrences

for the patterns belonging to each of the 20 bins. This plot was obtained from the results

of the evolutionary algorithm for the ρ = 0.1 sampling rate. Our results suggest that

for this particular problem there is no preference for choosing some patterns during the

optimisation, and that there is no correlation between whether a pattern is selected and

its proximity to the decision boundary. This is contrary to what might be expected a

priori — that is that points closer to the class boundary might be preferred as they give

more information for bracketing the boundary. The results also reveal a high density of

points on the right-hand side of the figure, which can be explained by the fact that these

patterns are well classified. The errors obtained by the evolutionary algorithm are close

to the Bayes error; therefore, these patterns would have high posterior probabilities.

66

4. Optimising diversity in ensembles of classification trees

0.5 0.6 0.7 0.8 0.9 1.0
Max posterior probability of patterns

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Nu

m
be

r o
f o

cc
ur

en
ce

s

Figure 4.4. Frequency of patterns selected by the evolutionary algorithm at the final generation for
the GMM5 dataset, for the 0.1 sampling rate. On the x-axis is the maximum posterior probability
of a pattern belonging to each of the two classes. The y-axis represents the average proportion
each pattern was selected over the 30 runs of the evolutionary algorithm. The values from the
x-axis have been divided into 20 equally-sized bins. The green lines represent the medians of the
number of occurrences of the patterns belonging to each bin.

Weight optimisation

Our previous results showed the positive effect that maximising ambiguity has on the test

error. In our experiments the weights ci of the classifiers were equal, but another way

of maximising ambiguity would be by optimising the weights. We tried to optimise the

ambiguity obtained from the cross entropy, ambCE , from equation 4.2. Since ambCE is

not a quadratic function, Quasi-Newton methods are used, which are iterative methods

for solving unconstrained nonlinear optimisation problems [113]. These methods use the

Jacobian of the function to approximate the Hessian of the function, which is used to

determine the step for each iteration.

In our experiments we defined the weights via a softmax function, so each weight ci was

of the form ci = eθi∑M
j=1 e

θj
, where M is the number of classifiers and θi, i ∈ 1 . . .M were

chosen from a normal distribution. This definition of the weights was necessary in order

to ensure that they are all positive and their sum is equal to 1.

The Jacobian of the ambCE function is defined as:

JambCE =

[
∂ ambCE
∂θ1

· · · ∂ ambCE
∂θM

]

67

4. Optimising diversity in ensembles of classification trees

Let

S =

M∑
j=1

eθj

S1 =
M∑
j=1

yjn
eθj

S

S2 =
M∑
j=1

(1− yjn)
eθj

S

eθi+θj

S2
= ψi,j

eθi

S
= φi

Then

∂ ambCE
∂θi

=
1

N

N∑
n=1

tn

yin φi
S1
− φi − ln(yin)(φi − φ2i) +

∑
i 6=j

ln(yjn)ψij

+(1− tn)

(1− yin)
φi
S2
− φi − ln(1− yin)(φi − φ2i) +

∑
i 6=j

ln(1− yjn)ψij

 (4.6)

We used the minimize library from SciPy.optimize from Python and minimized the

negative of the ambiguity.

We split the data into two stratified halves, one used for testing and the other half was

divided as well into two stratified halves, one for training and the other for validation

data . We initialised random values from a normal distribution (with zero mean and unit

variance) for the values θi, i ∈ 1 . . .M . We generated random forests of M = 5 decision

trees and used sampling rates (representing the proportion of data used for each tree)

in the range [0.05, 0.1, 0.2, 0.3, 0.4, 0.5]. We have fitted the ensembles on the training

data and optimised the weights on the validation data. We repeated this experiment 20

times and computed the box plots for the training ambCE and test error, see Figure 4.5.

The top left plot compares the validation ambiguity of the ensembles with unoptimised

weights (blue box plots) versus the validation ambiguity of the ensembles with optimised

weights (red box plots) over 20 runs. We can see that the ambiguity was maximised in the

case of optimised weights. The top right plot shows the test errors of the corresponding

ensembles (blue with unoptimised weights and red with optimised weights). Unfortunately,

the ensemble with optimised weights (with the highest ambiguity respectively), in general

had a higher test error than the initial ensemble. We suspect that a possible reason could

be that during the optimisation process, the ambiguity exceeded the level at which it was

negatively correlated with the test error.

The bottom plots shows the curve of the average ensemble test error versus average val-

idation ambiguity over 20 runs and for all sampling rates. The blue box plot shows the

results when unoptimised weights were used, whereas red denotes the case when the op-

68

4. Optimising diversity in ensembles of classification trees

timised weights were used. This figure confirms the results obtained in the first two plots

(generated for the 0.05 sampling rate), indicating that the use of optimised weights leads

to increased ensemble ambiguity and test error compared to when unoptimised weights

are used. The plots for the other sampling rates show a similar behaviour.

4

6

8

10

Va
lid

at
io

n
am

b

Validation ambiguity initial weights
Validation ambiguity optimised weights

1.0

1.5

2.0

2.5

3.0

Te
st

 C
E

Test CE initial weights
Test CE optimised weights

1.3 1.4 1.5 1.6 1.7 1.8 1.9
Test CE

4

5

6

7

8

9

10

Va
lid

at
io

n
am

bi
gu

ity

0.05

0.05

0.1

0.1
0.2

0.2
0.3

0.3
0.4

0.4
0.5

0.5

Unoptimised weights
Optimised weights

Figure 4.5. Optimised weights for the GMM5 dataset, obtained by using a sampling rate of 0.05.
The first plot corresponds to the box plots of the validation ambiguity, the blue box plots for the
validation ambiguity with initial weights whereas the red box plots with optimised weights. The
second plot represents the box plots for the test error, the colors having the same meaning. The
third plot represents the average behaviour of the validation ambiguity versus the test error for all
sampling rates, blue denotes the case when unoptimised weights were used, whereas red when the
optimised weights were used.

4.6 Conclusion

In this chapter we introduced two ambiguity measures using the bias-variance decompo-

sition and the cross-entropy error or the hinge loss. Together with the ambiguity corre-

sponding to the 0-1 loss, we established the properties of these new diversity measures. We

evolved the training patterns of the classifiers in order to maximise the ambiguity obtained

from the cross-entropy (ambCE) and our results show that the evolved ensemble generally

has a better generalisation error than the initial ensemble. Hence, our results support the

influence that the diversity has on minimising generalisation error. Also the ambiguity

measure obtained by using the cross-entropy error satisfies all the required properties of

a diversity measure (being always positive and being zero if and only if the predictions

of the classifiers are all the same). This property of being always positive is not present

in the ambiguity obtained by using the 0-1 loss (see [1]), which can be negative if the

69

4. Optimising diversity in ensembles of classification trees

ensemble prediction is wrong [105].

Our results show that if random sampling is used to select patterns on which ensemble

members are trained, we find that generalisation error is negatively correlated with diver-

sity at high sampling rates; conversely generalisation error is positively correlated with

diversity when the sampling rate is low and the diversity high.

Our experiments have shown that evolving the patterns that determine the trees of a

forest, in order to maximise ambiguity, has a positive effect on the testing error of the

ensemble.

Also, we found that there is no correlation between whether a pattern is selected and

its proximity to the decision boundary (at least for the problem we considered where we

had direct access to the posterior probabilities and therefore could determine the ‘true’

decision boundary precisely).

Our results were obtained when all the weights of classifiers were equal, as a result our

last set of experiments analysed the effect of varying the weights has on the ensemble test

error. We have optimised the weights by using BFGS, in order to maximise ambiguity and

investigated the impact on generalisation error. Even though in the previous experiments

maximising ambiguity improved the ensemble generalisation error, our results show that

by optimising the weights the same conclusion does not stand. A possible explanation

could be that the threshold up to which the ambiguity is negative correlated with the

ensemble error, is exceeded by the optimisation. Also, by analysing the last plot in Figure

4.5 the relationship between sampling rates, test error and ambiguity is not as clear as the

one obtained by maximising the ambiguity with equal weights, where there was a negative

correlation when sampling rates were low and positive for higher sampling rates, as seen

in Figure 4.1 .

In this chapter the main results were obtained by optimising a subset of patterns of fixed

trees. Hence, our next set of experiments will focus on selecting a subset of trees from a

set of trees in order to optimise ambiguity and analyse its effect on ensemble generalisation

error.

70

Chapter 5

Optimising diversity by tree

selection

5.1 Introduction

In the previous chapter the focus was on optimising the patterns on which the trees were

built, trees which formed small ensembles. In some cases it has been shown that the more

trees in an ensemble, the better its performance will be [81]. However the amount of

time needed for training such an ensemble, increases linearly with the number of trees.

In [81] the authors have shown that the ensemble size can be reduced substantially and

still obtain a similar performance. In this chapter we investigate different tree selection

methods in order to find the best performance for a given number of trees. In section 5.2

we present pruning algorithms that reduce ensemble size by discarding either the classifiers

that would minimize or maximise ensemble diversity or error, either the classifiers with

the highest or lowest error. Section 5.3 presents tree selection methods for a fixed number

of trees. In section 5.4 an evolutionary algorithm is presented, which optimises different

subsets of trees, in order to maximise diversity. This section is followed by a comparison

of all the methods presented in this chapter with the results of the evolutionary algorithm

that selected patterns, presented in Section 4.4.

The main contributions of this chapter are the following:

1. The definition of various pruning techniques, a number of which promote ambiguity

or ensemble accuracy

2. The exploration of the direct maximisation of ensemble ambiguity, via an evolution-

ary optimisation algorithm for selecting trees, as a way to maximise generalisation

performance

3. The comparison of the above approaches in order to determine the most effective

ones in reducing generalisation error

71

5. Optimising diversity by tree selection

5.2 Pruning methods

In this section we will present novel pruning techniques that take into account the ambCE

of an ensemble. We will use the following notations. Let t be the target vector and

Ym = {yi}mi=1 be a collection of m classifiers, where 2 ≤ m ≤ M , where M is the number

of classifiers from the unpruned ensemble. We will denote the ambiguity of the ensemble

by ambCE(Ym). A new ensemble Ym−1 is formed by removing one of the classifiers. We

define different schemes to select the classifier to be removed from Ym:

1. Keep most ambiguous ensemble. At each iteration the tree that would yield the

most ambiguous ensemble (evaluated on the training data) is removed. Formally,

this approach could be defined as:

Ym−1 = arg max
y∈Ym

ambCE(Ym \ y).

2. Keep least ambiguous ensemble. At each iteration the tree that would yield the least

ambiguous ensemble, evaluated on the training data, will be removed. Mathemati-

cally, this method can be expressed as:

Ym−1 = arg min
y∈Ym

ambCE(Ym \ y).

3. Random. At each iteration a random tree is removed:

Ym−1 = Ym \RandomChoice(Ym).

4. Remove tree highest error. The tree with the highest training error is removed :

Ym−1 = Ym \ arg max
y∈Ym

(Llog(y, t)).

5. Remove tree lowest error. Conversely, the tree with the smallest training error is

removed :

Ym−1 = Ym \ arg min
y∈Ym

(Llog(y, t)).

6. Keep ensemble highest error. The next approach discards the tree that would yield

the ensemble with the highest training error:

Ym−1 = arg max
y∈Ym

Llog(Ym \ y, t).

7. Keep ensemble lowest error. Conversely, the last approach discards the tree that

would yield the smallest training error respectively :

Ym−1 = arg min
y∈Ym

Llog(Ym \ y, t).

72

5. Optimising diversity by tree selection

In our experiments we used M = 100 trees and at each iteration a tree is discarded,

according to the above methods.

The function getAmbEns (see below) at each iteration receives an ensemble of size m (m

decreases after every iteration) and discards each tree in turn to form subsets of m − 1

trees and evaluates the ambiguity of all these m ensembles. It returns the list contain-

ing the ambiguities of all the m subsets. Then according to the pruning scheme chosen

(“Keep most ambiguous ensemble” or “Keep least ambiguous ensemble”), the algorithm

will discard the tree of the index that is either the arg max or arg min.

1: procedure getAmbsEns(Ym)
2: amb list← list()
3: for y ∈ Ym do
4: Y ′ ← Ym \ y
5: amb← ambCE(Y ′)
6: add(amb list, amb)

7: return amb list

Similarly the function getErrEns (see below) calculates the training error of the m

subensembles. At each iteration, these approaches make m comparisons, which makes

the method expensive in terms of time.

1: procedure getErrsEns(Ym,t)
2: err list← list()
3: for y ∈ Ym do
4: Y ′ ← Ym \ y
5: err ← Llog(Y

′, t)
6: add(err list, err)

7: return err list

The trees were obtained via bagging for sampling rates ρ ∈ [0.05, 0.1, 0.2, 0.3, 0.4, 0.5].

We evaluate the performance of the pruning over 50 runs and produce the medians and

the interquartile ranges for each of the 7 approaches, the results are displayed in Figure

5.1. The top plot from the panel shows the variation of the test cross entropy with the

ensemble size across all 7 methods. The figure in the middle corresponds to the training

cross entropy, whereas the bottom figure displays the behaviour of the training ambCE .

By analysing the plot of the test cross entropy from Figure 5.1, we can see that the best

approaches are “Keep most ambiguous ensemble”, “Remove tree lowest error” and “Keep

ensemble lowest error”. We suspect that the reason for this similar behaviour between the

first two approaches, is that by removing the tree with the lowest cross entropy the average

cross entropy of the remaining classifiers increases much faster than the ensemble cross

entropy, leading to an increase of the ensemble ambiguity, as seen in Figure 5.2. Figure

5.2 also shows the average tree training/test cross entropy versus ensemble training/test

cross entropy and ensemble training/test ambCE for three approaches “Remove tree lowest

error”, “Remove tree highest error”, and “Random”. The first row of each set of figures

represents the results for the training data, the second shows results for the test data.

We can see from these plots that the average tree cross entropy is increasing for the

73

5. Optimising diversity by tree selection

“Remove tree lowest error” method, decreasing for the “Remove tree highest error” and

almost constant for the “Random” scheme. Also, in the “Random” case the ensemble

cross entropy increases slightly faster (as trees are removed) than removing the lowest

error trees.

Another explanation for why the “Remove tree lowest error” approach has such a good

generalisation performance, could be that the lowest error trees are overfitted to the train-

ing data and so removing them from the ensemble leaves an ensemble of “less overfitted”

trees, that are therefore better able to generalise. Conversely, we could argue that remov-

ing the tree with the highest error is actually removing the tree that is least overfitted to

the training data.

The first plot from Figure 5.1 also reveals that amongst the worst approaches is “Keep

least ambiguous ensemble”. These results demonstrate empirically once more the influence

that diversity has on reducing test error.

We have compared the “Keep most ambigous ensemble” approach with the algorithms

presented in Section 2.8. Since some algorithms either start from from 2 or 3 classifiers,

either from a fixed number M of classifiers and eliminate one classifier at a time, we

have ran the algorithms on the same set of trees and have used the same training and

test data. We have plotted the test error versus the number of trees for all the algorithms

presented in Section 2.8 versus the “Keep most ambiguous ensemble” method. The results

are presented in Figure 5.3. The “Keep most ambiguous ensemble” method is presented

in dark blue, the “Complementary” and “Margin distance” from [84] in red and green

respectively, the “FES” method is highlighted in turqoise, whereas the “Kappa pruning”

and “Reduce error with backfitting” methods from [81] in yellow and black respectively.

These plots were obtained for the Australian dataset, the results for the sampling rates

0.1 and 0.5 are presented in Figure 5.3. Even though these results were obtained for the

Australian dataset, the behaviour seen is consistent for the other datasets.

A similar pattern has been observed throughout the plots. The “Complementary” method

is the least successfull, followed by “Kappa statistics”, “Backfitting” approach. The “FES”

approach seems to be sucessfull for smaller sampling rates since at each generation it prefers

the ensemble with the lowest training error, however for higher sampling rate its effect on

the test error seems to decrease. This could be explained by overfitting. Overall the most

successful methods seem to be “Margin distance” and “Keep most ambiguous ensemble”.

We have not included in our analysis the “ADP” method, because the algorithm at each

iteration checks if the accuracy of the pruned ensemble is higher than the one of from the

previous iteration. If the accuracy is not higher, then the algorithm stops and returns the

ensemble from the previous iteration, which in most cases led to only one iteration.

In terms of computational complexity, the most time consuming is the “Backfitting” ap-

proach, with a complexity of θ(M2Q), where Q is the number of iterations in order to

determine which classifier to be selected per iteration. The other approaches have a com-

putation complexity of θ(M2).

74

5. Optimising diversity by tree selection

2 5 10 15 20 30 40 50 60 70 80 90 100

Number of trees

10
0

10
1

Te
st

 C
E

Keep most ambiguous ensemble
Keep least ambiguous ensemble
Random
Remove tree highest error
Remove tree lowest error
Keep ensemble highest error
Keep ensemble lowest error

2 5 10 15 20 30 40 50 60 70 80 90 100

Number of trees

10
0

10
1

Tr
ai

ni
ng

 C
E

Keep most ambiguous ensemble
Keep least ambiguous ensemble
Random
Remove tree highest error
Remove tree lowest error
Keep ensemble highest error
Keep ensemble lowest error

2 5 10 15 20 30 40 50 60 70 80 90 100

Number of trees

10
1

10
0

10
1

Tr
ai

ni
ng

 a
m

b

Keep most ambiguous ensemble
Keep least ambiguous ensemble
Random
Remove tree highest error
Remove tree lowest error
Keep ensemble highest error
Keep ensemble lowest error

Figure 5.1. The top set of curves displays the variation of the test error with the ensemble size for
each of the mentioned pruning approaches. The middle figure shows the variation of the training
error, whereas the bottom plot shows for the training ambiguity. The results displayed are for the
German dataset and for the 0.05 sampling rate

5.3 One in, One Out approach

The pruning method described in the previous subsection (5.2) — that starts from M trees

and reduces the ensemble size down to two trees — has the disadvantage of being costly

in terms of time. Let mn be the size of the ensemble at iteration n. Then for the pruning

75

5. Optimising diversity by tree selection

0 20 40 60 80 100

Ensemble size

10
0

10
1

Remove tree lowest error

Average tree training error
Ensemble training error
Ensemble training ambiguity

0 20 40 60 80 100

Ensemble size

10
0

10
1

Remove tree highest error

Average tree training error
Ensemble training error
Ensemble training ambiguity

0 20 40 60 80 100

Ensemble size

10
0

10
1

Random

Average tree training error
Ensemble training error
Ensemble training ambiguity

0 20 40 60 80 100

Ensemble size

10
0

10
1

Remove tree lowest error

Average tree test error
Ensemble test error
Ensemble test ambiguity

0 20 40 60 80 100

Ensemble size

10
0

10
1

Remove tree highest error

Average tree test error
Ensemble test error
Ensemble test ambiguity

0 20 40 60 80 100

Ensemble size

10
0

10
1

Random

Average tree test error
Ensemble test error
Ensemble test ambiguity

Figure 5.2. Curves of the average tree training/test error versus ensemble training/test error and
ensemble training/test ambiguity. These plots were obtained for the German dataset and the 0.05
sampling rate.

schemes that keep at each iteration an ensemble that satisfies a certain criteria (“Keep

most ambiguous ensemble”,“Keep least ambiguous ensemble”, etc), at the nth iteration

there will be mn comparisons made. Obviously m1 = M , m2 = M − 1, as a result the

program will finish after making M(M+1)
2 − 3 comparisons, which increases quadratically

with the initial size of the ensemble, M .

An alternative to this method would be to keep at each iteration a fixed number of trees,

m, selected a priori, m�M . At each iteration a random tree would be added from a pool

of remaining trees, and a tree will also be discarded according to the approaches presented

in Section 5.2 (it is possible for the discarded tree to be the new entrant). Hence, we

have named this method the “One In, One Out (OIOO)” approach. The total number

of comparisons made by the OIOO method will be (m + 1)(M − m). For m = 5 and

M = 100, the total number of comparisons made is 570, whereas the pruning algorithm

when reaching 5 trees, it would have made M(M+1)
2 − 4 − 3 − 2 − 1 = 5040 comparisons,

almost 9 times more calculations.

As before, we will consider Yn = {yi}mi=1 to be the collection of m classifiers, where

2 ≤ m ≤ M and n denotes the nth iteration. We try to form a new ensemble Y ′ by

considering ensembles formed by adding a new randomly generated classifier y′ to the

ensemble

Y ′ = Yn ∪ {y′}

and then removing one of the classifiers from Y ′ to form Yn+1. One important aspect to

remark, is that as opposed to the previous method, the index n from Yn does not denote

the size of the ensemble (because the size of the ensemble, m, is fixed), it denotes the

current iteration.

We will consider in our experiments the same type of approaches as in the previous section,

but with the following definitions:

76

5. Optimising diversity by tree selection

0 20 40 60 80 100
Number of trees

100

101

Te
st

 C
E

Comparison pruning approaches
Keep most ambiguous ensemble
Complementary
Margin distance
Kappa statistics
FES
Backfitting

0 20 40 60 80 100
Number of trees

100

Te
st

 C
E

Comparison pruning approaches
Keep most ambiguous ensemble
Complementary
Margin distance
Kappa statistics
FES
Backfitting

Figure 5.3. These set of curves displays the variation of the test error with the ensemble size for
each of the mentioned pruning approaches. The top plots shows the rsults for the 0.1 sampling
rate, whereas the bottom plot for the 0.5 sampling rate, both for the Australian dataset.

77

5. Optimising diversity by tree selection

1. Keep the most ambiguous ensemble:

Yn+1 = arg max
y∈Y ′

ambCE(Y ′ \ y).

2. Keep the least ambiguous ensemble :

Yn+1 = arg min
y∈Y ′

ambCE(Y ′ \ y).

3. Remove a random classifier:

Yn+1 = Y ′ \RandomChoice(Y ′).

4. Remove the classifier with the largest training error:

Yn+1 = Y ′ \ arg max
y∈Y ′

(Llog(y, t)).

5. Remove the classifier with the lowest training error:

Yn+1 = Y ′ \ arg min
y∈Y ′

(Llog(y, t)).

6. Keep ensemble with the highest training error:

Yn+1 = arg max
y∈Y ′

Llog(Y
′ \ y, t).

7. Keep ensemble with the lowest training error:

Yn+1 = arg min
y∈Y ′

Llog(Y
′ \ y, t).

We have tested this approach on forests formed of m ∈ {5, 10, 20, 50} trees which were

randomly chosen from the same pool of M = 100 trees as in Section 5.2. We ran the

algorithm 50 times and produced box plots of the test data, see Figure 5.4. The same

training and test data as in the previous experiments were used, but with different random

startup ensembles for each run.

5.4 Evolving ensemble membership

Building on the ideas from the last two sections, we define an evolutionary algorithm

which maximises the training ambiguity, by selecting a fixed number of trees, m, at each

generation, see Algorithm 3. The trees selected are represented via a string of 0s and 1s,

where 1 on the ith position signifies that the ith tree is selected and 0 that is not. At

each generation we mutate the current string according to mutation rate µ. For each bit

of the string a random number between 0 and 1 is generated, if the value is less than µ,

then the current bit is mutated. If the total number of trees selected after the mutation

is different than m, then random trees will be either added or removed in order to have

78

5. Optimising diversity by tree selection

the same total number of trees, line 4 from Algorithm 3. The training ambiguity of the

new formed ensemble is calculated, if it is higher than that of the previous ensemble the

current ensemble will be kept and the old one discarded. In case of equality, the ensemble

with the lower training error is kept.

Algorithm 3 Evolutionary algorithm for selecting trees by optimising diversity

Input: X = {xn}Nn=1 . training data
Input: t = {tn}Nn=1 . targets
Input: m . number of trees desired
Input: tree list . list of all possible trees
Input: g . number of generations
Input: µ. . mutation rate
Output: T . evolved forest

1: M ← len(tree list)
2: T ← initialize(X, t,M) . generate a random ensemble/forest
3: for i = 1→ g do
4: T ′ ← mutate(T ,m, µ)
5: if (ambCE(T ′) > ambCE(T)) or

(ambCE(T ′) = ambCE(T) andLlog(T ′, t) < Llog(T , t)) then
6: T ← T ′
7: return T

To evaluate its performance the evolutionary algorithm was run for g = 25000 generations

50 times, and for the sampling rates {0.05, 0.1, 0.2, 0.3, 0.5}. The pool of trees from which

the ensemble is composed at each generation is the same as the one used in Sections 5.2

and 5.3.

We compared the performance of the evolutionary algorithm with the approaches described

in Sections 5.2 and 5.3 and with the evolutionary algorithm from Section 4.4. Box plots of

the test errors for all the approaches over the 50 runs are shown in Figure 5.4. The results

for 5 trees are displayed in the top left panel, for 10 trees in the top right, for 20 in the

bottom left and 50 in the bottom right. We have grouped the box plots according to the

tree selection method used. For example, in each group of a similar colour, the first box

plot will always denote one of the tree selection methods that start with an ensemble of M

trees and discard a tree at each iteration, according to the pruning approaches mentioned

in section 5.2. The second box plot from the group (the darker colour) will always the be

the corresponding method, but by using the OIOO approach from section 5.3 . We have

labelled the box plots of similar approaches with the same letter, the ones representing the

methods from Section 5.2 by 1 and the corresponding OIOO approach by 2. For example,

the first group of box plots shown (coloured in navy) represent the test cross entropy values

for the “Keep most ambiguous ensemble” method. The first box plot, A1 represents the

values for the “Keep most ambiguous” ensemble method presented in Section 5.2. The

second box plot A2, displays the results for the “Keep most ambiguous ensemble OIOO”,

presented in section 5.3. The meanings of these labels are presented in Table 5.1. The

black vertical line separates the tree selection algorithms from the evolutionary algorithm

that selects patterns (from Section 4.4). These boxplots were obtained for the German

dataset and for ρ = 0.05.

79

5. Optimising diversity by tree selection

We can see from these plots that in general the best approaches are “Keep most ambiguous

ensemble”,“Keep most ambiguous ensemble OIOO”,“Remove tree lowest error”,“Remove

tree lowest error OIOO” and the evolutionary algorithms, followed by “Keep ensemble

lowest error”,“Keep ensemble lowest error OIOO”,“Random”,“Random OIOO”. Another

aspect which is visible from these plots is that as we increase the number of trees, the test

errors given by the best approaches get closer to the unpruned ensemble.

Figure 5.4. Box plots of the test CE for the tree selection approaches versus the pattern selection
approach (the evolutionary algorithm from Section 4.4) on the German dataset for the 0.05 sam-
pling rate. The first plot in the panel displays the results for 5 trees, the second plot for 10 trees,
the third of 20 trees, whereas the last one of 50 trees. The symbols from the x-axis correspond
to the tree selection methods and pattern selection approaches and their meaning is displayed in
Table 5.1.

In order to correctly rank all these schemes, we performed statistical tests. We used the

Wilcoxon signed rank two-tailed test [114] along with the Holm–Bonferroni correction

method [115] for a p-value of 0.05. The results of the statistical tests are displayed in

Table 5.2. This table contains two analyses. First it determines the best approach and all

those approaches which are statistically indistinguishable from it out of the tree selection

approaches. The best one is underlined in red, whereas the statistically similar ones are

underlined in blue. The second analysis compares all approaches, i.e. the tree selection

approaches with the pattern selection one (the evolutionary algorithm from Section 4.4).

The best performing approach is shaded with a dark grey, whereas the statistically similar

ones are highlighted in lighter grey.

We also present a visual comparison, by using critical difference diagrams, as in [116]. In

these diagrams the best classifiers are ranked in an ascending order and they are connected

with each other if they are statistically similar, see Figures 5.5–5.7 for these for the German

dataset.

Even though these comparisons are just for the German dataset and for the ρ ∈ {0.05, 0.3, 0.5}
sampling rates, the ranking of the approaches is similar across all datasets (see the rest of

80

5. Optimising diversity by tree selection

Table 5.1. Symbols denoting the tree selection methods from Figure 5.4

Approach Symbol

Keep most ambiguous ensemble A1
One In, One out A2

Keep least ambiguous ensemble B1
One In, One out B2

Random C1
One In, One out C2

Remove tree highest error D1
One In, One out D2

Remove tree lowest error E1
One In, One out E2

Keep ensemble highest error F1
One In, One out F2

Keep ensemble lowest error G1
One In, One out G2

Unprunned ensemble H

EA select trees I

EA select patterns J

123456789101112131415

13.7500max_err_ens
13.7400lst_amb_OIOO
13.5600max_err_ens_OIOO
12.5900lst_amb
10.5400tree_max_err_OIOO
10.5400tree_max_err

7.6000rand_OIOO
6.9400rand

6.3500 tree_min_err_OIOO
6.3500 tree_min_err
4.9800 min_err_ens
4.3000 min_err_ens_OIOO
3.3700 most_amb
2.9900 most_amb_OIOO
2.4000 EA_sel_trees

Test CE

12345678910111213141516

14.7500max_err_ens
14.7400lst_amb_OIOO
14.5600max_err_ens_OIOO
13.5900lst_amb
11.5400tree_max_err_OIOO
11.5400tree_max_err

8.5400rand_OIOO
7.8200rand 7.1700 tree_min_err_OIOO

7.1700 tree_min_err
5.7400 min_err_ens
5.0600 min_err_ens_OIOO
3.9500 most_amb
3.5800 EA_sel_patt
3.4500 most_amb_OIOO
2.8000 EA_sel_trees

Test CE

Figure 5.5. Comparisons of the tree selection approaches versus the pattern selection approach (the
evolutionary algorithm from Section 4.4) on the German dataset for the 0.05 sampling rate, for 5
trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

81

5. Optimising diversity by tree selection

Sampling
rate

Number
trees

+
most
amb

ensemble

+ least
amb

ensemble

Random - tree
max
error

- tree
min
error

+ max
error

ensemble

+ min
error

ensemble

EA
sel

trees

EA
sel

patterns

0.05 5 1.11 1.04 5.99 7.09 1.76 2.12 4.32 4.32 1.57 1.57 6.98 6.97 1.28 1.22 1.00 1.02
0.1 5 1.29 1.18 3.73 4.36 1.88 1.81 3.12 3.12 1.49 1.49 4.29 4.50 1.67 1.60 1.29 1.13
0.2 5 1.48 1.46 2.98 3.13 1.88 1.89 2.63 2.63 1.60 1.60 2.64 2.86 1.91 1.87 1.51 1.39
0.3 5 1.59 1.55 2.76 2.93 1.96 1.96 2.58 2.58 1.57 1.57 2.32 2.58 2.14 2.19 1.65 1.36
0.4 5 1.67 1.61 2.68 2.71 2.16 2.12 2.67 2.63 1.76 1.76 2.14 2.26 2.33 2.41 1.86 1.50
0.5 5 1.90 1.91 2.71 2.70 2.17 2.25 2.63 2.63 1.92 1.92 2.44 2.55 2.44 2.50 1.98 1.75

0.05 10 0.70 0.69 3.77 4.36 0.82 0.78 2.51 2.51 0.71 0.71 4.21 4.15 0.83 0.84 0.66 0.92
0.1 10 0.66 0.66 1.99 2.10 0.87 0.85 1.82 1.82 0.66 0.66 1.90 1.89 0.99 0.99 0.66 0.75
0.2 10 0.71 0.71 1.61 1.63 0.88 0.86 1.45 1.45 0.72 0.72 0.97 1.27 1.05 1.05 0.72 0.66
0.3 10 0.78 0.78 1.43 1.42 0.99 0.97 1.44 1.46 0.76 0.76 1.01 1.12 1.22 1.17 0.82 0.68
0.4 10 0.86 0.86 1.43 1.41 1.06 1.08 1.44 1.44 0.86 0.86 1.03 1.09 1.28 1.28 0.91 0.71
0.5 10 1.00 1.00 1.49 1.53 1.17 1.24 1.48 1.48 1.00 1.00 1.15 1.22 1.31 1.31 1.05 0.87

0.05 20 0.63 0.63 1.80 1.91 0.59 0.59 1.39 1.39 0.63 0.63 2.19 1.93 0.58 0.59 0.59 0.77
0.1 20 0.60 0.60 1.02 1.07 0.59 0.58 0.95 0.95 0.60 0.60 0.78 0.80 0.66 0.67 0.57 0.67
0.2 20 0.56 0.56 0.91 0.92 0.61 0.60 0.88 0.88 0.57 0.57 0.62 0.62 0.75 0.73 0.57 0.60
0.3 20 0.59 0.59 0.86 0.89 0.65 0.66 0.85 0.85 0.58 0.59 0.65 0.65 0.75 0.73 0.59 0.57
0.4 20 0.62 0.62 0.92 0.92 0.72 0.78 0.90 0.90 0.64 0.64 0.68 0.69 0.83 0.83 0.65 0.57
0.5 20 0.69 0.69 0.97 0.97 0.83 0.80 0.96 0.96 0.68 0.68 0.75 0.74 0.86 0.85 0.72 0.61

0.05 50 0.57 0.57 0.62 0.62 0.55 0.55 0.62 0.62 0.57 0.57 0.62 0.62 0.53 0.53 0.56 0.68
0.1 50 0.55 0.55 0.57 0.57 0.53 0.53 0.57 0.57 0.55 0.55 0.56 0.56 0.53 0.53 0.54 0.61
0.2 50 0.53 0.53 0.57 0.57 0.52 0.52 0.57 0.57 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.56
0.3 50 0.52 0.52 0.58 0.58 0.53 0.53 0.58 0.58 0.52 0.52 0.53 0.53 0.53 0.53 0.53 0.54
0.4 50 0.54 0.54 0.60 0.60 0.58 0.57 0.60 0.60 0.55 0.55 0.56 0.56 0.59 0.59 0.55 0.53
0.5 50 0.60 0.60 0.64 0.64 0.61 0.61 0.64 0.64 0.60 0.60 0.60 0.60 0.62 0.62 0.59 0.53

Table 5.2. Statistical comparisons of the tree selection schemes and the evolutionary algorithm
that selects patterns from Section 4.4. For each method the median of the test cross entropy over
the 50 runs is displayed. The columns of the tree selection methods from Sections 5.2, 5.3 have two
values, with the following meaning: the first one denotes the median of the test cross entropy for
the pruning method, whereas the second the value indicates the median of the corresponding OIOO
approach. Dark shading indicates the best approach across all methods, whereas the lighter grey
the ones statistically indistinguishable. The blue underlining denotes the best approach across the
tree selection methods, whereas the red underlining indicates the approaches statistically similar.
The results shown are for the German dataset.

82

5. Optimising diversity by tree selection

123456789101112131415

13.1200tree_max_err_OIOO
13.1000tree_max_err
12.9000lst_amb_OIOO
12.8600lst_amb

9.4600min_err_ens_OIOO
9.3000min_err_ens
9.3000max_err_ens_OIOO
7.9800rand

7.3200 max_err_ens
7.2600 rand_OIOO
4.5400 EA_sel_trees
3.3100 most_amb
3.2900 most_amb_OIOO
3.1500 tree_min_err
3.1100 tree_min_err_OIOO

Test CE

12345678910111213141516

14.1200tree_max_err_OIOO
14.1000tree_max_err
13.9000lst_amb_OIOO
13.8600lst_amb
10.4600min_err_ens_OIOO
10.2600min_err_ens
10.2400max_err_ens_OIOO

8.8800rand 8.2400 max_err_ens
8.1800 rand_OIOO
5.4200 EA_sel_trees
3.9500 most_amb
3.9300 most_amb_OIOO
3.7700 tree_min_err
3.7300 tree_min_err_OIOO
2.9600 EA_sel_patt

Test CE

Figure 5.6. Comparisons of the tree selection approaches versus the pattern selection approach (the
evolutionary algorithm from Section 4.4) on the German dataset for the 0.3 sampling rate, for 10
trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123456789101112131415

12.3400lst_amb_OIOO
12.2800lst_amb
11.7700tree_max_err
11.7300tree_max_err_OIOO

9.8400min_err_ens
9.7400min_err_ens_OIOO
8.1000rand_OIOO
8.0800rand

6.6500 max_err_ens
6.3900 max_err_ens_OIOO
5.3200 EA_sel_trees
4.5800 tree_min_err_OIOO
4.5200 tree_min_err
4.3500 most_amb_OIOO
4.3100 most_amb

Test CE

12345678910111213141516

13.3400lst_amb_OIOO
13.2800lst_amb
12.7700tree_max_err
12.7100tree_max_err_OIOO
10.8400min_err_ens
10.7400min_err_ens_OIOO

9.0200rand_OIOO
8.8800rand 7.5300 max_err_ens

7.2700 max_err_ens_OIOO
6.1000 EA_sel_trees
5.3400 tree_min_err_OIOO
5.2800 tree_min_err
5.1100 most_amb_OIOO
5.0700 most_amb
2.7200 EA_sel_patt

Test CE

Figure 5.7. Comparisons of the tree selection approaches versus the pattern selection approach(the
evolutionary algorithm from Section 4.4) on the German dataset for the 0.5 sampling rate, for 20
trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

83

5. Optimising diversity by tree selection

the figures in Appendix, Section A.4). In general the best approaches are the evolutionary

algorithms (since they explore more the space of solutions). The evolutionary algorithms

are statistically similar to the “Keep most ambiguous ensemble”,“Keep most ambigu-

ous ensemble OIOO”, “Remove tree lowest error”,“Remove tree lowest error OIOO” ap-

proaches. Since the evolutionary algorithms are expensive (they have a computational

cost of O(ρN), where ρ = 25000 is the number of generations and N the population size)

and also the pruning approaches (O(M2)), arguably the best approaches would be “Keep

most ambiguous ensemble OIOO” and “Remove tree lowest error OIOO”, since their com-

putational cost is O((m+ 1)(M −m)) and is less than the costs of the other approaches

considered (O((m+ 1)(M −m)) ≈ O(mM) < O(M2) < O(ρN), since m << M).

84

5. Optimising diversity by tree selection

5.5 Conclusion

We have defined different methods of tree selection, some that favoured ambiguous/accurate

ensembles and some that promoted less ambiguous/accurate ensembles. We compared the

performance of these methods with the results of the evolutionary algorithm from Section

5.4 and from Chapter 4, Section 4.4. Our main findings are the following:

• In general the evolutionary algorithms yield the lowest generalisation errors, however

they are the most computational expensive.

• The results of the ”Keep most ambiguous ensemble”,”Keep most ambiguous ensem-

ble OIOO”, ”Remove tree lowest error” and ”Remove tree lowest error OIOO” are

statistically similar to the results of the evolutionary algorithms.

• The results of the approaches that favour ambiguity or remove the trees with the

lowest errors, are statistically similar to the results of the evolutionary algorithms.

• Our results demonstrate once more the usefulness of ambiguity in error reduction,

since the approaches that favour ambiguity are amongst the most successful ones

(being also similar in performance to the evolutionary algorithms and less expensive).

85

Chapter 6

Asymmetric impurities

6.1 Introduction

In previous chapters our experiments were based on forests of trees built with the same

impurity function and diversity was based on the classifiers’ predictions. In this chapter

we explore a different path of ensuring diversity in a forest. We will define diverse forests

by building trees that employ different impurities. Our experiments investigate the effect

that building trees with different impurities has on the generalisation error. We will focus

the investigation in the case of imbalanced datasets, where asymmetric impurities are of

interest. In section 6.2 we will investigate the effect that different asymmetric impurities

have on the generalisation error, in contrast to symmetric impurities and then continue

by varying the asymmetric impurities used in building the trees from a forest.

The principal contributions of this chapter are as follows:

1. The empirical comparison of the effect of different asymmetric impurities versus

symmetric impurities on the generalisation error

2. The empirical assessment of the effect of building trees from a forest with different

asymmetric impurities on the generalisation error, as a way of injecting diversity

3. The numerical explanation of why symmetric and asymmetric impurities might yield

similar splits, particularly within a specific family of impurity measures.

6.2 Experiments

In machine learning the focus is to generate models that would minimise a certain loss

and would achieve a good generalisation performance. In practice, we are interested not

just in optimising one loss/objective, but to optimise multiple losses/objectives at the

same time, which can be conflicting. For example, one would like to have ensembles

formed of accurate members, but also diverse. A common strategy is to compose linearly

these losses/objectives, by using different weights and parameters and determine those

that would minimise their combination. This can be achieved by training for each set of

parameters or weights an individual model and store it in the memory, in order to analyse

it later.

86

6. Asymmetric impurities

More formally, given a training distribution of pairs x, y ∼ Px,y with x ∈ X ⊂ RdX ;

y ∈ Y ⊂ RdY and a loss function L(·, ·) : Y × Y → R, the aim is to learn a model

F : X → Y , with parameters θ, such that its predictions ŷ = F (x; θ) minimize the

expected value of the loss L(y, ŷ) over the dataset.

This approach can severely affect the time of execution, as a result in [117] the authors

suggest a method which would train a model just once, not on a certain parameter, but

on distribution of parameters.

As opposed to the previous example when one loss function is considered L(·; ·) in this

case a family of losses is considered L(·; ·;λ), parameterised by a vector λ ∈ Λ ∈ Rdλ .

In general, such a family of losses are represented by a weighted sum of several loss terms:

L(·, ·, λ) =
∑
i

λiL
i(·, ·, λi)

Instead of having a fixed λ, an optimisation problem is considered where the parameters

λ are sampled from a distribution Pλ.

The parameter θ can be determined in this way:

θ∗ = arg
θ
min

n∑
i=1

L(yi, F (xi, θ, λi), λi), λi ∼ Pλ

In [117] the models considered were convolutional neural networks (CNN). Inspired by

this approach, we investigated the extension of this method to decision trees.

As an equivalent to the family of losses, we defined a family of impurities, characterised

by different parameters. To reiterate, an impurity function, f : [0, 1] → R, is a concave

function, which is continuous on [0,1] and for which the values at the end points coincide.

Inspired by the code from [44], we built decision trees by using different impurity functions.

6.2.1 Beta distribution

The first impurity used in our experiments was the beta function, defined as:

b(p) = pα−1(1− p)β−1 , α, β > 0 (6.1)

In order for the beta distribution to have a bell shape, or to be concave, the necessary and

sufficient conditions are 1 < α < 2 and 1 < β < 2. The beta distribution is symmetric

when α = β and asymmetric when α 6= β.

The beta distribution obtained for the parameters α = 1.2, β = 1.8 is displayed in Figure

6.1.

Our initial experiment was to compare the behaviour of forests built with symmetric

impurities versus asymmetric impurities, in the case of imbalanced classes. As mentioned

earlier, when dealing with imbalanced datasets sometimes of more importance is considered

87

6. Asymmetric impurities

Figure 6.1. The values of the beta distribution are plotted on the y-axis, whereas the corresponding
probabilities are shown on the x-axis.

the minority class and calculating the accuracy is not considered to be the best metric of

performance. Instead, the true positive rate and false positive rate are of more interest,

since they quantify much better the algorithm’s capability of predicting the minority

class. As a result we compared these values and the ROC curves of the forests built with

symmetric impurities with the forests built with asymmetric impurities.

We built forests of 100 trees, each tree having the same values for the α and β values.

We used 2-fold stratified cross validation, so that a stratified half of the data was used for

the training and the remaining part was used for the test. We modified the data, so that

there was an imbalance of 10% for the positive class. We ran the experiment 30 times and

plotted the box plots of the forests’ true positive rate, false positive rate, true negative

rate and true positive rate and the mean ROC curve. The values from the box plots were

obtained for the test data and are presented in Figure 6.2. These plots were obtained

for parameters α = β = 1.5 for the symmetric case and α = 1.9 and β = 1.1 for the

asymmetric case. We can see from these pictures that the behaviour is very similar in the

symmetric and asymmetric case. As a result, we changed the parameters and produced

the same box plots but for α = β = 1.6 for the symmetric case and α = 1.2 and β = 1.8,

results shown in Figure 6.3.

Since these sets of parameters did not show the desired result, we tried to determine

which ones would be the best parameters. We generated two evenly spaced array of values

ranging between 1 and 2, one for the α values and one for β. For each of them, we

generated forests of 100 trees in the symmetric case when α = β.

In the asymmetric case, we investigated for a range of α and β. We used the same technique

as before in dividing the data into two stratified halves, representing the training and test

data. We ran the experiment 30 times and produced the box plots of the corresponding

true positive, true negative, false positive and false negative rates which resulted from

applying the test data, results shown in Figure 6.4. The blue box plots correspond to the

symmetric case, whereas the red ones to the asymmetric case. The values from the red

box plots were obtained for α values equal to the ones from the symmetric case and the β

parameters were equal to the values shown on the x-axis. On the y-axis the true positive

88

6. Asymmetric impurities

0.91

0.92

0.93

0.94

0.95

0.96

Tru
e p

osit
ive

 rat
e

symmetric case
asymmetric case

0.80

0.82

0.84

0.86

0.88

Tru
e n

ega
tive

 rat
e

symmetric case
asymmetric case

0.12

0.14

0.16

0.18

0.20

Fal
se

pos
itiv

e ra
te

symmetric case
asymmetric case

0.04

0.05

0.06

0.07

0.08

0.09

Fal
se

neg
ativ

e ra
te

symmetric case
asymmetric case

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Comparison ROC curves

Chance
Mean ROC symmetric case (AUC = 0.96 ± 0.01)
Mean ROC asymmetric case (AUC = 0.95 ± 0.01)
± 1 std. dev.
± 1 std. dev.

Figure 6.2. Results obtained on the Gmm5test dataset. The ROC plots for the symmetric and
the asymmetric case are presented in blue, respectively green. The parameters used for the beta
distribution were α = β = 1.5 for the symmetric case and α = 1.9 and β = 1.1 for the asymmetric
case.

0.88

0.90

0.92

0.94

0.96

Tru
e p

osit
ive

 rat
e

symmetric case
asymmetric case

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Tru
e n

ega
tive

 rat
e

symmetric case
asymmetric case

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Fal
se

pos
itiv

e ra
te

symmetric case
asymmetric case

0.04

0.06

0.08

0.10

0.12

Fal
se

neg
ativ

e ra
te

symmetric case
asymmetric case

Figure 6.3. Results obtained on the Gmm5test dataset.The parameters used for the beta distri-
bution were α = β = 1.6 for the symmetric case and α = 1.1 and β = 1.8 for the asymmetric
case.

rate is displayed.

As we can see from these plots, in general the error bars are large, leading to the AUCs

being similar for all ranges of β for fixed α and for different α. The most significant

difference between the symmetric and asymmetric case was achieved for the end points

α = 1 and and β = 2 . However, for these values the concavity of the function is not

satisfied. Similar behavior has been seen for the true negative rate, false positive or false

negative rate and for all datasets considered.

Our empirical results can be justified by a theoretical finding from [43]. Zimmerman

states that applying an asymmetric impurity to decision trees is equivalent to setting a

89

6. Asymmetric impurities

1.11 1.22 1.33 1.44 1.56 1.67 1.78 1.89 2.01.0
Beta

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

symmetric case alpha=1.0
asymmetric case alpha=1.0

1.0 1.22 1.33 1.44 1.56 1.67 1.78 1.89 2.01.11
Beta

0.86

0.88

0.90

0.92

0.94

Tr
ue

 p
os

iti
ve

 ra
te

symmetric case alpha=1.11
asymmetric case alpha=1.11

1.0 1.11 1.33 1.44 1.56 1.67 1.78 1.89 2.01.22
Beta

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Tr
ue

 p
os

iti
ve

 ra
te

symmetric case alpha=1.22
asymmetric case alpha=1.22

1.0 1.11 1.22 1.44 1.56 1.67 1.78 1.89 2.01.33
Beta

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Tr
ue

 p
os

iti
ve

 ra
te

symmetric case alpha=1.33
asymmetric case alpha=1.33

1.0 1.11 1.22 1.33 1.56 1.67 1.78 1.89 2.01.44
Beta

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Tr
ue

 p
os

iti
ve

 ra
te

symmetric case alpha=1.44
asymmetric case alpha=1.44

1.0 1.11 1.22 1.33 1.44 1.67 1.78 1.89 2.01.56
Beta

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Tr
ue

 p
os

iti
ve

 ra
te

symmetric case alpha=1.56
asymmetric case alpha=1.56

1.0 1.11 1.22 1.33 1.44 1.56 1.78 1.89 2.01.67
Beta

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Tr
ue

 p
os

iti
ve

 ra
te

symmetric case alpha=1.67
asymmetric case alpha=1.67

1.0 1.11 1.22 1.33 1.44 1.56 1.67 1.89 2.01.78
Beta

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Tr
ue

 p
os

iti
ve

 ra
te

symmetric case alpha=1.78
asymmetric case alpha=1.78

1.0 1.11 1.22 1.33 1.44 1.56 1.67 1.78 2.01.89
Beta

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Tr
ue

 p
os

iti
ve

 ra
te

symmetric case alpha=1.89
asymmetric case alpha=1.89

1.11 1.22 1.33 1.44 1.56 1.67 1.78 1.89 2.0 1.0
Beta

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

symmetric case alpha=2.0
asymmetric case alpha=2.0

Figure 6.4. Results obtained on the Australian dataset for the true positive rate.

cost for each of the classes. Also, he proves mathematically that functions equal to a scalar

multiplied to a function of the form f(p) = pα(1− p)1−α are cost-insensitive. A function

90

6. Asymmetric impurities

Figure 6.5. The values of the hm distribution are plotted on the y-axis, whereas the corresponding
probabilities are shown on the x-axis. This plot was obtained for m = 0.8

Table 6.1. Dataset characteristics

Datasets Patterns Features Imbalance of positive class

Hepatitis 155 19 21%
Satimage 6435 36 10%

Hypothyroid 3772 28 8%
Segment 2310 19 14%
Breast 699 9 34%

that is cost-insensitive is not affected by the class weighting and therefore it will not bias

any of the classes. Although the ROC curves are the “same”, the same (TP, FP) point on

each curve is obtained for different costs or equivalently for different parameterisations of

the beta distribution.

6.2.2 hm impurity

We continue our study with a different impurity function, defined as:

hm(p) =
p(1− p)

(−2m+ 1)p+m2
, m ∈ (0, 1) (6.2)

The curve of this function is displayed in Figure 6.5.

We repeated the initial experiments from the previous section with the beta distribution

on the datasets displayed in Table 6.1.

The box plots of the true positive, true negative, false positive and false negative rates

and the ROC curves of the forests are displayed in Figures 6.6 and 6.7. Even though the

box plots show significant difference, they only represent the values for the 0.5 threshold.

The ROC curves corresponding to several thresholds show similar behaviour between the

symmetric and asymmetric case.

A justification for this behavior can be found in [43]. The authors have shown that the

impurity function hm from Equation (6.2) can be written as a transformation applied to

91

6. Asymmetric impurities

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tru
e p

osit
ive

 rat
e

symmetric case
asymmetric case

0.5

0.6

0.7

0.8

0.9

Tru
e n

ega
tive

 rat
e

symmetric case
asymmetric case

0.1

0.2

0.3

0.4

0.5

Fal
se p

osit
ive

 rat
e

symmetric case
asymmetric case

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fal
se n

ega
tive

 rat
e

symmetric case
asymmetric case

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Comparison ROC curves

Chance
Mean ROC symmetric case (AUC = 0.82 ± 0.06)
Mean ROC asymmetric case (AUC = 0.80 ± 0.06)
± 1 std. dev.
± 1 std. dev.

Figure 6.6. Results obtained on the Hepatitis dataset. The ROC plots for the symmetric and
the asymmetric case are presented in blue, respectively green. These results were obtained for
m = 0.12.

the Gini impurity and therefore produce similar results:

hm(p) =
1

2(1−m)2
Twg (6.3)

where w =
(
1
m − 1

)2
and g is the Gini function.

Using this result, we tried to analyze the effect that varying the weights, has on the ROC

curves. Since some asymmetric impurities produce the same splits as a tree built with

the Gini index but with different weights, we built forests of trees having different sample

weights and compared them with the forests having weight one (obtained by using the

Gini index). The ROC curves obtained are presented in Figure 6.8.

The line in orange denotes the forest for which the weights were uniformly distributed

between 10−3 and 103. The other forests were formed of samples of equal weights: 0

denoted by the blue curve, -3 by the green and 3 by the red.

The ROC curves for the equal sample weights and the random sample weights are essen-

tially the same. The ROC curves for the extremely asymmetric weights are similiar, but if

the weights are biased away from the positive class (the “-3” case) then part of the ROC

curve is not accessible, because there are no trees that can classify the positive examples

as positive. The results show that for these particular weights there is not much significant

difference between symmetric and asymmetric weights, therefore could be a question of

92

6. Asymmetric impurities

0.4

0.5

0.6

0.7

0.8

0.9

Tru
e p

osit
ive

 rat
e

symmetric case
asymmetric case

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Tru
e n

ega
tive

 rat
e

symmetric case
asymmetric case

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fal
se

pos
itiv

e ra
te

symmetric case
asymmetric case

0.1

0.2

0.3

0.4

0.5

0.6

Fal
se n

ega
tive

 rat
e

symmetric case
asymmetric case

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Comparison ROC curves

Chance
Mean ROC symmetric case (AUC = 0.92 ± 0.01)
Mean ROC asymmetric case (AUC = 0.93 ± 0.01)
± 1 std. dev.
± 1 std. dev.

Figure 6.7. Results obtained on the Satimage dataset. The ROC plots for the symmetric and
the asymmetric case are presented in blue, respectively green. These results were obtained for
m = 0.12.

Figure 6.8. Comparison of the ROC curves of the forests obtained for different sample weight
ranges. The line in orange denotes the case when the weights were uniformly distributed between
10−3 and 103. The other ROC curves were obtained when the weights were equal. We have
compared for the following weight values: 0 denoted by the blue curve, -3 by the green line and 3
by the red line. The results are obtained on the GMM5 dataset.

choosing the right weights.

Since these results were obtained for specific weights and for a specific threshold fixed

(0.5), next we tried to optimise the sample weights and threshold. We optimised them

93

6. Asymmetric impurities

in a bi-objective problem of minimising the false positive rate and the complement of

the true positive rate (1-TPR, where TPR stands for true positive rate). The weights,

wi, i = 1 . . .M were represented as a softmax:

wi =
eθi∑M
i=1 e

θi
(6.4)

Figure 6.9. Comparison of the ROC curves of the forests obtained for equal weights (denoted in
red), random weights (orange), optimised random weights (blue), optimised equal weights (green),
optimised random weights and threshold (purple) and optimised equal weights and threshold
(brown). The results are obtained on the GMM5 dataset.

Figure 6.9 essentially shows that the optimisation of the weights within the forest works

better for the forest with the randomly weighted samples (equivalently, randomly asym-

metric impurity functions) as a greater range of the ROC curve is accessible. However,

each of the forests with unoptimised tree-weights has an ROC curve that appears to be

equivalent to the optimised curves.

This figure shows that by optimising the threshold along with the weights, a better

TPR/FPR trade-off is obtained. However, having variable weights for the samples (equiv-

alently, asymmetric impurity) doesn’t give any benefit in this case. By analysing the

curves we can see that there is no significant difference between the symmetric forests or

forests built with asymmetric impurities equivalent to a reweighting of the Gini function.

6.2.3 p− pα impurity

An impurity function that does not fall in any of the previous mentioned categories (being

equivalent to a transformation applied to a symmetric function or being of the form apα(1−
p)1−α, α ∈ (0, 1), where a is positive constant) is the following:

f(p) = p− pα, α ≥ 3 (6.5)

The curve of this impurity function is displayed in Figure 6.10.

We generated for values of α ∈ [3, 4, 5, 6] forests formed of 100 trees and produced the

94

6. Asymmetric impurities

Figure 6.10. The values of the p− pα are plotted on the y-axis, whereas the corresponding proba-
bilities are shown on the x-axis. This plot was obtained for α = 9.

corresponding ROC curves from Figure 6.11. The green ROC curve represents the asym-

metric case, whereas the blue one represents the symmetric case. The plots were obtained

by averaging over 10 folds, the bold line corresponds to the mean, and the upper and

lower bound represent the values of the mean ± the standard deviation. The yellow stars

represent the number of times the true positive rate for the asymmetric case was higher

than the true positive rate of the symmetric case.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Comparison ROC curve symmetric/asymmetric case

Chance
Mean ROC sym (AUC = 0.84 ± 0.09)
Mean ROC asym (AUC = 0.83 ± 0.09)
± 1 std. dev.
± 1 std. dev.

α=3

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Comparison ROC curve symmetric/asymmetric case

Chance
Mean ROC sym (AUC = 0.84 ± 0.09)
Mean ROC asym (AUC = 0.83 ± 0.09)
± 1 std. dev.
± 1 std. dev.

α = 4

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Comparison ROC curve symmetric/asymmetric case

Chance
Mean ROC sym (AUC = 0.84 ± 0.09)
Mean ROC asym (AUC = 0.83 ± 0.09)
± 1 std. dev.
± 1 std. dev.

α=5

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Comparison ROC curve symmetric/asymmetric case

Chance
Mean ROC sym (AUC = 0.84 ± 0.09)
Mean ROC asym (AUC = 0.84 ± 0.07)
± 1 std. dev.
± 1 std. dev.

α = 6

Figure 6.11. Hepatitis dataset

Again, there was no significant difference in behaviour between the symmetric and asym-

95

6. Asymmetric impurities

metric case. Next, we tried to compare the behaviour of the impurities when the pa-

rameters α are varied for each tree, which can be considered a way of ensuring diversity.

In these experiments we generated the ROC curves for forests of 100 trees, in which the

impurity function was either the Gini index for the symmetric case and p − pα for the

symmetric case.

Each tree was built with a randomly chosen α ∈ [3, 4, 5, 6, 7, 8, 9]. These plots were ob-

tained for the 0.1 threshold. We investigated the influence that each α value has on the

true positive or false positive rates. We conducted this analysis per α value and also

grouped sub-ensembles of trees that were built with the same α value. The left figure in

the panel from Figure 6.12 shows the mean and interquartile ranges for the ROC curves

obtained for the ensemble with mixed α values in blue and for the sub-ensembles formed

with the same α in the remaining colours. The right plot from the same figure, shows the

average true positive and false positive rate of the sub-ensembles for the 0.1 threshold, per

α. These results were obtained for the Satimage dataset. For the Hepatitis dataset, the

corresponding plots are presented in Figures 6.14.

By comparing these two set of plots, we can conclude that varying the alpha per tree, does

not have a significant impact on the ROC curve. Also by comparing the right figures of

the average FPR and TPR for each sub-ensemble, we cannot see a pattern for a specific α

positively influencing the prediction. We compared the behaviour of the forest built with

different values of α with the forests obtained in the previous experiments. Figure 6.13

presents a comparison of the ROC curves for the symmetric case, the asymmetric cases,

where α was the same for all trees, versus the asymmetric case when α was randomly

selected, in the case of the Satimage dataset. For the Hepatitis dataset, the corresponding

plots are presented in Figure 6.15. These plots do not show a significant difference between

the behaviour of the three approaches.

Figure 6.12. The left plot shows the mean ROC curves for the ensemble build with different values
of α and for the sub-ensembles built with the same values of α. The values for α ranged between
[3,4,5,6,7,8,9]. The right figure presents the average FPR vs TPR for each ensemble built with a
specific α. These results were obtained for the Satimage dataset.

We could not express the impurity function f as being the result of a transformation

Tω applied to a symmetric function, as in Definition 2.4.5. Therefore, in order to justify

the similarity in performance of the symmetric impurity and the p − pα impurity, by

96

6. Asymmetric impurities

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Chance
sym = 0.94
asym = 0.91 ± 0.04
± 1 std. dev.
asym rand = 0.91 ± 0.03
± 1 std. dev.

Figure 6.13. Comparison ROC curves for ensembles built with random α in turquoise, Gini index
in blue or α = 7 in green. There results were obtained for the Satimage dataset.

Figure 6.14. The left plot shows the mean ROC curves for the ensemble build with different values
of α and for the sub-ensembles built with the same values of α. The values for α ranged between
[3,4,5,6,7,8,9]. The right figure presents the average FPR vs TPR for each ensemble built with a
specific α. These results were obtained for the Hepatitis dataset

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Chance
sym = 0.85
asym = 0.86 ± 0.09
± 1 std. dev.
asym rand = 0.85 ± 0.09
± 1 std. dev.

Figure 6.15. Comparison ROC curves for ensembles built with random α in turquoise, Gini index
in blue or α = 7 in green. There results were obtained for the Hepatitis dataset.

the aid of numerical experiments we found functions that are a result of a transformation

applied to symmetric functions, which bound the impurity f . With the aid of optimisation

much closer bounds can be found, so that the distance between the target function, f

97

6. Asymmetric impurities

Figure 6.16. Bracketing of the impurity f = p− pα, where α = 8

and the bounds to be close to an ε > 0. Taking into account the result from Equation

(6.3), that function h can be defined as a transformation applied to the Gini function, a

transformation applied to it, will be another transformation applied to the Gini function.

By applying sequentially the transformation, we define the following functions:

L(p, ω,m) = (1 + (ω − 1)p)h(Φ(p, ω),m) (6.6)

where h is the function from Equation 6.2 and Φ from Definition 2.4.4.

LL(p, ω,m) = (1 + (ωL − 1)p)L(Φ(p, ωLL), ω,m) (6.7)

LLL(p, ω,m) = (1 + (ωLL − 1)p)LL(Φ(p, ωll), ω,m) (6.8)

LLLL(p, ω,m) = (1 + (ω − 1)p)LLL(Φ(p, ωll), ω,m) (6.9)

U(p, ω,m) = (1 + (ω − 1)p)h(Φ(p, ω),m) (6.10)

A possible bracketing of the function f = p−pα, where α = 8 can be seen in Figure 6.16.

In this section we have compared the results of forests built with a symmetric impurity

versus an asymmetric impurity p− pα. We have compared the behaviour for ensembles of

trees built with the same value of α or when each tree was built with a different value of

α. Our results have shown that there is not a statistical difference in performance between

the impurities used, on the particular problems we considered.

98

6. Asymmetric impurities

The impurity function p − pα cannot be written as a transformation applied to a sym-

metric function, as in Equation 6.3. Therefore, in order to justify the similarity between

the predictions, we have shown numerically that this function can be bracketed by func-

tions which are a transformation of the Gini index and therefore produce similar results.

However, we could not find analytically functions to bound this impurity function. One

possible way of dealing with this problem would be to define analytically functions which

can be written as a transformation applied to the Gini index and which bracket the func-

tion p − pα. In this way their splits will be similar and it can justify why there was

no significant difference between the results of the Gini index and the impurity function

p− pα. More details are presented in chapter 7.

6.3 Conclusion

Imbalanced datasets often occur in real world problems, where the minority class is of

greater interest. In such scenarios asymmetric impurities have been used in order to

predict the minority class. In our experiments we have tried to asses how well a series

of asymmetric impurities performs on predicting the minority class. We have compared

the predictions of forests build with symmetric impurities versus ensembles formed with

asymmetric impurities, however in the case of asymmetric impurities there was no signifi-

cant bias towards the minority class and the behaviour was statistically indistinguishable

to the case of symmetric impurities. Amongst the impurities considered, most of them

were proven to be equivalent to a symmetric impurity [43]. In the case of the impurity

function f = p − pα we have showed numerically that it can be bracketed by a series of

impurity functions obtained by applying a transformation to a symmetric impurity, hence

the similar prediction performance. However, we could not establish the bounds of this

function analytically. Even though our results could not demonstrate the benefit of using

asymmetric impurities, it might still be a question of choosing the right impurity function.

99

Chapter 7

Conclusion and future work

This chapter summarizes the results in the previous chapters and presents the main results

obtained in this thesis. Also a number of ideas which could be explored in future work

are presented.

Ensembles are important models used in machine learning, because of their prediction

capabilities which surpass those of individual classifiers. In Chapter 2 we present methods

for reducing ensemble error, including the bias and variance trade-off. It has been shown

that the prediction performance (accuracy) is positively influenced by diversity. We present

a number of state-of-the-art algorithms that optimise accuracy and diversity.

However there is a question about which diversity measure to use. In Chapter 3, we investi-

gate empirically the effect that different diversity measures have on ensemble performance.

The diversity measures considered were: ambiguity [1], coincident failure (CFD) [24], dis-

agreement (DIS) [25], Kohavi-Wolpert (KW) [26] and a new measure, called coherence.

The coherence measures the angle between the prediction of a classifier and the ensemble’s

prediction. The diversity measures that had the strongest negative correlation with the

generalisation error were the ambiguity, followed by the DIS and KW. Our experiments

have shown that at high diversity there is little consistent correlation with the test error.

We have analysed the effect that bootstrapping with or without replacement has on the

the generalisation error. Our empirical results showed that at low diversity there is a

negative correlation between diversity and test error, in the case of bootstrapping with-

out replacement. Another conclusion was that the ensembles generated by bootstrapping

with replacement had test errors which were not correlated with diversity. On the whole

bootstrapping without replacement generated ensembles with lower generalisation error.

We have also investigated the effect that providing more data has on the generalisation

error. The conclusion was that by increasing the size of the dataset the prediction perfor-

mance will increase. Since providing more data will decrease the computational speed on

fitting new models and predicting on unseen data, pruning techniques have been used in

the literature.

In our next set of experiments we have defined a series of pruning techniques: “Remove

100

7. Conclusion and future work

successive best” (trees that have the highest difference between individual error and indi-

vidual ambiguity/coherence are removed), “Remove successive worst” (the opposite of the

previous one) and “Linear random” (at the n + 1th iteration the same n trees from the

previous iteration are removed, plus a random new one). Our experiments revealed that

generalisation error was not considerably better when pruning according to diversity than

when choosing random ensembles. Hence, in the experiments in the following chapter we

focused on small ensembles.

Based on the bias-variance decomposition, in Chapter 4 we introduced two new ambiguity

measures, obtained by using the cross-entropy error or the hinge loss. We have analysed

the properties of these new diversity measures and found that only the ambiguity derived

from the cross-entropy error satisfies all the properties of a diversity measure, being always

positive and zero if and only if all the classifiers’ predictions agree.

We presented an evolutionary algorithm which evolves the training patterns of the classi-

fiers, in order to maximise the ambiguity obtained from the cross-entropy (ambCE). Our

experiments have shown that in general, the evolved ensemble has a better generalisation

error than the initial ensemble. Hence, our results support the influence that the diver-

sity has on minimising generalisation error. We also investigated the influence that using

random sampling on selecting patterns on which ensemble members are trained has on

the generalisation error. We found that generalisation error is negatively correlated with

diversity at high sampling rates; conversely generalisation error is positively correlated

with diversity when the sampling rate is low and the diversity high.

We have used in our experiments decision trees, therefore a possible extension of our

work would be to use different learners. Deep neural networks have achieved a high

predictability performance, however they are expensive to train. Since our experiments

were designed in the case of small ensembles, deep neural networks seem to be a good

candidate for a possible extension. A possible route could be to analyse the influence that

diverse/ambiguous ensembles of deep neural networks have on the generalisation error, by

using the ambCE measure. One starting point could be to evolve ambiguous ensembles of

deep neural networks, with the aim of achieving low generalisation error. We can start

from a set pool of M deep neural networks and evolve the ensemble membership, by

selecting a fixed subset of them of size m throughout the generations. The deep neural

networks selected can be represented via a string of 0s and 1s, where 1 on the ith position

signifies that the ith neural network is selected and 0 that is not. At each generation the

current string can be mutated according to mutation rate µ. One approach could be to

keep the most ambiguous ensemble at each generation and in case of equality the one with

the lowest training error to be preferred. The pseudocode of this approach is presented in

Algorithm 4:

Our experiments were performed in the classification case, another possible extension

could be to determine different ambiguity measures in the regression case and examine

their impact on the ensemble error. In [21] an ambiguity measure was defined by using the

bias-variance decomposition and the quadratic error Lquadratic =
∑N

i=1(tn − Yn)2. Other

possible losses that can be used in the regression case in order to obtain new diversity

101

7. Conclusion and future work

Algorithm 4 Evolutionary algorithm for selecting deep neural networks by optimising
diversity

Require: X = {xn}Nn=1 . training data
Require: t = {tn}Nn=1 . targets
Require: m . number of deep neural networks desired
Require: NN list . list of all possible deep neural networks
Require: g . number of generations
Require: µ. . mutation rate
Ensure: NN . evolved ensemble

1: M ← len(NN list)
2: NN ← initialize(X, t,M) . generate a random ensemble
3: for i = 1→ g do
4: NN ′ ← mutate(NN ,m, µ)
5: if (ambCE(NN ′) > ambCE(NN)) or

(ambCE(NN ′) = ambCE(NN) andLlog(NN ′, t) < Llog(NN , t)) then

6: NN ← NN ′
7: return NN

measures are: the log− cosh loss (which can be used in robust statistics) and the quantile

loss [118].

The log− cosh loss for the nth target and ith classifier is defined as:

Lcosh(yin, tn) = log(cosh(yin − tn)) (7.1)

By using equation 4.1, the ambiguity derived from the log− cosh loss of an ensemble Yn
for the nth pattern is:

amblog− cosh(Yn, tn) = log

(∏M
i=1 coshci(yin − tn)

cosh(
∑M

i=1 ciyin − tn)

)
(7.2)

The quantile loss for the qth quantile, the nth target and ith classifier is defined as follows:

LQL(yin, tn) = max
[
q(yin − tn), (q − 1)(yin − tn)

]
(7.3)

As before, we can define the ambiguity derived from the quantile loss, of ensemble Yn, on

the nth target as:

ambQL(Yn, tn) =

M∑
i=1

ci max
[
q(yin − tn), (q − 1)(yin − tn)

]
−max[q(

M∑
j=1

cjyjn − tn),

(7.4)

(q − 1)(

M∑
j=1

cjyjn − tn)]

(7.5)

These new types of ambiguities can be employed in evolutionary algorithms, like the ones

suggested in Algorithm 2 from Chapter 4 and Algorithm 3 from Chapter 5.

102

7. Conclusion and future work

Since in Chapter 4 we focused on small ensembles, in Chapter 5 we present pruning tech-

niques and investigate their impact on reducing generalisation error. We have defined

different methods of tree selection, a number of them that favoured ambiguous/accurate

ensembles and others that promoted less ambiguous/accurate ensembles. We compared

the performance of these methods with the results of the evolutionary algorithm from

Section 5.4 and from Chapter 4, Section 4.4. Our results show that in general the evo-

lutionary algorithm achieves good performance, however its performance is similar to the

pruning approaches that take into account ambiguity, which are also faster in terms of

computational speed, hence being preferred. This result shows once more the usefulness

of ambiguity in error reduction.

In the previous chapters our results were based on forests of trees, built with the same

impurity, where diversity was quantified based on the predictions of the individual trees. In

Chapter 6 we inject diversity in the forests by building trees with different impurities. We

built our experiments by choosing different families of impurities which are characterized

by different parameters and analysed their impact on the generalisation performance. By

tuning the parameters we can define symmetric or asymmetric impurities. Asymmetric

impurities have been proven to be beneficial in the case of imbalanced datasets, where

the minority class is usually of greater importance. We compare the behaviour of the

forests by using symmetric and asymmetric impurities with forests of trees built with

different impurities (different parameters). Our experiments have shown that in the case

of asymmetric impurities there was no significant bias towards the minority class and the

behaviour was very similar to the case of symmetric impurities. Amongst the impurities

considered, most of them were proven to be equivalent to a symmetric impurity [43], hence

the similar behaviour with the symmetric impurities. In the case of the impurity function

f = p − pα, in order to justify the similarity in predictions with the symmetric case, we

have showed empirically that it can be bracketed by a series of impurity functions obtained

by applying a transformation to a symmetric impurity. Even though our results could not

present evidence of the benefit of using asymmetric impurities, it might still be a question

of choosing the right impurity function.

As further avenue for future work, it would be useful to find an analytical explanation of

why the asymmetric impurity f = p−pα has a similar behaviour to the symmetric impurity.

One possible approach to addressing this problem would be to identify functions that can

be expressed as transformations applied to the Gini index and which bound the function

p− pα. In this way their splits will be similar and it can prove the similarity between the

results of the Gini index and the impurity function. In [43] the authors have defined the

transformation of a function f : [0, 1]→ R as

Tωf(p) = (1 + (ω − 1)p) (f ◦ Φω) (p) (7.6)

where ω > 0 and Φω : [0, 1]→ [0, 1] is defined as :

Φω(p) =
ωp

1 + (ω − 1)p
(7.7)

103

7. Conclusion and future work

The next step would be to find symmetric impurities whose transformation will bracket

the function f(p) = p− pα. We are looking for functions of the form

G(p) = a(Tωg)(p) = a(1 + (ω − 1)p) (g ◦ Φω) (p) (7.8)

where g is a symmetric function and a a constant.

We will consider the Gini impurity g(p) = 2p(1− p). As a result from Equation (7.8), we

will have :

G(p) = a(1 + (ω − 1)p)2Φω(p)(1− Φω(p)) = 2a(1 + (ω − 1)p)
ωp

1 + (ω − 1)p

(
1− ωp

1 + (ω − 1)p

)
= 2a(1 + (ω − 1)p)

1 + (ω − 1)p− ωp
1 + (ω − 1)p

=
2aωp(1− p)
1 + (ω − 1)p

We will define two functions U and L to be the upper bound function and lower bound,

respectively, of the function f(p) = p − pα. In order for a function to be bounded by

another, we can impose a set of conditions on the tangents of the functions in some

points, for example 0 and 1. For the case of L, which we want to serve as the lower bound,

we can impose that its tangent’s values at 0 and 1 be smaller than f ’s tangents at 0 and

1, ensuring that the curve of L lies below that of f . Similarly, for the upper bound, where

we would like the tangents of U to be greater than the ones of f . Mathematically this can

be expressed via the following conditions :

• ∂L
∂p (0) ≤ ∂f

∂p (0) = 1

• ∂L
∂p (1) ≤ ∂f

∂p (1) = 1− α

• ∂U
∂p (0) ≥ ∂f

∂p (0) = 1

• ∂U
∂p (1) ≥ ∂f

∂p (1) = 1− α

Next steps would involve optimising the parameters a and w in order to find closer bounds

of function f .

104

Appendices

105

Appendix A

A.1 Pruning plots involving the coherence diversity measure

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

En
se

m
bl

e
te

st
 e

rr

Same data

0 20 40 60 80 100
Number trees

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

En
se

m
bl

e
te

st
 e

rr

Different data
0.15

0.20

0.25

0.30

0.35

0.40

En
se

m
bl

e
te

st
 e

rr

Same data
remove successive worse
linear random
remove succesive best

0 20 40 60 80 100
Number trees

0.15

0.20

0.25

0.30

0.35

0.40

En
se

m
bl

e
te

st
 e

rr

Different data

Figure A.1. Comparisons of the pruning approaches involving the coherence diversity measure
for the Heart dataset, for sampling rates 0.1 and 0.75. The results for the 0.1 sampling rate are
presented in the first column, whereas the 0.75 sampling rate in the second column. The top figure
of each column displays the results when the same data was used, whereas the bottom plot when
different data was used.

A.2 Ambiguity measures

Let us consider the ensemble prediction to be:

Yn ≡ Y (xn) =
M∑
i=1

ciyin (A.1)

where M is the number of classifiers, xn the nth pattern, yin is the ith classifier’s prediction

for the nth pattern and ci the non-negative weights which have the following property∑M
i=1 ci = 1.

We denote the outputs of the ensemble members when classifying patterns xn by

Yn = {yin}Mi=1.

Also we denote the targets as tn, where n ∈ {1 . . . N} and N is the total number of

106

A.

0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24

En
se

m
bl

e
te

st
 e

rr

Same data

0 20 40 60 80 100
Number trees

0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24

En
se

m
bl

e
te

st
 e

rr

Different data
0.10

0.11

0.12

0.13

0.14

0.15

0.16

En
se

m
bl

e
te

st
 e

rr

Same data
remove successive worse
linear random
remove succesive best

0 20 40 60 80 100
Number trees

0.10

0.11

0.12

0.13

0.14

0.15

0.16

En
se

m
bl

e
te

st
 e

rr

Different data

Figure A.2. Comparisons of the pruning approaches involving the coherence diversity measure for
the GMM5 dataset, for sampling rates 0.1 and 0.75. The results for the 0.1 sampling rate are
presented in the first column, whereas the 0.75 sampling rate in the second column. The top figure
of each column displays the results when the same data was used, whereas the bottom plot when
different data was used.

0.2

0.3

0.4

0.5

0.6

En
se

m
bl

e
te

st
 e

rr

Same data

0 20 40 60 80 100
Number trees

0.2

0.3

0.4

0.5

0.6

En
se

m
bl

e
te

st
 e

rr

Different data
0.10

0.15

0.20

0.25

0.30

0.35

0.40

En
se

m
bl

e
te

st
 e

rr

Same data
remove successive worse
linear random
remove succesive best

0 20 40 60 80 100
Number trees

0.10

0.15

0.20

0.25

0.30

0.35

0.40

En
se

m
bl

e
te

st
 e

rr

Different data

Figure A.3. Comparisons of the pruning approaches involving the coherence diversity measure
for the Sonar dataset, for sampling rates 0.1 and 0.75. The results for the 0.1 sampling rate are
presented in the first column, whereas the 0.75 sampling rate in the second column. The top figure
of each column displays the results when the same data was used, whereas the bottom plot when
different data was used.

patterns.

A.2.1 Ambiguity measure obtained from the cross-entropy

Lemma 1. The formula for the diversity measure obtained from the cross entropy error

is :

ambCE(Yn) , tn log

(∑M
i=1 ciyin∏M
i=1 y

ci
in

)
+ (1− tn) log

(∑M
i=1 ci(1− yin)∏M
i=1(1− yin)ci

)
. (A.2)

Proof. The cross-entropy error is defined as:

Llog(yin, tn) = − [tn log(yin) + (1− tn) log(1− yin)] . (A.3)

In this case, yin is the ith classifier’s probability prediction that the nth pattern belongs

107

A.

to class 1. From equation (A.3), we could express the average error of the classifiers as:

M∑
i=1

ciLlog(yin, tn) = −
M∑
i=1

ci[tn log(yin) + (1− tn) log(1− yin)]. (A.4)

Then from (A.3) we can define the ensemble error as being:

Llog(Yn) = −[tn log(Yn) + (1− tn) log(1− Yn)]. (A.5)

From equations (A.1) and (A.5) we can define the ensemble error as:

Llog(Yn) = −

[
tn log

(
M∑
i=1

ciyin

)
+ (1− tn) log

(
1−

M∑
i=1

ciyin

)]
. (A.6)

Using the above equations, the difference between the average error of the classifiers and

the ensemble error can be expressed as:

M∑
i=1

ciLlog(yin, tn)− Llog(Yn) =−
M∑
i=1

ci[tn log(yin) + (1− tn) log(1− yin)]

+ tn log

(
M∑
i=1

ciyin

)
+ (1− tn) log

(
1−

M∑
i=1

ciyin

)
.

(A.7)

Taking into account the logarithm’s properties:

1. log(a · b) = log(a) + log(b)

2. log(ab) = log(a)− log(b)

3. x log(a) = log(ax)

we obtain:

M∑
i=1

ciLlog(yin, tn)− Llog(Yn) = tn log

(∑M
i=1 ciyin∏M
i=1 y

ci
in

)
+ (1− tn) log

(
1−

∑M
i=1 ciyin∏M

i=1 (1− yin)ci

)
.

(A.8)

Since
∑M

i=1 ci = 1 we can rewrite the second logarithm as:

log

(
1−

∑M
i=1 ciyin∏M

i=1 (1− yin)ci

)
= log

(∑M
i=1 ci(1− yin)∏M
i=1 (1− yin)ci

)
. (A.9)

As a result the ambiguity in xn be defined as:

ambCE(Yn) = tn log

(∑M
i=1 ciyin∏M
i=1 y

ci
in

)
+ (1− tn) log

(∑M
i=1 ci(1− yin)∏M
i=1 (1− yin)ci

)
. (A.10)

Taking into account equation A.10, the formula of the diversity for all the patterns is:

ambCE(Y) =
1

N

N∑
n=1

tn log

(∑M
i=1 ciyin∏M
i=1 y

ci
in

)
+ (1− tn) log

(∑M
i=1 ci(1− yin)∏M
i=1 (1− yin)ci

)
. (A.11)

108

A.

Theorem 5. The log loss ambiguity, ambCE, has the following properties:

1. ambCE(Yn) ≥ 0,∀n ∈ 1, N

2. ambCE(Yn) = 0, ⇔ yin = yjn∀i, j ∈ 1,M

Proof. First we show that ambCE(Yn) ≥ 0, ∀n ∈ 1, N .

Let us consider the following inequality:

λ1x1 + λ2x2 + . . .+ λnxn
λ

≥ λ

√
xλ11 x

λ2
2 · . . . · x

λn
n [119] (A.12)

where
∑N

i=1 λi = λ,∀i ∈ {1 . . . n}, λi ≥ 0. The equality holds if and only if all the xi are

equal.

In our case λi = ci and
∑M

i=1 ci = 1, as a result the arguments of both logarithms from

the formula are greater then one and then the logarithms are positive. Since tn ∈ {0, 1}
the diversity is the sum of two positive numbers.

We now show that ambCE(Yn) = 0, ⇔ yin = yjn∀i, j ∈ 1,M . If we have yin = yjn =

ȳ ∀i, j ∈ {1...N}, then: ∑M
i=1 ciyin∏M
i=1 y

ci
in

=
ȳ ·
∑M

i=1 ci

ȳ
∑M
i ci

=
ȳ

ȳ
= 1.

The same principle may be applied to the argument of the second logarithm, as a result:

ambCE(Yn) = tn log(1) + (1− tn) log(1) = 0.

For the reverse case, ambCE = 0 ⇒ yin = yjn∀i, j ∈ {1...N}, we distinguish two cases:

tn = 1 and tn = 0. When tn = 1, then:

ambCE(Yn) = log

(∑M
i=1 ciyin∏M
i=1 y

ci
in

)
= 0⇔

∑M
i=1 ciyin∏M
i=1 y

ci
in

= 1
(A.12)⇔ yin = yjn∀i, j ∈ {1...N}.

The proof is similar for the case tn = 0.

A.2.2 Ambiguity measure obtained from the hinge loss

Lemma 2. The formula for the diversity measure obtained from the hinge loss error is :

ambHL(Yn) =
M∑
i=1

ci max(0, 1− tnyin)−max

(
0,

M∑
i=1

ci(1− tnyin)

)
.

Proof. The hinge loss is defined as:

LH(yin, tn) = max(0, 1− tnyin) (A.13)

109

A.

where yin is the ith classifier score and tn is the target, tn ∈ {±1}.

Using equations (A.1) and (A.13) we obtain the error of the ensemble prediction in xn:

LH(Yn) = max

(
0, 1− tn

M∑
i=1

ciyin

)
. (A.14)

The weighted average error of the classifiers be:
∑M

i=1 ciLH(yin, tn) =
∑M

i=1 ci max(0, 1−
tnyin).

Using the decomposition equation we obtain:

ambHL(Yn) =

M∑
i=1

ci max(0, 1− tnyin)−max

(
0, 1− tn

M∑
i=1

ciyin

)
. (A.15)

Since
∑M

i=1 ci = 1 we can rewrite the previous equation as:

ambHL(Yn) =
M∑
i=1

ci max(0, 1− tnyin)−max

(
0,

M∑
i=1

ci(1− tnyin)

)
. (A.16)

Theorem 6.

The hinge loss diversity has the following properties:

1. ambHL(Yn) ≥ 0 ∀n ∈ {1 . . . N}

2. If for the pattern xn we have ∀ i, j ∈ {1 . . .M}, yin = yjn ⇒ ambHL(Yn) = 0

3. If for the pattern xn we have ambHL(Yn) = 0 6=⇒ that all the classifiers predict the

same class.

Proof.

1. We first show that ambHL(Yn) ≥ 0 ∀n ∈ {1 . . . N}.

We can distinguish two sub-cases:

a) If max(0,
∑M

i=1 ci(1− tnyin)) = 0 then from (4.5):

ambHL(Yn) =
M∑
i=1

ci max(0, 1− tnyin) ≥ 0. (A.17)

b) If max(0,
∑M

i=1 ci(1− tnyin)) =
∑M

i=1 ci(1− tnyin) > 0

Let Kn = {i ∈ {1 . . .M}| ci(1− tnyin) < 0} which can be rewritten as:

Kn = {i ∈ {1 . . .M}| |yin| > 1 and tnyin > 0}.

110

A.

Then we have

M∑
i=1

ci(1− tnyin) =
∑
i/∈Kn

ci(1− tnyin) +
∑
j∈Kn

cj(1− tnyjn). (A.18)

And by using this equation above, we obtain:

max(0,

M∑
i=1

ci(1− tnyin)) =
∑
i/∈Kn

ci(1− tnyin) +
∑
j∈Kn

cj(1− tnyjn). (A.19)

Also since max(0, 1− tnyin) is always positive, the following equation holds:

M∑
i=1

ci max(0, 1− tnyin) =
∑
i/∈Kn

ci(1− tnyin). (A.20)

From equations (4.5), (A.19) and (A.20) we obtain:

ambHL(Yn) =
∑
i/∈Kn

ci(1− tnyin)−
∑
i/∈Kn

ci(1− tnyin)−
∑
j∈Kn

cj(1− tnyjn)

= −
∑
j∈Kn

cj(1− tnyjn).

(A.21)

From the definition of the set Kn we obtain:

ambHL(Yn) > 0. (A.22)

From (A.17) and (A.22) we therefore have that ambHL(Yn) ≥ 0.

2. We show that if for the pattern xn we have:

∀ i, j ∈ {1 . . .M}, yin = yjn ⇒ ambHL(Yn) = 0.

If ∀ i, j ∈ {1 . . .M}, yin = yjn ⇒ 1− tnyin = 1− tnyjn = 1− tny1n. As a result

max

(
0,

M∑
i=1

ci(1− tnyin)

)
= max

(
0, (1− tny1n)

M∑
i=1

ci

)
= max(0, 1− tny1n)

(A.23)

and

M∑
i=1

ci max(0, 1− tnyin) =

M∑
i=1

ci max(0, 1− tny1n) = (A.24)

max(0, 1− tny1n)
M∑
i=1

ci = max(0, 1− tny1n). (A.25)

From equations (4.5), (A.23) and (A.25) we obtain

ambHL(Yn) = 0. (A.26)

111

A.

3. If ambHL(Yn) = 0⇒
∑M

i=1 ci max(0, 1− tnyin)−max(0,
∑M

i=1 ci(1− tnyin)) = 0⇒

M∑
i=1

ci max(0, 1− tnyin) = max

(
0,

M∑
i=1

ci(1− tnyin)

)
. (A.27)

We can distinguish two sub-cases:

a) max(0,
∑M

i=1 ci(1− tnyin)) = 0

From (A.27) we get that:

M∑
i=1

ci max(0, 1− tnyin) = 0⇒ max(0, 1− tnyin) = 0∀i ∈ {1 . . .M}.

As a result

1− tnyin ≤ 0 ∀i ∈ {1 . . .M}. (A.28)

Equation (A.28) implies that tnyin > 0 ∀i ∈ {1 . . .M} and |yin| ≥ 1. These two

conditions are satisfied in two sub-cases

i. tn = 1⇒ yin ≥ 1 ∀i ∈ {1 . . .M}, then all classifiers predict class 1.

ii. tn = −1⇒ yin < 0 and |yin| ≥ 1 ∀i ∈ {1 . . .M}, then all classifiers predict

class −1.

b) max(0,
∑M

i=1 ci(1− tnyin)) =
∑M

i=1 ci(1− tnyin)

From (A.27) we get that

M∑
i=1

ci max(0, 1− tnyin) =
M∑
i=1

ci(1− tnyin).

Since max(0, 1− tnyin) ≥ 0 ∀i ∈ {1 . . .M}, we obtain:

1− tnyin ≥ 0 ∀i ∈ {1 . . .M}. (A.29)

This inequality can be verified in the four following sub-cases:

A ∃j ∈ {1 . . .M} , tnyjn < 0 which means that these classifiers do not predict

correctly the class.

B ∃k ∈ {1 . . .M} , 0 < ykn < 1 and tn = 1 in which case all these classifiers

identify correctly the class.

C ∃l ∈ {1 . . .M} ,−1 < yln < 0 and tn = −1 in which case all these classifiers

identify correctly the class.

D ∃q ∈ {1 . . .M} , tn = yqn, for the case when 1 − tnyin = 0. In this case all

these classifiers identify correctly the class.

Since cases (A, B, D) or (A, C, D) can be true at the same time and still the

112

A.

5 trees 100 trees

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Test Log loss

0

2

4

6

8

10

12

14

16

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.04

0.52
0.76

1.0

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Test Log loss

0

2

4

6

8

10

12

14

16

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.08

0.52
0.76

1.0

0.10 0.15 0.20 0.25 0.30 0.35 0.40
Test 0-1 loss

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

0.520.76r=0.8
1.0

0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26
Test 0-1 loss

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

0.52 r=0.560.76

1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Test Hinge loss

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

0.52r=0.62
0.76
1.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Test Hinge loss

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.39
0.52
0.76
1.0

Figure A.4. Curves of the three types of ambiguities versus the corresponding losses that were
derived from these. The test error versus the training ambiguity was plotted for different sampling
rates for ensembles formed of 5 trees (left column) and 100 tress (right column) for the Australian
dataset. The first row shows the behaviour of the test cross entropy versus the training cross
entropy ambiguity, in the second row the test 0-1 loss versus its corresponding training ambiguity
is plotted, respectively the behaviour of the hinge loss is presented in the third row of panels. The
optimal sampling rate is indicated in red.

condition (A.29) to be held, we cannot draw the conclusion that ambHL(Yn) =

0⇒ all the classifiers predict the same class.

A.3 Random splits

This section presents the plots of the variation of the three types of ambiguities versus the

corresponding tests errors from Chapter 4, for all the databases investigated. The plots

are displayed in Figures A.4 - A.7.

A.4 Critical diagrams

This section presents the critical diagrams obtained in Chapter 5 for all the databases

investigated. The plots are displayed in Figures A.8 - A.35.

113

A.

5 trees 100 trees

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Test Log loss

0

2

4

6

8

10

12

14

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.21
0.520.761.0

0.1 0.2 0.3 0.4 0.5
Test Log loss

0

2

4

6

8

10

12

14

16

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.21
0.520.761.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Test 0-1 loss

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

0.52
r=0.690.76

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Test 0-1 loss

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

0.52
r=0.690.76

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Test Hinge loss

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

0.52r=0.690.76
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Test Hinge loss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

0.52r=0.690.761.0

Figure A.5. Curves of the three types of ambiguities versus the corresponding losses that were
derived from these. The test error versus the training ambiguity was plotted for different sampling
rates for ensembles formed of 5 trees (left column) and 100 tress (right column) for the Cancer
dataset. The first row shows the behaviour of the test cross entropy versus the training cross
entropy ambiguity, in the second row the test 0-1 loss versus its corresponding training ambiguity
is plotted, respectively the behaviour of the hinge loss is presented in the third row of panels. The
optimal sampling rate is indicated in red.

114

A.

5 trees 100 trees

1.0 1.2 1.4 1.6 1.8 2.0 2.2
Test Log loss

2

4

6

8

10

12

14

16

18

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.08

0.52
0.76

1.0

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
Test Log loss

2

4

6

8

10

12

14

16

18

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.28

0.52
0.76

1.0

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Test 0-1 loss

0.00

0.02

0.04

0.06

0.08

0.10

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

0.52r=0.560.76

1.0

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Test 0-1 loss

0.00

0.05

0.10

0.15

0.20

0.25

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.08

0.52
0.76

1.0

0.5 0.6 0.7 0.8 0.9 1.0 1.1
Test Hinge loss

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

0.52r=0.56

0.76

1.0

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Test Hinge loss

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.28

0.52

0.76

1.0

Figure A.6. Curves of the three types of ambiguities versus the corresponding losses that were
derived from these. The test error versus the training ambiguity was plotted for different sampling
rates for ensembles formed of 5 trees (left column) and 100 tress (right column) for the Heart
dataset. The first row shows the behaviour of the test cross entropy versus the training cross
entropy ambiguity, in the second row the test 0-1 loss versus its corresponding training ambiguity
is plotted, respectively the behaviour of the hinge loss is presented in the third row of panels. The
optimal sampling rate is indicated in red.

115

A.

5 trees 100 trees

1.0 1.2 1.4 1.6 1.8 2.0 2.2
Test Log loss

2

4

6

8

10

12

14

16

18

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.08

0.52
0.76

1.0

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
Test Log loss

2

4

6

8

10

12

14

16

18

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.28

0.52
0.76

1.0

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Test 0-1 loss

0.00

0.02

0.04

0.06

0.08

0.10

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

0.52r=0.560.76

1.0

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Test 0-1 loss

0.00

0.05

0.10

0.15

0.20

0.25

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.08

0.52
0.76

1.0

0.5 0.6 0.7 0.8 0.9 1.0 1.1
Test Hinge loss

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

0.52r=0.56

0.76

1.0

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Test Hinge loss

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Tr
ai

ni
ng

 a
m

bi
gu

ity

0.01

r=0.28

0.52

0.76

1.0

Figure A.7. Curves of the three types of ambiguities versus the corresponding losses that were
derived from these. The test error versus the training ambiguity was plotted for different sampling
rates for ensembles formed of 5 trees (left column) and 100 tress (right column) for the Ionosphere
dataset. The first row shows the behaviour of the test cross entropy versus the training cross
entropy ambiguity, in the second row the test 0-1 loss versus its corresponding training ambiguity
is plotted, respectively the behaviour of the hinge loss is presented in the third row of panels. The
optimal sampling rate is indicated in red.

116

A.

123456789101112131415

14.7000max_err_ens
13.5200max_err_ens_st
12.2700lst_amb_st
11.9700lst_amb
10.3500tree_max_err_st
10.3500tree_max_err

8.8100tree_min_err
8.7900tree_min_err_st

4.6200 most_amb
4.5800 rand
4.5000 most_amb_st
4.4400 rand_st
4.4400 EA_sel_trees
3.4000 min_err_ens_st
3.2600 min_err_ens

Test_CE

12345678910111213141516

15.7000max_err_ens
14.5200max_err_ens_st
13.2700lst_amb_st
12.9700lst_amb
11.3500tree_max_err_st
11.3500tree_max_err

9.7100tree_min_err
9.6900tree_min_err_st 5.4400 EA_sel_patt

5.0800 most_amb
5.0000 rand
4.9400 most_amb_st
4.8800 rand_st
4.8800 EA_sel_trees
3.6600 min_err_ens_st
3.5600 min_err_ens

Test_CE

Figure A.8. Comparisons of the tree selection approaches versus the pattern selection approach (the
evolutionary algorithm from Section 4.4) on the Australian dataset for the 0.05 sampling rate, for
5 trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123456789101112131415

13.7500lst_amb_st
13.3600max_err_ens_st
13.1700max_err_ens
13.0600lst_amb
10.4600tree_max_err_st
10.4600tree_max_err

6.2100tree_min_err_st
6.2100tree_min_err

5.2200 rand
5.2000 min_err_ens
5.1600 min_err_ens_st
5.1200 rand_st
4.6300 most_amb
4.1100 most_amb_st
3.8800 EA_sel_trees

Test_CE

12345678910111213141516

14.7500lst_amb_st
14.3600max_err_ens_st
14.1700max_err_ens
14.0600lst_amb
11.4600tree_max_err_st
11.4600tree_max_err

6.9100tree_min_err_st
6.9100tree_min_err 5.8400 min_err_ens

5.7400 rand
5.7400 min_err_ens_st
5.7000 rand_st
5.2300 most_amb
4.6800 EA_sel_patt
4.6500 most_amb_st
4.3400 EA_sel_trees

Test_CE

Figure A.9. Comparisons of the tree selection approaches versus the pattern selection approach (the
evolutionary algorithm from Section 4.4) on the Australian dataset for the 0.1 sampling rate, for 5
trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

117

A.

123456789101112131415

13.5500lst_amb_st
13.5000max_err_ens_st
12.3100lst_amb
12.0400max_err_ens
11.0300tree_max_err_st
11.0100tree_max_err

6.8100min_err_ens_st
6.3300min_err_ens

6.1400 rand_st
5.7000 rand
5.1500 tree_min_err
5.1300 tree_min_err_st
3.9800 most_amb
3.8400 most_amb_st
3.4800 EA_sel_trees

Test_CE

12345678910111213141516

14.5500lst_amb_st
14.4800max_err_ens_st
13.3100lst_amb
12.9800max_err_ens
12.0300tree_max_err_st
12.0100tree_max_err

7.6100min_err_ens_st
7.0900min_err_ens 6.8800 rand_st

6.3800 rand
5.6900 tree_min_err
5.6700 tree_min_err_st
4.6600 EA_sel_patt
4.4800 most_amb
4.2600 most_amb_st
3.9200 EA_sel_trees

Test_CE

Figure A.10. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Australian dataset for the 0.2 sampling rate,
for 5 trees. The top plot shows the ranking and the statistical similarities for all the approaches ex-
cept for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123456789101112131415

12.7600lst_amb_st
12.7200lst_amb
12.2000max_err_ens_st
11.3800tree_max_err_st
11.2800max_err_ens
11.2400tree_max_err

7.7600min_err_ens
7.7400min_err_ens_st

6.6800 rand_st
6.1000 rand
4.5200 tree_min_err_st
4.5200 tree_min_err
3.8000 most_amb
3.7600 most_amb_st
3.5400 EA_sel_trees

Test_CE

12345678910111213141516

13.7400lst_amb_st
13.7200lst_amb
13.1800max_err_ens_st
12.3600tree_max_err_st
12.2400max_err_ens
12.2000tree_max_err

8.6600min_err_ens_st
8.6400min_err_ens 7.5600 rand_st

6.8800 rand
5.0800 tree_min_err_st
5.0800 tree_min_err
4.3400 most_amb
4.2600 most_amb_st
4.1000 EA_sel_patt
3.9600 EA_sel_trees

Test_CE

Figure A.11. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Australian dataset for the 0.3 sampling rate,
for 5 trees. The top plot shows the ranking and the statistical similarities for all the approaches ex-
cept for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

118

A.

123456789101112131415

13.0300lst_amb_st
12.0300lst_amb
11.6200max_err_ens_st
10.5000max_err_ens
10.4300tree_max_err_st
10.4100tree_max_err

8.1300min_err_ens
7.9700min_err_ens_st

7.3600 rand_st
6.9200 rand
4.7000 EA_sel_trees
4.3300 tree_min_err
4.2900 tree_min_err_st
4.2000 most_amb
4.0800 most_amb_st

Test_CE

12345678910111213141516

14.0300lst_amb_st
13.0300lst_amb
12.5800max_err_ens_st
11.4600max_err_ens
11.4300tree_max_err_st
11.4100tree_max_err

9.0900min_err_ens
8.9300min_err_ens_st 8.2600 rand_st

7.7400 rand
5.4400 EA_sel_trees
4.9700 tree_min_err
4.9300 tree_min_err_st
4.8400 most_amb
4.7200 most_amb_st
3.1400 EA_sel_patt

Test_CE

Figure A.12. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Australian dataset for the 0.4 sampling rate,
for 5 trees. The top plot shows the ranking and the statistical similarities for all the approaches ex-
cept for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123456789101112131415

12.3300lst_amb_st
12.2800lst_amb
11.4200max_err_ens_st
10.6600tree_max_err
10.6500tree_max_err_st

9.3100min_err_ens_st
9.1800max_err_ens
8.8900min_err_ens

6.8000 rand
6.7600 rand_st
4.7200 tree_min_err
4.6400 tree_min_err_st
4.4600 EA_sel_trees
4.0200 most_amb
3.8800 most_amb_st

Test_CE

12345678910111213141516

13.2900lst_amb_st
13.2600lst_amb
12.3800max_err_ens_st
11.6000tree_max_err
11.5900tree_max_err_st
10.2300min_err_ens_st
10.0400max_err_ens

9.8100min_err_ens 7.6400 rand
7.5800 rand_st
5.3200 tree_min_err
5.2400 tree_min_err_st
5.1800 EA_sel_trees
4.6800 most_amb
4.5200 most_amb_st
3.6400 EA_sel_patt

Test_CE

Figure A.13. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Australian dataset for the 0.5 sampling rate,
for 5 trees. The top plot shows the ranking and the statistical similarities for all the approaches ex-
cept for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

119

A.

123456789101112131415

13.5500lst_amb_OIOO
13.4300max_err_ens_OIOO
13.1100max_err_ens
12.4100lst_amb
10.7800tree_max_err_OIOO
10.7800tree_max_err

7.1000rand_OIOO
6.6800rand

6.0900 min_err_ens
5.8500 min_err_ens_OIOO
5.6300 tree_min_err_OIOO
5.6300 tree_min_err
3.1000 EA_sel_trees
2.9900 most_amb
2.8700 most_amb_OIOO

Test_CE

12345678910111213141516

14.5500lst_amb_OIOO
14.4300max_err_ens_OIOO
14.1100max_err_ens
13.4100lst_amb
11.7800tree_max_err_OIOO
11.7800tree_max_err

7.9800rand_OIOO
7.6000rand 6.9900 min_err_ens

6.6900 min_err_ens_OIOO
6.3700 tree_min_err_OIOO
6.3700 tree_min_err
3.7200 EA_sel_trees
3.5700 most_amb
3.4100 most_amb_OIOO
3.2400 EA_sel_patt

Test_CE

Figure A.14. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the German dataset for the 0.1 sampling rate, for
5 trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123456789101112131415

13.4900lst_amb_OIOO
13.0100lst_amb
12.3000max_err_ens_OIOO
11.3200max_err_ens
11.2600tree_max_err_OIOO
11.2600tree_max_err

7.5800min_err_ens
6.7000min_err_ens_OIOO

6.5600 rand
6.2800 rand_OIOO
4.7000 tree_min_err_OIOO
4.7000 tree_min_err
4.0200 EA_sel_trees
3.4800 most_amb_OIOO
3.3400 most_amb

Test_CE

12345678910111213141516

14.4900lst_amb_OIOO
14.0100lst_amb
13.3000max_err_ens_OIOO
12.2800max_err_ens
12.2600tree_max_err_OIOO
12.2600tree_max_err

8.5200min_err_ens
7.5600min_err_ens_OIOO 7.4200 rand

7.0400 rand_OIOO
5.4000 tree_min_err_OIOO
5.4000 tree_min_err
4.6000 EA_sel_trees
4.0000 most_amb_OIOO
3.8600 most_amb
3.6000 EA_sel_patt

Test_CE

Figure A.15. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the German dataset for the 0.2 sampling rate, for
5 trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

120

A.

123456789101112131415

13.1900lst_amb_OIOO
12.5300lst_amb
11.8000tree_max_err_OIOO
11.7000tree_max_err
11.4400max_err_ens_OIOO

9.2400max_err_ens
8.5700min_err_ens
8.4100min_err_ens_OIOO

6.9200 rand
6.7800 rand_OIOO
4.2400 EA_sel_trees
3.9100 tree_min_err_OIOO
3.9000 tree_min_err
3.8900 most_amb
3.4800 most_amb_OIOO

Test_CE

12345678910111213141516

14.1900lst_amb_OIOO
13.5100lst_amb
12.7800tree_max_err_OIOO
12.6800tree_max_err
12.4400max_err_ens_OIOO
10.2200max_err_ens

9.5300min_err_ens
9.3500min_err_ens_OIOO 7.7600 rand

7.6800 rand_OIOO
5.0200 EA_sel_trees
4.6700 tree_min_err_OIOO
4.6600 tree_min_err
4.6500 most_amb
4.2000 most_amb_OIOO
2.6600 EA_sel_patt

Test_CE

Figure A.16. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the German dataset for the 0.3 sampling rate, for
5 trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123456789101112131415

12.6900lst_amb
12.4900lst_amb_OIOO
12.1000tree_max_err_OIOO
12.1000tree_max_err

9.5800max_err_ens_OIOO
9.1700min_err_ens
9.1300min_err_ens_OIOO
8.2400max_err_ens

7.7000 rand_OIOO
7.4600 rand
4.7800 EA_sel_trees
3.9400 tree_min_err_OIOO
3.9400 tree_min_err
3.5600 most_amb
3.1200 most_amb_OIOO

Test_CE

12345678910111213141516

13.6900lst_amb
13.4700lst_amb_OIOO
13.0800tree_max_err_OIOO
13.0800tree_max_err
10.5200max_err_ens_OIOO
10.1500min_err_ens
10.0900min_err_ens_OIOO

9.1800max_err_ens 8.6400 rand_OIOO
8.4000 rand
5.5600 EA_sel_trees
4.6600 tree_min_err_OIOO
4.6600 tree_min_err
4.2400 most_amb
3.7600 most_amb_OIOO
2.8200 EA_sel_patt

Test_CE

Figure A.17. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the German dataset for the 0.4 sampling rate, for
5 trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

121

A.

123456789101112131415

12.6200lst_amb_OIOO
11.9000lst_amb
11.4000tree_max_err
11.3800tree_max_err_OIOO
10.3100max_err_ens_OIOO

9.8200min_err_ens_OIOO
9.3400min_err_ens
8.6300max_err_ens

7.4400 rand
6.7800 rand_OIOO
4.3800 EA_sel_trees
4.1400 most_amb_OIOO
3.9700 tree_min_err_OIOO
3.9700 tree_min_err
3.9200 most_amb

Test_CE

12345678910111213141516

13.6200lst_amb_OIOO
12.8800lst_amb
12.3800tree_max_err
12.3600tree_max_err_OIOO
11.2700max_err_ens_OIOO
10.8000min_err_ens_OIOO
10.3200min_err_ens

9.5300max_err_ens 8.3200 rand
7.6600 rand_OIOO
5.1200 EA_sel_trees
4.9000 most_amb_OIOO
4.7100 tree_min_err_OIOO
4.7100 tree_min_err
4.6600 most_amb
2.7600 EA_sel_patt

Test_CE

Figure A.18. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the German dataset for the 0.5 sampling rate, for
5 trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123456789101112131415

14.5000max_err_ens
13.8700max_err_ens_st
12.4500lst_amb_st
10.4400lst_amb

9.6400tree_min_err_st
9.6400tree_min_err
8.4000tree_max_err_st
8.3200tree_max_err

5.7800 rand_st
5.7400 most_amb_st
5.6200 rand
5.6200 most_amb
4.4600 EA_sel_trees
2.7900 min_err_ens_st
2.7300 min_err_ens

Test_CE

12345678910111213141516

15.5000max_err_ens
14.8700max_err_ens_st
13.4300lst_amb_st
11.2200lst_amb
10.2600tree_min_err_st
10.2600tree_min_err

9.0200tree_max_err_st
8.9800EA_sel_patt 8.9200 tree_max_err

6.0400 rand_st
5.8400 most_amb_st
5.8200 rand
5.7200 most_amb
4.5200 EA_sel_trees
2.8300 min_err_ens_st
2.7700 min_err_ens

Test_CE

Figure A.19. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Cancer dataset for the 0.05 sampling rate, for
5 trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

122

A.

123456789101112131415

14.3600max_err_ens
13.7100max_err_ens_st
12.9900lst_amb_st
12.0000lst_amb

9.6900tree_max_err
9.6700tree_max_err_st
7.2300tree_min_err_st
7.2300tree_min_err

5.2000 most_amb
5.0800 EA_sel_trees
5.0600 most_amb_st
4.8400 rand
4.7100 min_err_ens
4.3400 rand_st
3.8900 min_err_ens_st

Test_CE

12345678910111213141516

15.3600max_err_ens
14.7100max_err_ens_st
13.9900lst_amb_st
12.9400lst_amb
10.4500tree_max_err
10.4300tree_max_err_st

9.1000EA_sel_patt
7.6100tree_min_err_st 7.6100 tree_min_err

5.2400 most_amb
5.2000 EA_sel_trees
5.0800 most_amb_st
5.0400 rand
4.8300 min_err_ens
4.4200 rand_st
3.9900 min_err_ens_st

Test_CE

Figure A.20. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Cancer dataset for the 0.1 sampling rate, for
5 trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123456789101112131415

13.8800max_err_ens
13.7600max_err_ens_st
13.6100lst_amb_st
11.4700lst_amb

9.4200tree_max_err_st
9.4000tree_max_err
6.2800rand_st
5.9500min_err_ens

5.8600 rand
5.6900 tree_min_err
5.6500 tree_min_err_st
5.6500 min_err_ens_st
4.9100 most_amb
4.8900 most_amb_st
3.5800 EA_sel_trees

Test_CE

12345678910111213141516

14.8800max_err_ens
14.7600max_err_ens_st
14.6100lst_amb_st
12.3500lst_amb
10.2000tree_max_err_st
10.2000tree_max_err

7.8000EA_sel_patt
6.7200rand_st 6.4300 min_err_ens

6.2200 rand
6.1500 min_err_ens_st
5.8900 tree_min_err
5.8500 tree_min_err_st
5.0700 most_amb_st
5.0700 most_amb
3.8000 EA_sel_trees

Test_CE

Figure A.21. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Cancer dataset for the 0.2 sampling rate, for
5 trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123

A.

123456789101112131415

13.4100max_err_ens_st
13.3500lst_amb_st
13.2000max_err_ens
11.5000lst_amb
10.3100tree_max_err_st
10.3000tree_max_err

7.3400min_err_ens_st
6.7500min_err_ens

6.4000 rand
5.7400 rand_st
4.7200 tree_min_err_st
4.6400 tree_min_err
4.4300 most_amb
4.2700 most_amb_st
3.6400 EA_sel_trees

Test_CE

12345678910111213141516

14.4100max_err_ens_st
14.3500lst_amb_st
14.1800max_err_ens
12.4400lst_amb
11.1700tree_max_err_st
11.1600tree_max_err

7.9200min_err_ens_st
7.3500min_err_ens 6.9600 rand

6.2400 rand_st
6.1200 EA_sel_patt
5.1600 tree_min_err_st
5.0800 tree_min_err
4.8300 most_amb
4.6700 most_amb_st
3.9600 EA_sel_trees

Test_CE

Figure A.22. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Cancer dataset for the 0.3 sampling rate, for
5 trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123456789101112131415

13.1700lst_amb_st
12.7300max_err_ens_st
12.1400max_err_ens
11.8400lst_amb

9.9900tree_max_err
9.9700tree_max_err_st
7.9700min_err_ens_st
7.9500min_err_ens

6.1400 rand_st
6.1200 rand
4.9900 tree_min_err
4.9500 tree_min_err_st
4.5000 EA_sel_trees
3.7800 most_amb
3.7600 most_amb_st

Test_CE

12345678910111213141516

14.1300lst_amb_st
13.7100max_err_ens_st
13.0800max_err_ens
12.8000lst_amb
10.8700tree_max_err
10.8500tree_max_err_st

8.7500min_err_ens_st
8.7500min_err_ens 6.7800 rand_st

6.7200 rand
5.4900 tree_min_err
5.4500 tree_min_err_st
5.4200 EA_sel_patt
4.9600 EA_sel_trees
4.1400 most_amb
4.1000 most_amb_st

Test_CE

Figure A.23. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Cancer dataset for the 0.4 sampling rate, for
5 trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

124

A.

123456789101112131415

12.2500lst_amb_st
12.1700lst_amb
12.0000max_err_ens_st
11.5200max_err_ens
10.9500tree_max_err
10.8300tree_max_err_st

9.2000min_err_ens
9.0000min_err_ens_st

5.8200 rand_st
5.5000 rand
4.3500 tree_min_err_st
4.2700 tree_min_err
4.2400 EA_sel_trees
4.0200 most_amb_st
3.8800 most_amb

Test_CE

12345678910111213141516

13.2100lst_amb_st
13.0900lst_amb
12.9200max_err_ens_st
12.4800max_err_ens
11.8300tree_max_err
11.7100tree_max_err_st
10.0400min_err_ens

9.8600min_err_ens_st 6.4600 rand_st
6.1200 rand
5.2400 EA_sel_patt
4.7900 tree_min_err_st
4.7400 EA_sel_trees
4.7100 tree_min_err
4.4800 most_amb_st
4.3200 most_amb

Test_CE

Figure A.24. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Cancer dataset for the 0.5 sampling rate, for
5 trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123456789101112131415

13.5800max_err_ens_st
13.5400max_err_ens
13.4800lst_amb_st
11.5600lst_amb
10.2800tree_min_err_st
10.2400tree_min_err

9.0700tree_max_err_st
9.0500tree_max_err

6.8600 rand
6.2600 rand_st
3.4600 most_amb
3.4500 min_err_ens
3.2200 most_amb_st
3.0400 EA_sel_trees
2.9100 min_err_ens_st

Test_CE

12345678910111213141516

14.5800max_err_ens_st
14.5400max_err_ens
14.4800lst_amb_st
12.5600lst_amb
11.2800tree_min_err_st
11.2400tree_min_err
10.0700tree_max_err_st
10.0500tree_max_err 7.8000 rand

7.0400 rand_st
4.6000 EA_sel_patt
3.9100 min_err_ens
3.8800 most_amb
3.4600 most_amb_st
3.2800 EA_sel_trees
3.2300 min_err_ens_st

Test_CE

Figure A.25. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Liver dataset for the 0.05 sampling rate, for 5
trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

125

A.

123456789101112131415

13.9300max_err_ens
13.6000lst_amb_st
13.0800max_err_ens_st
12.5700lst_amb

9.6100tree_max_err_st
9.5700tree_max_err
9.1100tree_min_err_st
9.0300tree_min_err

6.2000 rand_st
5.6400 rand
4.5800 min_err_ens
4.3800 min_err_ens_st
3.7800 most_amb
2.6000 EA_sel_trees
2.3200 most_amb_st

Test_CE

12345678910111213141516

14.9300max_err_ens
14.6000lst_amb_st
14.0800max_err_ens_st
13.5700lst_amb
10.6100tree_max_err_st
10.5700tree_max_err
10.0700tree_min_err_st

9.9900tree_min_err 7.0400 rand_st
6.4200 rand
5.2800 min_err_ens
5.0600 min_err_ens_st
4.2800 most_amb
3.9400 EA_sel_patt
2.9400 EA_sel_trees
2.6200 most_amb_st

Test_CE

Figure A.26. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Liver dataset for the 0.1 sampling rate, for 5
trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123456789101112131415

13.6500lst_amb_st
13.2000lst_amb
12.3900max_err_ens_st
11.9000max_err_ens
11.3700tree_max_err_st
11.3700tree_max_err

6.8400rand
6.5600min_err_ens

6.3600 min_err_ens_st
6.2800 rand_st
5.5000 tree_min_err_st
5.4800 tree_min_err
3.1500 most_amb
3.1300 most_amb_st
2.8200 EA_sel_trees

Test_CE

12345678910111213141516

14.6500lst_amb_st
14.2000lst_amb
13.3900max_err_ens_st
12.9000max_err_ens
12.3700tree_max_err_st
12.3700tree_max_err

7.6400rand
7.3400min_err_ens 7.1800 min_err_ens_st

7.0800 rand_st
6.1400 tree_min_err_st
6.1200 tree_min_err
4.4600 EA_sel_patt
3.5700 most_amb
3.5300 most_amb_st
3.0600 EA_sel_trees

Test_CE

Figure A.27. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Liver dataset for the 0.2 sampling rate, for 5
trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

126

A.

123456789101112131415

13.6700lst_amb_st
12.6500lst_amb
11.6200max_err_ens_st
11.6000tree_max_err
11.3800tree_max_err_st
11.1000max_err_ens

8.0600min_err_ens_st
7.8800min_err_ens

7.2200 rand
6.8000 rand_st
4.3000 tree_min_err_st
4.2700 tree_min_err
3.2100 most_amb
3.1200 most_amb_st
3.1200 EA_sel_trees

Test_CE

12345678910111213141516

14.6700lst_amb_st
13.6500lst_amb
12.6200max_err_ens_st
12.5800tree_max_err
12.3600tree_max_err_st
12.0400max_err_ens

8.9600min_err_ens_st
8.8200min_err_ens 8.0800 rand

7.6800 rand_st
4.9200 tree_min_err_st
4.8900 tree_min_err
3.8500 most_amb
3.7800 most_amb_st
3.7000 EA_sel_trees
3.4000 EA_sel_patt

Test_CE

Figure A.28. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Liver dataset for the 0.3 sampling rate, for 5
trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123456789101112131415

13.3900lst_amb_st
12.8700lst_amb
11.3900max_err_ens_st
11.0200tree_max_err_st
10.9600tree_max_err
10.1300max_err_ens

8.2600min_err_ens
8.0400min_err_ens_st

7.2200 rand_st
7.1600 rand
4.2900 tree_min_err_st
4.2700 tree_min_err
4.0400 EA_sel_trees
3.5600 most_amb
3.4000 most_amb_st

Test_CE

12345678910111213141516

14.3900lst_amb_st
13.8700lst_amb
12.3900max_err_ens_st
12.0000tree_max_err_st
11.9400tree_max_err
11.0900max_err_ens

9.2400min_err_ens
8.9800min_err_ens_st 8.1400 rand_st

8.1000 rand
4.9500 tree_min_err_st
4.9300 tree_min_err
4.7400 EA_sel_trees
4.1000 most_amb
3.9200 most_amb_st
3.2200 EA_sel_patt

Test_CE

Figure A.29. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Liver dataset for the 0.4 sampling rate, for 5
trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

127

A.

123456789101112131415

12.3700lst_amb_st
12.1600lst_amb
11.9600tree_max_err_st
11.8400tree_max_err

9.8200min_err_ens_st
9.6500min_err_ens
9.0800max_err_ens_st
8.2800max_err_ens

7.2200 rand
7.0800 rand_st
4.7800 tree_min_err
4.7700 tree_min_err_st
3.9400 EA_sel_trees
3.5900 most_amb
3.4600 most_amb_st

Test_CE

12345678910111213141516

13.3500lst_amb_st
13.1400lst_amb
12.9400tree_max_err_st
12.8200tree_max_err
10.7800min_err_ens_st
10.6100min_err_ens
10.0400max_err_ens_st

9.1800max_err_ens 8.1200 rand
8.0000 rand_st
5.6000 tree_min_err
5.5900 tree_min_err_st
4.7000 EA_sel_trees
4.3300 most_amb
4.2000 most_amb_st
2.6000 EA_sel_patt

Test_CE

Figure A.30. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Liver dataset for the 0.5 sampling rate, for 5
trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123456789101112131415

13.9700max_err_ens
13.4300max_err_ens_st
13.4100lst_amb_st
11.8200lst_amb

9.3900tree_min_err_st
9.3900tree_min_err
8.6700tree_max_err
8.6600tree_max_err_st

5.8600 rand_st
5.5200 rand
4.7100 most_amb
4.4900 min_err_ens_st
4.2500 min_err_ens
3.2400 EA_sel_trees
3.1900 most_amb_st

Test_CE

12345678910111213141516

14.9700max_err_ens
14.4300max_err_ens_st
14.4100lst_amb_st
12.7600lst_amb
10.2900tree_min_err_st
10.2900tree_min_err

9.4500tree_max_err
9.4400tree_max_err_st 6.6800 EA_sel_patt

6.3400 rand_st
5.9400 rand
5.0700 most_amb
4.7300 min_err_ens_st
4.4900 min_err_ens
3.3700 most_amb_st
3.3400 EA_sel_trees

Test_CE

Figure A.31. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Sonar dataset for the 0.1 sampling rate, for 5
trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

128

A.

123456789101112131415

13.5100lst_amb_st
12.8800max_err_ens
12.6200lst_amb
12.4400max_err_ens_st
10.6400tree_max_err
10.6100tree_max_err_st

7.3900tree_min_err_st
7.3900tree_min_err

5.1000 min_err_ens
5.0800 rand_st
4.9700 most_amb_st
4.7900 most_amb
4.5200 rand
4.2400 min_err_ens_st
3.8200 EA_sel_trees

Test_CE

12345678910111213141516

14.4900lst_amb_st
13.8800max_err_ens
13.6000lst_amb
13.4200max_err_ens_st
11.5600tree_max_err
11.5300tree_max_err_st

8.1100tree_min_err_st
8.1100tree_min_err 5.6200 rand_st

5.5600 min_err_ens
5.4800 EA_sel_patt
5.4700 most_amb_st
5.2900 most_amb
4.9600 rand
4.7000 min_err_ens_st
4.2200 EA_sel_trees

Test_CE

Figure A.32. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Sonar dataset for the 0.2 sampling rate, for 5
trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123456789101112131415

14.1600lst_amb_st
12.7200lst_amb
11.7000max_err_ens
11.3400max_err_ens_st
10.9700tree_max_err_st
10.9300tree_max_err

6.4400min_err_ens
6.1000min_err_ens_st

5.9800 rand_st
5.5200 rand
5.4100 tree_min_err
5.3500 tree_min_err_st
4.9800 most_amb
4.4800 most_amb_st
3.9200 EA_sel_trees

Test_CE

12345678910111213141516

15.1400lst_amb_st
13.6800lst_amb
12.6400max_err_ens
12.2200max_err_ens_st
11.8500tree_max_err_st
11.8100tree_max_err

7.0200min_err_ens
6.6400min_err_ens_st 6.5800 rand_st

6.0000 rand
5.9300 tree_min_err
5.8800 EA_sel_patt
5.8700 tree_min_err_st
5.5200 most_amb
4.9600 most_amb_st
4.2600 EA_sel_trees

Test_CE

Figure A.33. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Sonar dataset for the 0.3 sampling rate, for 5
trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

129

A.

123456789101112131415

13.8700lst_amb_st
12.8400lst_amb
11.0500tree_max_err
11.0500max_err_ens_st
10.9000tree_max_err_st
10.0300max_err_ens

7.3500min_err_ens_st
7.1100min_err_ens

6.7400 rand_st
5.5400 rand
4.9200 EA_sel_trees
4.7800 tree_min_err
4.7400 tree_min_err_st
4.6300 most_amb_st
4.4500 most_amb

Test_CE

12345678910111213141516

14.8500lst_amb_st
13.8000lst_amb
11.9500tree_max_err
11.9500max_err_ens_st
11.8000tree_max_err_st
10.8700max_err_ens

8.1100min_err_ens_st
7.8700min_err_ens 7.4400 rand_st

6.1000 rand
5.5200 EA_sel_patt
5.4400 EA_sel_trees
5.2600 tree_min_err
5.2200 tree_min_err_st
4.9900 most_amb_st
4.8300 most_amb

Test_CE

Figure A.34. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Sonar dataset for the 0.4 sampling rate, for 5
trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

123456789101112131415

13.4400lst_amb_st
11.7500lst_amb
11.0500tree_max_err_st
10.7500tree_max_err
10.4000max_err_ens_st

8.8500max_err_ens
8.8000min_err_ens
8.2400min_err_ens_st

7.3800 rand
6.5000 rand_st
5.1800 EA_sel_trees
4.8600 tree_min_err
4.6400 tree_min_err_st
4.1300 most_amb
4.0300 most_amb_st

Test_CE

12345678910111213141516

14.4200lst_amb_st
12.7100lst_amb
11.9500tree_max_err_st
11.6500tree_max_err
11.3000max_err_ens_st

9.6700max_err_ens
9.6400min_err_ens
9.0400min_err_ens_st 8.0800 rand

7.1400 rand_st
5.7200 EA_sel_trees
5.4200 tree_min_err
5.1800 tree_min_err_st
4.9200 EA_sel_patt
4.6300 most_amb
4.5300 most_amb_st

Test_CE

Figure A.35. Comparisons of the tree selection approaches versus the pattern selection approach
(the evolutionary algorithm from Section 4.4) on the Sonar dataset for the 0.5 sampling rate, for 5
trees. The top plot shows the ranking and the statistical similarities for all the approaches except
for the evolutionary algorithm from Section 4.4. The bottom plot analyses all the approaches.

130

Bibliography

[1] Chen H. Diversity and Regularization in Neural Network Ensembles. PhD thesis,

University of Birmingham, 2008.

[2] Y. Jin and B. Sendhoff. Pareto-based multiobjective machine learning: An overview

and case studies. IEEE Transactions on Systems, MAN, AND CYBERNETICS-

PART C: APPLICATIONS AND REVIEW, 38:397–415, 2008.

[3] Bishop C. Pattern Recognition and Machine Learning. Springer, 2006.

[4] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In CVPR

2011, pages 1521–1528. IEEE, 2011.

[5] Sashikanta Prusty, Srikanta Patnaik, and Sujit Kumar Dash. Skcv: Stratified k-

fold cross-validation on ml classifiers for predicting cervical cancer. Frontiers in

Nanotechnology, 4, 2022.

[6] Duda R. O., Hart P. E., and Stork D. G. Pattern Classification. Wiley, New York,

2 edition, 2001.

[7] Swarnalatha Purushotham and BK Tripathy. Evaluation of classifier models using

stratified tenfold cross validation techniques. In International conference on com-

puting and communication systems, pages 680–690. Springer, 2011.

[8] N Vapnik Vladimir and Vlamimir Vapnik. Statistical learning theory. Xu JH and

Zhang XG. translation. Beijing: Publishing House of Electronics Industry, 2O04,

1998.

[9] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE transactions

on pattern analysis and machine intelligence, 12(10):993–1001, 1990.

[10] Breiman L. Bagging predictors. Machine Learning, 24:123–140, 1996.

[11] Freund Y. and Schapire R. E. A Short Introduction to Boosting. Journal of Japanese

Society for Artificial Intelligence, 14(5):771–780, 1999.

[12] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[13] Yong Liu and Xin Yao. Negatively correlated neural networks can produce

131

Bibliography

best ensembles. Australian journal of intelligent information processing systems,

4(3/4):176–185, 1997.

[14] Yanjun Qi. Random forest for bioinformatics. Ensemble machine learning: Methods

and applications, pages 307–323, 2012.

[15] Sofia Benbelkacem and Baghdad Atmani. Random forests for diabetes diagnosis.

In 2019 International Conference on Computer and Information Sciences (ICCIS),

pages 1–4, 2019.

[16] Zhongheng Zhang, Yiming Zhao, Aran Canes, Dan Steinberg, Olga Lyashevska,

et al. Predictive analytics with gradient boosting in clinical medicine. Annals of

translational medicine, 7(7), 2019.

[17] HIND DAORI, Manar Alharthi, ALANOUD ALANAZI, GHAIDA ALZAHRANI,

MAJED ABOROKBAH, and Nojood Aljehane. Predicting stock prices using the

random forest classifier, 11 2022.

[18] Yan Wang and Yuankai Guo. Forecasting method of stock market volatility in time

series data based on mixed model of arima and xgboost. China Communications,

17(3):205–221, 2020.

[19] Kevin J Cherkauer. Human expert-level performance on a scientific image analysis

task by a system using combined artificial neural networks. In Working notes of the

AAAI workshop on integrating multiple learned models, volume 21. Citeseer, 1996.

[20] Lars Kai Hansen, Christian Liisberg, and Peter Salamon. Ensemble methods for

handwritten digit recognition. In Neural Networks for Signal Processing II Proceed-

ings of the 1992 IEEE Workshop, pages 333–342. IEEE, 1992.

[21] Krogh A. and Vedelsby J. Neural network ensembles, cross validation and active

learning. Neural Information Processing Systems, 7:231–238, 1995.

[22] Tang E. K., Suganthan P. N., and Yao X. An analysis of diversity measures. Machine

Learning, 65:247–271, 2006.

[23] Kuncheva L. and Whitaker C. J. Measures of Diversity in Classifier Ensembles and

Their Relationship with the Ensemble Accuracy. Machine Learning, 51:181–207,

2003.

[24] Derek Partridge and Wojtek Krzanowski. Software diversity: practical statistics for

its measurement and exploitation. Information and software technology, 39(10):707–

717, 1997.

[25] David B Skalak et al. The sources of increased accuracy for two proposed boosting

algorithms. In Proc. American Association for Artificial Intelligence, AAAI-96,

Integrating Multiple Learned Models Workshop, volume 1129, page 1133. Citeseer,

1996.

132

Bibliography

[26] Ron Kohavi and David Wolpert. Bias plus variance decomposition for zero-one loss

functions. 09 1997.

[27] Richard Everson. Machine learning course.

[28] A.Chandra and X.Yao. Multi-objective ensemble construction, learning and evolu-

tion. Proc. PPSN Workshop Multi-objective Problem Solving from Nature (part of

the 9th International Conference on Parallel Problem Solving from Nature: PPSN-

IX). Citeseer, pages 9–13, 2006.

[29] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the

bias/variance dilemma. Neural Computation, 4(1):1–58, 1992.

[30] Jason Brownlee. Gentle Introduction to the Bias-Variance Trade-

Off in Machine Learning. https://machinelearningmastery.com/

gentle-introduction-to-the-bias-variance-trade-off-in-machine-learning/.

[31] Ron Kohavi and David Wolpert. Bias plus variance decomposition for zero-one loss

functions. 09 1997.

[32] Gareth James. Variance and bias for general loss functions. Machine Learning,

51:115–135, 05 2003.

[33] David Pfau. A generalized bias-variance decomposition for bregman divergences.

Unpublished Manuscript, 2013.

[34] Wikipedia. Boosting (machine learning). https://en.wikipedia.org/wiki/

Boosting_(machine_learning).

[35] Wikipedia. Bootstrap aggregating. https://en.wikipedia.org/wiki/Bootstrap_

aggregating.

[36] Dragos D. Margineantu and Thomas G. Dietterich. Pruning adaptive boosting. In

Proceedings of the Fourteenth International Conference on Machine Learning, ICML

’97, page 211–218, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[37] Yong Liu and Xin Yao. Ensemble learning via negative correlation. Neural networks,

12(10):1399–1404, 1999.

[38] Gavin Brown, Jeremy L Wyatt, Peter Tino, and Yoshua Bengio. Managing diversity

in regression ensembles. Journal of machine learning research, 6(9), 2005.

[39] Wikipedia. Random forest. https://en.wikipedia.org/wiki/Random_forest.

[40] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests for classification, regres-

sion, density estimation, manifold learning and semi-supervised learning. Microsoft

Research technical report TR-2011-114, 2011.

[41] J. Ross Quinlan. Induction of decision trees. Machine learning, 1:81–106, 1986.

133

Bibliography

[42] Corrado Gini. Variabilità e mutabilità: contributo allo studio delle distribuzioni e

delle relazioni statistiche.[Fasc. I.]. Tipogr. di P. Cuppini, 1912.

[43] David Zimmermann. Asymmetric Impurity Functions, Class Weighting, and Opti-

mal Splits for Binary Classification Trees. ArXiv, abs/1904.12465, 2019.

[44] Machine Learning Mastery. How To Implement The Decision Tree Al-

gorithm From Scratch In Python. https://machinelearningmastery.com/

implement-decision-tree-algorithm-scratch-python/, 2021.

[45] G.Ritschard S.Marcellin, D.A.Zighed. An asymmetric entropy measure for decision

trees. 11th Conference on Information Processing and Management of Uncertainty

in Knowledge-Based Systems, pages 1292–1299, 2006.

[46] J. Ross Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann Publish-

ers, 1993.

[47] G.Ritschard S.Marcellin, D.A.Zighed. Evaluating decision trees grown with asym-

metric entropies. Foundations of Intelligent Systems. Springer, pages 58–67, 2008.

[48] R.Guermazi I.Chaabane. Impact of Sampling on Learning Asymmetric-Entropy

Decision Trees from Imbalanced Data. PACIS, 2019.

[49] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

Smote: synthetic minority over-sampling technique. Journal of artificial intelligence

research, 16:321–357, 2002.

[50] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: A new over-

sampling method in imbalanced data sets learning. In De-Shuang Huang, Xiao-Ping

Zhang, and Guang-Bin Huang, editors, Advances in Intelligent Computing, pages

878–887, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[51] Krystyna Napierala and Jerzy Stefanowski. Types of minority class examples and

their influence on learning classifiers from imbalanced data. Journal of Intelligent

Information Systems, 46:563–597, 2016.

[52] Gustavo Batista, Ronaldo Prati, and Maria-Carolina Monard. A study of the be-

havior of several methods for balancing machine learning training data. SIGKDD

Explorations, 6:20–29, 06 2004.

[53] A. Chandra and X. Yao. Divace:diverse and accurate ensemble learning algorithm.

Intelligent Data Engineering and Automated Learning–IDEAL 2004, Springer, pages

619–625, 2004.

[54] S. Gu and Y. Jin. Generating Diverse and Accurate Classifier Ensembles using Multi-

Objective Optimisation. Proc. IEEE Symposium on Computational Intelligence in

Multi-Criteria Decision-Making (MCDM 14). IEEE, pages 9–15, 2014.

[55] G. Brown. Diversity in neural network ensembles. Ph.D. dissertation, School of

Computer Science, University of Birmingham, 2004.

134

Bibliography

[56] Giorgio Giacinto and Fabio Roli. Design of effective neural network ensembles for

image classification purposes. Image and Vision Computing, 19(9-10):699–707, 2001.

[57] E.K Tang, P.N. Suganthan, and Y.Xao. An analysis of diversity measures. Machine

Learning, 65:247–271, 2006.

[58] Whitaker C. Kunecheva L. Measures of diversity in classifier ensembles and their

relationship with the ensemble accuracy. Machine Learning, 5:181–207, 2003.

[59] D.W. Opitz and J.W. Shavlik. Generating accurate and diverse members of a neural-

network ensemble. Advances in Neural Information Processing Systems, 8:535–541,

1996.

[60] Ayman Jarrous and Benny Pinkas. Secure hamming distance based computation and

its applications. In Applied Cryptography and Network Security: 7th International

Conference, ACNS 2009, Paris-Rocquencourt, France, June 2-5, 2009. Proceedings

7, pages 107–124. Springer, 2009.

[61] Jie Li, Wei Wei Shan, and Chao Xuan Tian. Hamming distance model based power

analysis for cryptographic algorithms. Applied Mechanics and Materials, 121:867–

871, 2012.

[62] Mary L McHugh. Interrater reliability: the kappa statistic. Biochemia medica,

22(3):276–282, 2012.

[63] Mona Choi, Saelom Kong, and Dukyoo Jung. Computer and internet interventions

for loneliness and depression in older adults: a meta-analysis. Healthcare informatics

research, 18(3):191–198, 2012.

[64] SRBH Chaturvedi and RC Shweta. Evaluation of inter-rater agreement and inter-

rater reliability for observational data: an overview of concepts and methods. Journal

of the Indian Academy of Applied Psychology, 41(3):20–27, 2015.

[65] GG Landis JRKoch. The measurement of observer agreement for categorical data.

Biometrics, 33(1):159174, 1977.

[66] Mina Mohammadi Kambs, Kathrin Hölz, Mark M Somoza, and Albrecht Ott. Ham-

ming distance as a concept in dna molecular recognition. ACS omega, 2(4):1302–

1308, 2017.

[67] Esteban Garzón, Roman Golman, Zuher Jahshan, Robert Hanhan, Natan Vinshtok-

Melnik, Marco Lanuzza, Adam Teman, and Leonid Yavits. Hamming distance tol-

erant content-addressable memory (hd-cam) for dna classification. IEEE Access,

10:28080–28093, 2022.

[68] B. Littlewood and D.R. Miller. Conceptual modeling of coincident failures in mul-

tiversion software. IEEE Transactions on Software Engineering, 15(12):1596–1614,

1989.

135

Bibliography

[69] D.E. Eckhardt and L.D. Lee. A theoretical basis for the analysis of multiversion

software subject to coincident errors. IEEE Transactions on Software Engineering,

SE-11(12):1511–1517, 1985.

[70] H. Chen and X. Yao. Evolutionary multiobjective ensemble learning based on

bayesian feature selection. IEEE Congress on Evolutionary Computation, 2006.

[71] Wikipedia. Multi-objective optimization. https://en.wikipedia.org/wiki/

Multi-objective_optimization.

[72] Wikipedia. Genetic algorithm. https://en.wikipedia.org/wiki/Genetic_

algorithm.

[73] Wikipedia. Genetic operator. https://en.wikipedia.org/wiki/Genetic_

operator.

[74] J. Fieldsend and R.M. Everson. Multi-objective optimisation in the presence of

uncertainty. Proceedings of the 2005 IEEE Congress on Evolutionary Computation

(CEC’05), pages 476–483, 2005.

[75] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjec-

tive genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation,

6(2):182–197, 2002.

[76] Dua D.and Graff C. UCI Machine Learning Repository, 2017.

[77] Y. Ren, L. Zhang, and P.N. Suganthan. Ensemble classification and regression-recent

developments, applications and future directions. IEEE Computational Intelligence

Magazine, 2016.

[78] H. Chen and X. Yao. Multiobjective neural network ensembles based on regularized

negative correlation learning. IEEE Trans. Knowl. Data Eng., 22:1738–1751, 2010.

[79] A. Rosales-Perez, S. Garcia, J.A. Gonzalez, C.A. Coello, and F. Herrera. An evo-

lutionary multiobjective model and instance selection for support vector machines

with Pareto-based ensembles. IEEE Transactions On Evolutionary Computation,

21, 2017.

[80] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based

on decomposition. IEEE Transactions on evolutionary computation, 11(6):712–731,

2007.

[81] Dragos D. Margineantu and Thomas G. Dietterich. Pruning adaptive boosting. In

Proceedings of the Fourteenth International Conference on Machine Learning, ICML

’97, page 211–218, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[82] Vasudha Bhatnagar, Manju Bhardwaj, Dr Shivam, and Sufyan Haroon. Accu-

racy–diversity based pruning of classifier ensembles. Progress in Artificial Intel-

ligence, pages 1–15, 06 2014.

136

Bibliography

[83] Ioannis Partalas, Grigorios Tsoumakas, and I. Vlahavas. Focused ensemble selection:

A diversity-based method for greedy ensemble selection. pages 117–121, 01 2008.

[84] Gonzalo Mart́ınez-Muñoz and Alberto Suárez. Aggregation ordering in bagging. 01

2004.

[85] Grigorios Tsoumakas, Ioannis Partalas, and I. Vlahavas. An Ensemble Pruning

Primer, volume 245, pages 1–13. 01 1970.

[86] Tumer K. and Ghosh J. Error correlation and error reduction in ensemble classifiers.

Connection Science, 8:385–404, 1996.

[87] Brown G., Wyatt J., Harris R., and Yao X. Diversity creation methods: A survey

and categorisation. Information Fusion, 6:5–20, 2005.

[88] Tumer K. and Ghosh J. Error Correlation and Error Reduction in Ensemble Clas-

sifiers. Connect. Sci., 8:385–404, 1996.

[89] Chandra A. and Yao X. Multi-objective ensemble construction, learning and evo-

lution. In PPSN Workshop Multi-objective Problem Solving from Nature (Part 9th

Int. Conf. Parallel Problem Solving from Nature: PPSN-IX), pages 9–13, 2006.

[90] Michael P Perrone and Leon N Cooper. When networks disagree: Ensemble methods

for hybrid neural networks. In How We Learn; How We Remember: Toward An

Understanding Of Brain And Neural Systems: Selected Papers of Leon N Cooper,

pages 342–358. World Scientific, 1995.

[91] Dieter Schlee. Numerical taxonomy. the principles and practice of numerical classi-

fication, 1975.

[92] Padraig Cunningham and John Carney. Diversity versus quality in classification

ensembles based on feature selection. In Machine Learning: ECML 2000: 11th

European Conference on Machine Learning Barcelona, Catalonia, Spain, May 31–

June 2, 2000 Proceedings 11, pages 109–116. Springer, 2000.

[93] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE transactions

on pattern analysis and machine intelligence, 12(10):993–1001, 1990.

[94] Ross Quinlan. Statlog (australian credit approval. UCI Machine Learning Reposi-

tory. DOI: https://doi.org/10.24432/C59012.

[95] William Wolberg, Olvi Mangasarian, Nick Street, and W. Street. Breast can-

cer wisconsin (diagnostic). UCI Machine Learning Repository, 1995. DOI:

https://doi.org/10.24432/C5DW2B.

[96] Statlog (heart). UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C57303.

[97] Terry Sejnowski and R. Gorman. Connectionist bench (sonar, mines vs. rocks). UCI

Machine Learning Repository. DOI: https://doi.org/10.24432/C5T01Q.

137

Bibliography

[98] V. Sigillito, S. Wing, L. Hutton, and K. Baker. Ionosphere. UCI Machine Learning

Repository, 1989. DOI: https://doi.org/10.24432/C5W01B.

[99] Charles Spearman. The proof and measurement of association between two things.

1961.

[100] Trevor F Cox and Michael AA Cox. Multidimensional scaling. CRC press, 2000.

[101] Wojtek J Krzanowski and David J Hand. ROC curves for continuous data. Crc

Press, 2009.

[102] Woodhouse I. H. The ratio of the arithmetic to the geometric mean: a cross-entropy

interpretation. IEEE Transactions on Geoscience and Remote Sensing, 39(1):188–

189, January 2001.

[103] Chen C.C., Sen P.K., and Wu K.Y. Robust permutation tests for homogeneity of

fingerprint patterns of dioxin congener profiles. Environmetrics, 23(285-294), 2012.

[104] M. Beauchemin, K.P.B. Thomson, and G. Edwards. The ratio of the arithmetic to

the geometric mean: a first-order statistical test for multilook sar image homogeneity.

IEEE Transactions on Geoscience and Remote Sensing, 34(2):604–606, 1996.

[105] Yijun Bian and Huanhuan Chen. When does diversity help generalization in classi-

fication ensembles? IEEE Transactions on Cybernetics, 52(9):9059–9075, 2021.

[106] Fieldsend J.E., Bailey T.C., Everson R.M., Krzanowski W.J., Partridge D., and

Schetinin V. Bayesian inductively learned modules for safety critical systems. Com-

puting Science and Statistics, 35:110–125, 2003.

[107] Ripley B. D. Neural networks and related methods for classification (with discus-

sion). Journal of the Royal Statistical Society Series B, 56(3):409–456, 1994.

[108] Kagan Tumer and Joydeep Ghosh. Bayes error rate estimation using classifier en-

sembles. International Journal of Smart Engineering System Design, 5(2):95–109,

2003.

[109] Gorman R. P. and Sejnowski T. J. Analysis of Hidden Units in a Layered Network

Trained to Classify Sonar Targets. Neural Networks, 1:75–89, 1988.

[110] UCI Machine Learning Repository. Connectionist Bench (Sonar, Mines vs. Rocks)

Data Set. https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+

(Sonar,+Mines+vs.+Rocks), 2021.

[111] Krzanowski W. J., Fieldsend J. E., Bailey T. C., Everson R. M., Partridge D.,

and Schetinin V. Confidence in Classification: A Bayesian Approach. Journal of

Classification, 23(2):199–220, 2006.

[112] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel

M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau

138

Bibliography

D., Brucher M., Perrot M., and Duchesnay E. Scikit-learn: Machine Learning in

Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[113] Wikipedia. Broyden–Fletcher–Goldfarb–Shanno algorithm. https://en.

wikipedia.org/wiki/Broyden\%E2\%80\%93Fletcher\%E2\%80\%93Goldfarb\

%E2\%80\%93Shanno_algorithm, 2021.

[114] Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in

Statistics: Methodology and Distribution, pages 196–202. Springer, 1992.

[115] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian

journal of statistics, pages 65–70, 1979.

[116] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,

and Pierre-Alain Muller. Deep learning for time series classification: a review. Data

Mining and Knowledge Discovery, 33(4):917–963, 2019.

[117] A. Dosovitskiy and Josip Djolonga. You only train once: Loss-conditional training

of deep networks. In ICLR, 2020.

[118] Roger Koenker and Kevin F Hallock. Quantile regression. Journal of economic

perspectives, 15(4):143–156, 2001.

[119] Isaac Newton. The Method of Fluxions and Infinite Series: With Its Application to

the Geometry of Curve Lines. Nourse, 1736.

139

