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ABSTRACT: In this work, we present a first-principles investigation of the
properties of superlattices made from transition metal dichalcogenides for use
as electrodes in lithium-ion and magnesium-ion batteries. From a study of 50
pairings, we show that, in general, the volumetric expansion, intercalation
voltages, and thermodynamic stability of vdW superlattice structures can be
well approximated with the average value of the equivalent property for the
component layers. We also found that the band gap can be reduced, improving
the conductivity. Thus, we conclude that superlattice construction can be used
to improve material properties through the tuning of intercalation voltages
toward specific values and by increasing the stability of conversion-susceptible
materials. For example, we demonstrate how pairing SnS2 with systems such as
MoS2 can change it from a conversion to an intercalation material, thus
opening it up for use in intercalation electrodes.

■ INTRODUCTION
With the rise of renewable energy sources such as solar and
wind power,1,2 and the growing popularity of electric
vehicles,3,4 the need for cost-effective, efficient energy storage
methods has increased dramatically. This has led to a
substantial increase in battery research5 over the last two
decades. Following the work of Whittingham6,7 and Good-
enough8,9 in the 1970s and 1980s and the recent isolation of
graphene by Novoselov and Geim,10,11 materials which possess
a layered structure have received a lot of attention for energy
storage. Materials such as NMC and its variants,12−17 the
TMDCs,18−20 and the MXenes21−24 all demonstrate ideal
electrode properties owing to the fact that their intrinsic
structures possess van der Waals (vdW) gaps and provide
natural channels for intercalated ions to occupy and travel
through during the cycling of a cell. However, many of these
materials possess voltages that lie outside ideal anode/cathode
ranges, slow charging rates, and low capacities.
One clear extension to these layered materials can be

achieved through the construction of superlattices and
heterostructures. This allows for the utilization of not only
the properties of the component materials but also the novel
physics that can arise from their interface. The study of such
nanocomposites has been facilitated by advances in fabrication
techniques such as chemical vapor deposition,25 liquid
exfoliation,26 and nucleation growth,27 which allow for
monolayer control of material synthesis.28−30 The resultant
electronic structure of vdW heterostructures is normally
determined by Anderson’s rule31−33 with a few key
considerations.34−37 The ability to predictably tailor the
electronic properties has resulted in applications such as

solar38−43 and photocatalytic44−46 cells, nanotransistors,47−49

and diodes.50,51

Heterostructures and superlattices have shown potential for
electrode applications,52−55 with graphitic carbon being used
as an additive to many MXenes56−58 and TMDCs such as
MoS2

59,60 and SnS2.
61−63 Experimental investigations have

shown improvements to the cyclability,64 and first-principles
studies have found a reduction in volumetric expansions;65,66

hence, there is opportunity in using superlattices to enhance
the performance of intercalation electrodes. However, due to
the immense number of possible combinations, no study can
be exhaustive, and previous works have been limited to a few
select cases of heterostructures or superlattices. Nevertheless, a
comprehensive study of TMDCs and their composites is
needed to better understand how superlattice construction can
enhance electrode properties.
Here, we report on a theoretical modeling of TMDC

superlattices, with a focus on their properties for use as
electrode materials in Li- and Mg-ion cells. We present the
material voltage profiles, showing how these change between
single constituents and compounds, and also discuss how the
thermodynamic stability of these materials upon intercalation
can be used as a way to estimate the charge storage capacity.
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We discuss other properties that are important for electrode
materials, such as volumetric expansion and the resultant
electronic structure, which is important for electronic
conduction. This allows us to offer insight into how a careful
choice of materials in a superlattice can be used to improve
these materials for electrode applications.

■ METHODS
First-Principles Methods. In this work, first-principles

techniques based on density functional theory were used to
determine the structural and energetic properties of super-
lattice structures composed of vertically stacked layered MX2
materials and to evaluate how these properties change when
intercalated with varying levels of lithium or magnesium. We
focus on superlattices with 1T-phase TMDC components as
these are found to be the preferred phase in their pristine and
intercalated forms, though it is worth noting that the Group VI
TMDCs, lithium-intercalated Group V TMDCs, and magne-
sium-intercalated Group IV TMDCs will prefer the H-phase
structure.20 While other phases67,68 are possible for the
TMDCs, such as 2H and the α-NaFeO2-like structure, their
intercalation environments are similar to those of the 1T
phase, so only the 1T is considered. In this stacking
configuration, the layers are arranged such that the metal
atoms of each TMDC layer are vertically aligned, as in the
usual T-phase structure.
To investigate a range of superlattices based on TMDCs, we

paired various TMDC materials with a second lattice-matched
TMDC in a 1:1 match, as shown in Figure 1. To be considered
“lattice-matched”, the two MX2-materials are required to have
a lattice constant within 5% of each other. While the pairing of
nonlattice-matched MX2-materials could be considered, there
is a much larger combination space to investigate: phenomena
such as moire ́ rotation effects,69−71 consideration of relative in-
plane translations of the two atomic layers,68 and rippling72,73

are each deserving of a study of their own. Further to this,
analysis of the effects of edge formation74−76 and the
investigation of defects77 would also be required for a
thorough description of a material in a working electrode.
However, none of these can be explored until the fundamental
properties of the core superlattices have been established. As
such, we limit our investigation to pristine bulk superlattices
formed through combinations of aligned MX2-materials with
similar in-place lattice constants, with the addition of MoS2|

SnS2, which shows strains between 5 and 10%. Further details
of the material pairings, including the resultant strain and the
formation energy, are presented in the Supporting Information.
To achieve a finer sampling of intercalant concentrations

than would be accessible through consideration of only the
primitive unit cells, supercells consisting of (2 × 2 × 2) unit
cells were used for the individual TMDC materials, and
supercells consisting of (2 × 2 × 1) unit cells were used for the
superlattice structures. Each of these corresponds to 24 atoms,
eight MX2 formula units, and two TMDC layers. These were
then used as the bulk unit cells into which lithium and
magnesium were intercalated for evaluation of voltages and
thermodynamic stability, giving us access to a range of lithium
concentrations between Li1

8
MX2 and LiMX2 in increments of

Li1
8
MX2. Similarly, we can access magnesium concentrations

between Mg1
8
MX2 and MgMX2 in increments of Mg1

8
MX2.

We determine the preferred sites of intercalation to be those
with octahedral coordination, a further discussion of which is
presented in the Supporting Information. Using the supercell
sizes described above, we thus have access to eight potential
octahedrally coordinated intercalation sites, which allow for 24
potential intercalant filling configurations. Each of these has
been explored, and combinations of different concentrations
have been used to emulate clustering effects.78−81 Further
details of these are presented in the Supporting Information.
For a given intercalant concentration, the configuration that
results in the lowest energy structure is used for the evaluation
of key electrode properties, such as calculation of the
intercalation voltage and the assessment of the thermodynamic
stability.
The calculations performed here employed the Vienna Ab

initio Simulation Package (VASP).82−85 The valence electrons
included for each species are indicated in the Supporting
Information. The projector augmented wave method86 was
used to describe the interaction between core and valence
electrons, and a plane-wave basis set was used with an energy
cutoff of 700 eV. All structural relaxations were completed
using the Perdew−Burke−Ernzerhof (PBE)87 functional and
converged to a force tolerance of 0.01 eV/Å per atom, while
electronic self-consistency is considered to have an accuracy of
10−7 eV. Γ-centered Monkhorst−Pack grids88 of k-points
equivalent to a 6 × 6 × 6 grid in the supercells are used
throughout, and we have allowed for optimization of collinear

Figure 1. Schematic showing the 1:1 pairing of two lattice-matched TMDCs to form a superlattice. The layers are stacked such that the metal
atoms of each layer are vertically aligned.
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spin. Van der Waals interactions have been addressed using the
zero-damping DFT-D3 method of Grimme.89 Further
calculation details are presented in the Supporting Information.

Methods for Material Evaluation. To compare different
levels of lithium-intercalated superlattice (SL = MX2M′X2′) the
voltage, V, can be calculated using

V
E E b b E

b b ze

( )

( )
Li SL Li SL 2 1 Li

2 1

b b2 1=
[ + ]

× (1)

for total lithium content b2 > b1, and energy of the superlattice
structure with b intercalant atoms per SL formula unit ELi SLb

.
In this work, we consider values of 0 ≤ b ≤ 2, with b = 2
corresponding to one intercalant ion per metal atom of the
host structure. z is the valency of the intercalant (z = 1 for the
case of lithium, z = 2 for magnesium), and ELi is the energy of a
lithium atom as found in bulk. Each occurrence of Li should be
replaced with an equivalent of Mg for magnesium intercalation.
Further discussion of voltage calculation is presented in the
Supporting Information.
Previous first-principles works20 have assessed the stability of

individual TMDCs when intercalated with lithium or
magnesium, with intercalation limits depending on how
favorable the formation of secondary products (for example,
Li2X or MgX) is. Typically, the formation of these compounds
results in material amorphization and the irreversible loss of
the layered TMDC structure. Here, we have developed a
generalized approach for calculating EIS, a measure of stability
and hence the reversible intercalation capacity of a material.
This is given by

E
b

H H

b
H

b b
H

2
8

(Li X) (Li X )

1
(SL)

8
8

(Li SL)b

IS
Li

2 2

2
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+
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for lithium intercalation and by

E
b

H H

b
H

b b
H

2
4

(MgX) (MgX )

1
(SL)

4
4

(Mg SL)b

IS
Mg

2

= [ + ]

+
(3)

for magnesium intercalation. In both of these, ΔH(A) gives the
enthalpy of formation of compound A, E(A) gives the energy
of compound A, and ΔμB gives the chemical potential of
elemental species B (in the intercalated SL structure) relative
to its chemical potential when it is in its elemental bulk
structure. EIS is assessed for each intercalant concentration,
with positive values indicating that the host TMDC is
thermodynamically stable with intercalation and resists
conversion to Li2S, MgS, or an equivalent compound. Negative
values of EIS then indicate that a material is susceptible to
conversion, and the concentration at which EIS is negative gives
the limit of reversible intercalation. Further discussion of EIS
and its origins are provided in the Supporting Information.

■ RESULTS
Volumetric Expansion. One important metric for

assessing the promise of a material for electrode applications
is the volumetric expansion arising from intercalation. We
calculate this expansion with respect to the unintercalated
structure using 100V V

V
0

0
× for initial volume V0 and the final

volume V. Importantly, for electrode applications, we show
that there is minimal volumetric expansion with the
intercalation of these superlattices and highlight this with
some examples in Figure 2. When intercalated with lithium
(magnesium), we see that the SnS2|SnSe2 superlattice has a
total volumetric expansion of 10.9% (21.4%), for ZrS2|ZrSe2,
we see a total expansion of 1.8% (3.3%), and for NbS2|TaS2,
we see a total expansion of 10.2% (12.9%). Thus, the minimal
expansion demonstrated by layered materials holds upon
construction of the superlattice, with most superlattices
expanding by less than 20% (30%). These values are
comparable with other layered materials that have demon-
strated success as intercalation electrodes, including
LiCoO2

90,91 (2−3.25%), NMC92 (8.44%), and graphite93
(13.2%), as well as the <30% generally seen for the TMDCs.20

Figure 2. Volume expansion with intercalation for the selected TMDC superlattices, calculated with respect to the unintercalated structures using
100V V

V
0

0
× . (a) Data for lithium intercalation and (b) magnesium intercalation. In each of these, the x-axis gives the number of intercalant ions

(NLi/Mg) per metal atom of the host structure (NM + NM′).
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We note the surprising reduction in volume expansion of
ZrS2 as lithium content increases beyond a 4

8
= , and this

behavior extends to the superlattice structure. The same can be
seen as magnesium content increases beyond a 2

8
= (corre-

sponding to the same amount of charge transfer to the host
structure as a 4

8
= of lithium), though the volume increases

again for larger intercalant concentrations. We also notice in
Figure 2b a larger increase in the volume for SnS2 and TaS2
with magnesium intercalation beyond a 4

8
= , and this behavior

carries over to the corresponding superlattices.
A closer evaluation shows that for lithium intercalation, the

volumetric expansions of the superlattices fall within 2% of the
mean of the volumetric expansion for the relevant components.
Thus, if the superlattice volumetric expansion were to be
estimated by calculating the mean of the volumetric expansion
arising in the component TMDCs, then we could expect the

result to deviate by up to a 2% error from what is observed in
the actual superlattice. This close agreement is not surprising
considering the vdW gaps between MX2 layers.
We note a larger expansion upon magnesium intercalation

than with lithium intercalation and attribute this to the greater
charge donation from magnesium than with lithium. This can
be seen in Figure 2. For example, SnS2|SnSe2 expands by 10.7%
when half-intercalated with magnesium and 10.9% when fully
intercalated with lithium (hence having similar levels of charge
donation). Similarly, ZrS2|ZrSe2 expands by 1.7% when half-
intercalated with magnesium and by 1.2% when fully
intercalated with lithium, and NbS2|TaS2 expands by 8.7%
when half-intercalated with magnesium and by 10.2% when
fully intercalated with lithium. We rationalize this as the
chalcogen species in the intercalated structures have larger
negative charges, and the metal species have smaller positive
charges. Consequently, there is a reduced attraction between
the M and X species but an increased repulsion between the X

Figure 3. Intercalation voltages and EIS for selected superlattices. (a) Results for lithium intercalation and (b) results for magnesium intercalation.
In each of these, the top shows the voltage profile, and the bottom shows the variation of EIS with intercalation. The superlattice data is presented in
purple, and the data for the component materials is color-coded in red or blue.
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species. This leads to a “stretching” of the MX2 layers along the
c-axis. Comparable results are also seen for the other
superlattices considered, further details of which are presented
in the Supporting Information.

Voltages. In Figure 3, we present the voltage profiles and
thermodynamic stability (indicated by EIS) of the highlighted
superlattices with lithium and magnesium intercalation. For
comparison, we have also included the results of the relevant
individual TMDCs which were presented in our previous
work.20 In general, we find that the intercalation voltage of the
formed superlattice is intermediate with the profiles of the
component materials. This is best highlighted with lithium-
intercalated SnS2|SnSe2: SnS2 is shown to have a flat voltage
profile at 1.80 V, and SnSe2 has a flat voltage of 1.85 V, with a
minor step at the start of intercalation of 1.89 V. The
superlattice then shows an almost flat voltage of 1.83 V,
intermediate in value to those of the components in both shape
and magnitude. We show a similar result for lithium-
intercalated NbS2|TaS2, where the more distinct features of
the NbS2 and TaS2 components are reproduced, maintaining
the intermediate voltage profile.
We note that the voltage behavior seen with magnesium

intercalation is very similar to that seen with lithium
intercalation, and we highlight this with the SnS2|SnSe2 and
GeS2|SnS2 structures. These show that the flat voltage profiles
of the component materials result in a similarly flat voltage
profile in the superlattices. Further, the dramatic drop in
voltage for high magnesium concentrations in ZrTe2 produces
a similar drop in voltage for high magnesium concentrations in
the SnSe2|ZrTe2 superlattice. This SnSe2|ZrTe2 superlattice
also suggests an exciting use of superlatticing: whereas the drop
seen for ZrTe2 reaches a voltage of −0.64 V, the voltage drop
demonstrated by the superlattice reaches a value of −0.02 V.
Although this value is still negative, it suggests that the
inclusion of SnSe2, a material that retains a constant voltage
across the concentration range, limits the drop shown by the
superlattice. The HfS2|ZrS2 further supports this: though the
HfS2 component shows a negative voltage at high concen-
trations, the superlattice retains a positive value due to the
inclusion of the ZrS2. This effect has been observed before,
both using first-principles methods94 and experimentally.64

While some materials deviate from this with voltage profiles
that extend beyond the bounds of the component materials,
such as with the lithium-intercalated NiS2|TiS2 and MoS2|SnS2,
and the magnesium-intercalated NbS2|TaS2 and MoS2|SnS2,
these deviations do not remove the underlying shape of the
component materials. Further, comparing the average voltages
of the superlattice with those of the components highlights that
taking an average of the component materials is a reliable
method to predict the voltage of the formed superlattice.
These comparisons, along with the results of 41 other
superlattice structures which show the same result, are
presented in the Supporting Information.
As mentioned above, electrode materials should ideally have

a well-defined voltage,95 and so, based only on the voltage
profiles in Figure 3a, pairings such as MoS2|SnS2 can be ruled
out as a promising electrode material for lithium ion batteries.
As one of the components (MoS2) has a large voltage
variation, the resultant voltage for the superlattice can also be
expected to have a large variation. Similarly, the magnesium-
intercalation voltage profiles of NbS2|TaS2, SnSe2|ZrTe2, and
MoS2|SnS2 vary significantly across the magnesium concen-
tration range due to the large variation of one or both of the

component TMDCs. However, this does also suggest that a
large variation seen for a TMDC can be reduced by pairing
with a TMDC with a constant voltage profile. For example,
TiS2 varies by 0.59 V across the concentration range
considered here. However, when paired with NiS2 (which
varies by 0.11 V), the variation of the resultant NiS2|TiS2
superlattice is 0.17 V. Therefore, if a particular TMDC is
desirable for use as an electrode but possesses a voltage which
varies significantly, its voltage could be “pinned” by pairing it
with a suitable partner.
The intercalation voltage of anode materials should be lower

than 2 V, ideally in the range 0.5−1.5 V,95 and for cathode
materials, it should exceed 3 V.96 As the pairing of two
TMDCs results in a voltage that is intermediate to both, it
would be sensible to combine materials that are energetically
alike. For anodes, two TMDCs with low voltages should be
combined, and for cathodes, two TMDCs with high voltages
should be combined. If a low-voltage TMDC (e.g., SnS2 with a
voltage of 1.80 V) were to be combined with a high-voltage
TMDC (e.g., ScS2 with a voltage of 3.66 V

97), the voltage of
the superlattice (e.g., 2.69 V, see Supporting Information)
would be poor for both anode and cathode applications.

Thermodynamic Stability. The values of EIS for a range
of intercalant concentrations within the superlattices are shown
in Figure 3a,b. As was demonstrated with the evolution of the
intercalation voltage with concentration, the evolution of EIS
with intercalant concentration follows a trend that is an
intermediate of the two component materials, and the value of
EIS of a superlattice at a given concentration is well
approximated by calculating the average of the component
materials. This suggests that, as EIS is an indicator of the
thermodynamic stability of a given TMDC against conversion,
a highly stable material (characterized by a high, positive value
of EIS) can be paired with a material that is susceptible to
conversion (characterized by a low or negative value of EIS) to
make a superlattice that is also resistant to conversion. This is
shown with the pairing of SnS2|SnSe2, GeS2|SnS2, and MoS2|
SnS2 with lithium intercalation. In each of these, SnS2 is the
component with a negative value of EIS across the range of
lithium concentration. However, the formed superlattices have
positive values of EIS, indicating the stability that has arisen
from the inclusion of a thermodynamically stable component.
We see the same result of a conversion-resistant component
stabilizing a conversion-susceptible component with the
pairings NiS2|TiS2 and HfS2|PdS2 for magnesium intercalation.
The importance of the improved resistance to conversion is

highlighted by consideration of the gravimetric charge capacity,
a quantity that is crucial for characterizing a material for
electrode applications. We have used the range over which EIS
has a positive value to calculate the reversible gravimetric
charge capacities for each of the superlattice structures, which
are presented in Figure 4, along with the capacity of the
component materials for comparison.20 Aside from the
improvements in stability, we can also expect improvements
in capacity simply due to the inclusion of a lighter material. For
example, hafnium is a Period-VI element, so the specific
capacity of 109.7 mA h g−1 for lithium intercalation (219.4 mA
h g−1 for magnesium intercalation) is relatively low despite it
possessing positive values of EIS across the intercalation range.
However, combining this with a TMDC composed of a lighter
transition metal, such as ZrS2 in HfS2|ZrS2, increases this to
140.5 mA h g−1 (281.0 mA h g−1). Further, superlattice
construction can, in some cases, provide a reversible charge
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capacity that is better than either of the components. This is
highlighted by the intercalation of SnS2|SnSe2: SnS2 is shown
to be susceptible to conversion reactions, so the capacity is
zero. However, a combination with SnSe2 (which possesses a
positive EIS for both intercalants) results in a capacity of 120.9
mA h g−1 (241.8 mA h g−1). We can therefore improve not just
the voltage (through “pinning”) and thermodynamic stability
(by increasing EIS) of a TMDC through superlatticing but also
the gravimetric charge capacity.

Electronic Structure. One of the main reasons the
TMDCs have received a lot of attention in recent years is
for the wide range of electronic properties the family can
exhibit, and their superlattices/heterostructures have been of
further interest for the electronic physics that can arise from
the combination of two materials.34−37 For electrode
applications, electronically conductive materials are preferred
so that compensating electrons from an external circuit can
balance the positively charged lithium/magnesium ions.
We find that the electronic structure of a superlattice can be

obtained crudely by superimposing the electronic structures of
the constituent TMDC materials. As a result, combining
TMDCs that offer a relative type II band alignment (staggered

gap) results in a superlattice with a band gap that is smaller
than either of the components, and combining a metallic
TMDC with a TMDC that possesses a band gap results in a
superlattice that is also metallic. Though exact band gap values
can be sensitive to the choice of functional and the level of
strain induced from lattice matching, this observation agrees
with many previous works36 and shows that the construction of
a superlattice provides a simple method through which the
electrical conductivity can be improved.
The introduction of ionic species into the host structure

dramatically changes the nature of interlayer bonding,
however, and consequent changes to the electronic structure
can be expected. Here, we investigate how the electronic
structure of superlattice structures changes with intercalation.
In Figure 5, we present the electronic structure density of
states (DOS) for NbS2|TaS2 (5a), HfS2|ZrS2 (5b), and GeS2|
SnS2 (5c). These show the electronic DOS for the intercalated
superlattices, along with the limit of lithium and magnesium
intercalation corresponding to one intercalant per metal atom
in the host supercell. The associated electronic band structures
are presented in the Supporting Information. We have
qualitatively aligned to the high-energy occupied states of the
unintercalated superlattice at Γ, allowing us to comment on the
relative position of the highest occupied molecular orbital
(HOMO) level, with further details presented in the
Supporting Information. We emphasize that this is an aesthetic
choice made purely for easier comparison of the highest-
occupied states of the pristine and intercalated materials.
We identify several broad groups describing the electronic

behavior: the superlattice either (i) retains a conductive nature
with intercalation, (ii) undergoes a semiconductor to
conductor transition, (iii) possesses an insulating nature before
intercalation and at the intercalation level corresponding to
one intercalant per metal atom in the host supercell, or (iv)
undergoes a conductor to semiconductor transition. The
superlattice NbS2|TaS2 is an example of group (i), possessing
no band gap at the start and end of intercalation. We can see
from Figure 5a (and the corresponding band structure in the
Supporting Information) that this is due to the HOMO lying
in the middle of a linear band that extends from −0.5 eV at M
to 2.5 eV between K and Γ. Electrons that are transferred from
the intercalants to the host then simply occupy the unoccupied
states in this band, so the HOMO level progressively rises. For
HfS2|ZrS2, an example of group (ii), we see a very similar

Figure 4. Reversible gravimetric charge capacity of selected
superlattices and their component TMDCs for lithium (top) and
magnesium (bottom) intercalation. The superlattice results are
presented in purple, and the corresponding results for the component
materials are presented in red and blue. Missing bars indicate
materials with zero reversible capacity.

Figure 5. Electronic density of states (DOS) for pristine and intercalated superlattice structures. NbS2|TaS2 data is presented in (a), HfS2|ZrS2 in
(b), and GeS2|SnS2 in (c). Pristine data are presented in black, data for lithium-intercalated structures in red, and data for magnesium-intercalated
structures in blue. Each has been aligned with high-energy-occupied states of the pristine superlattice material. The energy of the highest occupied
state (EHOMO) is indicated with dashed lines. Corresponding band structures are presented in the Supporting Information.
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behavior, but the presence of an initial band gap means that
there is a much larger initial jump in the position of the
HOMO. However, the continuous range of bands beyond this
allows for a gradual rise in the HOMO level, as seen for group
(i). This is presented in Figure 5b. Figure 5c shows the
electronic DOS for the GeS2|SnS2 superlattice and its
intercalated forms, where we see the pristine structure
possesses a band gap of ∼0.6 eV. Upon lithium intercalation,
the HOMO shifts to intersect the two lowest-energy
unoccupied states of the pristine structure, becoming metallic
as with a type (ii) material. However, upon intercalation with
magnesium, these states become fully occupied, and the
HOMO level then sits at the bottom of a further band gap.
Though HSE and GW calculations typically offer improve-

ments in accuracy over LDA and GGA functionals, this is not
universally true for the TMDCs. Some works have found cases
of GGA functionals producing band gaps closer to
experimental values than HSE98 or GW99,100 calculations.
Our previous work36 considered the band alignment of
TMDCs and also found that HSE calculations resulted in
the same conclusions as those obtained in the PBE functional.
As such, we do not use these higher levels of calculation as
there is not a guaranteed improvement in the results, nor do
we expect any changes to the conclusions already presented.

Further Considerations. Beyond the above discussions of
volumetric expansion, intercalation voltage, stability, and
electronic structure, all of which are important considerations
for any electrode material, we here present a brief discussion of
diffusion characteristics, elastic properties, and charge transfer,
as these can also play an important role in electrode function.
Further details of these are presented in the Supporting
Information.
Climbing-image nudged elastic band101 calculations were

used to identify the octahedrally coordinated intercalation site
to be the lowest in energy, with ionic diffusion predominantly
occurring between adjacent octahedral and tetrahedral sites.
The barriers to this diffusion in the superlattices are shown to
be intermediate with their TMDC components. Thus, due to
the exponential dependence on the diffusion barrier in the
Arrhenius rate, the rate of diffusion through a superlattice is
lower than the average of the rates of the two components but
faster than the rate of the component with the largest barrier.
We also calculate the elastic tensor of the superlattices

discussed above. We find all of these superlattices to be
elastically stable, with the exception of magnesium-intercalated
HfS2|PdS2 and magnesium-intercalated MoS2|SnS2. The bulk,
shear, and Young’s moduli generally increase with the addition
of an intercalant, with larger values obtained with magnesium
intercalation, indicating the strengthened interaction between
TMDC layers due to the addition of an ionic intercalant. The
elastic values of the superlattices are again found to be
intermediate to those of the component TMDCs.102

Finally, we also present charge analysis in the Supporting
Information as this can offer insight into the electronic
structure and intercalation properties. As there is relatively
little charge transfer between component layers upon super-
lattice construction, there is correspondingly minimal change
to the electronic structure of component TMDCs upon
construction of a superlattice/heterostructure.36,37 Conse-
quently, the evolution of the superlattice electronic structure
with intercalation is very similar to what has been observed for
the component materials,20 i.e., the donated electrons from
intercalated lithium or magnesium gradually fill the unoccupied

states of the host structure, as discussed above. We find that
the charge transfer from the intercalant to the host material is
intermediate to the charge transfer of the component layers,
which explains the observed “averaging” of the electrode
properties of volumetric expansion, voltage, and stability
assessed here.

■ CONCLUSIONS
We have presented here the results of an investigation of
intercalation into transition metal dichalcogenide superlattices
with both lithium and magnesium. The volumetric expansion,
electronic structure, intercalation voltages, and thermodynamic
stability determined through phase diagrams have all been
considered, as the information they provide is essential for the
consideration of materials for use as electrodes. Upon
construction of a superlattice, we find that many of these
properties can be well approximated through the consideration
of the equivalent properties for the component layers. For
example, if the superlattice volumetric expansion were to be
estimated by calculating the mean of the volumetric expansion
arising in the component TMDCs, we could expect the result
to deviate by up to a 2% error from what is observed in the
actual superlattice, and the voltage profiles of the component
materials provide bounds to the voltage profile exhibited by the
constructed superlattice. Further, the unoccupied states of the
host material are progressively filled with the addition of an
intercalant, which follows the behavior observed with the
individual TMDCs. Most interestingly, the construction of
superlattices allows for many improvements to component
materials: the construction of a superlattice can result in a
reduction of the electronic band gap, thus improving electronic
conductivity; conversion-resistant materials can be used to
increase the stability of conversion-susceptible materials,
extending their cyclability and lifetime; and materials can be
chosen such that the overall voltage can be tuned toward
specific values.
The conclusions presented in this work should also extend

to other layered materials. In particular, the layered transition
metal oxides offer a group of materials that are very closely
related to the TMDCs used to construct the superlattices here
and have already demonstrated success as electrodes. Using the
ideas used here, however, they could have their voltages tuned,
their intercalation stability improved, and ultimately have an
increased energy storage capacity.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpcc.3c05155.

Further details of the methodology, including the results
of nudged elastic band calculations and the derivation of
limits for thermodynamic phase diagrams, calculation of
strain and formation energy associated with constructing
each superlattice, numerical values of the results
presented in the main article, along with calculated
elastic properties and charge analysis, and relevant
electrode properties of an additional 41 superlattice
structures (PDF)
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