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Abstract 

The Cardigan Bay Basin (UK) may have functioned as a deep and narrow strait, and thereby influenced Early Juras-
sic oceanic circulation through the northern and southern Laurasian Seaway, and between Boreal and Peri-Tethys 
domains. Toarcian hemipelagic deposits of the basin in the Mochras borehole show strongly bioturbated contour-
ite facies. Trace fossils are strongly dominated by Phycosiphon incertum (represented by four morphotypes), which 
was produced by opportunistic colonizers. Thalassinoides, Schaubcylindrichnus and Trichichnus are common (the 
latter is a deep-tier trace fossil produced by filamentous sulfide-oxidizing bacteria with a high tolerance for dysoxia), 
accompanied by less common Zoophycos, Planolites, Palaeophycus, Teichichnus, Rhizocorallium, Chondrites, and dwell-
ing and resting structures, such as cf. Polykladichnus, Siphonichnus, Skolithos, Arenicolites, Monocraterion and Lockeia. 
Ichnological and lithological signals suggest repetitive fluctuations in benthic conditions attributed to a hierarchy 
of orbital cycles (precession and obliquity [4th order], short eccentricity [3rd order], long eccentricity [2nd order] 
and Earth–Mars secular resonance [1st order]). The Pliensbachian–Toarcian transition appears to be a significant pal-
aeoceanographic turning point in the Cardigan Bay Basin, starting a CaCO3 decline, and with the most severe oxygen 
crisis of the Tenuicostatum Zone (here dysoxic but not anoxic) ending at the onset, in the early Serpentinum Zone 
(Exaratum Subzone), of the Toarcian negative carbon isotope excursion (To-CIE—linked with the Toarcian Oceanic 
Anoxic Event occurring in the lower part in the Serpentinum Zone). This trend contrasts with the prevalence of anoxia 
synchronous with the To-CIE in many other settings. Minor dysoxia returned to the Mochras setting in the lat-
est Thouarsense to Dispansum zone interval. Extreme climate warming during the To-CIE may have enhanced 
and caused a reversal in the direction of deep marine circulation, improving oxygenation of the sea floor. Spectral 
analysis of binary data on ichnotaxa appearances gives high confidence in orbital signals and allows refined estima-
tion of ammonite zones and the duration of the Toarcian (minimum ~ 9.4 Myr).
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1  Introduction
The impact of orbital forcing versus internal Earth pro-
cesses on climate change through Earth history is an 
important topic of debate (e.g., Lourens 2021). Here, the 
influence of these factors on the Earth system in the deep 
geological past (the Toarcian age, Early Jurassic epoch), 
over the course of about 10 Myr, is discussed in relation 
to major climate changes and deep-sea circulation. The 
Llanbedr (Mochras Farm) borehole, hereafter referred 
to as Mochras, is situated in the Cardigan Bay Basin 
(Wales, UK) and cored an unusually thick (~ 1300  m) 
Early Jurassic age succession, with relative completeness 
of ammonite chronozones (Woodland 1971). During 
the Early Jurassic, this extensional basin was located at a 
mid-palaeolatitude (c. 35–40°N), on the NW fringe of the 
European shelf and within the Laurasian Seaway (Fig. 1). 
The Toarcian part of the core has been studied in many 
respects, including biostratigraphy (Woodland 1971; 
Page in Copestake and Johnson 2014; McArthur et  al. 
2016), lithology (Woodland 1971; Dobson and Whitting-
ton 1987; Hesselbo et  al. 2013; Copestake and Johnson 
2014; McArthur et al. 2016),  carbon cycle and climate-
driven local sedimentary processes (Jenkyns et  al. 2002; 
Xu et al. 2018a), ostracod and foraminiferal assemblages 
(Boomer 1991; Copestake and Johnson 2014; Reolid et al. 
2019; Rodríguez-Tovar et  al. 2020), magnetostratigra-
phy (Xu et  al. 2018b), and calcareous nannofossils and 
primary productivity (Bown 1987; Menini et  al. 2021; 
Paulsen and Thibault 2023). A chemostratigraphic refer-
ence record shows a major ∼  7‰ negative excursion in 
δ13CTOC, associated with the Toarcian Oceanic Anoxic 
Event (T-OAE) preceded and followed by early Toarcian 
positive excursions (Jenkyns et al. 2002; Xu et al. 2018b). 
Climate-driven, accelerated continental weathering and 
hydrological cycling was suggested as the cause of inten-
sified sediment supply to the Cardigan Bay Basin (Xu 
et al. 2018a, b). However, a more focussed characteriza-
tion of sedimentary environment, ichnology, and benthic 
life conditions has not yet been published.

The prominent expression of Carbon Isotope Excur-
sions (CIEs) in Mochras with an amplitude of about 
one per mil in δ13CTOC (Xu et  al. 2018a) testifies to the 
expanded and relatively complete stratigraphic record 
therein, particularly in the early Hettangian and Sine-
murian age part of the section, allowing for a distinction 
between intrinsic Earth processes and extrinsic solar sys-
tem dynamics as the driving mechanisms for the Early 
Jurassic δ13C fluctuations (Xu et  al. 2018a; Storm et  al. 
2020; Hollaar et al. 2023; Hesselbo et al. 2023).

The duration of the whole Toarcian, based on astro-
nomical calibration is not well constrained to date. Time 
series of magnetic susceptibility (Huret et  al. 2008) and 
XRF-derived Ti content from the Sancerre borehole, 

Paris Basin, France, has been used, which yielded a mini-
mum duration of 8.3 Myr from 405-kyr long eccentricity 
cycles (Boulila et  al. 2014, 2019), a result largely con-
firmed by Huang (2018). Nonetheless, numerous studies 
of the T-OAE CIE interval itself have not yet resulted in 
a consensus on duration, with estimates varying widely. It 
has been estimated to be ~ 300 to ~ 500 kyr (Kemp et al. 
2005, 2011; Boulila et  al. 2014, 2019; Boulila and Hin-
nov 2017; Ikeda et al. 2018) or ~ 900 kyr (Suan et al. 2008; 
Huang and Hesselbo 2014).

In this paper, detailed sedimentological and ichnologi-
cal data are presented. They allow recognition of eco-
logical parameters, as trace fossils are sensitive in  situ 
indicators of even very subtle environmental changes 
such as current strengths, oxygen content, food sup-
ply, and stability of the environment, allowing for new 
interpretations and correction of existing ones, based 
on other proxies. Furthermore, deep-sea environmental 
changes using both new and existing data (δ13CTOC, cal-
cium content, organic geochemistry, benthic fossils—Xu 
et al. 2018a; Reolid et al. 2019) are discussed to determine 
which changes are caused by intrinsic Earth processes 
and which can be attributed to extrinsic solar system 
dynamics, also based on spectral analyses of trace fossil 
appearances. Benthic invertebrates respond to various 
environmental changes driven by orbital forcing (e.g., 
Wetzel 1991; Erba and Premoli Silva 1994; Hüneke and 
Stow 2008; Pervesler et  al. 2008; Rebesco et  al. 2014), 
although the mechanisms of control are still poorly 
understood. In the present study we document and 
analyse lithological and ichnological cycles that can be 
related to orbital controls, and by this means provide a 
new estimate of the duration of the Toarcian and ammo-
nite zones within this stage.

2 � Material and methods
The Mochras slabbed core (in 1 m core sections) is held 
at the British Geological Survey, Keyworth, Nottingham, 
UK. A nearly continuous 261  m-thick section of core 
was investigated using standard visual sedimentological 
description at centimetre scale accuracy (Fig. 2a, b) with 
special attention paid to the integration of sedimentolog-
ical and ichnological observations. Depths in Figs. 2a, b 
and 3 are referred to metres below surface (mbs). Alter-
native descriptive classifications were adopted—for 
siliciclastic sections, the classical array of claystone-mud-
stone-siltstone-sandstone-conglomerate was used, while 
in sections with high carbonate content (over 30–40%) 
the classification of carbonate rock lithotypes based 
on Dunham (1962) was used (mudstone-wackestone-
packstone-grainstone; Figs.  2a, b and 4, 5, 6). Based on 
ammonite occurrences intervals have been assigned to 
chronozones as documented most recently in McArthur 
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Fig. 1  Location maps. a Toarcian palaeogeography with localization of the Laurasian Seaway and Mochras borehole. b Enlargement of the area 
in the frame a showing major basins and elevated areas in the Toarcian times (after Cope et al. 1992, amended) and enhanced thermohaline 
circulation from the North from the late Falciferum Subzone on, with generally improved oxygenation of the bottom (circulation intensity 
and average oxygenation achieved its highest level in the late Bifrons and Variabilis to earliest Thouarsense zones. CBB  Cardigan Bay Basin. c The 
same map showing the inferred current flow paths during the Tenuicostatum Zone–Exaratum Subzone and), the latest Thouarsense–Dispansum 
Zone and (to a lesser extent) Pseudoradiosa Zone thermal anomalies related to a strengthening of warm equatorial Tethyan westward currents 
and associated with the conspicuous ichnodiversity/oxygenation crisis in Mochras. Note the pivotal position of the Cardigan Bay Strait (now 
Cardigan Bay Basin – CBB) in the Laurasian Seaway between Boreal Sea and Peri-Tethys domain
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et  al. (2016); here we follow convention and use roman 
type to denote chonozones (see discussion of distinction 
between biozones and chronozones in Jurassic stratigra-
phy in Hesselbo et al. 2020a).

For numerical cyclicity (spectral) analysis, occurrences 
of trace fossils Phycosiphon morphotypes 2, 3, Thalassi-
noides, Schaubcylindrichnus, Planolites and Trichichnus 
(Figs. 2a, b, 5, 7 and 8), as well as intervals with preserved 
lamination and undulated bedding (see below) were used 
to compile discrete binary time series. Ranges of trace 
fossils, undulated bedding and lamination were digitized 
by visual sampling with an even step of 10 cm. Resultant 
time series consist of approximately 2550 binary digits 
each (Additional file 1).

To allow comparison between the ichnological record 
and existing δ13CTOC, TOC content, Ca content, Zr/
Rb, Ti/Al, Si/Al and gamma ray records, curves based 
on smoothed data are juxtaposed (Fig.  3). Ichnological 
records were converted to curves by applying a smooth-
ing spline algorithm (De Boor 2001) directly to binary 
time series with smoothing factor values in the 8–9 
range, in each case experimentally adjusted to obtain an 
optimal degree of smoothing.

Geochemical data taken from Xu et al. (2018a, supple-
mentary data sheet) and gamma ray data from Wood-
land (1971) were subjected to analogous smoothing, with 
smoothing factor values in the 4–6 range.

The runs test was conducted to confirm statistically 
that the trace fossils, undulated bedding and lamination 
occur in a non-random order. This non-parametric test 
evaluates the null hypothesis of the two states being dis-
tributed randomly in a binary time series (Hammer and 
Harper 2006). For the present study, the adopted hypoth-
eses are:

H0: distribution of occurrences is random;
H1: distribution of occurrences is non-random.
Runs are defined as uninterrupted sequences of one 

state, in the present case either an occurrence (N1) 
or non-occurrence (N2). The null hypothesis can be 
rejected if the observed number of runs (R) and the num-
ber of runs expected for the random time series ( ̄R ) are 

statistically different. PAST 4.0 software (Hammer et al. 
2001) was used to compute the test statistic (Z-score). 
The null hypothesis was rejected at a significance level of 
5% if an absolute value of computed Z-score was greater 
than the critical value of 1.96 taken from a standard nor-
mal table (Additional file 2).

A time series, both binary and continuous, can be seen 
as a sum of component constant-frequency waves. Math-
ematical transform operations serve as tools to extract 
the frequencies of component waves from time series. A 
range of well-established numerical methods that derive 
from the Fourier transform are applied in the spectral 
analysis of continuous time series. However, they are not 
suited for analysis of binary time series (Weedon 2003). 
Instead, the Walsh transform provides a way to con-
duct power-spectral analysis of binary data. The Walsh 
transform outputs the decomposed signal as a function 
of sequency, which is half of the average number of zero-
crossings per unit of space (or time). From the point of 
view of results interpretation, the Walsh sequency can 
be equated with commonly recognized concept of fre-
quency. Conceptual basis of the Walsh method and its 
applicability in cyclostratigraphy have been described by 
Negi and Tiwari (1984), Weedon (1989), van Echelpoel 
(1994) and Maiti and Tiwari (2012). According to Tiwari 
(1987) and Negi et al. (1993) the Walsh analysis not only 
outputs the peaks related to main orbital periodicities, 
but their component periodicities and beat periodicities 
as well.

Binary time series were subjected to analysis using the 
Walsh transform module implemented in PAST 4.0 soft-
ware (Hammer et al. 2001). To find the optimal balance 
between the signal-to-noise ratio and spectral resolu-
tion, terminations of binary data series were adjusted by 
trial and error. Obtained power-spectra display peaks 
in the stratigraphic thickness domain (number of cycles 
per one metre, Fig.  9). Conversion of peak values from 
the thickness domain into the time domain was based 
on two alternative assumed average sedimentation rate 
value of 4.6  cm/kyr (upper number in the Fig.  9) and 

Fig. 2  Investigated part of the Mochras Borehole showing stratigraphy (stages, ammonite zones, and subzones), lithology, ichnology 
and geochemistry of the Toarcian section. a Tenuicostatum and Serpentinum zones. b  Bifrons–Aalensis zones. O, other, rarely occurring trace 
fossils: Ar, Arenicolites; Ast, Asterosoma; Ch, Chondrites; Lo, Lockeia; Mon, Monocraterion; Pol, cf. Polykladichnus; Rh, Rhizocorallium; Sip, Siphonichnus; 
Sk, Skolithos. Trichichnus (filamentous mat-forming, sulfide-oxidizing bacteria and “pyritized tubes”) represent traces of unidentified life activity/
disputable origin. Ub—micrite/mudstone of ‘massive’ appearance, with undulated or cuboid parting. Geochemistry: δ13CTOC—carbon isotope 
curve (after Xu et al. 2018a); XRF-derived calcium record (after Xu et al. 2018a). Cyclicity: thin dashed lines—4th order (c. 20 kyr) cycles; solid 
gray lines—3rd order (c. 100 kyr) cycles; red lines—2nd order (c. 405 kyr) cycles; grey bar on the right—1st order (c. 2.5 Myr) cycles expressed 
in bottom oxygenation (shaded) and ichnology. Foraminiferal biotic crisis after Reolid et al. (2019). Red bars in the metric depth column—position 
of the sections presented in Fig. 4. Biostratigraphy from Page in Copestake and Johnson (2014) and McArthur et al. (2016) as summarised 
in Additional file 3

(See figure on next page.)
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records from the Mochras borehole. Contains British Geological Survey materials © UKRI 2024
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4.1  cm/kyr (lower number in the Fig.  9). Consequently, 
time values corresponding to peak values were calculated 
as a proportion of 21,700 and 24,400  yr per one metre, 
respectively.

The most reliable sedimentation rates can be obtained 
for the Tenuicostatum Zone (~ Polymorphum Zone), 
where existing radioisotopic (Sell et al. 2014) and astro-
chronological (Huang and Hesselbo 2014; Rocha et  al. 
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and siltstones, lamina often 
discontinuous, small scale 
ripples, rare Phycosiphon
(Ph3)

Gray ‘massive’ mudstones, 
with udulated or cuboid 
parting; homogenization of 
the sediment by meiofauna 
bioturbation; rare 
Phycosiphon (Ph3)

Dark gray mudstones, 
broken planar lamination; 
rare bioturbation structures
(meiofaunal and rare 
Phycosiphon (Ph3)

Dark gray, planar laminated 
mudstones; bioturbation 
structures not observed

Strong currents; 
erosion, deposition
of coarse grains

Stronger currents; 
well-oxygenated 
bottom

Moderate currents;
oxygenated  
bottom

Weak currents; 
oxygenated  
bottom

Weak currents; 
dysaerobic bottom

Suspension fallout;
dysaerobic  bottom

Suspension fallout, 
intermittent weak 
currents; anaerobic, 
intermittent 
dysaerobic bottom

Suspension fallout; 
anaerobic  bottom

Fig. 4  Seven main lithofacies (1–7) and ichnofabrics in the Mochras profile; to the right—main types of bigradational contourite drift sedimentary 
cycles built of main lithofacies—full cycle, top cut-out cycle, bottom cut-out cycle (referred to Stow et al. 2002; Stow and Faugeres 2008). Contourite 
cycle divisions reflect variations in current velocity. C1–C5—“Full” contourite cycle. For lithology and trace fossil abbreviation see Fig. 2a, b
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2016; Huang 2018) constraints give duration of ~ 0.8 
Myr (although, assuming inferred hiatuses, this duration 
could be extended to ~ 1 Myr—Ruebsam and Al-Husseini 
2020). With 33.8  m of sediments representing this time 

in Mochras, an average sedimentation rate of 4.1 cm/kyr 
is calculated. On the other hand, the sedimentation rate 
in the Pliensbachian section in Mochras (representing 
a similar depositional setting and stable sedimentation 
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Fig. 5  Sections of the Mochras core showing common types of lithology, ichnology, and cyclicity of sedimentation. a 775.79–776.81 m—
bigradational (symmetrical) cycle, with gradually coarsening upward (cu) and gradually fining-upward (fu) phases, cut from the top 
by a conspicuous erosional surface (red bar), capped by sandstone and fining-upward succession. b 772.03–772.97 m—full bigradational 
(symmetrical) cycle, with gradually coarsening upward (cu) and gradually fining-upward (fu) phases. A and B—no primary sedimentary structures 
are visible, due to pervasive bioturbation. c, d 754.86–756.82 m—bigradational, top-cut cycle, some current ripples can be seen in the middle 
part; the cycle is followed by mudstone, in places with lamination, passing into the coarsening-upward phase of the next cycle. Characteristic 
bigradational (“symmetrical”) cycles with bioturbated coarser parts result from variations in current velocity and are referred to as contourite cycles 
(Stow et al. 2002; Stow and Faugeres 2008—see also Fig. 4)
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rate) was estimated at about 4.6 cm/kyr (Ruhl et al. 2016; 
Pieńkowski et al. 2021). Therefore, alternative time values 
were calculated for peaks in the spectra assuming this 
value. For comparison, the conversion was also tested 
with 3.3 and 2.8 cm/kyr sedimentation rates, which could 
be representative for more condensed sections with less 
stable sedimentation or more frequent erosional surfaces. 
However, the results based on these two lower alternative 
sedimentation rates were discarded as less meaningful.

3 � Results
3.1 � Lithology and sedimentary structures
The succession primarily comprises siliciclastic and 
calcareous deposits: mudstone/micrite, siltstone/
wackestone and sandstone/grainstone with varying 
proportions of calcareous and siliceous grains of silt 
to fine-sand size. The siliciclastic input in coarser silty-
sandy lithofacies is more pronounced in the lower part 
of the section with a CaCO3 content typically between 
10 and 30%, while the mudstone contains a greater 
siliciclastic component and locally (805–840 mbs) is 
carbonate-free (Fig.  2a; Xu et  al. 2018a). Macrofossils 

are mainly represented by pelagic cephalopods (Xu 
et  al. 2018a; Ullmann et  al. 2021). Crinoids are much 
less common in the Toarcian than in the Pliensbachian 
section (Pieńkowski et  al. 2021) and are most likely 
redeposited from shallower settings due to their buoy-
ancy (Savarese et  al. 1997). Benthic shelly organisms 
are rare, and they are represented by in situ burrowing 
bivalves found in a few horizons (Fig.  7c, d). Benthic 
foraminifers are also present, and their assemblages are 
important to determine bottom life conditions (Cope-
stake and Johnson 2014; Reolid et  al. 2019). Drifted 
flora occurs locally, mostly in the Tenuicostatum Zone 
and the Exaratum Subzone, with some occurrences also 
in the Variabilis Zone. Low-angle cross-lamination is 
common, particularly in the Exaratum, mid-Bifrons, 
mid-Variabilis, Thouarsense, and mid-Pseudoradiosa 
zones. Siderite (usually dispersed, in places forming 
bands and nodules, oxidised to iron oxide) is common 
in the Tenuicostatum Zone and Exaratum Subzone, as 
noted by Xu et  al. (2018a). Dewatering/compactional 
cracks are observed only in a few horizons (in the 
Bifrons and Variabilis zones).

S

Ph2

(a) (b)

(d)

(e)

(c)

Ph3

Fig. 6  Some sedimentary features of the investigated section. a Rip-up clasts pointing to the high energy of currents and erosion, 746.7 m. b 
Conglomerate resting on an erosional surface. Most pebbles are composed of local material (in some Phycosiphon incertum morphotype 3, Ph3, 
is visible), usually cemented by calcium carbonate. Shell debris is also common, 627.4 m. c Conglomerate—pebbles are composed of both local 
and exotic material (e.g., a larger chert pebble in the bottom-left), 627.3 m. d Erosional surface with coarse sandstone/grainstone, 630.9 m. e 
Mudstone–wackestone with erosional (channelized) surface and cross-bedded sandstone above. S, Schaubcylindrichnus; Ph2, Phycosiphon incertum 
morphotype 2, 683.3 m
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is reflected in different morphotypes of Phycosiphon incertum (Ph2, Ph3): small Ph3 (more stagnant conditions) and larger Ph2 (more dynamic 
conditions), depth 824.0 m. b Enlarged framed fragment of A. c Ichnofabric showing succession (tiering) of the earliest/shallowest Phycosiphon 
incertum morphotype 2 (Ph2), followed by Thalassinoides (Th) and bivalve burrow (b.b.), 603.6 m. d Cross-bedded (low-angle), very fine sandstone 
with mudstone intercalations. Bivalve resting trace ?Lockeia (b.b.), 818.67 m. e Thalassinoides burrow systems (Th) in siltstone/sandstone, in places 
infilled by Phycosiphon incertum morphotype 4 (Ph4)—arrowed. Numerous Phycosiphon incertum morphotype 2 (Ph2) in the background, 823.35 m. 
f Thalassinoides galleries of tubular burrows (Th, deeper tier), Phycosiphon incertum morphotype 2 (Ph2, shallower tier) in the background, 726.1 m. 
(g) Trichichnus—pyritized horizontal and oblique, unbranched or branched, thread-like, cylindrical structure produced by bacteria consortium, 
712.6 m. h Planolites (Pl—thinner, randomly oriented tubes) and Thalassinoides (Th—larger burrows), 782.7 m. i Post-depositional colonization 
of a sandstone/grainstone bed with Phycosiphon incertum morphotype 2 (Ph2, earlier stage—shallower tier) and Thalassinoides isp. (Th, later stage—
deeper tier), 821.6 m. j Teichichnus (Te, shallow tier) and pyritized, aggregated Trichichnus cylindrical vertical structures (Tr, deeper tier), 850.5 m. k 
Chondrites (Ch, deep tier) and shallow tier Thalassinoides (Th) and Planolites (Pl), 669.5 m. Scale = 1 cm
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Fig. 8  Other ichnological features. a Phycosiphon incertum morphotype 2—spreiten burrows visible in horizontal section. This level contains 
isorenieratane (Xu et al. 2018a, b); in that case, this biomarker does not indicate anoxic bottom conditions, 811.60 m. b Palaeophycus—cylindrical, 
pyritized structure with conspicuous lining, 785.2 m. c Schaubcylindrichnus (S)—cylindrical, lined structures flattened by compaction, 702.5 m. 
d Mottled mudstone (“undulated bedding”), sediment homogenized by meiofauna activity. This level contains  isorenieratane (Xu et al. 2018a, 
b); in that case, this biomarker does not indicate permanent anoxic bottom conditions, 819.2 m. e Zoophycos galleries (Z) composed of fan-like, 
spreiten structures, 782.6 m. f Rhizocorallium (Rh), Thalassinoides (Th) and Phycosiphon incertum morphotypes 1 (Ph1) and 3 (Ph3), 801.8 m. g 
Chondrites, 803.1 m. h Lamination in claystone/mudstone, in places broken by bioturbation (Phycosiphon incertum morphotype 2, Ph2). In the lower 
and upper part “pinstripe” broken lamination with silty lamina and incipient ripples indicate recurrent activity of weak currents. Despite the presence 
of isorenieratane in this interval (Xu et al. 2018a, b), current activity and the presence of bioturbation do not support for anoxic conditions 
on the bottom surface. Depth 811.60 m. i Stiff ground and uneven omission surface with Thalassinoides (Th) and Skolithos (Sk); Phycosiphon incertum 
morphotypes 2 (Ph2) and 3 (Ph3) were left in soft sediment. Depth 730.0 m. Scale = 1 cm
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As in the Pliensbachian section, the same six main 
lithofacies types (Pieńkowski et  al. 2021; their Fig.  8) 
are identified in the Toarcian section of Mochras: (1) 
Dark grey, planar-laminated siliceous or calcareous 
micritic mudstone and siliceous claystone with con-
tinuous (without bioturbation) and broken lamination 
(with few bioturbation structures); (2) Massive, poorly 
bedded mudstone/carbonaceous micritic mudstone, 
in some cases showing centimetre- to decimetre-scale 
banding with faint, slightly undulated (undulated bed-
ding), or cuboid parting, which is connected to homog-
enization by meiofaunal bioturbation of sub-millimetre 
size (Figs.  4, 5 and 8d); discrete trace fossils are rela-
tively rare; (3) Pinstripe carbonaceous mudstone that 
is laminated with wackestone-siltstone, in which pla-
nar laminae are often discontinuous and lenticular to 
wavy, planar parallel, or low angle cross-lamination, 
starved ripples are present, and bioturbation structures 
can obliterate these in mottled mudstone-wackestone 

(Figs.  4 and 5); (4) Interlaminated, heterolithic silt-
stone or wackestone with mudstone, usually biotur-
bated, with only local sedimentary structures; this 
lithofacies shows irregular arrangement of mudstone, 
wackestone-siltstone or grainstone-sandy siltstone in 
pockets, lenses and streaks, and less commonly, a rapid 
alternation of thin irregular layers of these three lith-
ologies (Figs.  4 and 5); (5) Packstone/siltstone to very 
fine sandstone, with primary sedimentary structures—
usually obliterated by bioturbation—including parallel 
bedding and small-scale cross-bedding (Figs. 4 and 5); 
(6) Sandstone-grainstone, usually bioturbated, with pri-
mary structures (parallel bedding and cross-bedding) 
observed in some horizons (Fig.  4). Additionally, the 
conglomerate lithofacies (7) is present—it is too rare 
to play an important role in basic models of cycles, but 
the presence of conglomerate beds (composed both of 
local and exotic material—Fig. 6a–c) is important as an 
indicator of intermittent high-energy currents. Also of 
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Fig. 9  Overlapping Walsh power-spectra of the time series based on: a Phycosiphon morphotypes Ph2 and Ph3. b Thalassinoides 
and Schaubcylindrichnus. c Planolites and Trichichnus. d Undulated bedding and lamination. Spectra are scaled true to analysis results (not rescaled). 
Calculated time values assigned to peaks and upper abscissa axes based on two alternative sedimentation rates 4.6 cm/kyr (upper number) 
and 4.1 cm/kyr (lower number)
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note (compared to Pliensbachian) is a general rarity of 
lamination.

Contacts between these different lithofacies may be 
either gradational, yielding indistinct bedding (Figs. 4 and 
5), or sharper due to the erosive action of relatively strong 
bottom currents, thereby yielding more distinct bed-
ding (Figs. 4–6). Compared to the Pliensbachian section 
(Pieńkowski et al. 2021) of note are much more common 
sharp, erosional boundaries in the Mochras Toarcian sec-
tion, associated with coarse-grained sediments (includ-
ing conglomerates, either with clay pebbles derived from 
local compacted mudstone or of exotic lithology such 
as limestone and chert), pointing to high-velocity cur-
rents, erosion/non-sedimentation and hiatuses (Fig.  6). 
In places, hiatal levels are marked by induration of the 
sediment surface occurring as semi-consolidated/firm 
muddy/silty substrates with sharp-walled, unlined, 
uncompacted passively filled burrows (Fig. 7i).

Lithofacies types 1–7 and related ichnofabric in the 
Toarcian of Mochras are not arranged randomly, but 
appear in a cyclical order (Figs.  2a, b, 4 and 5). Fully 
developed, usually 0.5–3  m thick, bigradational grading 
sequences (some ‘couplets’ of previous authors) com-
monly begin from mudstone lithofacies type 2 (repre-
senting mixed layer, mottled by burrowing activity of the 
meiofauna), or mudstone lithofacies type 1 (laminated), 
gradually passing into lithofacies type 3—pinstripe mud-
stones with ripple-drift cross laminated siltstones, or 
lithofacies 4—bioturbated mudstone-wackestone, fol-
lowed usually by bioturbated wackestone-siltstone and 
packstone-grainstone with traces of stronger currents 
(Fig.  5). Above this coarsening-upward part is a fining-
upward suite, developed in reverse order, although less 
complete; usually only lithofacies types 6–5–4 are pre-
sent. This fining-upward phase of the sequence is usu-
ally thinner than the coarsening-upward phase. In some 
cases, the whole sequence is incomplete; either top or 
bottom parts can be missing (top cut-out cycles or bot-
tom cut-out cycles—Fig.  5). These successions are like 
those observed in the Pliensbachian part of the sec-
tion (Pieńkowski et al. 2021). The main difference is the 
more common occurrences of erosion surfaces in the 
Toarcian section, locally with lithofacies type 7 and hia-
tuses (Fig.  6). Of note are also the markedly finer sedi-
ments occurring of earliest Toarcian age (Tenuicostatum 
Zone, and ealiest Exaratum Subzone) and again in the 
Thouarsense-Dispansum zonal transition (Figs. 2, 3).

3.2 � Trace fossils, ichnofabrics
Trace fossils exhibit sharp outlines and possess a char-
acteristic geometry that allows their classification in 
terms of ichnotaxonomy, while bioturbation structures 
have less distinct outlines and do not display a recurrent 

geometry (Wetzel and Uchman 2012). Below, trace fossils 
are briefly described. The trace fossils show significant 
similarities to those described in Pieńkowski et al. (2021) 
from the Pliensbachian. Their synopsis is presented in 
Table 1.

Phycosiphon incertum with its four morphotypes (Ph1, 
Ph2, Ph3, Ph4) is the most abundant trace fossil in the 
Mochras Toarcian. The exception is the Tenuicostatum 
Zone (and to a lesser extent also the Thouarsense-Dis-
pansum zonal transition), characterised by Phycosiphon 
scarcity and dominance of Trichichnus. Previous ichno-
logical analysis of contourites has revealed changes in 
ichnofabric attributes over relatively short lateral dis-
tances, including trace fossil composition, cross-cutting 
relationships, or ichnofabric index (Hüneke and Stow 
2008; Wetzel et  al. 2008; Wetzel and Uchman 2012; 
Rodríguez-Tovar et  al. 2016, 2017; Rodriguez-Tovar 
and Molina 2018). Recently, Dorador et  al. (2019) and 
Pieńkowski et al. (2021) have indicated that the distance 
to the bottom current ‘core’ exerts a tangible and wide-
spread influence on specific macro-benthic tracemaker 
communities in contourite deposits. This parameter itself 
reflects other bottom current features, such as hydrody-
namic energy, grain size, nutrient transport, etc. Specifi-
cally, strong domination of Phycosiphon is unique for the 
Pliensbachian-Toarcian contourite deposits in Mochras. 
Phycosiphon, common in turbidites and hyperpycnites 
(e.g., Wetzel and Uchman 2012; Knaust et  al. 2014), is 
also reported from contourite deposits (Baldwin and 
McCave 1999; Wetzel et al. 2008) but as a rare, subordi-
nate trace fossil. Lack of Phycosiphon in other contour-
ite deposits may be more apparent than real: in previous 
papers diffuse Phycosiphon burrows may simply have 
been described as “bioturbation”. In particular, this ichno-
taxon could be difficult to recognize in recent unconsoli-
dated contourite deposits. Other deposit-feeding feeding 
traces, e.g., Rhizocorallium, are rare.

Schaubcylindrichnus isp. is common through the late 
Bifrons and Variabilis zone strata. In the Toarcian of 
Mochras, Teichichnus isp. is much less numerous than in 
the Pliensbachian (Pieńkowski et  al. 2021). Teichichnus 
and Schaubcylindrichnus do not usually occur together. 
Thalassinoides crosscuts Phycosiphon of the morpho-
types Ph1, Ph2 and Ph3, but is cut by Ph4, Schaubcylin-
drichnus and Teichichnus. Trichichnus (relatively rare in 
Pliensbachian in Mochras, see Pieńkowski et al. 2021) is 
particularly common in the Tenuicostatum Zone, which 
is associated with declining abundance in Phycosiphon 
and low ichnodiversity. Trichichnus is also abundant in 
the mid-Falciferum Subzone, in the Thouarsense-Dispan-
sum zone transition, and (less abundantly) in the mid-
Pseudoradiosa Zone. The presence of Trichichnus usually 
points to oxygen-depleted conditions, but interpretation 
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must be compatible with occurrences of other trace fos-
sils, representing shallower tiers and/or more oxygenated 
conditions. The abundance and diversity of other trace 
fossils disaffirms dysoxic conditions in this case.

Among other trace fossils, of note are occurrences of 
dwelling structures of filter-feeding organisms, build-
ing vertical structures stabilized by a mucus lining (Sko-
lithos, ?Monocraterion, Arenicolites, Siphonichnus, cf. 
Polykladichnus). With respect to behavioural groups, it 
should be noted that the general abundance of suspen-
sion feeders in the Toarcian section of Mochras, although 
more frequent than in the Pliensbachian (Pieńkowski 
et al. 2021) is still low, probably because their filter appa-
ratus can easily be plugged when the mineral suspension 
concentration is high (Pieńkowski 1985; Thistle et  al. 
1991).

All described trace fossils are important components of 
ichnofabrics (ichnofabric is understood as an overall tex-
ture and structure formed by bioturbation or bioerosion; 
see Bromley and Ekdale 1986). Constituents of ichnofab-
rics may be attributed to several controls and attributes, 
in particular to the tiering patterns and the manner of 
colonization (Ausich and Bottjer 1982; Taylor et al. 2003). 
The complete (“ideal’) tiering pattern in the Mochras 
Toarcian section can be summarized as follows. The shal-
lowest tier consists first of an indistinct mottling that is 
produced in the mixed layer by bioturbation in water-sat-
urated soupy sediment near the sea floor, followed next 
by the shallow tier of Phycosiphon (Ph1, Ph2, Ph3) show-
ing a patchy distribution. The middle tier is occupied by 
Thalassinoides, and slightly deeper Schaubcylindrichnus, 
Planolites, rare Teichichnus, and yet deeper another gen-
eration of Phycosiphon (Ph4), reworked Thalassinoides 
and rarely Teichichnus. The yet deeper tier is character-
ized by Teichichnus and Zoophycos, and the deepest one 
is occupied by Trichichnus. Rare traces (cf. Polykladich-
nus, Skolithos, Arenicolites, Siphonichnus, Rhizocoral-
lium) usually occupy a middle tier, below Phycosiphon 
(Ph1, Ph2, Ph3). On the other hand, Chondrites occupies 
a deep tier. However, such a complete tiering pattern 
occurs rarely, and the most common tiering pattern is 
limited to shallowest tiers: Phycosiphon (Ph1, Ph2, Ph3), 
Thalassinoides (middle tier), with Schaubcylindrichnus 
slightly deeper, and Trichichnus occurring at the deepest 
level.

4 � Discussion
4.1 � Sedimentary environment, ichnodiversity, cyclicity 

of sedimentation
4.1.1 � Sedimentary environment
The lithofacies in the Toarcian at Mochras contrast with 
those in other settings for the UK Jurassic (as is also the 
case for the Pliensbachian). For example, the Toarcian in 

the Cleveland Basin, some 300 km to the NE of Cardigan 
Bay, is represented by organic-rich (black) shale up to late 
Bifrons Zone age, known as the Mulgrave Shale (formerly 
the Jet Rock), similar to the Schistes Cartons of France 
and Posidonia Shale of Germany (Jenkyns 1988; Atkinson 
et  al. 2022). These strata were deposited in a restricted 
shelf basin (Powell 2010) that was episodically affected 
by storm processes (e.g., Kemp et al. 2018). Higher levels 
within the Cleveland Basin Toarcian are clearly deposited 
in a storm-dominated shoreface setting (e.g., Hesselbo 
and King 2019).

Based on sediment transport processes, the action 
of two different types of deep-water currents and their 
depositional products have been recognized in the 
Mochras section, namely contourite drift facies pro-
duced by along-slope contour currents (see Pieńkowski 
et al. 2021 for the Pliensbachian part of the section) and 
turbidite deposits created predominantly by downslope 
sediment density flows (Xu et al. 2018a—Exaratum Sub-
zone, Serpentinum Zone, of the Toarcian section). Xu 
et  al. (2018a) illustrated few cm-scale sharp-based beds 
in the T-OAE interval described as turbitites. However, 
fining upwards of these beds is not gradual, with coarser 
intercalations sharply separated not only from below, but 
also from above without continuous transition; therefore, 
these beds may alternatively represent repeated intensi-
fications of along-slope currents. It is also possible that 
sediments of distal turbidites could occasionally have 
been “pirated” by contourite currents (Gong et al. 2017; 
Rodríguez-Tovar et  al. 2019a, b), and such a situation 
could also have occurred in Mochras.

Apart from this T-OAE interval, the Toarcian section 
in Mochras does not reveal any features of typical tur-
bidites. The silty-sandy beds and laminae in the studied 
section show no systematic vertical grading or stacking 
of structures, such as those recognized in the Bouma 
(1962) intervals. The Mochras section overall records 
continuous sedimentation with structures characteris-
tic of current traction, controlled by fluctuation of their 
speed; therefore, deposition by turbiditity currents was 
unlikely. In addition, turbidites are primarily bioturbated 
from the top (e.g., Uchman and Wetzel 2011) and the 
uppermost layers of a turbidite exhibit total bioturba-
tion, which decreases with depth as lamination and cross 
bedding appear. In contrast, contourites typically exhibit 
more continuous and uniform bioturbation, which 
appears throughout the entire contourite bed; this situ-
ation is typical for both the Pliensbachian and Toarcian 
of Mochras. However, the variability of ichnofabric pat-
tern in contourites may depart from this typical picture 
(Rodríguez-Tovar et al. 2019a, b, 2022).

Interpretation of a wide spectrum of bathymetry and 
occurrences of contourite currents is recognized, i.e. 
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everywhere the sea floor had a considerable relief, com-
monly of more than a hundred metres amplitude, com-
prising moats, drifts, mounds and channels (e.g., Bein 
and Weiler 1976; Surlyk and Lykke-Andersen 2007; 
Esmerode et  al. 2008; Van Rooij et  al. 2010; Rebesco 
et al. 2013), although the definition of Faugeres and Stow 
(2008) is also applied, according to which the term con-
tourite should be generally used for sediment accumu-
lated in relatively deep water (markedly deeper than c. 
200 m-deep shelf platform) and deposited or significantly 
reworked by stable currents.

The deposits in Mochras can be classified as mixed 
siliciclastic-calcareous/biogenic contourites, the most 
frequent contourite facies in the modern oceans 
(Fagueres and Mulders 2011). In less bioturbated sections 
of Mochras, primary sedimentary structures are visible 
and are mostly represented by current structures such as 
planar parallel lamination, low angle cross-lamination, 
starved ripples, in places erosive bases, and gradational 
normal grading bed transitions (Fig. 5a), like cases stud-
ied by Shanmugam (2000) and Knapp et al. (2017). Stag-
nant conditions or very slow currents allowed vertical 
settling of the suspended particles from the nepheloid 
layer (Ewing and Thorndike 1965) producing mottled 
mudstone (Fig.  8d), or laminated mudstone-claystone 
(Figs. 7a and 8h), where the grain-supported laminae are 
interpreted to be the result of very weak contour cur-
rents that winnowed out clay-sized sediment (e.g., Shan-
mugam 2000). 

Higher bottom current velocities led to deposition of 
silt or sand layers with planar or low-angle cross-bedding, 
produced by bedload transport (Figs.  5c, d and 7d) and 
periodically these currents were strong enough to erode 
older sediments and carry coarse-grained sediments, 
including clay intraclasts and pebbles (Fig. 6). Compared 
to the Pliensbachian (Pieńkowski et  al. 2021), visible 
plant remains are more frequent (see also Ullmann et al. 
2021) and indicate more phytodetrital pulses in connec-
tion with fluvial discharges in the hinterland, which pos-
sibly could have led to acidification (Müller et  al. 2020) 
and intermittently reduced salinity of sea water (Dera 
and Donnadieu 2012), both adding (along with the Toar-
cian rise in pCO2; see Hermoso et al. 2009) to collapses 
of the carbonate factory (Bodin et  al. 2023), suggested 
particularly for the Tenuicostatum Zone to Exaratum 
Subzone interval (Fig. 2a). Relatively weaker bioturbation 
can be attributed to oxygen depletion or high sedimen-
tation rate (Stow and Fagueres 2008); assuming rather 
stable sedimentation rate, weaker bioturbation is here 
largely attributed to decreasing circulation and oxygena-
tion. One should bear in mind that strong bottom cur-
rents (Fig. 6) also do not favour preservation of biogenic 
structures (Tucholke et al. 1985).

Fully developed bigradational intervals in the Mochras 
section (Fig.  5) correspond to a standard contourite 
sequence (Faugeres et al. 1984; Stow and Holbrook 1984; 
Stow et  al. 2002; Huneke and Stow 2008; Rodríguez-
Tovar and Hernandez-Molina 2018), a continuation of 
the situation for the Pliensbachian (Pieńkowski et  al. 
2021). The standard contourite model was enhanced by 
introduction of interval divisions (C1 to C5; Stow et  al. 
2002; Stow and Faugères 2008, their Fig.  13.9) and rec-
ognition of variations within partial contourite sequences 
(Rebesco et  al. 2014; Shanmugam 2017), correspond-
ing to observations in the Mochras profile (Figs.  4 and 
5) where most frequent vertical sequences consist of 
lithofacies types 1/2–3–4–5–6 (in coarsening-upward 
order) and subsequent fining-upward couplet composed 
of 5–4 lithofacies types. The fining-upward phase of the 
fully developed cycle is usually thinner and incomplete. 
In places, these sequences are interrupted by erosional 
surfaces and coarse sediments, including conglomer-
ates (lithofacies type 7; Fig. 6). Periods of strong currents 
marked by erosional surfaces and coarser material, point-
ing to intermittent non-deposition/erosional periods, 
appear first in the late Falciferum Subzone of the Serpen-
tinum Zone, and occur mostly in the late Bifrons Zone, 
Variabilis-Thouarsense transition, and the late Levesquei 
Subzone (Fig. 2a, b). In such cases the bigradational grad-
ing cycles are often incomplete, lacking their upper parts 
(top-cut-out cycles; see Fig. 5a). The depositional rate at 
Mochras during the Toarcian remained generally stable 
and relatively high, but the sections mentioned above 
show condensation (Figs. 2a, b, 5 and 6).

4.1.2 � Ichnodiversity
Occurrences of trace fossils also show a cyclic charac-
ter, more or less corresponding with lithological changes 
and sedimentary cycles. At one end of a spectrum is the 
domination of opportunistic, r-selected Phycosiphon, dif-
fused shape of trace fossils, indications of soft-bottom 
conditions (Fig.  7f ), mostly simple tiering, and scar-
city of highly specialized K-selected forms, all indicat-
ing a generally stressful environment (e.g., Ekdale 1985), 
which was probably caused by high sedimentation rate 
associated with unstable substrate and intermittent ben-
thic food availability, interrupted by transient oxygen-
depleted, more stagnant conditions.

The other end of the spectrum is characterised by 
higher substrate stability (stiffer conditions), lower sedi-
mentation rate, continuous delivery of suspended nutri-
ents by currents (often adsorbed onto suspended clay 
minerals  –  Mayer 1994; Thistle et  al. 1985), and usu-
ally fairly good oxygenation of the bottom, leading to 
more complex tiering under equilibria (Taylor et  al. 
2003). A high degree of bioturbation is characteristic 
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for contourites due to additional food supply (the verti-
cal particle flux is supplemented by lateral current-car-
ried supply) and faunal abundance (Suess 1980; Wetzel 
et al. 2008). In agreement with Caswell and Frid (2017), 
changes in community composition are usually linked 
to local redox conditions, whereas changes in popula-
tions of r-selected opportunists are driven by primary 
productivity.

4.1.3 � Cyclicity of sedimentation and spectral analysis 
of ichnological data

Four orders of cycle duration are determined based on 
visual inspection of the  sedimentary succession. A 4th-
order cyclicity is interpreted as a superposition of preces-
sion (c. 20 kyr) and obliquity terms (c. 38 kyr, Waltham 
2015). Precession and obliquity cycles are hardly distin-
guishable from each other in direct observation, but are 
identified discretely by spectral analysis. The 3rd and 
2nd order cycles are identified with short eccentricity (c. 
100 kyr) and long eccentricity (c. 405 kyr), respectively 
(Kent et  al. 2018). A 1st-order cyclicity is attributed to 
eccentricity modulation of the c. 2.4 Myr period, which 
is caused by secular resonance between Earth and Mars 
(Hinnov 2000; Laskar et al. 2004, 2011).

As described previously for the Pliensbachian 
(Pieńkowski et  al. 2021), the distinction of cycles in the 
Mochras Toarcian is based mainly on grain size and ich-
nological features and their lower boundaries are placed 
in the fine-grained, mottled, or laminated mudstone 
(lithofacies 1 and 2; see Fig. 4). Both the fully developed 
(bigradational), and the incomplete lithological couplets 
with their ichnological content, constitute the 4th order 
cycles, basic ‘building blocks’ of the hierarchical order of 
cycles in Mochras (Figs. 2a, b and 5). Commonly, in these 
cycles, meiofauna mottling (undulated bedding) appears 
first, followed by colonization of Phycosiphon (Ph3) as the 
first recognizable trace fossil, then Ph2 and other trace 
fossils return. These 4th order cycles are arranged in 
higher hierarchical successions (3rd order cycles), usually 
containing four, locally five, 4th order cycles. As every 
3rd order cycle commences with the 4th order cycle, the 
3rd order cycles start from meiofauna mottling and Ph3. 
Schaubcylindrichnus, occasionally accompanied by Plan-
olites, tends to appear at the tops of these cycles. In many 
cases Zoophycos can be found in the middle, and occa-
sionally K-selected (equilibrichnia) forms, such as Skoli-
thos, Arenicolites and Siphonichnus (dwelling/suspension 
feeders’ structures), bivalve resting tracks Lockeia, larger 
deposit feeder structures Rhizocorallium, and Chondrites 
(chemichnion), appear at boundaries of these cycles.

Next, 2nd order cycles are composed of four 3rd order 
cycles. Sixteen out of 24 of the 2nd order cycles show 
occurrences of K-selected (equilibrichnia) forms (such 

as Skolithos, Arenicolites, Monocraterion, Siphonichnus, 
Rhizocorallium and Chondrites at its boundaries, point-
ing to more stable conditions. Both 2nd and 3rd order 
cycle boundaries show sharp-walled, uncompacted, pas-
sively filled burrows that point to condensation/non-sed-
imentation (Fig. 8i).

Erosional surfaces, commonly associated with coarse-
grained sediments, always indicate sedimentation breaks 
and play an important role in the interpretation of the 
boundaries of the cycles. Usually, boundaries of the 2nd 
or occasionally 3rd order cycle are placed at these sur-
faces. High velocity contourite currents are known to 
generate erosional surfaces and contourite lag facies, 
resulting from winnowing, reworking processes and hia-
tuses (Faugerez and Mulder 2011). In Mochras, the lag 
facies contain a large range of grain sizes and composi-
tions, forming irregular centimetre-thick to metre-thick 
beds of poorly sorted sediments, mainly coarse sands, 
gravels, and pebbles or rip-up clasts (Fig. 6).

The highest, 1st order, cycles are composed of six 2nd 
order cycles. The beginning of the Toarcian sequence of 
these cycles is anchored at the Pliensbachian-Toarcian 
boundary, where the succession of four previous 1st 
order cycles of the latest Sinemurian to Pliensbachian 
age ends (Pieńkowski et al. 2021). These 1st order cycles 
in the Toarcian differ from those observed in the Pliens-
bachian, mainly because a regular, short- and long-term 
cyclicity of CaCO3 content (Ruhl et al. 2016; Pieńkowski 
et  al. 2021) disappears in the Toarcian, making the 
CaCO3 content generally of less use in reconstructing 
the cyclicity. Reduced CaCO3 content can be attributed 
to environmental change that occurred at the begin-
ning of the Toarcian. In a similar fashion to the Pliens-
bachian 1st order cycles, the greatest ichnodiversity 
tends to appear in their middle parts. Higher ichnodiver-
sity usually also coincides with condensation (Fig. 2a, b). 
This interpreted ~ 2.4 Myr cyclicity retains its regularity 
throughout the entire Pliensbachian–Toarcian section of 
Mochras, although Charbonnier et al. (2023) postulated 
much shorter cyclicity (~ 1.6 Myr) for the Sancerre core 
in Paris Basin—see discussion below.

Because generally the whole Toarcian in Mochras is 
dominated by Phycosiphon, any lack of this morphotype 
is noteworthy, as it indicates an exceptionally unfavour-
able environment, most likely associated with stagnation 
and oxygen depletion. Of particular note is the fine-
grained interval between 823 and 868 mbs, mostly Ten-
uicostatum Zone, dominated by mudstone and claystone, 
with significantly reduced CaCO3 content, frequent 
siderite occurrences (Xu et  al. 2018a) and a marked 
foraminiferal biotic crisis (Reolid et al. 2019). Here, Phy-
cosiphon is reduced in frequency, and other trace fossils 
are very scarce, while Trichichnus and undulated bedding 
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are prolific. Only for the middle of this interval (~ 838 
to ~ 853 mbs) can some intermittent improvement of 
bottom life conditions be inferred, indicated by less con-
tinuous occurrences of Trichichnus, brief re-appearances 
of Phycosiphon, and presence of cf. Polykladichnus and 
Chondrites (Fig. 2a). This slight recovery is also observed 
in foraminiferal assemblages (Reolid et al. 2019).

Less severe ichnological crises are noted in the 
Thouarsense-Dispansum zones with Trichichnus occur-
rences and diminished ichnodiversity. Here, Phycosi-
phon scarcity is also observed although, compared to 
the earliest Toarcian, less pronounced. Relatively abun-
dant Trichichnus occurrences in the mid-Pseudoradiosa 
Zone are accompanied by appearances of other diversi-
fied trace fossils; thus, this section can be regarded as 
not affected by oxygen depletion. The Bifrons and Vari-
abilis zones generally represent well-oxygenated inter-
vals, shown by common occurrences of Thalassinoides, 
Schaubcylindrichnus, Teichichnus and other trace fos-
sils, including domichnia; only over depths 710–720 mbs 
is a slight decrease in oxygenation inferred, marked by 
decreased ichnodiversity and presence of Trichichnus.

Smoothed curves of particular ichnotaxa occurrences 
juxtaposed with smoothed Zr/Rb, Ti/Al, Si/Al, Ca, TOC, 
δ13CTOC, and gamma ray records reveal a high degree of 
similarity (Fig. 3). The relationship of particular trace fos-
sil occurrence curves to each proxy record is, to some 
extent, disparate, and the parallelism of respective curves 
varies through the succession. Nonetheless, the outlines 
of several curve crests are visually coherent, and the 
phase difference is insignificant given the timescale. Most 
notably, the T-OAE-negative CIE has coincident expres-
sions in the records of all analyzed ichnotaxa. The Zr/Rb 
record, a proxy for silt/clay ratio, displays resemblance 
to the highest number of ichnotaxa occurrences (five; 
Fig. 3), and the Thalassinoides occurrence curve resem-
bles the highest number of proxy records (five). The best 
visual coherence appears to occur between the curves 
of the following: Zr/Rb—Phycosiphon type 3, Thalas-
sinoides and Planolites; Si/Al—undulated bedding; Ca 
content—Thalassinoides and undulated bedding; TOC 
content—Schaubcylindrichnus.

Interpretation of cyclicity and resulting calcula-
tion of time based on these cycles attributed to certain 
orbital cycles becomes more complex in sections with 
erosional surfaces, associated with inferred hiatuses 
in sedimentation, resulting in less regular sedimenta-
tion rate and cyclicity. It is reasonable to interpret that 
much of the lost time is represented at the erosional/
hiatal surfaces. It is difficult to say how long lasting 
were time intervals of non-sedimentation, or how deep 
was erosion of previously deposited sediments. In such 
cases, the 1st order (~ 2.4 Myr) cycles can provide some 

time frameworks, allowing for approximate adjustment 
of the 2nd and 3rd order cycles to the ~ 2.4 Myr dura-
tion of 1st order cycles. This is particularly important 
in the Toarcian above the Serpentinum Zone, where 
most erosional/hiatal surfaces with coarser sediments 
occur, usually concentrated in the middle parts of the 
1st order cycles (Fig. 2a, b).

For numerical cyclicity (spectral) analysis only fre-
quently occurring trace fossils can be used. Phycosiphon 
incertum is by far the most common trace fossil in the 
Mochras section. As it is represented by four distinct 
morphotypes (Ph1, Ph2, Ph3, Ph4), they are treated sep-
arately for analysis of cyclicity (in the Toarcian Ph2 and 
Ph3 were used). Thalassinoides, Schaubcylindrichnus, 
Planolites, and Trichichnus are also frequent enough to 
be used for analysis of cyclicity as well. Other ichnotaxa 
are not frequent enough for spectral analysis, although 
their cyclic appearances yield useful information con-
cerning a more general hierarchy of cycles. Additionally, 
lamination and undulated bedding can be used for spec-
tral analysis.

The runs test results indicate the non-random distribu-
tion of either trace fossil, lamination and undulated bed-
ding occurrences in the studied sedimentary succession 
(Additional file 2), demonstrating the advisability of time 
series analysis. Absolute values of all computed Z-scores 
are within the critical region of > 1.96, which allows rejec-
tion of the null hypothesis of the data randomness at the 
95% confidence level.

The peak values of the Walsh power-spectra (Fig.  9) 
correlate to the calculation-based expected duration of 
the orbitally forced periodicities (Table  2). The result-
ant spectral peaks (Fig.  9) have estimated time values 
assigned as explained in Sect. 2. Component frequencies 
of precession, obliquity and short eccentricity, as well 
as beat frequencies, are present in the resultant spectra 
besides the main terms (Tiwari 1987; Negi et  al. 1993). 
The longer the periodicity, the more prone it is to be 
blurred by instantaneous changes in the sedimentation 
rate. Besides, shorter-term periodicities can be recorded 
with higher precision than these longer-term, as a larger 
number of them are contained within the studied time 
series.

Either one or more spectral peaks in the sequency 
range of circa 0.9–1.2 cycles/m are reflected by most of 
the analysed time series, with the exception of Trichich-
nus (Table 2). These prevalent, albeit relatively low-power 
peaks are interpreted as precessional terms correspond-
ing to the visually determined 4th order cycles. Schaub-
cylindrichnus occurrences reflect the most (three) 
component terms in the range of precession, which in 
this case are characterised by spectral power on par to 
the other periodicities.
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Periodicities in the range of either main obliquity term 
(Phycosiphon Ph3 and undulated bedding) calculated 
for the Toarcian (Waltham 2015), or theoretical compo-
nent obliquity terms (remaining time series) are distinct 
in all Walsh spectra, even though obliquity is not read-
ily distinguished visually in the sedimentary succession. 
Periodicity of c. 28 kyr is observed in the occurrences 
of Phycosiphon (Ph2 and Ph3) and Planolites, which can 
probably be identified with the shortest component term 
of obliquity (Tiwari 1987; Laskar et  al. 2011). Presum-
ably, the peak near the 0.31 cycles/m value displayed by 
Schaubcylindrichnus occurrences (Fig.  9) can be associ-
ated with the combined effect of obliquity and preces-
sion, as proposed by Berger (1977).

Peaks interpreted as short eccentricity (3rd order) 
terms are the most intensely (high-power) represented 
in the spectrograms (Fig. 9). Periodicities in the range of 
c. 105–120 kyr recorded by Phycosiphon Ph2 and Ph3, 
Schaubcylindrichnus and Planolites (Fig. 9) can be identi-
fied as the longer component term (c. 112 kyr) of short 
eccentricity cycles, presumably reflecting the 3rd order 
cycles distinguished in the sedimentary and ichnological 
record (Fig.  2a, b). In addition, ~ 90 kyr periodicity dis-
played by Thalassinoides can be interpreted as the short-
est eccentricity component term (~ 95 kyr).

Trichichnus occurrences record also the periodicity 
of the ~ 170 kyr term, which likely can reflect a cyclicity 
of c. 150–170 kyr, also present in the Pliensbachian of 

Mochras, and there preliminarly regarded as non-astro-
nomical (Pieńkowski et al. 2021). However, this cyclicity 
could be associated with the amplitude modulation (AM) 
of the obliquity (Hinnov 2000). Such AM 173 kyr perio-
dicity was hitherto detected in the sedimentary record by 
the means of time series analysis by Laurin et al. (2015), 
Boulila et al. (2018), Vahlenkamp et al. (2018) and Huang 
et al. (2021).

The peak clusters present in the leftmost parts of the 
Planolites, Thalassinoides and Trichichnus spectrograms 
may be associated with 2nd order ~ 405 kyr cycles (reg-
istered by recurrent appearances of Skolithos, Siphon-
ichnus, Arenicolites, and Chondrites, which were not 
included in the spectral analysis due to their low fre-
quency). However, this remains a presumption due to 
spectral resolution of spectra below the sequency values 
of 0.1 cycles/m being inadequate to confidently interpret 
these peaks in the time domain.

The most complete representation of orbital perio-
dicities is reflected by both Phycosiphon morphotypes, 
Thalassinoides, Schaubcylindrichnus and Planolites 
(Fig. 9) which clearly display the frequencies of the short 
eccentricity terms (~ 95 and 112 kyr), obliquity terms 
(~ 29 and ~ 40 kyr) and precessional terms (~ 17–25 
kyr). Spectra of both Phycosiphon morphotypes show a 
good congruence, especially considering an interpreted 
longer component term of short eccentricity. In the case 
of Phycosiphon Ph2, it can be supposed that evident 

Table 2  Spectral peak values recognized in the present study against the background of calculated present-day component orbital 
periodicities

Present-day component orbital periodicities after Berger (1977); main obliquity term for Toarcian taken from Waltham’s (2015) Milankovitch Calculator; obliquity 
amplitude modulation (AM) after Hinnov (2000)

Phycosiphon 
morphotype 
Ph2 [kyr]

Phycosiphon 
morphotype 
Ph3 [kyr]

Thalassinoides 
[kyr]

Schaubcylindrichnus 
[kyr]

Planolites 
[kyr]

Trichichnus 
[kyr]

Lamination 
[kyr]

Undulated 
bedding 
[kyr]

Calculated 
orbital periods 
[kyr]

155–174 132–148 173 Obliquity 
AM

104–117 108–121 115–129 111–125 112 Eccentric-
ity bands81–91 75–84 95

66–74.2 59–64 Combined 
effect

36.2–40.7 39.9–44.9 42.6–47.9 40–42 Obliquity 
bands

35.3–39.7 37.5 Main 
obliquity 
term 
(Toarcian)

29.8–33.4 25.9–29 24–27 35.6–40 25.7–28.9 29.6–33.3 29–30 Obliquity 
bands

26.8–30.1 21.3–24 22.2–25 19.1–21.5 19.9–22.4 22–24 Preces-
sional 
bands

19.6–2219.9–22.4 18–20.2 17.5–19.7 17–19.1 19

17.7–19.9 16–17
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periodicities associated with either 4th or 3rd order 
cycles are derivative of periodic short non-occurrences 
of this pervasively occurring trace fossil. Interestingly, 
Trichichnus occurrences seem solely to reflect periodici-
ties related to obliquity and its AM frequency.

Longer-term ‘grand cycles’ which are not included in 
spectral analysis, are characterized by a gradually grow-
ing and subsequently falling Phycosiphon frequency and 
general ichnodiversity. Judging by the duration of ~ 100 
kyr and ~ 405 kyr eccentricity cycles, these longer-term 
eccentricity “grand cycles” would be of duration c. 2.4 
Myr, corresponding to the period of around 2.4 Myr 
eccentricity modulation related with Mesozoic green-
house sequences, caused by Earth–Mars secular reso-
nance (Hinnov 2000; Laskar et  al. 2004, 2011; Martinez 
and Dera 2015). Whereas individual repetitions of the 
∼2.4-Myr cycle range from 2.0 to 2.9 Myr in the Ceno-
zoic (Pälike et al. 2006), cyclostratigraphic studies suggest 
that this period fluctuated between maximal values rang-
ing from ∼1.3–3.3 Myr during the Mesozoic (Ikeda and 
Tada 2013, 2020). Indeed, the periodicity of grand eccen-
tricity  cycles prior to 50  Ma remains uncertain. Char-
bonier et al. (2023) postulated a chaotic behaviour of the 
Solar System and ~ 1.6 Myr Earth-Mars resonance cyclic-
ity (instead of ~ 2.4 Myr) for the Early Jurassic, based on 
the Sancerre-Couy core (Paris Basin). However, Wu et al 
(2022), while also suggesting transient chaotic behav-
iour of the Solar System in the Late Cretaceous of the 
Songliao Basin (China), revealed evidence for two chaotic 
secular resonance transitions in the orbital motions of 
Earth and Mars, involving the orbital eccentricity modu-
lations of 2.4 Myr and 1.2 Myr cycling, without indication 
of ~ 1.6 Myr cycling. We support the ~ 2.4 beat (Martinez 
and Dera 2015), because the observed general ichnologi-
cal cycles, which are built on well-established hierarchy 
of sub-cycles, are much less compatible with the ~ 1.6 
Myr duration of grand orbital cycles of Charbonier et al. 
(2023) than with the ~ 2.4 Myr cycles (Fig. 2a, b).

The existence of yet longer cyclicity, ~ 7–8 Myr eccen-
tricity (Martinez and Dera 2015; Pieńkowski et al. 2021; 
Charbonier et al. 2023) is supported, based on two pos-
sible such cycles in the combined Pliensbachian-Toarcian 
section.

4.2 � Toarcian deep sea current circulation
Oxygen deficiency and resulting decline in ichnodiversity 
can be attributed to the diminishing current intensity, 
but also to other related or independent causes, includ-
ing high organic productivity and sea level. The earli-
est Toarcian crisis that had begun already in the latest 
Pliensbachian was exceptional in its severity (Xu et  al. 
2018a; Reolid et  al. 2019; Pieńkowski et  al. 2021; Bodin 
et al. 2023). Most likely, the benthic crisis was associated 

with severe stagnation of circulation through the Lau-
rasian Seaway (and the Cardigan Bay Strait) at that time 
(Van Schootbrugge et  al. 2019). Thermohaline circula-
tion driven by density differences between water masses 
due to variations in water temperature and salinity is 
still regarded as the major driving force of contourites 
(McCave 2008; Faugeres and Mulder 2011; Rebesco et al. 
2014). The biogenic input from shallower zones, likely 
carbonate platforms, was less marked than in Pliens-
bachian, and was replaced by a stronger siliciclastic 
input, which also carried more floral debris and possi-
bly connected to acidification (Xu et al. 2018a, b; Müller 
et  al. 2020)—although δ44/40Ca and δ88/86Sr records do 
not support acidification (Li et  al. 2021). Bottom cur-
rents carried in suspension a considerable amount of par-
ticulate organic matter, supplying food to deep-marine 
benthic organisms (Thistle et al. 1985). As for the Pliens-
bachian, it is proposed here that the deep-water circula-
tion in the elongated, NE-SW trending Cardigan Basin 
(Fig.  1) was forced by enhanced bottom-water circula-
tion, i.e. cooler and denser waters flowing with chang-
ing velocity from the Boreal Sea, around the Shetland 
Platform-Scottish Landmass island, towards the south, 
to the Peri-Tethys/proto-Atlantic, approximately parallel 
to the bathymetric contours of the margin of the Welsh 
Platform (Fig. 1).

Interpretations of circulation (Bjerrum et  al. 2001; 
Dera et  al. 2009; Dera and Donnadieu 2012; Ruvalcaba 
Baroni et  al. 2018) point to the predominant south-
ward flow from the Arctic into the Tethys through the 
Laurasian Seaway during the Early Jurassic. The Car-
digan Bay Strait, linking cooler and shallower waters of 
the Boreal Sea with warmer and deeper waters of Peri-
Tethys (Fig. 1), would then have been situated to sustain 
a continuous (persisting for up to millions of years and 
over large areas—Shanmugam 2008, 2017) thermohaline-
driven contour current circulation between these two 
marine realms (Pieńkowski et  al. 2021). These invigor-
ated flow conditions were punctuated by times of slug-
gish circulation or stagnanation characterised by loss of 
ichnodiversity and Phycosiphon crises (usually also by 
mass Trichichnus occurrences), as well as appearance of 
undulated bedding. These intervals occur in the Tenui-
costatum Zone through to earliest Exaratum Subzone age 
strata and, to a lesser extent, in the latest  Thouarsense 
Zone to Dispansum Zone.

This sluggish circulation is associated with climate 
warming under high atmospheric pCO2, when the Lau-
rasian Seaway was influenced by strong clockwise circu-
lation in the Tethys, which brought warm saline waters 
onto European shelves and then diminished the effects 
of flow from the north through the Laurasian Seaway 
(Ruvalcaba-Baroni et al. 2018). In the same time, loss of 
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polar sea ice and stronger high-latitude continental run-
off rates could further result in a weakening of thermoha-
line circulation, and bottom water oxygen depletion also 
in deep marine settings (Dera and Donnadieu 2012; Van 
de Schootbrugge et al. 2019).

For the Pliensbachian-Toarcian boundary interval, this 
scenario is applicable, as a warming pulse is postulated 
(associated with initial stage of the Karoo magmatism; 
Dera et  al. 2009; Pieńkowski et  al. 2016; Ruebsam et  al. 
2020). However, for the remaining part of the Tenuicos-
tatum Zone many authors (e.g., Brandt 1986; McArthur 
et al. 2000; Guex et al. 2001; Suan et al. 2010; Dera et al. 
2011; Korte and Hesselbo 2011; Krencker et  al. 2014; 
Korte et  al. 2015; Ruebsam et  al. 2020; Ullmann et  al. 
2020) suggest overall persistent cool conditions, which 
should (according to the thermohaline-oceanic circula-
tion mechanism) cause enhanced circulation—which 
is not observed in Mochras, where stagnation domi-
nates. Only in a short interval between ~ 838 and ~ 853 
mbs, is there a slight improvement of bottom conditions 
(confirmed also by foraminiferal assemblage; see Reolid 
et  al. 2019), which could be associated with somewhat 
increased current intensity, possibly caused by a transient 
cooling, but this signal is weak.

Concerning the circulation problem, even more 
intriguing is the To-CIE interval, well known to be asso-
ciated with the most severe carbon-cycle disruption, high 
pCO2 and extreme greenhouse conditions, which should 
cause even stronger diminution of southward flow and 
extreme sea-floor current stagnation at that time; instead, 
shortly after the beginning of the To-CIE (in our calcu-
lation ~ 200 kyr), the deep-sea circulation significantly 
accelerated. Only at the beginning of To-CIE did slug-
gish circulation and oxygen depletion persist, which is 
indicated by the continued Phycosiphon crisis and com-
mon occurrences of Trichichnus. For the remaining part 
of the To-CIE event, certainly from its climax (~ 820 
mbs), gradually improving circulation can be interpreted. 
This is recorded by common current-generated struc-
tures (pin-stripe current lamination, occasionally ripple-
cross lamination), some sharp boundaries and coarser 
sediments, and gradual return of more diversified trace 
fossils, such as Phycosiphon, Thalassinoides, Schaubcylin-
drichnus, Planolites, Lockeia, Asterosoma, Skolithos and 
Rhizocorallium, and concomitant demise of Trichichnus 
(Fig. 2a). The recovery is also visible in the foraminiferal 
assemblage (Reolid et al. 2019).

It is noteworthy that anoxia was suggested by some 
geochemical indices to be coincident with this ‘recov-
ery’ phase of the To-CIE: Xu et  al. (2018a) reported 
trace amounts of the biomarker isorenieratane (with 
slightly elevated gammacerane indices) at two hori-
zons (811.66 mbs and 819.10 mbs) at and just above 

the peak of the To-CIE. Isorenieratane is a pigment of 
photosynthetic green sulphur bacteria, Chlorobiaceae, 
that is regarded as an indication for photic zone eux-
inia in the water column (Koopmans et  al. 1996). We 
investigated these horizons in detail, finding that they 
contain bioturbated mudstones, either by meiofauna 
(Fig.  8e), or more distinctly by Phycosiphon incertum 
type 2 (Fig. 8h). This means that anoxic to euxinic con-
ditions in the photic zone would not necessarily have 
affected the seafloor in Mochras, which was continu-
ously oxygenated by deep-sea bottom currents. This 
observation is of more general significance, suggesting 
that geochemical indices (even if correctly pointing to 
certain conditions in a shallow-water column) may not 
always indicate euxinic bottom conditions, because 
deep-sea currents could deliver enough oxygen to 
sustain life there, even if the shallow-photic zone was 
anoxic. However, a scenario of bottom re-oxygenation 
(to the degree required by trace makers) and overprint-
ing by bioturbation of sea floor that had been previ-
ously affected by anoxia is also possible—although this 
would still point to the short and transient nature of 
any oxygen crisis and, given the water depth and muddy 
productive nature of the water column, the sea-floor is 
unlikely to have been in the euphotic zone.

Observed lithological and ichnological fluctuations in 
the Toarcian are thus associated with alternating peri-
ods of vigorous currents and more stagnant conditions 
on various timescales, while nutrient availability seems 
to have been relatively stable and sufficient all the time 
(as shown by the TOC content; see Xu et al. 2018a) and 
played a subordinate role in setting ichnological trends. 
Hierarchical cyclic successions observed both in lithology 
and ichnology indicate that orbital forcing was still the 
main controlling mechanism. However, at the beginning 
of the Toarcian, the lithological and ichnological appear-
ance of these cycles became different, which can be 
linked to non-orbital, intrinsic Earth mechanisms lead-
ing to prolonged ichnological crisis in the Tenuicostatum 
Zone. More generally, it is also observed that compared 
to the Pliensbachian, the energy of contour currents in 
the Toarcian (after the Tenuicostatum Zone) was over-
all higher, temporarily producing marked erosional sur-
faces and carrying coarser sediment, which collectively 
resulted also in less regular thicknesses of sedimentary 
packages corresponding to individual ~ 100 and ~ 405 kyr 
cycles (although the 1st order cycles retained approxi-
mately stable thicknesses, which point to a generally 
stable average sedimentation rate in a longer period of 
time). Although there is no clear correlation between 
the organic matter carbon isotopes and observed higher 
energy of currents, there is a return to generally lighter 
values of δ13C from the middle part of the Bifrons Zone.
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Of note also is the repetition of the two fine-grained 
intervals characterized by particularly sluggish circula-
tion, impoverished ichnodiversity (including the Phyco-
siphon crises), and abundance of Trichichnus: the lower 
one of latest Spinatum Zone to Tenuicostatum Zone age, 
and the upper one belonging to the Thouarsense and Dis-
pansum zones. These intervals are separated by ~ 7.5 Myr 
in Mochras. A similar mega-cycle was observed in the 
Pliensbachian section (Pieńkowski et al. 2021), and com-
parable long cycles have also been hypothesised by Mar-
tinez and Dera (2015) and Charbonnier et al. (2023) and 
tentatively identified with a very long eccentricity term.

4.3 � Climate changes and carbon cycle disturbances: 
impact on deep‑sea circulation and orbital forcing

Two intrinsic Earth events should be considered carefully 
in terms of their influence on the Toarcian hemipelagic 
sedimentation in Mochras. The first was the Pliens-
bachian-Toarcian (Pl-To) boundary event, characterized 
by a CIE that is globally documented and linked to the 
initial phase of volcanism in the Karoo Province; the sec-
ond event with profound impact on the marine and con-
tinental environment was the To-CIE (also known as the 
Jenkyns Event), dated to the latest Tenuicostatum Zone 
to Exaratum Subzone of the Serpentinum Zone, linked to 
large-scale eruptions in the Karoo-Ferrar basaltic prov-
ince and associated with a rapid increase in atmospheric 
pCO2 levels and average atmospheric and marine tem-
peratures (see e.g., Hesselbo et al. 2000, 2007; Littler et el. 
2010; Hesselbo and Pieńkowski 2011; Bodin et  al. 2016, 
2023; Pieńkowski et al. 2016; Fantasia et al. 2018; Xu et al. 
2018a; Ruebsam et al. 2020; Al-Suwaidi et al. 2022; Ruhl 
et al. 2022).

It is important to understand how these major environ-
mental changes, indicated by disturbances in the carbon 
cycle, affected the deep-sea circulation. For a long time 
(since the Sinemurian) this circulation was controlled in 
a stable way by orbital forcing, expressed in cyclic fluc-
tuations of southward flowing thermohaline contour cur-
rents in the Cardigan Bay Basin, particularly expressed in 
long-term trends governed by grand eccentricity (~ 2.4 
Myr) cycles (Pieńkowski et  al. 2021). Notably, Char-
bonnier et  al. (2023) postulated shortened long-period 
cyclicities of ~ 1.6 and ~ 3.4 Myr in Early Jurassic orbital 
periods, possibly reflecting the chaotic orbital motion of 
the inner planets (likely corresponding to the Cenozoic 
2.4 Myr and 4.7 Myr eccentricity terms). This is incom-
patible with our interpretation even if the 7–8 Myr very 
long eccentricity cycle and the Toarcian duration postu-
lated both by Charbonier et  al. (2023) and by us are in 
agreement. Possibly, in Mochras we would have to deal 
with the mutual modulation of the two cyclicities indi-
cated by Charbonier et  al. (2023), giving approximately 

the resultant cyclicity of 2.4–2.5 Myr observed in 
Mochras.

The 2.4 Myr cyclicity in the present work was directly 
observed in the core by visual scrutiny of the variabil-
ity of sedimentological and ichnological parameters. In 
turn, long-period cyclicities were detected by Char-
bonier et  al. (2023) based solely on the numerical spec-
tral decomposition of magnetic susceptibility time series 
from the Sancerre-Couy borehole, Paris Basin, France. 
Such spectral techniques reveal component frequen-
cies of basic orbital periodicities that directy affect the 
sedimentary record. Importantly, Pliensbachian grand 
orbital cycles in Mochras (Pieńkowski et  al. 2021), put 
together on an interpreted 405 kyr cyclicity based on 
CaCO3 cyles (Ruhl et al. 2016), clay minerals (Deconinck 
et al. 2019), δ13C (Storm et al. 2020) and ichnology-sedi-
mentology (Pieńkowski et al. 2021) also show prevalence 
(despite some discrepancies) of ~ 2.4–2.5 Myr cyclic-
ity. This arrangement, based on direct ichnological and 
sedimentological observation, persists into the Toar-
cian at Mochras. Therefore, we favour effective influ-
ence of ~ 2.4–2.5 Myr cyclicity on sedimentary processes 
in Mochras, because adoption of the ~ 1.6 Myr cyclicity 
postulated by Charbonier et al. (2023) is less comparable 
to observed long-term sedimentary and paleoecological 
trends observed both for the Pliensbachian (Pieńkowski 
et al. 2021) and the Toarcian (this study). The possibility 
of blurring and distortion of orbital cyclicity by autocy-
clic depositional processes, or tectonic processes, par-
ticularly in shallower epicontinental environments such 
as at Sancerre, should not be totally ruled out in that 
context.

As shown by our data from the Toarcian of Mochras 
(Fig.  2a, b), the effects of orbital forcing were no doubt 
also influenced by the palaeoceanographic, palaeoenvi-
ronmental and tectonic factors. The picture obtained dif-
fers from surrounding epicontinental seas, showing also 
more complicated mechanisms of oceanographic pro-
cesses, as a result of mutual influence of orbital forcing 
and non-orbital changes related to large-scale volcanism 
and climatic/environmental disturbances. The mecha-
nism linking sluggish deep-sea circulation with climate 
warming, proposed by Dera and Donnadieu (2012), 
Ruvalcaba Baroni et  al. (2018) and Van Schootbrugge 
et al. (2019), suggested for the Sinemurian–Pliensbachian 
section (Pieńkowski et al. 2021), appears to be still valid 
for most of the Toarcian in Mochras, but fails to explain 
changes that occurred in the earliest Toarcian (Tenuicos-
tatum–Exaratum interval). Severity and continuity of the 
latest Pliensbachian to earliest Toarcian stagnation and 
benthic crisis probably occurred during transition from 
supposed icehouse to greenhouse conditions (Dera and 
Donnadieu 2012; Krencker et al. 2014; Bodin et al. 2023) 
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and from sea-level lowstand to marked sea-level rise 
(Pieńkowski 2004; Haq 2017; Ruebsam et al. 2020; Bodin 
et al. 2023).

Stagnant conditions at the Pliensbachian–Toarcian 
boundary did not end at the beginning of the Tenui-
costatum Zone, but continued through the whole zone 
(short-lived, slight improvement of oxygenation at the 
depth interval between 838.5 mbs and 847.0 mbs is too 
weak to be considered as significant break in the general 
stagnation). If the Tenuicostatum Zone was a cool period 
of time, then, according to the cooling/faster circulation 
paradigm, it would have resulted in a faster circulation 
throughout the entire zone. Instead, the Pliensbachian–
Toarcian boundary event occurred at the beginning of 
long-lasting stagnation in Mochras. The sea-level rise 
postulated for this time interval (Pieńkowski 2004; Haq 
2017; Ruebsam et al. 2020; Bodin et al. 2023) could have 
had some impact on deep-sea circulation, but it is uncer-
tain in which direction. Sea-level rise would have led to 
lower energy of sedimentary processes and stagnation on 
continental shelves (due to the raised wave base), but it is 
unclear what would have happened in the case of much 
deeper water in the Cardigan Bay Basin. The influence 
of salinity drop in the early Toarcian epicontinental sea 
in UK (Remirez and Algeo 2020; Hesselbo et  al. 2020b) 
could be considered as well, because density gradient is 
one of the main driving forces of deep-sea currents. By 
analogy with the recent Mediterranean and Atlantic 
waters (e.g., Bethoux et  al. 1999), peri-Tethyan waters 
should have been more saline (due to evaporation) than 
waters in the Laurasian Seaway or Boreal Sea, where 
salinity could be diminished by freshwater influx from 
rivers and intermittent ice melt. However, the exact influ-
ence of the salinity gradient (which is elusive itself ) on 
current intensity in the area studied remains uncertain.

The prolonged stagnation during the Tenuicostatum 
Zone could have resulted from coincidence of several 
overlapping causes, such as a warming phase of orbital 
forcing connected with a possible ~ 2.4 Myr grand eccen-
tricity minimum, amplified by a concomitant warming 
effect, caused by initial Karoo volcanism emissions and 
consequent increase in pCO2. Due to the mutual feed-
back effect and inertia of deep-sea oceanographic pro-
cesses, this stagnation would last for a long time (~ 800 
kyr). Stagnation of deep-sea circulation in the Laurasian 
seaway may challenge interpretations of continued cold 
conditions during the Tenuicostatum Zone, although 
the data from Yorkshire are unambiguous on this point 
(Korte et  al. 2015, their Fig.  2). On the other hand, the 
Cleveland Basin could be a local anomaly, as some other 
reports (e.g., Ruebsam et  al. 2020, their Fig.  5) claim 
that during the Tenuicostatum (= Polymorphum) Zone 
the Earth’s climate system shifted between contrasting 

climatic conditions, particularly at the beginning and the 
end of this zone.

Extreme global warming occurred during the follow-
ing Exaratum Subzone of the Serpentinum Zone, with 
benthic sea water temperature suggested to increase 
from ~  + 3 to 5 °C in mid-latitude Laurasian Seaway loca-
tions (see discussions in McArthur et al. 2000; Pálfy and 
Smith 2000; Gómez et al. 2008; Suan et al. 2010; Dera and 
Donnadieu 2012; Ullmann et al. 2020), or even as much 
as + 10  °C suggested for some sea-surface temperatures 
(Ruebsam et al. 2020). Such temperature increases, jointly 
with the demise of polar sea ice and stronger high-lati-
tude continental runoff rates—which could have fresh-
ened the Arctic surface seawaters—would be expected to 
cause a general thermohaline circulation collapse (Dera 
and Donnadieu 2012). However, this is not evident in 
Mochras—instead, the Exaratum Subzone extreme global 
warming ended the previously dominating stagnation, 
counterarguing the previously supposed mechanism 
linking stagnation with warming. Likely, this time the 
global warming was so strong, that its consequences for 
deep-sea circulation were opposite—instead of sluggish 
circulation caused by northward currents only neutraliz-
ing dominating southward flow, the Tethyan northward 
flow became strong enough to prevail over the south-
ward currents. As a consequence, the reversed deep-sea 
circulation became faster in the Cardigan Bay Basin. In 
particular, Dera and Donnadieu (2012) in their General 
Circulation Models (GCM) simulations found that for 
significantly higher pCO2 levels (> 1600 ppm), the depth 
of mixed layer appears deeper in the European basins. 
This suggests a good ventilation of the water column dur-
ing the To-CIE, which is obviously not the case in semi-
closed, epicontinental seas in western Europe. However, 
since this simulation was based on a homogeneous epi-
continental bathymetry of 200 m, even more significant 
results could be expected with a deeper bathymetry of 
the Cardigan Bay Basin. Moreover, it is worth noting 
that for other periods such as the Late Permian, GCM 
simulations show that massive rises in atmospheric CO2 
concentrations may drive more vigorous and more sym-
metrical deep-sea circulation under warmer climates 
(Winguth et al. 2002; Winguth and Maier-Reimer 2005).

According to Dera and Donnadieu (2012), the Exara-
tum Subzone thermal anomaly was probably related to 
a strengthening of warm equatorial Tethyan westward 
currents, drifting along the northern Gondwanan mar-
gins. Furthermore, the drift of these currents through 
westernmost areas and their subsequent clockwise rota-
tion due to southward directed boreal flows is consistent 
with neodymium isotope data (Dera et al. 2009), as well 
as ammonite and nannofossil migration routes evidenced 
for the Early Toarcian (Reggiani et  al. 2010; Dera et  al. 
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2011). It is also likely that more vigorous NW Tethyan 
currents would account for major disruptions in faunal 
provincialism and northward expansion of marine Medi-
terranean faunas at the beginning of the Toarcian (Mac-
chioni and Cecca 2002; Vörös 2002; Arias and Whatley 
2005; Dera et al. 2011).

During the Tenuicostatum Zone to Exaratum Sub-
zone period of time, the sedimentation rate in Mochras 
remained relatively stable and was still paced by preces-
sion (~ 20 kyr) and short- and long-eccentricity cycles 
(~ 100 and 405 kyr), which are all well expressed (Fig. 2a). 
Circulation decelerated just after the To-CIE event, in 
the earliest Falciferum Subzone (785–795 mbs), which is 
reflected by impoverished ichnodiversity and lithologi-
cal features. From this time on, Toarcian circulation evi-
dently became generally faster, particularly with regard 
to the middle parts of 1st order cycles, where more 
condensed sections and more frequent erosional/omis-
sion surfaces occur. The observations confirm that the 
warming/stagnation versus cooling/enhanced circulation 
mechanism returned after the To-CIE disturbances.

Importantly, existing data on sea-water tempera-
ture fluctuations in the Toarcian (McArthur et  al. 2000; 
Gómez et al. 2008; Suan et al. 2010; Krencker et al. 2014; 
Ruebsam et  al. 2020; Ullmann et  al. 2020) support our 
conclusions regarding a large-scale correlation between 
sea-water temperature and inferred fluctuations of deep-
sea current in the Cardigan Bay Basin. From the late Fal-
ciferum Subzone onwards, oxygenation of the sea floor 
generally improved; circulation intensity and average 
oxygenation achieved highest levels in the late Bifrons 
and Variabilis to earliest Thouarsense zones, as shown 
by sedimentological and ichnological features (Fig.  2b). 
This is likely associated with a long-term cooling trend, 
extending from the latest Falciferum Subzone to the 
Thouarsense Zone, with more intensified cooling in the 
Variabilis Zone. The latter was interrupted by a brief 
warming in the middle part of this zone (McArthur et al. 
2000; Krencker et al. 2014). This brief warming seems to 
be also reflected in a slightly deteriorated ichnodiversity 
in Mochras (707–713 mbs), at the same time marking a 
boundary of ~ 2.4 Myr cycle. 

The latest Thouarsense–Dispansum time interval in 
Mochras shows the next significant deterioration of 
ichnodiversity/oxygenation. This is likely connected to 
a warming trend that intensified in Dispansum Zone 
(Gómez et  al. 2008), exactly when we are dealing with 
the conspicuous ichnodiversity/oxygenation crisis in 
Mochras. A weaker warming in the Pseudoradiosa Zone 
also corresponds to a slight deterioration of ichnodiver-
sity around 610–615 mbs. The repetitive correlations 
between Toarcian sea-water temperature reconstruc-
tions elsewhere and contourite current intensity in 

the Cardigan Bay Basin point to a strong relationship 
between these variables, linking deep-sea circulation to 
major climate changes.

Toarcian sea-level changes are sometimes suspected as 
a possible factor in observed oceanographic processes. 
According to Ayranci et al. (2018), high-stand and trans-
gressive-system tracts in Devonian contourites are repre-
sented by dominantly massive mudstone lithofacies, less 
intense bioturbation, and higher TOC values. Rising rela-
tive sea-level trends are confirmed for the Tenuicostatum 
Zone and also early Serpentinum, Bifrons and early 
Variabilis zones (Sellwood 1972; Graciansky et  al. 1998; 
Pieńkowski 2004; Hesselbo 2008; Rocha et al. 2016; Barth 
et  al. 2018; Haq 2017; Ruebsam and Al-Husseini 2021), 
but their relation to observed ichnological and sedimen-
tological features in the Mochras profile is uncertain 
(Fig.  2a, b). Assuming a deep-sea setting of the Cardi-
gan Bay Basin, major oceanographic/climate changes 
would have had a stronger impact than eustatic sea-level 
changes with amplitudes of only tens of metres (Haq 
2017). Generally, a higher sea level might have enhanced 
the exchange of waters between adjacent basins and the 
circulation of currents, but the impact of eustatic (or tec-
tonically-induced) sea level on deep-sea currents or the 
sediments entrained within them remains uncertain.

In addition to the beginning of the Toarcian (as dis-
cussed above), the relations between sedimentary 
(orbital) cycles and δ13C fluctuations are not as clear 
as they were in older Early Jurassic stages at Mochras 
(Storm et  al. 2020). Some of the minor negative excur-
sions at depths of 750, 719, 697, 675, 667 and 630 mbs 
seem to be related with more stagnant conditions (short-
lived minor Phycosiphon crises, appearances of lamina-
tion and Trichichnus), but this relation requires more 
systematic study and a much higher resolution C-isotope 
curve. This is particularly important in the upper part 
of the profile, where the variations in δ13C values are 
subdued.

4.4 � Duration of the Toarcian and ammonite zones based 
on ichnological astrochronology

The Toarcian section of the Mochras core represents the 
most expanded and highest resolution cyclostratigraphic 
dataset for this stage to date (even if much of the Aalen-
sis Zone is eroded), and provides the most reliable basis 
for an astrochronological time scale, reflecting Milanko-
vitch forcing, predominantly at precession/obliquity and 
the short- and long-eccentricity periodicities (Fig. 2a, b). 
The new results allow an estimation of the duration of the 
Toarcian stage at a minimum of 9.4 Myr (without most of 
the Aalensis Zone). Results were obtained from ichnolog-
ical and sedimentological signals by counting successive 
4th, 3rd and 2nd order cycles (interpreted respectively as 
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precession/obliquity, short eccentricity, long eccentric-
ity). Uncertainty values of zone durations are estimated 
based on depth-domain uncertainties of zonal bounda-
ries (Additional file  3). For each zone, summed uncer-
tainties of the base and top boundary are treated as a 
percentage of nominal zone thickness and proportion-
ally converted to time domain. In case of the Dispansum 
and Pseudoradiosa zones the time-domain uncertainties 
are represented by spurious digits and are therefore neg-
ligible. Astronomical durations for the ammonite chro-
nozones (based mainly on ~ 405 kyr, 2nd order cycles) 
are: Tenuicostatum Zone = 0.9 ± 0.1 Myr, Serpentinum 
Zone = 1.4 ± 0.4 Myr, Bifrons Zone = 2.1 ± 0.5 Myr, Vari-
abilis Zone = 2.4 ± 0.1 Myr, Thouarsense Zone = 0.8 ± 0.1 
Myr, Dispansum Zone = 0.3 ± 0.07 Myr, Pseudoradiosa 
Zone = 1.4 ± 0.02 Myr. The Aalensis Zone (truncated at its 
top) is preserved probably representing no more than 0.5 
Myr of deposition. The obtained durations of successive 
ammonite zones (Table 3) are slightly longer compared to 
those shown in GTS2020 (Hesselbo et al. 2020a).

5 � Conclusions

1.	 An integrated ichnological-sedimentological study 
of the Toarcian siliciclastic-calcareous contourite 
deposits in Mochras helps facilitate understanding of 
contourite deposition processes over a long period of 
geological time and its ichnodiversity. Together with 
the Pliensbachian part of the section (Pieńkowski 
et al. 2021), the current study comprises an expanded 
ichnological and sedimentary record of contourite 
deposits, adding new information on the sedimen-
tary dynamics, variability of oceanographic history, 
and basin interconnectivity.

2.	 Ichnological signals point to a common and strongly 
repetitive mechanism driving the observed fluctua-
tions in benthic conditions, which is indicated by 

spectral analysis and distinction of four hierarchical 
orders of cycles attributed to orbital forcing.

3.	 Long-term climate change controlled the circulation 
of contour-parallel bottom currents in the Cardigan 
Bay Basin and orbital forcing has set the timing for 
cyclic ichnological records, with the amplifying feed-
back of climate-related palaeoceanographic varia-
tions of thermohaline-driven contour currents cir-
culating between the Boreal ocean and Peri-Tethys, 
through the Cardigan Bay Strait. There is continuity 
of ~ 2.4 Myr, rather than ~ 1.6 Myr cyclicity expressed 
in deep-sea circulation and the probable occurrence 
of yet longer, ~ 7–8 Myr (~ 7.5) periodicity which may 
or may not be under an orbital control. The mutual 
modulation of the two cyclicities (~ 3.4 and ~ 1.6 
Myr) indicated by Charbonier et  al. (2023), giving 
approximately the resultant cyclicity of 2.4–2.5 Myr 
observed in Mochras would be a plausible explana-
tion, if the hypothesis of chaotic behaviour of the 
Solar System in Mesozoic is confirmed.

4.	 In more temperate climates, the formation of high-
density waters was associated with low temperatures 
at higher latitudes and sinking of cooler and denser 
water masses, which then flowed south. However, 
in the early Toarcian this secular, extrinsic paradigm 
has been modified due to intrinsic Earth processes 
related to large-scale volcanism and higher tempera-
tures, which led to intense evaporation and increase 
in salinity in the middle latitudes. This hypothetically 
began to play a dominant role in circulation, stopping 
or reversing the directions of marine currents, which 
resulted in a temporal disturbance of a long-term 
orbitally-controlled mechanism, but without elimi-
nating the influence of orbital forcing.

5.	 The most severe oxygen crisis (dysoxic, but not 
anoxic), evidenced by trace fossils (Phycosiphon scar-
city, mass appearances of Trichichnus) commenced 
shortly before the Pliensbachian-Toarcian boundary 
and ended at the early stage of the Toarcian negative 
carbon isotope excursion (To-CIE), which is in con-
trast to the general pattern of the T-OAE anoxic phe-
nomenon in relatively shallow marine settings and its 
synchroneity with the To-CIE. The extreme climate 
warming, coeval to To-CIE, is therefore hypothesised 
to have caused significant changes in deep marine 
circulation, reversing its direction and improving 
oxygenation of the deep-sea floor.

6.	 Ichnological results, both macroscopic observations 
and spectral analysis, confirm the cycles that appear 
in the Mochras visual descriptions, and a new mini-
mum estimate of duration of the Toarcian (9.4 Myr) 
and constituent ammonite zones is proposed.

Table 3  Duration of Toarcian biochronozones

Note that most of the Aalensis Zone is missing in the Mochras section. All 
durations are minima and the uncertainties relate only to precision of the 
placement of the zonal boundaries in the core based on ammonite distributions 
recorded in Additional files 3–5

Aalensis  > 0.1 Myr

Pseudoradiosa 1.4 ± 0.02 Myr

Dispansum 0.3 ± 0.07 Myr

Thouarsense 0.8 ± 0.1 Myr

Variabilis 2.4 ± 0.1 Myr

Bifrons 2.1 ± 0.5 Myr

Serpentinum 1.4 ± 0.4 Myr

Tenuicostatum 0.9 ± 0.1 Myr

TOARCIAN  > 9.4 Myr
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7.	 Contourites of the Cardigan Bay Basin provide infor-
mation on inter-ocean circulation, benthic condi-
tions, and climate changes, which can be extracted 
using sedimentological and ichnological methods. 
The Cardigan Bay Strait played an important role in 
the Early Jurassic (at least Pliensbachian and Toar-
cian) marine circulation as a major link between the 
northern and southern part of the Laurasian Seaway, 
and in general between the Boreal and peri-Tethys 
oceanic domains.

8.	 Ichnological records in continuous hemipelagic suc-
cessions seem to be a sensitive and reliable basis for 
the recognition of cyclic orbital forcing of climatic 
and palaeoceanographic conditions. Smoothed 
curves based on specific ichnotaxa occurrence time 
series bear resemblance to geochemical and geophys-
ical proxy records, indicating concurrent response to 
the changing environmental conditions.
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