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Multi-layered genome defences in bacteria 
Aleksei Agapov1,*, Kate S Baker2,*, Paritosh Bedekar1,*,  
Rama P Bhatia1,*, Tim R Blower3,*, Michael A Brockhurst4,*,  
Cooper Brown5,*, Charlotte E Chong2,*, Joanne L Fothergill6,*,  
Shirley Graham5,*, James PJ Hall7,*, Alice Maestri1,*,  
Stuart McQuarrie5,*, Anna Olina1,*, Stefano Pagliara8,*,  
Mario Recker1,*, Anna Richmond1,*, Steven J Shaw9,*,  
Mark D Szczelkun9,*, Tiffany B Taylor10,*, Stineke van Houte1,*,  
Sam C Went3,*, Edze R Westra1,*, Malcolm F White5,* and  
Rosanna Wright4,*   

Bacteria have evolved a variety of defence mechanisms to 
protect against mobile genetic elements, including restriction- 
modification systems and CRISPR–Cas. In recent years, 
dozens of previously unknown defence systems (DSs) have 
been discovered. Notably, diverse DSs often coexist within the 
same genome, and some co-occur at frequencies significantly 
higher than would be expected by chance, implying potential 
synergistic interactions. Recent studies have provided evidence 
of defence mechanisms that enhance or complement one 
another. Here, we review the interactions between DSs at the 
mechanistic, regulatory, ecological and evolutionary levels. 
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Introduction 
Almost all bacterial genomes contain mobile genetic 
elements (MGEs), including phages, plasmids and 
transposons. Such MGEs play important roles in bac
terial evolution, by mediating movement of genetic 
material within or between genomes, thus driving hor
izontal gene transfer (HGT). Although MGE-mediated 
HGT can accelerate adaptation through spreading eco
logically beneficial genes, gaining an MGE can also 
impose heavy fitness costs upon the host bacterial cell, 
including in the case of phages the lethal cost of cellular 
lysis. Consequently, bacterial genomes have evolved 
myriad defence systems (DSs) that target MGEs or 
MGE effects upon the cell. However, DSs are a double- 
edged sword, because although they can help bacteria 
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survive infection by parasitic MGEs, they also limit the 
spread of potentially beneficial traits within a population 
via HGT [1]. As such, the interplay between MGEs and 
DSs is likely to play an important role in shaping bac
terial genome evolution. 

We are currently in a period of fast discovery of novel 
DSs driven by the rapid increase of bacterial genomic 
data and the development of new bioinformatics tools 
(see below). It is now evident that a large arsenal of 
bacterial defences exists, exhibiting high diversity in 
genomic architecture and complexity, mechanisms of 
action and evolutionary origin. Based on their mode of 
action, prokaryotic DSs can be grouped into three main 
categories (Figure 1). Firstly, defences such as restriction 
modification (RM) and CRISPR–Cas [2] degrade or 
modify the nucleic acids of the invading MGEs [2–8]. 
Secondly, systems such as Thoeris [9] block MGE in
fection by inducing dormancy that can lead to cell death 
before the MGE spreads. This mechanism is called 
abortive infection (Abi) and can be achieved through 
depletion of essential molecules, such as adenosine tri
phosphate [10] and Nicotinamide adenine dinucleotide  

[9,11–13], disruption of the bacterial membrane [14–17] 
or inhibition of translation [18]. Finally, DSs such as the 
prokaryotic viperins [19] inhibit MGE replication by 
nucleotide depletion or modification, or synthesis of 
other small inhibitory molecules [19–21]. 

As well as the rapid discovery of novel DSs, we are also 
learning about their genomic organisation. A key finding 
is that DSs are often clustered together in regions of the 
bacterial genome called ’defence islands’ [22,23]. In
deed, it is this clustering that has enabled DS discovery: 
bioinformatic tools have been developed that system
atically identify novel defence genes based on their 
genomic vicinity with known DSs, leading to the dis
covery of dozens of previously unknown DSs [24–26]. 
The analysis of defence islands, making use of con
served gene boundaries [27–31] or transposon muta
genesis [31,32], has thus been a fruitful method for 
detecting new DSs, some of which share ancestry with 
eukaryotic immune systems [33]. Defence islands may 
themselves be encoded upon MGEs, such as integrative 
conjugative elements, transposons and prophages, en
abling HGT of DSs [27,28,31,34–36] and DS 

Figure 1  
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Overview of multi-layered defence. The three main modes of action of DSs are shown in the frames: targeting viral nucleic acids, Abi or 
dormancy and inhibition of phage by small molecules. A combination of diverse DSs protects the host from a wide range of MGEs. Environmental 
factors such as the presence of nutrients or antibiotics favour certain types of DSs. Created with BioRender.com.   
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cointegration to form defence hotspots [28,37]. How
ever, while DS co-occurrence has fuelled discovery of 
novel DSs and their mechanisms (reviewed in [38,39]), 
we know relatively little of why DSs co-occur in the first 
place, and if and how these co-occurring systems interact 
with one another. Here, we review our current under
standing of DS interactions, their (co)regulation and 
evolution. 

Defence prevalence and co-occurrence 
Bacterial genomes contain, on average, 5–6 DSs per 
genome, with the majority (78%) encoding more than 
two DSs [40,41]. The most common DSs found in pro
karyotic genomes are RM systems (83%), followed by 
CRISPR–Cas (38%), with the prevalence of most other 
systems falling below 20% [40]. Studies investigating the 
DS content of prokaryotic genomes have found that 
certain sets of DSs are more conserved in certain bac
terial genera, suggesting that synergisms between DSs 
may be advantageous for bacterial survival in phage-di
verse environments [42,43]. Analysis of the co-occur
rence and non-co-occurrence patterns among DSs might 
point to valuable insights on DS–DS interactions. In
deed, it has been hypothesised that defence islands may 
form due to synergy between DSs promoting co-locali
sation and parallel mobilisation similar to the evolu
tionary forces that result in aggregation of antibiotic 
resistance and pathogenicity genes [37,42,44]. It has 
been observed that DSs sharing phage-sensing strategies 
are found to co-occur more often than expected by 
chance, forming a multi-layered defence [42]. For ex
ample, the anti-RM/Bacteriophage Exclusion (BREX) 
protein Ocr (overcome classical restriction) can be de
tected by the DSs’ PARIS, Gabija and Zorya type II, 
which act as a second line of defence [27,42]. Ad
ditionally, experimental data have shown that systems 
such as RM and CRISPR–Cas work together to increase 
phage defence [45,46]. However, studies so far have 
suggested that whilst certain sets of prokaryotic DSs do 
co-occur, this does not necessarily correlate with a sy
nergistic defence response [42,43]. Therefore, it is likely 
that there is some functional redundancy within DSs 
and/or that the selection of DS combinations is a re
sponse to an organism’s environment, in line with 
broader pangenome theory [34,43,47,48]. Apparent dis
crepancies between co-occurrence and phenotypic sy
nergisms may also reflect a lack of statistical power in 
studies to date and/or inherent biases in publicly avail
able datasets. 

Costs and benefits of multi-layered defences 
Whilst various studies have tried to elucidate the con
ditions that favour one DS over another (see, e.g.  
[49–52]), less attention has been paid to the question 
why many bacteria carry a whole arsenal of multiple 
DSs. Carrying DSs can impose substantial fitness costs 

on their hosts due to metabolic burden, potential for 
autoimmunity due to self-targeting, selfish behaviour of 
DSs, such as those forming toxin–antitoxin systems and 
genetic conflicts between DSs and the rest of the 
genome [53–57]. Having multiple DSs may increase the 
costs cumulatively, and investing in multiple DSs may 
result in reduced performance in other activities such as 
growth and reproduction [58]. In addition, there may be 
genetic conflict between the different DSs that coexist 
in the same genome, including epigenetic conflict where 
DNA modifications introduced by one DS cause auto
immunity by another DS [59]. Obviously, for selection to 
favour bacteria with multiple DSs, the benefits need to 
outweigh these costs. Recently, several potential bene
fits of carrying multiple DSs have been put forward. 

First, the most widely explored benefit of carrying 
multiple DSs is that it increases the levels and durability 
of resistance. For example, the coexistence and si
multaneous action of RM and CRISPR–Cas reduces the 
frequency of phage escape and increases the rate of 
CRISPR immunity acquisition [45,46,60]. In the case of 
type-VI CRISPR–Cas systems, which induce a dor
mancy response [61], co-occurrence with RM not only 
increases the ability to clear phage infections but also the 
recovery from the dormancy response [62]. In other 
cases, simultaneous DS activity can lead to synergy 
through complementary action. For example, the co- 
occurrence of type-I BREX and type-IV RM reduces the 
success of epigenetic mutants that can overcome BREX, 
because unmodified phages are restricted by BREX, 
whereas modified phages are restricted by type-IV RM  
[32]. In other cases, synergy may emerge through se
quential action of different DSs. For example, phage- 
mediated inhibition of RecBCD innate immunity trig
gers retron-mediated Abi [17]. In this case, the second 
layer of defence safeguards the primary layer, ensuring 
that programmed cell death is not activated unless 
phages bypass the first layer of defence, as recently ex
plored mathematically in [63]. A second reason why 
bacteria may need multiple DSs is to provide a division 
of labour, with each defence specialising on a subset of 
MGEs (Figure 1). For example, Wadjet cleaves closed- 
circular DNA substrates and protects bacteria from ac
quiring small plasmids [64–66], whereas Abi systems are 
frequently triggered through pattern recognition of 
conserved proteins associated with phages [18,67,68]. 
Finally, different DSs may be active under different 
environmental conditions [69] (Figure 1). This is sup
ported by the idea that selection for different types of 
defences strongly depends on ecological variables [70], 
and that expression of defences can be controlled by 
different environmental cues [71]. 

Consequently, selection for multiple DSs is likely to 
depend on the environmental conditions, such as the 
force of infection, the diversity of MGEs as well as the 
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wider biotic and abiotic environment. For example, 
within complex microbial communities, cells may 
interact with multiple MGEs, some beneficial and 
some harmful, while facing increased competition 
(from other community members) for resources. Such 
communities may impose additional selection pres
sures, leading to the effects of certain DSs being 
enhanced or dampened [72]. Moreover, increased 
phage diversity makes it difficult for one system to be 
effective against all, while increased phage abun
dance necessitates an economically optimised im
mune response; both scenarios may promote the 
evolution of multi-layered defence. Phage diversity 
can also impose a trade-off for phages (host in
fectivity vs. inter-viral competition). This may lead to 
adoption of novel strategies, for example, by in
creasing the selective advantage gained from in
fecting resistant cells, which may lead to the 
evolution of anti-DS systems and thus increase the 
benefits of having multi-layered DSs [73]. Challen
ging environmental conditions can dictate invest
ment into DSs. For example, limited nutrient levels 
can raise fitness costs associated with multiple DSs, 
environmental niche can determine the number of 
maintained DSs or rapid turnover of the environment 
may maximise diversity [22,74]. Exclusion of foreign 
genetic material may not always be beneficial to the 
cell, potentially creating conflict between the host 
and DSs. For example, as HGT allows bacteria to 
adapt to environmental challenges, DSs can act as 
barriers against the acquisition of beneficial DNA. In 
such cases, certain DSs may negatively affect host 
fitness. MGEs may also use DSs for MGE–MGE 
conflict by hijacking DSs to defend against compe
titors [27,75]. Therefore, fitness interests of host and 
individual DS may not always align, which may result 
in selection of multi-layered DS [27,76]. 

Regulation of defence activity 
Regulation of DS activity may minimise costs and 
maximise benefits of DSs and can occur both at the 
transcriptional and post-translational level. 

Transcriptional and post-transcriptional regulation 
Given that DSs are not commonly found in isolation, we 
have little understanding on how these systems are 
regulated to facilitate a coordinated (and potentially 
layered) response to infection by MGEs. There are 
features of collective DSs that are suggestive of co
ordinated expression, such as co-localisation on ‘islands’, 
or clustering within single operons [32]. This organisa
tion will require transcriptional regulation at a global 
level, or through dedicated regulators of islands and 
operons. Coordinated regulation would further suggest 
the potential for an organised prokaryotic immune 
system [31]. 

Multiple global inputs have been demonstrated to reg
ulate defence responses [77]. If cell density is very high, 
a population might be particularly vulnerable to phages. 
In turn, quorum sensing, used to monitor population 
density, has been shown to regulate multiple defences, 
including CRISPR–Cas [78], dCTP deaminase and La
massu [79] at the transcriptional level (Figure 2). Stress 
responses and cell metabolic status also regulate de
fence, by either suppressing or inducing CRISPR–Cas  
[80–82] (Figure 2). Post-transcriptional methods of reg
ulating defence are also beginning to emerge, such as 
Rsm-/Csr-mediated binding of transcripts and suppres
sion of type-I and -III CRISPR–Cas in Serratia [83]. 

Defence islands have also been found to carry their own 
regulatory elements. The defence island of plasmid 
pEFER contains an operon encoding both a BREX 
system and a GmrSD type-IV restriction homologue, 
BrxU [32]. A recent study identified a WYL-domain 
protein, BrxR, negatively regulating operon expression  
[84] (Figure 2). Homologues of BrxR were also identi
fied controlling BREX in Acinetobacter [85] and CBASS  
[86], and searches identified BrxR associated with a 
wide variety of other defences [84]. This is the first 
example of a predominantly defence-associated reg
ulator, and the presence of the WYL domain suggests 
control via the detection of nucleic acids [87]. Under
standing how defence island regulatory elements in
tegrate with global regulatory inputs is essential for 
understanding the spread and maintenance of hor
izontally acquired DSs. 

Post-translational regulation 
The mechanisms used by DSs to detect viral infection 
are diverse and can broadly be divided into direct and 
indirect detection. Direct detection involves sensing of 
early signals of infection, including phage DNA (e.g. by 
the RM, CRISPR and DISARM systems [26]), DNA 
replication machinery (e.g. detection of phage SSB by 
Retron-Eco8 and phage primase–helicase by Lamassu  
[67]) or a specific phage RNA by type-I Cyclic oligo
nucleotide-Based Anti-phage Signaling System (CBASS)  
[88]. Systems with these sensing mechanisms typically 
constitute the frontline anti-MGE defences and are 
amongst the most widespread DSs in bacteria [40,89]. 
Later signals include direct detection of phage structural 
proteins (e.g. by PYCSAR [13] and CBASS [90]), or 
detection of phage anti-defence proteins, such as Ocr by 
the PARIS DS [27]. Indirect signals of infection can 
provide a second line of defence. For example, the de
tection of DNA degradation products, arising from either 
frontline defences or damage to host DNA incurred from 
viral attack, results in activation of the RloC nuclease 
that degrades tRNA [91]. Inhibition of host RNA poly
merase and altered cellular transcription can result in the 
activation of toxins that have an RNA antitoxin — a 
notable example being the dCTP deaminase defence 
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enzyme [92]. DSs commonly also act to deplete specific 
nucleotides [10,20], to slow down cell metabolism and 
viral replication kinetics. As infection progresses, per
turbation of the nucleotide pools and depletion of ade
nosine triphosphate may also act as an activation signal 
for defence. Some second-line DSs are activated on 
detection of inhibited frontline defences — for example, 
the Ec48 Retron is activated on encountering phage- 
inhibited RecBCD [17]. Thus, the activation of DSs is 
highly varied, allowing for the possibility of synergistic 
action and control of timing. 

Evolution of novel defences and defence 
combinations 
Evolution of phage and other MGEs to overcome bac
terial defence is likely an important driver of both the 
acquisition and loss of DSs from bacterial genomes, as 
well as the evolution of novel DSs. In the short term, 
MGEs may evolve to overcome DSs through epigenetic 
modifications or point mutations in genes whose pro
ducts are recognised by the bacterial DSs, such as phage 
structural proteins or RecBCD inhibitors [67,93]. How
ever, given that point mutations are often costly to the 

Figure 2  

Current Opinion in Microbiology

Mechanisms of transcriptional and post-translational regulation of DS. Mechanisms of regulation are shown in bold text. DSs are shown in grey 
italicised text and regulation mechanisms that activate respective systems are indicated by grey dashed arrows. Created with BioRender.com.   
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MGE, more sophisticated low-cost counter-defence 
mechanisms may evolve over longer timescales to spe
cifically block bacterial DS functions, which in turn may 
favour bacteria that acquired additional DSs. Carrying 
additional DSs not only ’renews’ the levels of protection 
against MGE infection but can also interfere with the 
deployment of counter-defence genes. Specifically, in
fection studies with phage that encodes an anti-CRISPR 
(acr) counter-defence gene showed that bacteria that 
carry both MADS and clustered regularly interspaced 
short palindromic repeats (CRISPR)-Cas (CRISPR-as
sociated proteins) immune systems were less susceptible 
to the emergence and spread of phages that overcome 
Methylation Associated Defence System (MADS), 
compared with bacteria that carry only MADS [31]. Sy
nergy between MADS and CRISPR–Cas emerged in 
this case because the ancestral Acr-encoding phages 
were unable to infect bacteria due to MADS activity, 
whereas rare MADS escaper phages were unable to 

amplify on CRISPR-immune bacteria because their 
density was below the critical density that supports co
operation and amplification of phage with Acr [94,95]. 

As detailed above, most defence-dedicated systems are 
found among accessory genes, implying frequent DS 
transmission between bacteria [22,24,96]. The associa
tion between defence and HGT led to the ‘pan-im
mune’ hypothesis, which posits that microbial 
communities possess a dispersed, shared immune 
system that community members draw on for protection  
[34]. While such an immune system provides protection 
against parasitic MGEs, several recent studies have 
shown that many DSs are themselves encoded in MGEs 
such as prophages and conjugative elements  
[27,76,96,97]. Carriage by MGEs enables DSs to transfer 
efficiently between cells by transduction or conjugation, 
and as different MGEs come and go, DSs will likewise 
be reshuffled and rapidly turned over, resulting in 

Figure 3  
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Mobility of DSs and modules. Left: Acquisition of new systems from MGEs in plasmids and prophages provides new defence diversity, whilst 
modules switching between systems develop variability. Right: A small selection of shared domains have been highlighted between different DSs. 
Many DSs share similar domains, demonstrating the versatility of this module exchange, and some systems have very diverse variants. For example, 
CBASS and PYCSAR are known to utilise a conserved sensor domain linked to variable effectors, such as REases or NADases. Some domains have 
also adapted their target to fit different systems, an example of this are nucleases. MGE-targeted nucleases target the invading DNA whilst protecting 
the self, whereas host-targeted nucleases often lead to Abi or growth arrest by targeting the host DNA or RNA. Created with BioRender.com. CBASS, 
Cyclic oligonucleotide-Based Anti-phage Signaling System. PYCSAR. pyrimidine cyclase system for antiphage resistance.   
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different complements between closely related strains  
[98]. Access to the defence arsenal is obstructed not only 
by generic factors that restrict HGT (e.g. sequence 
length is known to be a major barrier, especially during 
transduction [96]), but also by MGE–MGE interactions 
and the presence of resident DSs. After being trans
ferred to a new cell, DS combinations are then subject to 
natural selection arising from genetic context (e.g. me
tabolic burden, self-targeting) and environmental con
ditions (e.g. force of phage infection, nutrient 
availability), often resulting in loss from most recipient 
cells, but occasionally resulting in powerful new multi- 
layer defence ( Figure 3). 

Besides the variability from DS gain and loss, another level 
of variability is represented by gene swapping among DSs  
[99]. DSs are often modular, and different DSs sometimes 
use the same domains for signalling, regulation or as ef
fectors (Figure 3). For example, nucleases cleave DNA or 
RNA, which can cause cell death if the chromosome is 
targeted. DNA methyltransferases can provide protection 
against such autoimmunity, but also influence gene ex
pression more widely [100]. ATPases (helicases, AAA+ 
ATPases, ABC transporter families, etc.) manipulate DNA 
structure and can also sense infection, activating effectors. 
NTPases deaminases and cyclases modulate nucleotide 
pools to deplete resources or signal infection, while Toll/ 
interleukin-1 receptor and Silent information regulator- 2 
(or sirtuins) proteins deplete NAD+ for programmed cell 
death [5,10,11,13,101,102]. Many domains identified have 
unknown functions and/or targets. The evolution of new 
defences could arise by shuffling and novel combinations 
of such modules. There is clear evidence for exchange 
within systems (reviewed in [99]) In practice, for instance, 
type-I RM DNA specificity subunits can complement in 
trans (e.g. from a plasmid [103]), and undergo dynamic 
genetic rearrangements that facilitate phase variation 
within otherwise clonal bacterial populations [104]. The 
exchange of protein modules driven by MGEs such as 
transposons and between-host signalling systems may form 
the basis for the evolution of complex DSs, as has been 
proposed for the adaptation and interference modules of 
CRISPR–Cas immune systems [105]. 

Conclusion and outlook 
The co-occurrence of multiple and layered DSs within a 
single bacterium is likely to have arisen through a co- 
evolutionary arms race between bacteria, phages and 
other MGEs, played out along different cost–benefit 
axes. The apparent benefit against evolvable counter- 
defence mechanisms and phenotypic diversity of MGEs 
will be offset by both additional metabolic costs and 
antagonistic interactions that may prevent uptake of 
potentially beneficial MGEs. The exact compositions of 

required molecular machineries needed to coordinate 
layered DSs will thus be strongly affected by prevailing 
environmental conditions and the individual mechan
isms of the combined DSs. Understanding the combi
natorial problem of multi-layered defence will provide 
insight into bacterial evolution, the viability of phage 
therapies and our own immune systems. 
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