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Abstract

We consider the case of reshoring, where a global firm takes back a portion of its low-cost off-
shore supply to be produced in nearshore factory in order to establish a dual sourcing supply chain
equipped with both low cost and responsiveness. We first establish the performance benchmark of
a single (nearshore or offshore) supplier model. In the dual sourcing setting, a firm decomposes
the first order auto-regressive moving average, ARMA(1,1), market demand process into two parts:
one for the nearshore source and one for the offshore source. Order-up-to policies determine the
order quantities for both sources. We show how to reduce inventory costs in the dual-sourcing case
to a level identical to the near-shore single-source case. Furthermore, if certain conditions are met,
the nearshore manufacturing cost reduces in the offshore lead-time. This suggests low-cost and
low-emission transport modes should be utilised (slow steaming vessels which are both low cost
and environmentally friendly, but may endure longer offshore lead-times come to mind), breaking
the trade-off between economic and environmental performance.

Keywords: dual sourcing, supply chain dynamics, ARMA(1,1) demand, order-up-to policy

1. Introduction

Supply chain management has come of age. Never before has so much public attention been
given to our field. The impact of the Covid-19 pandemic and the subsequent geopolitical tensions
have led to a continuing trend to rethink global supply chains. Newspapers and 24-hour news
channels now regularly discuss factors such as “reshoring”, “de-risking”, “war sanctions”, “piracy”,
the “US inflation reduction bill”, “EU emissions tax” on high carbon imports, and “export controls”
on dual use technology, high-end chips, rare earth minerals, data even. We should also be careful
to remember global warming, high inflation, growing government and personal debt, the unknown
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threat of AI, cyber-attacks, fake news, election interference, and the arbitrary enforcement of local
laws. Never before has supply chain management become so important to us all.

In a small conference paper, we cannot hope to consider all these factors. Let us therefore focus
on reshoring with dual souring. Reshoring with dual sourcing is the act of bringing back a propor-
tion of total production from a global supplier to be produced in a local factory in a dual sourcing
supply chain. Reshoring with dual sourcing allows one to avoid some unexpected disruptions and
effectively shorten the geographical distance of the entire supply chain, Hufford (2023).

It has been shown in much of the supply chain management literature that long lead times
increase supply chain costs. For example, the bullwhip effect often, but not always, increases in the
lead time, Gaalman et al. (2022). However, some closed-loop supply chain (CLSC) studies, which
include two sources of supply (one for new products, another for re-manufactured products), have
shown that there are economic benefits when one of the two sources has a longer lead time (Hosoda
et al., 2015; Hosoda & Disney, 2018). Longer lead times could even be more environmentally
friendly, BIMCO (2023).

Herein, we consider a single-item, periodic-review inventory system with two supply sources in
a centrally organised supply chain facing an auto-correlated demand process. To preserve analytical
tractability, we assume all lead-times are constant, excess demand is backlogged, and no capacity
constraints are present. Two different supply sources adopt the same review period to manage
their production systems. The objective is to minimise the expected per period sum of capacity,
overtime, inventory holding, and backlog costs in the whole system.

2. Literature review

There is much literature on the dual sourcing problem. Fukuda (1964) considers the case where
there are two different lead times (for example, due to two sources, or two different transport
modes) and the difference between the two deterministic lead times is one period. Fukuda (1964)
finds dual-base-stock policies are optimal. Gijsbrechts et al. (2024) uses the same one-time-period
lead time difference assumption and shows a modified dual-base-stock policy with three base-stock
levels is optimal. Boute & Van Mieghem (2015) proposes a dual-sourcing smoothing (DSS) policy
applicable for both single and dual sourcing settings. Their results include a simple but practically
useful square-root bound for the strategic sourcing allocations in a dual sourcing setting.

Allon & Van Mieghem (2010) study the Tailored Base-Surge (TBS) sourcing strategy where
a global supplier receives a constant order and focuses on cost efficiency and the local supplier’s
quick response delivers high customer service levels. The TBS strategy is similar to the standing

order issued to the global supplier in the study by Rosenshine & Obee (1976). The standing order
scheme effectively eliminates the impact of the long global lead time.
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Boute et al. (2022) consider dual sourcing under i.i.d., AR(1), and IMA(0,1,1) demand with
unit local lead time and an arbitrary global lead time. The global orders were a constant in the i.i.d.
and AR(1) cases; the non-stationary IMA(0,1,1) global orders were dynamic. The local orders were
determined via the proportional order-up-to policy. They found that price parity does not have to be
reached to make re-shoring a small proportion of demand back to the local factory economic. The
shorter local lead time allowed for tighter control of the local finished good inventory that led to an
economic benefit. This benefit increases in the global lead time and also in the demand correlation.

A closely related problem to reshoring is an inventory system with both regular and emergency
replenishment orders, for example see Tagaras & Vlachos (2001), Chiang & Gutierrez (1996), and
Whittemore & Saunders (1977).

3. Base case: The ARMA(1,1) supply chain

Assume a firm faces a stochastic market demand process, represented by a first-order auto-
regressive moving average, ARMA(1,1), model (Box et al., 2008)

dt =µd +φ(dt−1 −µd)+ εt −θεt−1, (1)

where dt is the market demand at time period t, µd = E[d] is the mean demand, φ is an auto-
regressive parameter bounded by |φ | < 1, θ is a moving average parameter bounded by |θ | < 1,
and εt is a random error term realised at time period t with zero mean, constant variance σ2

ε , and
drawn from a normal distribution. The long run variance of dt , V[d], is

V[d] =
1+θ 2 −2θφ

1−φ 2 σ
2
ε , (2)

Box et al. (2008). This ARMA type demand assumption is common in the supply chain literature
(see, for example Lee et al. (2000), Hosoda & Disney (2006), and Gaalman et al. (2022)). The
ARMA(1,1) demand process contains i.i.d., AR(1), and MA(1) processes as special cases.

3.1. The order-up-to replenishment policy for the single source

For brevity, we deal here only with the case of a single offshore source. The results here can
easily be interpreted for a single nearshore supplier. We assume the firm uses the order-up-to (OUT)
policy with minimum mean square error (MMSE) forecasts, Box et al. (2008), and the following
inventory balance equation exists,

nst = nst−1 +ot−L−1 −dt .
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Here, nst is the local net stock level at time t, ot is the order quantity placed by the firm at time t

with the global offshore source, and L ∈N0 is the replenishment lead-time from the global offshore
source. It is known some different formulations of the OUT policy exist. The first formulation
uses the difference between the desired inventory position, st , and the actual inventory position (the
work-in-progress plus current net stock level), nst , (Li et al., 2014),

ot = st −
(

∑
L
i=1 ot−i︸ ︷︷ ︸
WIPt

+nst

)
; where st = µns +E

[
∑

L+1
i=1 dt+i|t

]
. (3)

Here, µns =E[ns] represents the time-invariant target net stock (or, safety stock) level. The expected
demand i periods ahead, conditional upon the information available at time t, is given by

E[dt+i|t] = µd +φ
i(dt −µd)−φ

i−1
θεt ,

which can be obtained by recursion and knowing the conditional expectation of future realisations
of the noise term has an expectation of zero. This can be used to determine the conditional expected
demand (the MMSE forecast) over the lead-time and review period,

E
[
∑

L+1
i=1 dt+i|t

]
= (L+1)µd +φΛL+1(dt −µd)−θΛL+1εt : ΛL+1 =

1−φ L+1

1−φ
. (4)

The second formulation of the OUT policy (Lee et al., 2000; Hosoda & Disney, 2006) is

ot = dt +(st − st−1). (5)

This formulation is useful as it contains only feed-forward paths, facilitating its analysis.

3.2. Variances in the case of single offshore source

It is recognised that the variance of the net stock levels maintained by the OUT policy is iden-
tical to the variance of the demand forecast errors over the lead-time and review period (Vassian,
1955; Hosoda & Disney, 2006). With the knowledge of (1), the demand forecast errors over the
lead-time and review period is given by

∑
L+1
i=1 dt+i −E

[
∑

L+1
i=1 dt+i|t

]
= εt+L+1 +∑

L
i=1

(
1+

1−φ i

1−φ
(φ −θ)

)
εt+L+1−i.

The variance of the net stock levels in the case of the base case can be written as

V[ns] = E
[(

∑
L+1
i=1 dt+i −E

[
∑

L+1
i=1 dt+i|t

])2
]
= σ

2
ε +∑

L
i=1

(
1+

1−φ i

1−φ
(φ −θ)

)2

σ
2
ε . (6)
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Mathematical simplification yields the following Lemma.

Lemma 1. (Variance of the net stock levels) The variance of the net stock levels maintained by
the OUT policy is given by

V[ns] = σ
2
ε

(
1+

L(θ −1)2

(φ −1)2 +
φ(φ −θ)

(
φ L −1

)(
θ
(
φ(1−φ L)+2

)
+φ

(
φ(1+φ L)−2

)
−2
)

(φ −1)3(φ +1)

)
.

(7)

Proof of Lemma 1. All proofs in this short conference paper are omitted to save space. □

Remarks on Lemma 1. The net stock variance is always greater than σ2
ε , a fact most easily seen

in (6). Eq. (7) shows the inventory variance is has a component that increases in the lead time L,
the second addend. The third addend oscillates depending on the parity of L when a negative φ is
present. When L = 0, then V[ns] = σ2

ε . When φ = θ , then V[ns] = (L+1)σ2
ε .

Lemma 2. (Variance of the global orders) The variance of the global production orders is

V[o] =
σ2

ε

(φ −1)2

(
2(φ −θ)2φ 2L+2

φ +1
+(θ −1)

(
θ +2(φ −θ)φ L+1 −1

))
. (8)

Remarks on Lemma 2. When φ = θ , the order variance V[o] = σ2
ε . The order variance is increas-

ing in φ and decreasing in θ when θ < φ . If L was replaced by ℓ in (7) and (8) they would be
representative of the dynamic performance of a single local supplier.

4. Dual sourcing case: Market demand process decomposition

Let’s assume a firm who currently uses a global offshore supply chain with a lead-time L in
order to enjoy lower labour cost, is thinking of re-shoring. The firm intends to take back a portion
of its orders placed on low-cost offshore sources to produce at a nearshore factory with a shorter
lead-time ℓ ∈ N0(< L) and operate a dual sourcing supply chain, Boute et al. (2022). A key issue
of dual sourcing is how to coordinate both the offshore and nearshore sources effectively. It is
often advocated that the global offshore source operates under smoothed orders (covering the base
demand) and the nearshore source is used as a responsive supplier in a TBS arrangement, Allon &
Van Mieghem (2010). Thus, the order-smoothing policy is used for global offshore source and a
quick-response policy with a volatile order is used for the nearshore source. We explore this idea
further here. The significant difference from previous research is that we decompose the market
demand process into two processes and two different ordering policies are used to determine the
order quantities for each source.

We assume the firm decomposes the ARMA(1,1) market demand process (1) into two demand
processes: the demand for nearshore source dn

t and the demand for the global offshore source dg
t , in

order to reduce the variability in the offshore replenishment orders. The motivation to decompose
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Figure 1: Base case: The order and inventory variances maintained by a single global supplier when σ2
ε = 1

the demand process comes from a very simple reason. Box et al. (2008) describes the ARMA(1,
1) process as a mix of auto-regressive and moving average processes. Therefore, it is natural to
break them back down again into the two original processes. In what follows, we will use {n,g}
for nearshore and global offshore sources. The two demands, dn

t and dg
t are given by

dn
t = µn +φ(dt−1 −µd)+ εt , and dg

t = µg −θεt−1,

where µn > 0, µg > 0 and µn + µg = µd . Note: dt = dn
t + dg

t . It is easy to see that E[dn
t ] = µn

and E[dg
t ] = µg. It is assumed that both µn and µg are decision variables. It is obvious that dg

t is a
scaled white noise process when θ ̸= 0. If the market demand process is AR(1) (i.e. θ = 0), then dg

t

becomes constant over time, µg. We will show this decomposition creates the convenient situation
where the variance of dg

t is always smaller than the variance of the market demand, V[d], given in
(2). The variance of the two demand processes becomes

V[dn] = φ
2V[d]+σ

2
ε , and V[dg] = θ

2
σ

2
ε . (9)

After taking the difference, simplification yields the relationships

V[dn]> V[dg], and V[d]> V[dg]. (10)
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This market demand decomposition reduces the variability of the replenishment orders placed on
the offshore supplier, helping to reduce the off-shore supplier capacity costs.

5. Dual sourcing case: Ordering policies for decomposed demand processes

Before we investigate the ordering policy for the dual sourcing setting, we assume the following
relationship governs the dynamics of the net stock in our dual sourcing supply chain:

nst = nst−1 +on
t−(ℓ+1)+og

t−(L+1)−dt , (11)

where nst is the local net stock level, on
t and og

t are the replenishment order quantities placed at time
period t to the nearshore and the global offshore sources, respectively. ℓ and L are the replenishment
lead-times of the nearshore source and the global offshore sources, respectively. We assume L > ℓ.

5.1. Ordering policy for global offshore source

First, we will consider the ordering policy for the global offshore supplier. To avoid the bull-
whip effect, we use the order-up-to policy with a time-invariant order-up-to level sg for the global
offshore source to determine the order quantity. With the knowledge of (5), the OUT policy with a
time-invariant order-up-to level (i.e. st = st−1 = sg) is given by

og
t = dg

t +(sg − sg) = dg
t , (12)

which suggests when the decomposed offshore demand is dg
t , the replenishment order og

t = dg
t , and

V[og] = V[dg]. From (9) and (10), we have V[d]> V[dg], which suggests that V[d]> V[og] and no
bullwhip exists for the global offshore source. In the special case of θ = 0, we have dg

t = og
t = µg,

and the global supplier’s replenishment order is a constant.

5.2. Ordering policy for nearshore source

The OUT policy with an order-up-to level at the nearshore source of sn
t is

on
t = sn

t −
(

∑
ℓ

i=1 on
t−i +nst

)
, (13)

where ∑
ℓ
i=1 on

t−i is the work-in-progress in the nearshore factory at time period t, WIPn
t , Li et al.

(2014). Note, sn
t in (13) is fundamentally different to st in (3) which only considers the safety stock

level and the future demands over the lead time plus one time period. In the dual sourcing setting
it is natural to assume the order quantity for the arriving offshore source previously placed should
be taken into account when determining the later, local order on

t . To obtain sn
t , we rearrange the
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modified inventory balance equation (11) to yield,

on
t = nst+ℓ+1 −nst+ℓ−og

t−(L−ℓ)
−dt+ℓ+1. (14)

Using (14), WIPn
t can be rewritten as

WIPn
t = ∑

ℓ

i=1 on
t−i = nst+ℓ−nst −∑

ℓ

i=1 og
t−(L−ℓ)−i +∑

ℓ

i=1 dt+i. (15)

After substituting (14) into the LHS, and (15) into the RHS, of (13), simplification yields

nst+ℓ+1 = sn
t +∑

ℓ

i=0 og
t−(L−ℓ)−i −∑

ℓ+1
i=1 dt+i. (16)

Using the conditional expected values for future demand, sn
t can be obtained from (16)

sn
t = E

[
∑

ℓ+1
i=1 dt+i|t

]
−∑

ℓ

i=0 og
t−(L−ℓ)−i +µns, (17)

where

E
[
∑

ℓ+1
i=1 dt+i|t

]
= (ℓ+1)µd +φΛℓ+1(dt −µd)−θΛℓ+1εt : Λℓ+1 =

1−φ ℓ+1

1−φ
. (18)

The target net stock (or, safety stock) level µns = E[nst+ℓ+1] is a constant value. Eq. (17) reveals
the value of sn

t should equal the difference between the MMSE forecast of the market demand (not
the decomposed demand) over ℓ+1 time periods and the sum of the offshore orders already placed
that will be received by the firm by the end of time period t + ℓ+1, plus the safety stock µns. Note,
as ℓ < L, the value of ∑

ℓ
i=0 og

t−(L−ℓ)−i is known at time t. Substituting (17) into (13) yields the
following OUT policy for the nearshore source under the dual source setting:

on
t = E

[
∑

ℓ+1
i=1 dt+i|t

]
−∑

ℓ

i=0 og
t−(L−ℓ)−i +µns −

(
∑

ℓ

i=1 on
t−i +nst

)
= E [dt+ℓ+1|t]+ µns −nst︸ ︷︷ ︸

Inventory feedback

+E
[
∑

ℓ

i=1 dt+i|t
]
−
(
∑

ℓ

i=0 og
t−(L−ℓ)−i +∑

ℓ

i=1 on
t−i

)
︸ ︷︷ ︸

WIP feedback

. (19)

Based on the knowledge obtained so far, we can define another form of the OUT policy in the dual
source setting. By incorporating (15) into (13) and after some simplification, we have

on
t = sn

t −
(

nst+ℓ−∑
ℓ

i=1 og
t−(L−ℓ)−i +∑

ℓ

i=1 dt+i

)
. (20)
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With the knowledge of (16), nst+ℓ can be written as

nst+ℓ = sn
t−1 +∑

ℓ

i=0 og
t−(L−ℓ)−i−1 −∑

ℓ+1
i=1 dt+i−1. (21)

After substituting (21) into (20), algebra reveals another formulation of the OUT policy for the
nearshore source under the dual sourcing setting:

on
t = dt −og

t−(L+1)+(sn
t − sn

t−1), (22)

where dt − og
t−(L+1) can be interpreted as the net demand for the nearshore source, which is the

portion of the market demand to be fulfilled by the nearshore source. This net demand drives the
value of on

t , not the market demand. The policy in (22) is useful as it contains only feed-forward
paths, facilitating analysis of the policy. In summary, the firm that dual sources after re-shoring will
order using (12) from the offshore source and (13), (19), or (22) (they are all equivalent) from the
nearshore source.

5.3. Variances in the case of dual sourcing

For the economic analysis, we require expressions of both the net stock level variance at the
local firm and the nearshore production order variance under the dual sourcing setting (we already
know the offshore supplier’s order variance). After substituting (17) into (16), simplification yields

nst+ℓ+1 −µns = E
[
∑

ℓ+1
i=1 dt+i|t

]
−∑

ℓ+1
i=1 dt+i.

Therefore, the variance of the net stock levels at the local firm in the case of the dual sourcing is

V[ns] = E
[
(nst+ℓ+1 −µns)

2]= E
[(

E
[
∑

ℓ+1
i=1 dt+i|t

]
−∑

ℓ+1
i=1 dt+i

)2
]

= σ
2
ε

(
1+

ℓ(θ −1)2

(φ −1)2 +
φ(φ −θ)

(
φ ℓ−1

)(
θ
(
φ(1−φ ℓ)+2

)
+φ

(
φ(1+φ ℓ)−2

)
−2
)

(φ −1)3(φ +1)

)
. (23)

Comparing (23) with (7) provides following Lemma.

Lemma 3 (Variance of local net stock levels in the dual sourcing setting). When the firm decom-
poses the ARMA(1,1) demand process into dn

t and dg
t and places orders on

t and og
t using the OUT

policies, the variance of the local firm’s net stock levels becomes identical to the variance of the
net stock maintained by a single near-shore supplier, and the offshore lead-time (L) has no impact
on the local net stock variance.

This finding is attractive for the companies who are considering re-shoring. The offshore lead-
time (L) does not affect the value of the net stock variance, V[ns]. It suggests that inventory costs,
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which are a linear function of
√
V[ns], can be reduced to the same level maintained by the single

nearshore source, while still enjoying lower manufacturing costs offered by the offshore source. A
similar finding can be seen in Boute & Van Mieghem (2015). Note, Lemma 3 holds regardless of
how the demand process is decomposed as long as the firm uses the OUT policies shown above.

The variance of the nearshore production orders on
t can be obtained from (22), (17), and (18);

on
t = dt +φΛℓ+1(dt −dt−1)−θΛℓ+1(εt − εt−1)−og

t−(L−ℓ)
, (24)

where Λℓ+1 = (1−φ ℓ+1)(1−φ)−1. Substituting the RHS of (1) into (24) yields

on
t =µd +(φ +φΛℓ+1(φ −1))(dt−1 −µd)+(1+Λℓ+1(φ −θ))εt−

θ(1+Λℓ+1(φ −1))εt−1 −og
t−(L−ℓ)

.

Using V[on] = E
[
(on

t −µd)
2], the variance of on

t is

V[on] =(φ +φΛℓ+1(φ −1))2V[d]+ (1+Λℓ+1(φ −θ))2
σ

2
ε +(θ +θΛℓ+1(φ −1))2

σ
2
ε +θ

2
σ

2
ε

−2(φ +φΛℓ+1(φ −1))(θ +θΛℓ+1(φ −1))Cov [(dt−1 −µd) · (εt−1)]

−2(φ +φΛℓ+1(φ −1))Cov
[
(dt−1 −µd) ·

(
og

t−(L−ℓ)

)]
, (25)

where Cov[X ·Y ] is the covariance between X and Y . To obtain (25), we used the following:
Cov [(dt−1 −µd) · εt ] = 0, Cov [εt · εt−1] = 0, Cov

[
εt ·og

t−(L−ℓ)

]
= 0, and Cov

[
εt−1 ·og

t−(L−ℓ)

]
= 0.

As Cov [(dt−1 −µd) · (εt−1)] = σ2
ε and Cov

[
(dt−1 −µd) ·

(
og

t−(L−ℓ)

)]
=
(
θ 2φ L−ℓ−1 −θφ L−ℓ

)
σ2

ε ,

the variance of on
t can be rewritten as1

V[on] = σ
2
ε

(
θ

(
θ +φ

2ℓ+2(θ −2φ)+2(φ −θ)φ L+1
)
+

(θ(θ −2φ)+1)φ 2ℓ+4

1−φ 2 +

(
θ +φ ℓ+1(φ −θ)−1

)2

(φ −1)2

)
.

Note, although V[on] represents the variance of orders to the nearshore source, the offshore lead-
time (L) appears in this formula, which leads to the following Lemma.

Lemma 4 (Impact of offshore lead-time on the nearshore order variance). If an ARMA(1,1)
demand process is decomposed into dn

t and dg
t and orders on

t and og
t are placed using OUT policies,

when θ(φ −θ)> 0, the variance of nearshore orders (V[on]) reduces in the offshore lead time L.

1This variance expression only holds when ℓ≤ L.
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Figure 2: The local order variance when the global supplier has a lead-time of L = 5 and σ2
ε = 1

This is a counter-intuitive finding. Lemma 4 implies that, when certain conditions are met,
nearshore order variance, V[on], (a proxy for the nearshore capacity cost) can be reduced by delib-
erately lengthening the offshore lead-time, L. Remember, Lemma 3 shows long offshore lead-times
do not impact the local inventory variance. Lemma 4 shows that longer offshore lead-time could
have a positive impact on the nearshore capacity cost and this is favourable from an ESG per-
spective. For example, Lemma 4 implies it makes economic sense to utilise vessels that are more
environmentally friendly with low operational costs despite the longer transportation lead-times
from offshore sources that may result.

6. Economic analysis

We now analyse the effectiveness of our proposed OUT policies for the dual sourcing setting
by using the following two cost functions: The first one is for the base cases, single global offshore
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and nearshore source supply chains:

C j = (hE[[nst ]
+]+ pE[[−nst ]

+])︸ ︷︷ ︸
Local inventory costs

+(u jk j +u jm jE[[o j
t − k j]+]),︸ ︷︷ ︸

Offshore/nearshore capacity costs

where j ∈ {n,g}. Here h is the per period per unit inventory holding costs, p the per period per
unit backlog penalty costs, u j is the per unit production (labour) cost within the per period nominal
capacity of k j and u jm j, (where m j ≥ 1 is the over-time multiplier for production above the nominal
capacity of normal working hours) is the per unit production (labour) cost in overtime above the
nominal capacity of k j. Notice, labour are guaranteed their nominal per period (perhaps weekly)
wage of u jk j, but overtime has volume flexibility. The inventory costs are minimised by setting the
safety stock target, µns, to the newsvendor critical factile,

µ
⋆
ns =

√
V[ns] Φ

−1
[

p
p+h

]
.

When µ⋆
ns is present, the minimised inventory costs are given by

hE[[nst ]
+]+ pE[[−nst ]

+] = (h+ p)
√
V[ns] ϕ

[
Φ

−1
[

p
p+h

]]
,

Churchman et al. (1957). Here, ϕ[·] and Φ−1[·] is the pdf and inverse cdf of the standard normal
distribution. Lemma 3 revealed the inventory costs in Cn and Cg are identical. Using the same
newsvendor techniques, the capacity costs for the source j ∈ {n,g} are minimised by setting the
nominal capacity k j to

k j⋆ = µ j +
√

V[o j]Φ−1
[

m j −1
m j

]
.

When k j⋆ is present, the minimised capacity costs are

u jk j⋆+u jm jE[(ot − k)+] = u j
µ j +u jm j

√
V[o j]ϕ

[
Φ

−1
[

m j −1
m j

]]
,

Boute et al. (2022).
The second cost function is for the case of the dual sourcing supply chain can be written as

Cd = (hE[[nst ]
+])+ pE[[−nst ]

+])︸ ︷︷ ︸
Local inventory costs

+ ∑
j∈{g,n}

(u jk j +u jm jE[[o j
t − k j]+]).︸ ︷︷ ︸

Offshore and nearshore capacity costs
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Figure 3: Impact of µn, un and L on the total cost of dual sourcing supply chain, Cd . Values of parameters used herein
are: φ = 0.6, θ = 0.3, µd = 100, 31 ≤ µn ≤ 69, µg = µd −µn, σ = 5, L = {3,7}, ℓ= 1, h = 1, p = 10, m = mn = 1.2,
u = 1, and un = u× r, where r is production cost ratio (1 ≤ r ≤ 2).

6.1. Numerical analysis

To illustrate the economic behaviour of our model, a numerical study is conducted. There are
three goals of this analysis: i) To understand the impact of the decision variables, µn and µg, that
determine the allocation between the offshore and the nearshore sources, on the total supply chain
costs, ii) To understand the impact of the offshore lead time, L, on the total supply chain costs and
iii) To understand how the demand parameters φ and θ affect the economics of dual sourcing.

Fig. 3 shows the impact of µn on the total cost of dual sourcing supply chain, Cd . When we
conduct the analysis, to avoid negative values in og

t and on
t , we constrain the demand process such

that µ j − 4
√

V[o j] > 0, where j ∈ {n,g}. To meet this constraint, the value of µ j is restricted
between 31 ≤ µ j ≤ 69, in addition to the total volume constraint that ∑ j µ j = µd = 100. It is
clearly shown that if the supply chain wants to allocate larger volume to the nearshore source, the
production cost ratio (r = un/u) should be as low as possible to enjoy lower total supply chain costs,
especially when the offshore lead time is short. In terms of the second goal, it is quite difficult to
perceive the difference between two graphs in Fig. 3 despite L changes from 3 to 7.

Fig. 4 and 5 illustrate the impact of φ and θ on the total cost of each supply chain, when
L ∈ {3,7}. Area I represents the area where a single global supplier dominates dual sourcing which
in turn dominates a single local supplier, C∗

g ≤C∗
d ≤C∗

n . Area II is where dual sourcing dominates
a single global supplier which in turn dominates a single local supplier, C∗

d ≤ C∗
g ≤ C∗

n . Area III
is the case where dual sourcing dominates a single local supplier which in turn dominates a single
global supplier, C∗

d ≤C∗
n ≤C∗

g . The parameter values used herein are: µd = 100, µn = 31, σ = 5,
ℓ = 1, h = 1, p = 10, m = mn = 1.2, u = 1, and un = 1.5. A comparison with Fig. 2 shows that
the greater the variance of nearshore orders, the lower the total costs tend to be when dual sourcing
is used. In addition, the longer the offshore lead time, the more likely dual sourcing becomes the
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Figure 4: Total costs contours and strategy selection in the case of L = 3.

lowest cost strategy.

7. Conclusions

Using an analytical approach coupled with a numerical analysis, we have investigated the dy-
namics and economics of a reshoring setting with dual sourcing. We assumed demand was an
ARMA(1,1) process. We decomposed the ARMA(1,1) process into two demand streams. The de-
mand stream for the global supplier was based on the MA component of the ARMA(1,1) demand;
the demand stream for the local supplier comprised of the AR component of the ARMA(1,1) de-
mand. We obtained expressions for the variance of the local and global orders, as will as the
variance of the finished goods inventory. Uniquely, we quantified the cost of an installed capacity
and overtime at both production sources and the inventory holding and backlog costs. We identified
areas in the demand parameter space where the local, global, and dual sourcing strategies dominate
for different global lead times L.
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