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Abstract—Gaussian processes (GPs) serve as powerful sur-
rogate models in optimisation by providing a flexible data-
driven framework for representing complex fitness landscapes.
We provide an analysis of realisations drawn from GP models
of fitness landscapes—which represent alternative coherent fits
to the data—and use a network-based approach to investigate
their induced landscape consistency. We consider the variation
of constructed local optima networks (LONs: which provide
a condensed representation of landscapes), analyse the fitness
landscapes of GP realisations, and delve into the uncertainty
associated with graph metrics of LONs. Our findings contribute
to the understanding and practical application of GPs in op-
timisation and landscape analysis. Particularly that landscape
consistency between GP realisations can vary considerably de-
pendent on the model fit and underlying landscape complexity
of the optimisation problem.

Index Terms—Gaussian Processes, Uncertainty Quantification,
Fitness Landscapes, Local Optima Networks

I. INTRODUCTION

The fundamental goal of optimisation is to discover the most
favourable solution within a specified domain, often subject
to certain constraints. Many real-world problems require opti-
mising objective functions that are complex, exhibit multiple
modes, and are computationally demanding to evaluate. Such
factors intensify the demand for surrogate-based optimisation
strategies [1], [2]. Within this context, Gaussian Processes
(GPs) play a significant role [3], [4]. As a probabilistic model,
GPs offer a means of approximating the objective function
in a manner that quantifies uncertainty with a particularly
powerful feature: their ability to produce a distribution of
possible outputs, or realisations, rather than a single mean
prediction (reflecting their uncertainty).

Here we present a detailed analysis of GP realisations drawn
from fits to a set of benchmark functions. Instead of relying on
the mean GP fit, we adopt a more comprehensive approach,
considering the entire set of potential functions represented
by the GP posterior. This enables us to capture the inherent
uncertainty in the model and provides a more complete picture
of the possible relationships present in the data. We further
consider the structure of these GP realisations through the
construction of Local Optima Networks (LONs) [5]. Each
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LON is calculated for a multitude of GP fits and for each
fit, we generate a set of realisations. We apply graph theory
techniques to these LONs, computing network metrics such
as degree centrality, closeness centrality, and the number of
nodes and edges. When calculating a network measure on
the mean Gaussian process (GP), we obtain an estimated
measure with an associated level of uncertainty, reflecting our
confidence in the estimate based on the specific GP model.
Conversely, by calculating the same measure on an ensemble
of realisations, we utilise multiple models to estimate the
measure and, consequently, assess the variance of the measure
across the ensemble.

Working with GP realisations allows us to comprehend how
uncertainties in the GP model translate into uncertainties in the
network metrics. See [6] for a general study on uncertainty of
graph measures. This research aims to enhance our understand-
ing of GPs as surrogates of fitness landscapes by exploring
their capabilities in the context of varying sample sizes and
diverse benchmark functions. By specifically focusing on
GP realisations and employing rigorous landscape analysis
techniques using LONs, we seek to establish a foundation
for a more nuanced and comprehensive utilisation of GPs in
complex predictive modelling tasks.

The rest of the paper is organised as follows. Section II
reviews the literature on GPs and LONs. Section III provides
details of the experimental setup, Section IV presents the
results obtained in this study and finally Section V concludes
the paper with a discussion on the results and future work.

II. BACKGROUND
A. Gaussian Process

A GP is a probabilistic model widely employed in machine
learning, statistics, and optimisation [7]. It serves as a powerful
tool for modelling and analysing functions by defining a
distribution over them. A GP represents a set of random
variables, with any finite subset of these variables following a
joint multivariate Gaussian distribution. This enables a GP to
describe the distribution of functions, treating each function
as a random variable.

A GP is characterised by a mean function and a covariance
function, with mean µ(x) and variance σ2(x) respectively,
i.e. p(f |x,D, θ) = N (µ(x), σ2(x)) where the mean and



Fig. 1: GP fit for Sine Function (shown in red) including
the mean GP (shown in blue) and some realisations (dashed
lines). The shaded area around the mean GP represents the
uncertainty, which usually shrinks as more observations are
incorporated (unless the length scale changes).

variance are µ(x) = κ(x,X)K−1f , and σ2(x) = κ(x, x) −
κ(x,X)K−1κ(X,x). Where X is a matrix of size M × d
representing the design locations, while f is a corresponding
vector of size M that contains the true function evaluations.
Thus, the dataset D can be expressed as {(X, f)}. The
covariance matrix K of size M×M represents the covariance
function κ(x, x′; θ) evaluated for each pair of observations.
κ(x,X) is a vector of size M representing the covariances
between x and each of the observations. θ is the kernel hyper-
parameters.

Kernel functions define the covariance between different
points in the input space, reflecting the similarity or correlation
between function values at those points. Various types of
kernel functions exist, each with its own characteristics and
suitability for different types of functions. We use in this paper
are the RBF, Matérn 3/2 and Linear kernels in this work.

When data are observed, a GP model updates its prior distri-
bution to form a posterior distribution. As depicted in Figure 1,
as more data are observed, the GP realisations converge closer
to the mean function. The posterior distribution represents the
updated beliefs regarding the function values at unobserved
locations based on the observed data.1 This process obtains
the posterior GP mean and covariance. Subsequently, samples
are drawn from a multivariate Gaussian distribution with this
mean and covariance, representing possible function values
that align with the observed data and the assumptions of the
GP model. Prior research [9], [10] explored efficient poste-
rior distribution sampling. Insights for handling GP hyper-
parameters in Bayesian optimisation were studied [11]. Earlier
work [12] emphasised graph theory and GPs for comparing
posterior distributions of finite population variance.

B. Local Optima Networks

A fitness landscape refers to the relationship between the
performance or fitness of solutions and their positions in the
problem’s search space. By analysing the characteristics of
the fitness landscape, such as its ruggedness, smoothness, or
presence of local optima, optimisation algorithms can adapt
their search strategies to efficiently navigate and find optimal
or near-optimal solutions.

1We use the GPy package for our GP fit and to draw realisations [8].

LONs are graph representations that capture the relation-
ships between local optima in a fitness landscape [5] [13]. In
LONs, nodes represent individual local optima, while edges
denote the connections between these optima. The presence
of an edge between two nodes signifies the feasibility of
transitioning from one local optimum to another under some
neighbourhood function and transition mechanism. Weighted
edges offer additional information about the strength or sig-
nificance of the connections.

LONs have been extensively studied in various domains.
Initially, they were investigated for combinatorial optimisation
problems [14]–[16]. Subsequently, their application was ex-
tended to continuous optimisation problems [17], [18], where
the construction of LONs involved the use of “basin-hopping”
[19] and Nelder-Mead algorithms [20]. Additionally, search
trajectory networks were proposed for population-based al-
gorithms in continuous spaces [21] and their properties have
been studied by graph theory [17], [22], [23]. LONs have been
extensively studied for example, landscape-aware algorithm
configuration, exploring neutral and rugged landscapes [24],
characterising constrained continuous optimisation problems
[25], visualising multi-objective landscapes [26].

Local Optima (L). The set of solutions of an optimisation
problem, whose fitness is superior to all other solutions in their
neighbourhood. For example, in a minimisation problem, L is
a local optimum if its fitness value is not worse than all other
solutions in its neighbourhood: ∀x ∈ N(L) : f(x) ≥ f(L),
where N(L) is the neighbourhood of L.

Edge (E). Search transitions among local optima are repre-
sented by directed and weighted edges. The weight wij of an
edge from an optimum Li to an optimum Lj represents the
probability of the transition.

Basin of attraction. The basin of attraction Bi of a local
optimum Li in the search space X , is the set Bi = { x ∈ X |
optimiser(x) = Li }. The cardinality |Bi| of this set gives
the size of the basin of attraction of Li.

Local Optima Network (LON). A directed and weighted
graph LON = (L,E), which compacts a fitness landscape
by taking local optima in the search space as nodes and
connecting these nodes with edges based on their transition
as a result of search operators.

III. EXPERIMENTAL SETUP

To ensure the uncertainty in our final results is not un-
duly influenced by variation in the LON generation process,
we conducted experiments on known functions with varying
sample sizes. LONs were created on the original function
with sample sizes ranging from 100 to 10,000 (see Figure
3). Once convergence was achieved, the random walks were
saved for generating LONs in subsequent experiments. Our
goal was to examine the uncertainty stemming from different
GP fits and realisations. We performed 30 GP fits, details of
which can be found in Section III-B. The results of these GP
fits are presented in Table II. Each realisation trajectory was
then used to construct a corresponding LON, resulting in a
total of 30 LONs. Graph measures were calculated for these



TABLE I: Optimisation Benchmark Functions with Bound-
aries and Optima.

Function Optima
# Local Optima Global Optimum x, n = 2

Schwefel 49 (420.9687, 420.9687)
Levy 40 (1, 1)
Griewank 5 (0, 0)
Styblinski-Tang 4 (-2.9035, -2.9035)

LONs, as described in Section III-D. Our objective was to
compare the ‘true’ graph measures obtained from the actual
functions to those from the approximated lanscapes. Latin
Hypercube Sampling (LHS) was employed for random walks
in generating LONs, and the same method was used for fitting
the GPs.

A. Optimisation Functions

The functions used in this paper, sourced from [27], are
listed in Table I.

B. GP Hyperparameters

We have used three different kernel functions. Our goal
was to identify the best fit for the given data rather than
specifically analysing the effects of individual kernel functions.
For each iteration, all kernels were employed. To evaluate
the performance of each kernel function, cross-validation
was conducted. The data was partitioned into training and
validation sets with 70% for training and 30% for testing. The
kernel function that achieved the highest performance on the
validation set was chosen. To determine the optimal values for
the variance and lengthscale of each kernel, we used an ap-
proach based on [28] to systematically explore hyperparameter
combinations and find the settings that maximised the model’s
performance using cross-validation.

C. Graph Construction

LONs were constructed following the method described in
[18], specifically referring to Algorithm 1 and Algorithm 2.
Regarding the Nelder-Mead (NM) hyperparameters, the initial
simplex size was set to 0.05. If any coordinates had a value of
zero, the initial simplex size was adjusted to 0.025, following
the default value for initial simplex generation in NM [29].
To update the discovered nodes, a mean distance measure
was utilized. Similarly, for edges, the algorithm employed the
mean distances of the initially found nodes using a pivoting
approach.

D. Graph Theory Metrics & Statistical Analysis

Network analysis relies on key metrics to understand net-
work structure and behavior. Assortativity measures node
connections based on attributes, while closeness centrality
indicates information flow speed. Degree centrality quantifies
node connections and density reflects network compactness.
In-degree and out-degree centrality assess node attractive-
ness and accessibility. Node and edge count reveal size and
complexity, while PageRank identifies influential nodes and
information flow patterns.

IV. RESULTS

Note that the results are averages and uncertainties derived
from 30 separate Gaussian process fits, conducted with dif-
ferent sample sizes to fit GPs. Additionally, 30 realisations
were obtained from each GP to generate violin plots. By
calculating the average of these we obtain 30 × 30 distinct
network measures.

We first present the network measures we acquired from
LONs for the actual functions. Our primary objective is to
determine the true values of these network measures and
identify the sample sizes at which convergence occurs. This is
to assure ourselves (as much as possible) that any uncertainty
observed in subsequent experiments is not derived from the
domain sampling process to generate the LONs. Boxplots of
2D functions in Figure 3 show that a maximum of 10,000
random walks effectively covered the landscapes across all
the functions. While Schwefel started with a high range in
the measures calculated for the smallest sample size (100) the
measures converge around a size of 10,000 random walks,
Levy and Griewank trends converged around 5,000 walks,
and for Styblinski-Tang, even 100 walks sufficed. The error
metrics in Table II across 30 GP iterations demonstrates their
utility in quantifying model discrepancy from actual values.
Discrepancies for Schwefel and Levy function reduced dramat-
ically from sample sizes of 200, while Griewank required more
samples, and Styblinski-Tang needed only 50 for a good GP fit.
Figure 4 illustrates the correlation length over time, showing
it converges with increasing sample size without overfitting or
underfitting. The analysis of node degree assortativity reveals
a consistent trend across functions. However, it is important
to note that the GP fit for the Griewank function was based
on a relatively small sample size of 50. This limited sample
size introduces some uncertainties in the results obtained for
the Griewank function. Despite this limitation, it is noteworthy
that the uncertainties observed across all fits and realisations
are not significant. Closeness centrality varied across func-
tions, as did degree centrality and density measures, which
were more volatile for GP fits with smaller observation sets.
Meanwhile, in-degree and out-degree centrality reflected the
average number of connections per node, and PageRank helped
track changes in node influence over time. We see the most
variability for Griewank function where the values for example
for density bicenteres around two points 0.6 and 0.45. This can
be explained on the table II for 400 sample size to fit GP the
R2 value is 0.679 whereas for the other functions this value
if around 0.9.

V. CONCLUSIONS & FUTURE WORK

l This research focused on the intricate interplay between
GP fits and the ensuing LONs derived from four different func-
tions. We systematically conducted 30 GP fits per function,
drew realisations, and evaluated the similarities/discrepancies
between the resultant LONs via graph measures. The key
discovery was the distinct variation in LON measures with
GP sample size changes. Significant impacts were observed



Fig. 2: Top row: Contour-plots of the benchmark functions Bottom row: Corresponding LONs. Red nodes indicate global
optima, while blue nodes show local optima. The size of each node is proportional to the size of its basin of attraction. Edges
are weighted based on the probabilities of transition among optima.

Fig. 3: Box Plots of LON Measures in 2D with Varying Sample Sizes. Each measure was obtained from 30 iterations using
sample sizes ranging from 100 to 10,000.

on the number of nodes, edges, and closeness centrality—
measures intrinsically tied to network structure. On the con-
trary, assortativity, PageRank, and degree centrality, which rely
more on overall structure rather than precise network size,
remained largely stable. Such variations suggest an opportu-
nity for optimising LON creation through strategic GP sample
size selection, offering efficiency implications in practical GP
fit applications. Further exploration could determine optimal

sample sizes for specific functions or probe the effects of
diverse GPs on LONs. In summary, our work advances the
understanding of GP fit and LON relationships, emphasising
the importance of fitness landscape analysis. Additionally, this
sheds light on how well GP fits serve as reliable surrogate
models for optimisation and holds considerable potential for
future research in fields applying GP fits.



Fig. 4: Convergence Plots of correlation lengths. Since the
benchmark functions are two-dimensional, each figure show-
cases the correlation length in a separate dimension for GP
models fitted with varying sample sizes. Each measure was
averaged across 30 iterations, showing the behaviour of the
correlation length as the sample sizes change.

TABLE II: Error measures and their standard deviations from
30 GP fits for all benchmark functions on varying random
walk sizes.

Schwefel Function
Sample Size RMSE Rel MSE Abs percentage MAE R2

50 203.0207.656 0.8590.032 199.2569.659 154.6620.792 0.2620.055

100 162.98923.071 0.6890.098 177.03735.014 124.45823.876 0.5150.135

200 62.3037.242 0.2630.031 58.79015.032 38.5484.581 0.9300.016

400 34.5194.248 0.1460.018 20.3113.592 16.8982.157 0.9780.005

Levy Function
Sample Size RMSE Rel MSE Abs percentage MAE R2

50 10.8930.042 0.6840.003 142.8438.810 7.8250.018 0.5320.004

100 3.7930.929 0.1510.002 46.9005.913 3.1690.490 0.5930.014

200 1.0930.107 0.0690.007 16.6412.245 0.7600.052 0.9950.001

400 1.1580.035 0.0730.002 11.1431.296 0.7500.017 0.9950.000

Griewank Function
Sample Size RMSE Rel MSE Abs percentage MAE R2

50 2.7590.064 0.9570.022 581.006212.015 1.2240.120 0.0840.043

100 2.4193.232 0.9010.203 228.278183.349 5.7892.321 0.1690.217

200 2.0220.085 0.7010.029 166.98567.361 0.8780.044 0.5070.043

400 2.5980.396 0.5290.137 81.22132.020 1.1210.200 0.6790.153

STYBLINSKI-TANG Function
Sample Size RMSE Rel MSE Abs percentage MAE R2

50 0.0190.006 0.0070.000 0.0490.028 0.0090.003 0.9210.02

100 0.0090.003 0.0010.000 0.0310.018 0.0050.003 0.9650.039

200 0.0020.001 0.0010.000 0.0080.003 0.0010.000 1.0000.003

400 0.0010.000 0.0000.000 0.0020.001 0.0000.000 1.0000.000
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