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ABSTRACT
The Himalayan alpine zone (HAZ)—a high-altitude zone above approximately 4,100 m.a.s.l., is 
projected to experience strong eco-environmental changes with climate change. As plants expand 
their range in this region, other processes are likely to be impacted; for example, flows and stores of 
water. A first vital step in conceptualizing HAZ ecohydrology is to understand the distribution 
pattern of HAZ vegetation communities. Satellite remote sensing provides one means of doing so, 
but the often patchy distribution of alpine vegetation creates challenges when using coarse- 
grained satellite data whose pixels are typically coarser than the grain of vegetation pattern. Here 
we use fine spatial resolution satellite imagery from WorldView-2 (2 m2 per pixel) coupled with 
elevation model data from the Copernicus GLO-30 product to produce a land cover classification for 
the HAZ. Field data captured during in situ surveys in the Gokyo valley, Nepal, were used to drive 
and then test a random forest classifier. Grassy meadows and dwarf shrubs belonging to the 
Rhododendron and Juniperus families dominate the ecology of the alpine zone in this region, so 
we created three vegetation classes for mapping indicative major plant communities dominated by 
these species. We found that altitude and aspect were dominant drivers of vegetation distribution 
in the HAZ and that the average vegetation cover of Rhododendron spp. and Juniperus spp. reduces 
with increasing altitude, as expected. South- and east-facing slopes were dominated by Juniperus 
spp., whereas north- and west-facing slopes were dominated by Rhododendron spp., and the 
growth extent of Rhododendron spp. (between 4,010 and 4,820 m.a.s.l.) and meadow (between 
4,010 and 4,680 m.a.s.l.) were vertically wider than that of Juniperus spp. (between 4,010 and 
4,660 m.a.s.l.). Results from this study demonstrate the vegetation distribution pattern in HAZ at 
the plant community level and provide an impetus for further studies that seek to understand 
ecohydrological interactions between dwarf plants and water flows and stores in the HAZ.
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Introduction

Climate change is predicted to have significant impacts on 
high mountain systems. As the highest mountain system 
in the world, the Himalayas are projected to experience 
significant eco-environmental changes with continued 
climate change (Dolezal et al. 2016; Nie et al. 2021). The 
Intergovernmental Panel on Climate Change’s sixth 
assessment report (Adler et al. 2022) argues that the 
Hindu Kush Himalaya will experience an increased tem
perature of about 1°C to 2°C, increased annual or summer 
monsoon precipitation, and increasing thaw and degra
dation of permafrost in the coming decades, with more 
pronounced changes under higher emissions scenarios. 
Shifts in climate have already impacted glaciers in the 

region, with evidence for widespread, rapid ice mass loss 
(Bolch et al. 2012), alongside changes in vegetation dis
tribution (Shrestha, Gautam, and Bawa 2012; Mishra and 
Mainali 2017; Anderson et al. 2020). Plants alter the flows 
and stores of water compared to bare ground (Fatichi, 
Pappas, and Ivanov 2016), and interactions between 
dwarf plants and snow exist in many high mountain 
systems (Julitta et al. 2014; Wheeler et al. 2016; 
Tomaszewska, Nguyen, and Henebry 2020). Leng, 
Harrison, and Anderson (2022) argued that ecohydrolo
gical interactions between plants and water are similarly 
likely to occur in the Himalayas. These ecohydrological 
processes will impact the hydrology of the wider region in 
ways that are so far unresolved (Körner 2021) and under 
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future scenarios of vegetation expansion may impact the 
water security for millions of people in catchments sup
plied by Himalayan rivers (Immerzeel et al. 2014). 
Furthermore, alterations in the diversity and functioning 
of alpine systems could impact habitats for various other 
ecological communities (e.g., wildlife; Aryal, Cockfield, 
and Maraseni 2016), also having implications for the 
carbon status of these systems (McLaren et al. 2017). 
Understanding the impacts of climate change on these 
processes could facilitate the development of effective 
strategies to mitigate resulting effects. As a result, scien
tific attention needs to be given to studying alpine ecology 
and hydrology between the tree line and snow line (4,100 
to 6,000 m.a.s.l.)—which we name the Himalayan alpine 
zone (HAZ).

A first vital step in assessing HAZ ecohydrology 
is to understand the basic ecological situation of 
HAZ, which can be met by mapping the distribution 
patterns of HAZ vegetation communities. This is 
a complex task because alpine vegetation often 
assumes a dwarf form with low leaf area index and 
can be spatially patchy at scales finer than the reso
lution of many sensors onboard satellites (Reese 
et al. 2014). Though land cover (LC) maps exist 
for parts of the Himalayas from previous studies, 
these focus on aspects such as changes in agricul
tural land (Misra, Cawkwell, and Wingler 2020), 
horticulture (Rasool et al. 2021), glacial area 
(Kumar et al. 2021), land degradation (Rashid, 
Lone, and Romshoo 2011), and forest assessment 
(Batar, Watanabe, and Kumar 2017), with very few 
products describing HAZ plant series or community 
distribution above the tree line. The commonly used 
NASA Landsat data set (1972–present) provides 
image data at 30-m spatial resolution in five visible 
to near-infrared (NIR) spectral bands (Uddin et al.  
2015), and other moderate-scale sensors such as 
Sentinel-2A at 10-m spatial resolution (Misra, 
Cawkwell, and Wingler 2020; Nandy, Srinet, and 
Padalia 2021) have been used for forest resource 
management (Uddin et al. 2015; Nandy, Srinet, 
and Padalia 2021) and land use monitoring (Misra, 
Cawkwell, and Wingler 2020) in the Himalayas but 
not in the HAZ. Commercial platforms like 
RapidEye at 5 m (Adam et al. 2014), PlanetScope 
at 3 m (Francini et al. 2020), QuickBird-2 at 2.4 m 
(Kavzoglu, Erdemir, and Tonbul 2017), and 
WorldView-2 (WV-2) at 2 m (Pu and Landry  
2012) offer opportunities to monitor vegetation at 
finer spatial resolution but have not been included 
in many studies owing to the financial cost of buy
ing such data. Nevertheless, in those studies that 
have tested the finer-resolution commercial satellite 

imaging products, Pu and Landry (2012) reported 
significantly improved classifications of seven urban 
tree species with WV-2 data (resolution at 2 m) 
compared to IKONOS (resolution at 4 m) and 
attributed this improvement to the finer spatial 
resolution and spectral configuration of the instru
ment. Since then, more studies have shown the 
potential of WV-2 imagery for mapping vegetation 
to species level (Rapinel et al. 2014; Madonsela et al.  
2017). Some studies demonstrated that the very high 
spatial resolution of WV-2 brought about higher 
classification accuracy of LC maps, compared with 
maps using Landsat or Sentinel series data sets 
(Suchá et al. 2016; Araya-López et al. 2018). 
However, most of the alpine studies using WV-2 
focused on mapping tundra in the Arctic and 
Antarctic (Jawak et al. 2019; Terskaia, Dial, and 
Sullivan 2020; Verdonen et al. 2020). A few works 
used WV-2 for vegetation studies at fine scale in the 
Himalayas (Mishra et al. 2018; Nandy et al. 2019; 
Deval and Joshi 2022), but none were conducted in 
the alpine zone above the tree line.

Alpine vegetation communities exhibit high spa
tial heterogeneity and patchiness (Walker et al.  
2006; Graae et al. 2022). This necessitates fine spa
tial resolution workflows for understanding vegeta
tion distribution patterns. In similarly sparsely 
vegetated and heterogenous systems such as dry
lands (Walker, De Beurs, and Wynne 2014; 
Cunliffe, Brazier, and Anderson 2016), studies have 
shown that coarse-grained satellite data poorly 
describe ground conditions because of lower vegeta
tion signal-to-noise ratios, interference from bright 
soil background reflectance, and relatively high spa
tial heterogeneity. All of these impede “robust cali
bration and evaluation of remotely-sensed” data 
products in these systems (Smith et al. 2019). The 
same challenges face remote sensing of plant com
munities in the HAZ (Saha et al. 2005; Singh and 
Pandey 2021), with the added complexity of major 
topographic-induced variations in sensor–surface 
relationships that could theoretically generate uncer
tainties in radiance, reflectance, and higher-level 
products (e.g., vegetation indices). Another chal
lenge to map LC in the HAZ is the paucity of 
ecological information owing to its remoteness and 
difficult weather situations (Erinjery et al. 2018), 
which limits site-based understanding of conditions 
and processes and also prevents robust validation of 
remote sensing retrieved data (Leng, Harrison, and 
Anderson 2022; Zou et al. 2023). Hence, we con
clude that the current main challenges of conduct
ing land cover mapping in the HAZ are twofold: (1) 
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the limited accessibility of satellite products with 
very fine spatial resolution and (2) the scant 
in situ knowledge about the ecological situation 
and spectral properties of LC types in those areas. 
Furthermore, capturing detailed hyperspectral mea
surements of LC types in these areas is further 
hampered by the challenges of accessibility and 
power supplies at altitude. Methodologies employing 
high-specification instruments with high power 
demands are not feasible or appropriate within 
these regions because facilities do not exist to charge 
the instruments repeatedly.

In this study the goal was to generate an LC classifica
tion workflow using WV-2 data, informed by spectral 
measurements and in situ survey data, and to evaluate 
the potential applicability of this approach to exploring 
ecological patterns in HAZ. Our work was driven by five 
research questions.

● What is the spatial grain of patterns in plant com
munities in the HAZ from in situ observations?

● To what extent are dwarf plant communities in the 
HAZ spectrally separable based on spectral infor
mation from in situ and satellite data sets?

● Does WV-2 data provide the capacity for LC clas
sification at the plant community level?

● How does the plant community composition in the 
HAZ vary with elevation, aspect, and slope?

● Using the derived LC map, can the spatial patterns 
of plant communities be discriminated?

Data and methodology

Study area

The study area is located in the Sagarmatha National 
Park (SNP) in the Khumbu Himal region of eastern 
Nepal (Figure 1a). For the purpose of this study, we 
focused on a study region within the national park 
with an areal coverage of 253 km2 (Figure 1b). This 
region is centered on two major valley systems (Gokyo 
and Khumbu) that drain from the high peaks of 
Sagarmatha (Everest) and Cho Oyo, respectively.

The annual precipitation in Khumbu is around 525 mm 
(measurements from Pheriche station at 4,260 m.a.s.l.; 
Perry et al. 2020), 76 percent of which occurs during the 
monsoon season between June and September (Perry et al.  
2020). Dwarf plants and alpine meadow are the dominant 

Figure 1. (a) The study area is located in Sagarmatha National Park, Khumbu Himal, Eastern Nepal. (b) The whole study area (SNP), with 
the orange points denoting seventy-five in situ land cover (LC) survey sites along the hiking trail from Namche Bazar up to the Gokyo 
valley (GKY) and the yellow triangles denoting the four kite aerial photography (KAP) survey sites. (c) A smaller example study area in 
GKY used for initial data evaluation and band selection in LC classification training.
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vegetation communities in the alpine area (Byers 2022), 
comprising mixtures of species such as Juniperus indica 
and various dwarf Rhododendron shrub species (e.g., 
Rhododendron setosum, Rhododendron anthopogon), bar
berry species (e.g., Berberis angulosa and Berberis tsarica), 
Primula denticulata, Ephedra gerardiana, and Cassiope fas
tigiata. In all cases, plant heights rarely exceed 50 cm, and 
the flowering time of these dwarf plants ranges from April 
to August (Byers 2022; Leng, Harrison, and Anderson  
2022). The climatological seasons in Nepal are defined by 
the monsoon period: the pre-monsoon season (March– 
May), summer monsoon season (June–September), post- 
monsoon season (October–November), and winter season 
(December-February; Nayava 1980). The pre- and post- 
monsoon seasons are an ideal time for alpine flora survey, 
where satellite sensors have the best chance of capturing 
cloud-free imagery.

A small area centered on the Gokyo valley, shown in 
Figure 1c, was used for initial data exploration. This 
region—which we refer to as “GKY”—covers 
15.95 km2 and extends from Luza village (27.893569° 
N, 86.718654° E) to Gokyo Lake (27.944359° N, 
86.697768° E). The region extends from an elevation 
range of 4060 to 5147 m.a.s.l. GKY was used as 
a representative example because all of the typical LC 
classes in the HAZ were present and this was the region 
of a detailed field survey and contained more than half of 
our in situ survey sites in the region (forty-nine of 
seventy-five sites; Figure 1c). It therefore provided 
a useful smaller areal subset on which to test approaches 
before scaling up to the wider region.

Remote sensing and field spectroscopy data sets

Various remote sensing data were used, from satellite 
measurements to in situ spectra and aerial photography. 
The following sections describe these data sets in full.

WV-2 data
WV-2 satellite data were acquired in the post-monsoon 
season, on 11 December 2020 (at 52.5° solar zenith and 
24.1° off-nadir angle), with cloud-free conditions. WV-2 
is the first commercial eight multispectral band fine 
spatial resolution satellite sensor and has a swath width 
of 16.4 km, a revisit time between one and three days, 
and a spatial resolution of 2 m. It also has 
a panchromatic sensor (450–800 nm) with 0.5-m spatial 
resolution (Updike and Comp 2010). The WV-2 images 
were geometrically, radiometrically, and atmospheri
cally corrected following the digital globe guidelines 
(Updike and Comp 2010; Núñez et al. 2021). Details of 
the full image processing pipeline are provided in 
Supplementary Data A.

Copernicus (GLO-30) imagery
We used the Copernicus digital elevation model (DEM)— 
part of the high-quality topographic data sets provided by 
Copernicus Programme, which is mainly obtained from 
the X-band, SAR-derived WorldDEM data set and locally 
infilled by other elevation data (Cuellar et al. 2022). This 
DEM offers near-global coverage and provides a regular 
grid of elevations that represent the surface of the Earth 
(Guth and Geoffroy 2021). The product at 30-m resolution 
(GLO-30) has been open access since 2021 (Guth and 
Geoffroy 2021).

In situ spectral reflectance measurements
In situ measurements of spectral reflectance of dif
ferent LC classes were obtained to ascertain ade
quate spectral separability prior to classification 
model training (Serbin et al. 2014). The nature of 
this landscape and the difficulty of charging high- 
powered devices meant that we chose to carry very 
simple low-powered instruments that measured 
reflectance in a limited number of spectral bands 
that aligned well with the major regions sampled 
by optical satellite sensors. These instruments were 
the ALTA and Milton Multiband Radiometer 
(MMR), which are highly portable, sturdy, and reli
able (Figures 2 and 3). In both cases, the spectral 
measurements were calibrated with reference to 
a Kodak gray card with 18 to 20 percent reflectance 
across the measurement range of the instruments. 
This calibration standard had previously been cali
brated relative to a high-grade optical 99 percent 
reflecting Spectralon panel in controlled laboratory 
conditions. Each instrument is described in more 
detail in the following paragraphs.

ALTA instrument. ALTA is a rugged and simple 
active instrument designed by Lunar and Planetary 
Institute scientist Allan Treiman (Treiman 2000). 
Though this device is predominantly used in remote 
sensing and physical teaching, it can be used to easily 
and rapidly collect data on the proportions of colored 
light that reflect from real-world objects. It weighs 
243 g (with battery) and so is highly field portable, 
relying on a 9 V battery for power. Reflectance can be 
measured in eleven colors of light with ALTA 
(Figure 2). This is an active spectrometer, producing 
light in eleven light emitting diodes within a window 
that contains a central detector. When placed in con
tact with the object being measured, each LED is 
illuminated by pressing a button, and the reflected 
flux can be recorded. The measurements of objects 
can be calibrated against standards and manipulated 
into graphs of reflectance versus light wavelength. 
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Because the measurement window in the ALTA is 
around 2 cm diameter (Figures 3a, 3b), this instrument 
could not be used to measure plants with leaves smal
ler than that size. Different from the MMR, the ALTA 
can be used in any lighting condition because it gen
erates its own radiation and so is independent of the 
problems of cloud cover and variable illumination 
experienced when capturing spectral measurements 
under solar illumination.

Milton multiband radiometer. The MMR was designed 
initially as a basic, robust, highly adaptable, low-cost and 
portable radiometer for ground data collection in 
remote sensing (Milton et al. 2009). Different from the 
ALTA, the MMR is a passive device that is held above 
the object being measured. The instrument measures the 
reflectance of a small area of around 1 to 2 m in diameter 
on the ground (varying according to the height it is held 
above the target). Measurements are calibrated relative 

Figure 2. The spectral band information of in situ spectrometers used (MMR and ALTA) and comparison with WV-2.
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to a standard reference card, in this case the aforemen
tioned Kodak gray card (Milton et al. 2009; Figure 3c) 
and has four spectral bands (Figure 2). The MMR was 
suited to canopy measurements and was operated near 
to solar noon in sunlight. Though every effort was made 
to capture measurements under optimal clear blue sky 
conditions, it was not always possible to achieve consis
tency in these factors because of the changing mountain 
weather.

Kite aerial photography
It was not possible to use drones to perform aerial 
survey data collection because of prohibitively expen
sive permits and the lack of facilities for necessary 
battery charging in remote mountain huts. Instead, 
kite aerial photography (KAP) was used to collect aerial 
images of four survey areas—two at Machermo 
(4,426 m.a.s.l.), one at Luza (4,336 m.a.s.l.), and one 
at Dole (4063 m.a.s.l.; Figure 1). A 5.0 m2 KAP foil was 
used in this study because it provided a relatively stable 
aerial platform. A 3D-printed picavet mount was used 
to carry a GoPro Hero 4 Silver within a protective 
shockproof case to ensure waterproof and dustproof 
operation (focal length 5.4 mm, horizontal opening 
angle 60°, aperture range f/2.5; (Casella et al. 2020). 
A picavet is a system of cords and/or pulleys designed 
to keep a platform stable (Duffy et al. 2018). The Go 
Pro was set to take photos automatically at 3-second 
intervals, and a Go Pro remote control allowed for 
manual control of settings (e.g., shutter speed) and 
checking the remaining battery power (Koh and Wich  
2012). Five ground control points were set in each 
survey site as reference for obtaining GPS information 

for each photo (Duffy et al. 2018). Wind conditions 
dictated the altitude of the kite, and sufficient line was 
deployed until the platform was deemed stable to com
mence surveying: typically this was between 20 and 
50 m of line (Duffy et al. 2018). Details about the kite 
and camera used in this study are provided in 
Supplementary Data Table S2.

Field ecological data

Land cover survey
Reference data for remote sensing–driven LC classification 
were generated from an in situ georeferenced field survey 
carried out in the Gokyo valley of Nepal (Figure 1c) 
between 26 April 2022 and 12 May 2022. These surveys 
were conducted along an elevation transect starting at 
3,727 m.a.s.l. and extending to 4,462 m.a.s.l. Overall, data 
from seventy-five field locations (Figure 1b) were surveyed 
in locations proximal to the hiking trail between Phortse 
Thanga and Gokyo. At each location, lists of vegetation 
species were recorded. Polygons of spectrally homoge
neous areas were digitized manually onto the WV-2 data 
set and labeled according to LC class IDs using the 
recorded field locations of reference data. A total of 264 
polygons (comprising 13,089 pixels) from augmented 
visual interpretation formed the reference data set for 
training (75 percent of total, 9,520 pixels) and validation 
(25 percent of total, 3,569 pixels). Figure 4 shows typical 
vegetation communities in three survey sites located in 
Gokyo valley. At twenty-one sites along this same eleva
tion transect from Dole to Machermo, the point-centered 
quarter method (PCQM; Cottam and Curtis 1956) was 
used to establish vegetation density and spatial 

Figure 3. Spectroscopic measurements in action in the Gokyo valley. (a) and (b) Different views of the ALTA spectrometer being used to 
make contact measurements of the reflectance of J. indica. (c) The MMR being used to measure the Kodak gray card reference standard 
before the surrounding R. setosum was measured. Operation of the MMR requires more personnel.
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organization of species within the community. In PCQM, 
the distance of plants to random sample points is con
verted to plant density (details in Supplementary Data B).

For this, a line transect was established in each survey 
site along which, six to eight sampling points were 
chosen with random intervals between 0 and 10 m dis
tance taken from a random number table. Each sam
pling point was divided into four quarters in which the 
distance to the center point, taxonomic identity, and 
plant height were recorded for the nearest woody plant 
species (Jafari, Zarre, and Alavipanah 2013). For plant 
species identification we used the Wildflowers of Mount 
Everest guide (Byers 2022).

On the basis of this survey, we defined three broad 
vegetation classes. Two were shrub classes and were 
dominated by either Juniperus spp. or dwarf 
Rhododendron spp. A third class was named “meadow,” 
and this was predominantly a grass/sedge community.

Signature separability analysis

Jeffries-Matusita (J-M) distance, a statistical parametric 
criterion to check interclass separability, was computed 
for all classes (Wacker and Landgrebe 1971; Sanam, 
Mathai, and Lakshmanan 2023). It is a normalization 
of the Bhattacharya distance between the class means 
and the distribution of values from the means over 

a range of zero to two, called pairwise separability, 
among the classes. A value of zero indicates similar 
classes, and a value close to two indicates highly separ
able classes. J-M distance has been widely used to exam
ine the spectral similarities among the LC classes in 
remote sensing studies (Schmidt and Skidmore 2003; 
Wicaksono and Aryaguna 2020; Sanam, Mathai, and 
Lakshmanan 2023). Here, it was applied to the spectral 
reflectance of Rhododendron spp., Juniperus spp., mea
dow, and bare soil measured by MMR and ALTA or 
derived from WV-2. The J-M separability criterion (J) 
between two classes x and y is defined as follows 
(Richards 2013): 

Jxy ¼ 2 1 � e� dxy
� �

(1) 

where dxy is the Bhattacharyya distance between classes 
x and y and is calculated using the following formula 
(Richards 2013): 

dxy ¼
1
8

my � mx
� �T �x þ �y

2

� �� 1

my � mx
� �

þ
1
2

ln
�xþ�y

2

�
�
�

�
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�xj jj�y
�
�

q (2) 

where x is a vector of the first object’s spectral response, 
y is a vector of the second object’s spectral response, 

Figure 4. The dominant vegetation communities in the alpine zone in Gokyo valley. (a) Near Luza (4,302 m.a.s.l.), where meadow and 
Rhododendron spp. (R. anthopogon and R. setosum) are dominant (highlighted by orange square), and Juniperus spp. (J. recurva and 
J. indica) appear in small patches (highlighted by green square). (b) The landscape of Machermo village (4,414 m.a.s.l.), where the 
south-facing slope is dominantly covered by J. indica interspersed with grasses, and the valley bellow is covered by meadow and rock 
debris. (c) The scene on the north-facing slopes above the village of Machermo (4,452 m.a.s.l.), where meadow and dwarf 
Rhododendron species are the dominant land cover (LC), and R. setosum and Cassiope fastigiata are found in patches on the slopes 
leading down to the valley.
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�x is the covariance matrix of sample x, and �y is the 
covariance matrix of sample y.

Feature selection

We undertook feature selection in a sample area (GKY, 
15.95 km2) containing 65 percent of our in situ survey 
sites. Because feature selection is computationally 
expensive, it was more efficient to use a subset of the 
original data in order to perform various iterations of 
this process. Eleven input single-band images (eight 
spectral bands derived from WV-2 and three topogra
phy-derived bands from GLO-30: elevation, slope, and 
aspect), along with 181 validation polygons (5,004 pix
els in total) from in situ survey and Google Street View 
identification were input as training data. The imple
mentation of recursive feature elimination (RFE) in 
this analysis was conducted using a 500-tree random 
forest algorithm, specifically, the “rfFuncs” method 
within the “caret” R package (RStudio Team 2015). 
The training model was repeated ten times to demon
strate the importance ranking of the bands and metrics 
performance based on the number of input features 
(details in Supplementary data C). The results of this 
analysis conducted in the GKY area informed the 
wider-area analysis.

Land cover classification using random forest 
approaches

Using the optimal band set highlighted by feature selec
tion described in the previous section as input bands 
(details in Supplementary data Table S5), dzetsaka in 
QGIS 3.20.3 (a fast and easy plugin version 3.7 with 
integrated random forest (RF) classifier; Karasiak 2017) 
was used to generate two LC maps in GKY and SNP 
separately. The semi-automatic classification plugin in 
QGIS 3.20.3 (2022) was used with an independent 
validation data set in GKY (1,668 pixels) and SNP 
(3,569 pixels) to generate confusion matrices to test 
the quality of the classification outcome and determine 
the proportion of correctly classified pixels (Ji and Niu  
2014; Shahi, Shafri, and Hamedianfar 2017). User accu
racy (UA), producer accuracy (PA), overall accuracy 
(OA), and kappa (κ) are the parameters for accuracy 
assessment of the classification models and were calcu
lated from the confusion matrices (Ji and Niu 2014; 
Shahi, Shafri, and Hamedianfar 2017). UA is calculated 
by dividing the total number of classified points that 
agree with the reference data by the total number of 
classified points for that class, PA is calculated by 
dividing the total number of classified points that 

agree with reference data by the total number of refer
ence points for that class, and OA and κ provide an 
overall assessment of the accuracy of the classification 
(Shahi, Shafri, and Hamedianfar 2017).

Statistical spatial analysis using the land cover map 
of SNP

To evaluate the impacts of topographical drivers on plant 
community distribution, spatial analysis was undertaken 
based on the LC map produced for the larger SNP extent. 
Firstly, 5,000 random points were generated within SNP 
polygon in QGIS. With each point as center point, 5,000 
buffering areas with a side length of 30 m were created for 
spatial analysis. Because the spatial resolution of the LC 
map was the same as the WV-2 data set (2 m), there were 
225 pixels in each square sample. Vegetation cover (VC) 
of three plant communities (Rhododendron spp. [VCR], 
Juniperus spp. [VCJ], and meadow [VCM]) in each square 
sample were calculated by dividing the number of total 
pixels (225) by the number of vegetated pixels. The topo
graphical features (elevation, aspect, and slope) of each 
square sample were extracted from the GLO-30 data set. 
Hence, an array of 5,000 samples with six properties 
(VCR, VCJ , VCM , elevation, aspect, and slope) was gen
erated. All of the vegetated pixels were grouped by aspect: 
east (45°–135°), south (135°–225°), west (225°-315°), and 
north (0°–45°, and 315°–360°). Analysis of the vegetation 
distribution with topography variation was undertaken 
using this data set. Figure 5 presents an overview of the 
key methodological steps in this study.

Geostatistical analysis

To obtain a quantitative description of the ecological dis
tribution pattern in this study area, geostatistical analyses of 
sample variograms were undertaken based on the LC map 
within SNP extent. This enabled assessment of plant con
tinuous canopy coverage variation over three sampling 
sites—Dole, Luza, and Machermo. Square polygons of 
200 m × 200 m were defined in Rhododendron spp.– and 
Juniperus spp.–dominant areas in each site, and the raster 
layers with LC classes of each polygon were extracted.

Then, to extract measures from the plant continuous 
canopy coverage variograms, models were fitted to the 
raster layers using the “Gstat” geostatistical package in R 
studio 2023.03.1 (Pebesma 2015; R Studio Team 2015). 
For each of the raster layers, a spherical variogram 
model was built to describe data (Anderson and Kuhn  
2008). The range of variogram, which is defined as the 
limit of spatial correlation, where the pair of values that 
are this distance or greater apart no longer causes 
a corresponding change, was calculated by these models 
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(Anderson and Kuhn 2008; Oliver and Webster 2014). 
Here, range represents the continuous canopy coverage 
distance within the sampling area. The spherical model 
is described by Equation (3), where γ is the semivariance 
for a vector of discrete lags (h), a is the variogram range, 
cT is the total sill variance, c0 is the nugget variance 
(spatially uncorrelated variance), and c1 is the spatially 
correlated variance for h ≤ a. Equation (4) defines cT 
where γ hð Þ is the cT if h > a (Deutsch and Journel 1992; 
Anderson and Kuhn 2008). 

γ hð Þ ¼ c1 � 1:5
h
a
� 0:5

h
a

� �3
" #

þ c0 (3) 

cT ¼ c0 þ c1: (4) 

Results

The vegetation land cover distribution in the HAZ

The vegetation LC distribution across twenty-one survey 
sites from Dole to Machermo was determined by PCQM 
survey (details in Supplementary Data Table S3). The 
length of the survey plots ranged between 12.9 and 
45.8 m, with vegetation species number varying from 
one to five. Our observations indicate that Rhododendron 
spp. and Juniperus spp. were the dominant vegetation 
classes throughout the altitude range of 4,063 to 4,445 m. 
a.s.l. The density of various plant communities in twenty- 

one survey sites calculated from the PCQM measure
ments, the density of two dominant genera—Juniperus 
spp. (DJ) and Rhododendron spp. (DR)—and the differ
ence between them (DR-DJ) is shown in Table S3 
(Supplementary Data). In eighteen of twenty-one survey 
sites, Juniperus spp. were distributed more sparsely than 
Rhododendron spp. The density of Juniperus spp. varied 
between 0 and 1.92 individuals/m2, and in Rhododendron 
spp. the density varied from 0 to 37.38 individuals/m2. The 
highest density of Rhododendron spp. (37.38 individuals/ 
m2) was observed in Machermo-1, located on the north- 
facing slope with an altitude of 4,426 m.a.s.l.; the highest 
density of Juniperus spp. (1.92 individuals/m2) was 
observed in Machermo-3, located on a south-facing 
slope with an altitude of 4,070 m.a.s.l. Generally, the den
sity discrepancy varied with slope facing aspect, which 
ranged from 24.30 to 37.38 individuals/m2 in the sites 
located on north-facing slopes, higher than those for sites 
located on east-facing (from 3.81 to 29.02 individuals/m2) 
and south-facing slopes (0.13 to 0.66 individuals/m2). 
Juniperus spp. were more densely packed than 
Rhododendron spp. in only three out of twenty-one survey 
sites—Machermo-4, Luza-5, and Luza-6, which were all 
located on south- and east-facing slopes.

Typically, our fieldwork showed that Juniperus shrubs 
had a median height of 27.4 cm (range = 22.2–38.8 cm) 
and Rhododendron shrubs had a median height of 37.4 cm 
(range = 29.4–46.4 cm). Most of these plants are relatively 
small in terms of their footprint, with the dwarf 

Figure 5. Workflow outline.
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Rhododendron spp. having canopy crowns of less than 50 cm 
in diameter (in many cases, the typical size was around 20– 
30 cm diameter per plant crown). For J. indica, the plants 
exhibited much more diverse allometries depending on 
where they were growing; some plants were 2 to 3 m in 
diameter, whereas others were much smaller, around 50 to 
80 cm typically. In terms of landscape perspective, Juniperus 
plants were typically more widely spaced in the landscape, 
whereas Rhododendron plants showed greater coalescence 
across the canopy, so that the crowns of neighboring plants 
often met, sometimes, but not always, forming a more con
tinuous canopy cover. Figure 6 shows the situation at 
Machermo and Dole: a much more closed canopy can be 
observed in many places where Rhododendron was present 
(Figure 6b) and a more open canopy with sparsely distrib
uted Juniperus plants where Juniperus was the dominant 
species (Figure 6a). Anecdotally and from field notes, we 
observed a shift in dominance between these two shrub 
communities with aspect.

The spectral characteristics of dominant dwarf 
plants in the HAZ

Figure 7 shows the spectral reflectance curves of LC classes 
derived from in situ measurements using MMR and 
ALTA, alongside the spectral information derived from 
WV-2. Details of spectral separability analysis within the 
LC classes (J-M distance) are given in Table S8 in the 
supplementary data.

Measurements using MMR demonstrated that bare soil 
presented distinct spectral separability with the vegetated 
areas (J-M between 1.84 and 1.99), which had higher reflec
tance in all bands of MMR compared with other classes. 

Juniperus spp., Rhododendron spp., and meadow were spec
trally similar to each other in blue (470 nm), green 
(560 nm), and red (660 nm) bands, but Rhododendron 
spp. and meadow displayed lower reflectance than 
Juniperus spp. in NIR (880 nm). R. anthopogon with 
R. setosum and J. recurva with J. indica are two pairs of 
plants with similar spectral characteristics, with J-M of 0.84 
and 0.97, respectively. Spectral measurements using ALTA 
showed that Juniperus spp. and meadow were spectrally 
similar to each other across visible bands (470–660 nm) but 
showed some divergence in the bands between 700 and 
810 nm (J-M = 1.85), Juniperus spp. displayed lower reflec
tance across the infrared red-1 and infrared red-2 bands 
than meadow. Analysis using spectral information derived 
from WV-2 showed that Juniperus spp. and Rhododendron 
spp. were spectrally distinct from meadow and bare soil 
(J-M = 1.99). Meadow and bare soil had similar spectral 
curves across all WV-2 bands (J-M = 1.96), and the average 
reflectance was higher than in the dwarf shrub commu
nities. Juniperus spp. and Rhododendron spp. were spec
trally similar with each other across 400–690 nm 
(J-M = 1.99), but Juniperus spp. displayed higher reflectance 
than Rhododendron spp. across red edge, NIR1, and NIR2 
(705–1,040 nm).

According to the in situ LC survey and spectral measure
ment analysis, and making reference to the vegetation com
munity distribution in the alpine Himalaya summarized by 
An et al. (2015), we chose six LC classes for classification in 
this study: Rhododendron spp., Juniperus spp., bare soil, 
water, meadow, and other (rock, snow, and ice); shadow 
has been removed from the WV-2 image before classification 
(Supplementary Data C). Data captured from the two major 
dwarf shrub communities were grouped owing to their 

Figure 6. The typical distribution pattern of Juniperus spp. and Rhododendron spp. in the HAZ. The (a) Juniperus and (b) Rhododendron 
plants are highlighted.
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similar spectral characteristics: Juniperus spp. (including 
Juniperus recurva and J. indica) and Rhododendron spp. 
(including R. anthopogon and R. setosum). The notation 
“Rhododendron spp.” and “Juniperus spp.” denotes that 
these were the dominant species in the plant community, 
not that the classes were restricted only to describing these 
species in isolation of others that co-occur. Therefore, readers 
should consider these as LC labels that encompass the vege
tation community dominated by said species. The descrip
tion of each LC class is presented in Table 1.

Feature selection result

As seen in Figure 8, there was considerable variation in 
the feature importance score among the eleven input 
features for LC classification. Elevation was considered 

as prior descriptor for LC distribution in HAZ with the 
highest importance score. Among the eight optical 
spectral bands derived from WV-2, B8 (NIR2), B1 
(coastal blue), B2 (blue), B3 (green), and B5 (red) 
followed elevation in the importance ranking. NIR2, 
green, and red bands were considered correlated with 
vegetation existence, corresponding with prior spectral 
knowledge about plants (Thomson et al. 2021). Coastal 
blue and blue bands discriminated between water 
bodies, glaciers, and snow (following expectations; 
Mitkari et al. 2022). B7 (NIR1) and B6 (red edge) 
were less useful than other spectral bands in feature 
selection ranking, probably due to similarity with red 
and NIR2, respectively, and so we excluded these from 
the RF-RFE classification model to reduce redundancy. 
The location of slope in the importance ranking 

Figure 7. (a) and (b) Mean (±standard deviation) of land cover (LC) classes spectral reflectance (400–1,040 nm). In situ measurements of 
reflectance were made using MMR and ALTA. (c) Top-of-atmosphere (TOA) reflectance extracted from WV-2 imagery. Spectra were grouped 
into three vegetation cover classes (Juniperus spp., Rhododendron spp., and meadow) and bare soil. Among the in situ measurements using 
MMR, J. indica and J. recurva were grouped as Juniperus spp., and R. anthopogon and R. setosum were combined in Rhododendron spp.

Table 1. Description of land cover (LC) classes used in this study.
ID Class Description

1 Rhododendron spp. A mixed community dominated by dwarf Rhododendron spp. with a typical canopy height <50 cm. The three dominant species 
were R. anthopogon, R. setosum, and R. lepidotum, normally with dark green leaves with length <4 cm.

2 Juniperus spp. A mixed community dominated by bushy woody shrubs of the genus Juniperus, growing to 50–200 cm tall with height depending on 
elevation/temperature, with largely horizontal branching. The leaves are dark gray-green with awl-shaped leaves in whorls or scale- 
like leaves pressed close to the branches in four overlapping ranks. Dominant species included J. indica with minor components of 
J. recurva; R. lepidotum was sometimes observed occurring with J. indica on drier slopes throughout the study area.

3 Bare soil Bare soil occurring as patches of exposed soil and includes dusty trails and pathways used by herders and grazing animals.
4 Water Surface water including rivers, streams, and lakes.
5 Meadow Graminoid (grass, sedge, rush) and forb patches with canopy height <20 cm, generally perennial, often with stoloniferous or 

rhizomatous growth forms and sometimes sparse in cover.
6 Other Including rock debris, permanent snow, and glaciers.
7 Shadow Shadows generated by topography variation falling on adjacent surfaces, which results in very dark or low brightness values.
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(number ten of eleven) indicates its lower importance 
for vegetation distribution in the HAZ than other 
features.

As displayed in Figures 8b and 8c, the OA and κ 
improved with the increase in input features. There 
was a significant increase from five input bands (OA = 
73.40 percent, κ = 0.58) to six input bands (OA = 
84.17 percent, κ = 0.78). The highest OA and κ were 
reached with seven input bands (OA = 85.03 percent, κ = 
0.79), after which further increases in feature variables 
did not improve OA significantly.

Land cover classification in GKY region

The LC classification map in GKY is shown in Figure 9, with 
the accuracy assessment in Table 2. Using the optimal band 
set as the input data set, this map depicted that six LC types 
were classified with an OA of 85.03 percent, κ of 0.79. 
Reflecting the analysis results from the confusion matrix, 
water and Juniperus spp. were classified with relatively higher 
UA (98.98 and 98.14 percent, respectively), followed by bare 
soil (96.88 percent) and Rhododendron spp. (92.69 percent). 
Meadow was classified with a comparatively higher PA 
(99.67 percent), followed by water (84.78 percent), 
Juniperus spp. (81.87 percent), bare soil (80.52 percent), 
and Rhododendron spp. (79.92 percent). Among the six LC 
classes, “others” was classified with the highest PA (100 per
cent) and the lowest UA (75.63 percent); Table 2 indicates 
that some pixels belonging to the class “others” were mis
classified as Rhododendron spp. and water.

For further evaluation of the classification accuracy 
quality, the zoomed-in WV-2 image, LC map in GKY 
and the in situ survey photos were contrasted in 

Figure 10. The WV-2 image was displayed in false color 
synthesis (NIR1–red–green), for a distinct illustration of 
vegetated area as red color. Three in situ sites with typical 
alpine landscape in GKY were depicted (Machermo-1, 
Machermo-2, and Luza), and in each figure the areas at 
the same locations were highlighted with a number to 
show the comparison between classification result and 
in situ LC. Similar vegetation distribution patterns were 
observed in all three sites; that is, there were rivers 

Figure 8. (a) Summary of feature importance scores of eleven input bands. The band ranking was generated by the RF-RFE model. 
Figures on the right display the variations in test accuracy based on the feature importance ranking and RF classification model. (b) and 
(c) The x-axis presents the number of input bands and the y-axis indicates the overall accuracy (OA) and κ (range = 0–1).

Figure 9. The land cover (LC) map in GKY.
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running through the valley, with rock debris around the 
rivers; the north-facing slopes below river were domi
nated by Rhododendron spp., with the south-facing slopes 
above the river dominated by Juniperus spp.; and meadow 
regions could be observed by the rivers in Machermo-2 
and Luza, corresponding thematically with our own field 
surveys and photographs.

In Figure 10, ten sites were identified and highlighted 
on the WV-2 image, LC map, and in situ photos from 
KAP. These sites were assigned a unique number, which 
allowed for a direct comparison of the LC classification 
result with reference photos from in situ survey. Sites 1 to 
7 were found to exhibit typical LC types where the the
matic patterns corresponded closely with KAP products 

Table 2. Accuracy assessment of classification map in GKY with the optimal band set.

Classification pixels for each class

Validation pixels for each class

Rhododendron spp. Juniperus spp. Bare soil Water Meadow Others Total User accuracy (UA) (%)

Rhododendron spp. 406 13 0 19 0 0 438 92.69
Juniperus spp. 3 158 0 0 0 0 161 98.14
Bare soil 0 1 62 0 1 0 64 96.88
Water 0 0 2 195 0 0 197 98.98
Meadow 0 21 12 0 299 0 332 90.06
Others 99 0 1 16 0 360 476 75.63
Total 508 193 77 230 300 360 1,668
Producer accuracy (PA) (%) 79.92 81.87 80.52 84.78 99.67 100
Overall accuracy (OA): 85.03% Kappa: 0.79

Figure 10. Zoomed-in contrast graphs of WV-2 image, land cover (LC) map, and in situ photos, showing three example sites with 
typical alpine land covers. (a) Machermo-1 is dominated by Juniperus spp., Rhododendron spp., and meadow. (b) Machermo-2 is 
dominated by Rhododendron spp. and meadow. (c) Luza is dominated by Rhododendron spp. and meadow; Juniperus spp. are sparsely 
distributed along the edge of agricultural pasture.
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captured in situ. However, misclassification was observed 
in sites 8 to 10: site 8 displayed a misclassification between 
Juniperus spp. and meadow. Similarly, site 9 showed 
a misclassification between Rhododendron spp. and rock 
debris, and site 10 demonstrated confusion between mea
dow and bare soil. Furthermore, the difference in distri
bution pattern among plant communities is displayed in 
Figure 10c: Juniperus-dominated areas had more open 
canopy, where gaps between plants existed; these patterns 
were not mirrored in the Rhododendron-dominated areas 
where canopies were more coalesced.

To evaluate the representativeness of GKY as an exam
ple study area for SNP, a density histogram of topo
graphic factors—elevation, aspect, and slope—is shown 
in Figure 11. This demonstrates the similarity in the three 
topographical factors in GKY and SNP—a continuous 
range of skewness. In both GKY and SNP, the elevation 
displays a similar unimodal distribution, with a peak 
value around 5,000 (Figure 11a), and the aspect has 
a bimodal distribution, with peak values around 100° 
and 220° (Figure 11b); although the peak values are not 
exactly the same, the similar distribution shape of slope in 
GKY and SNP shows that GKY is a topographically repre
sentative example region for the wider SNP.

Land cover map of SNP

The final LC map in SNP is displayed in Figure 12. The 
three main vegetation cover classes—Juniperus spp., 

Rhododendron spp., and meadow—are depicted in green, 
dark green, and red, respectively. Almost half of the alpine 
area in SNP was covered by water and other (rock, ice, and 
snow). There was a significant shift between the three 
dwarf plant cover classes as altitude increased. A web 
map of SNP LC can be accessed at https://leng.users.earth 
engine.app/view/snplandcovermap.

Using the optimal band set as the input data set and 
an RF classification algorithm, the accuracy assessment 
showed that six LC types were classified with an OA of 
92.56 percent and κ of 0.90 (Table 3). In the confusion 
matrix, Juniperus spp. were classified with the highest 
UA (98.79 percent), followed by Rhododendron spp. 
(96.20 percent), meadow (95.52 percent), and others 
(94.48 percent). Meadow was classified with the highest 
PA (99.13 percent), followed by Rhododendron spp. 
(98.83 percent), Juniperus spp. (90.26 percent), and 
others (90.19 percent). Across the six classes, the greatest 
source of uncertainties came from bare soil and water: 
17.09 percent of bare soil and 18.18 percent of water was 
misclassified as others.

Spatial distribution pattern of dwarf plants in SNP

Figure 13 displays the vertical variation of dwarf plant 
cover classes (Rhododendron spp., Juniperus spp., and 
meadow) within the north, east, south, and west aspect 
groups.

Figure 11. The density distribution histograms of elevation, aspect, and slope in GKY (pink) and SNP (blue).
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The average VC of Rhododendron spp. generally 
decreased with increasing altitude, and the VC of 
Rhododendron spp. located on north-facing slopes was 
higher than that of plants growing on other aspects 
(with the highest peak VC of 93.96 percent around 
4,400 m.a.s.l.). The average VC of Juniperus spp. on all 
aspects had a similar trendline—lower density with 
increasing altitude until 5,000 m.a.s.l. and then tending 
toward zero after 5,000 m.a.s.l. Juniperus spp. was 
observed with higher VC in east- and south-facing areas 
(peak VC of 91.08 and 80.94 percent at 4,000 m.a.s.l. 

respectively) than north- and west-facing areas. The aver
age VC of meadow had a similar distribution shape, 
increasing with altitude from 4,000 to 4,900 m.a.s.l. and 
then decreasing from 4,900 to 5,000 m.a.s.l. There was 
almost no meadow recorded between 5,500 and 6,000 m.a. 
s.l. Meadow was found predominantly on south- and east- 
facing slopes (peak VC of 55.28 and 49.99 percent, respec
tively) compared with west- and north-facing slopes (peak 
VC of 36.24 and 18.39 percent, respectively). Figure 12d 
demonstrates the trends of hypsometric curves and the 
temperature versus elevation in the SNP area, where there 

Figure 12. The land cover (LC) map in Sagarmatha National Park (SNP).

Table 3. Accuracy assessment results using error matrix of classification map with the optimal band set in Sagarmatha National Park 
(SNP).

Classification pixels for each class

Validation pixels for each class

Rhododendron spp. Juniperus spp. Bare soil Water Meadow Others Total User accuracy (UA) (%)

Rhododendron spp. 963 13 0 25 0 0 1,001 96.20
Juniperus spp. 2 408 3 0 0 0 413 98.79
Bare soil 0 1 188 0 5 40 234 80.34
Water 0 0 1 485 0 108 594 81.65
Meadow 0 19 12 0 661 0 692 95.52
Others 3 0 13 19 0 600 635 94.48
Total 968 441 217 529 666 748 3,569
Producer accuracy (PA) (%) 98.83 90.26 83.64 87.85 99.13 90.19
Overall accuracy (OA): 92.56% Kappa: 0.90
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was less land surface at higher elevations and the air 
temperature decreased (from 3.7°C to −10.5°C) with 
increasing altitude (from 3,810 to 6,464 m.a.s.l.) in the 
post-monsoon season.

Table 4 presents the distribution ranges with altitude 
and slope among three plant communities (minimum, 
maximum, median, quartile-1 [Q1], and quartile-3 
[Q3]). The minimum and median altitude for 
Rhododendron spp. and meadow distribution were simi
lar (both around 4,010 to 4,870 m.a.s.l.), which indicated 
that 50 percent of the total Rhododendron spp. or mea
dow pixels extracted from the LC map were growing 
within these altitude ranges in SNP, and 50 percent of 
Juniperus spp. were growing within the altitude range 
from 4,010 to 4,600 m.a.s.l. The altitude range between 
Q1 and Q3 for Rhododendron spp. growth was 4,010 to 

4,820 m.a.s.l., which indicated that 75 percent of 
Rhododendron spp. were located within this area. The 
Q3 of altitude range for Juniperus spp. and meadow 
growth was lower than the ranges for Rhododendron 
spp. (4,660, 4,680, and 4,820 m.a.s.l., respectively). The 
median slope gradient for Rhododendron spp. growth 
(28°) was higher than those for Juniperus spp. and mea
dow (27° and 26°, respectively), which indicated that 
Rhododendron spp. is more adjusted for growing on 
steeper slopes than the other two plant species.

Quantitative analysis of the ecological pattern 
within plant communities

Visual assessment variograms per vegetation class in 
Figure 14 showed differences in texture between the 

Figure 13. (a), (b) and (c) The scatterplots of three plant communities’ (Rhododendron spp., Juniperus spp., and meadow respectively) 
vegetation cover (VC) derived from land cover (LC) map in SNP versus the elevation increase. Each point in the scatterplot represents the 
average VC within the corresponding elevation. Linear regression models are depicted in four colors to display the VC variation trend with 
an increase altitude for four aspect groups (east, north, south, west). (d) The hypsometric curve describing the landscape distribution 
(green line) with altitude and the changing temperature relationship with altitude (gray line) derived from four automatic weather 
stations in Khumbu—Phortse (3,810 m.a.s.l.), Pheriche (4,260 m.a.s.l.), Pyrimad (5,035 m.a.s.l.), and Camp II (6,464 m.a.s.l.)—during the 
post-monsoon season in 2019 (Perry et al. 2020).

Table 4. Altitude and slope distribution range within three vegetation communities.
Altitude range of plant distribution (m.a.s.l.) Slope range of plant distribution (°)

Rhododendron spp. Juniperus spp. Meadow Rhododendron spp. Juniperus spp. Meadow

Median 4,870 4,600 4,870 28 27 26
Minimum 4,010 4,010 4,010 0 0 0
Maximum 6,340 5,840 5,720 70 68 75
Interquartile 540 440 450 19 17 18
Quartile-1 (Q1) 4,280 4,230 4,240 10 9 9
Quartile-3 (Q3) 4,820 4,660 4,680 29 26 27

16 R. LENG ET AL.



Rhododendron-dominated and Juniperus-dominated 
plant communities. Table 5 summarizes the variogram 
parameters for each model (within 0–100 m). In general, 
the area in which Rhododendron spp. were dominant 
(range = 28–98 m) displayed textures with a greater 
length scale compared to Juniperus-dominated zones 
(range = 21–24 m) in Dole, Luza, and Machermo. 
Greater range distances for Rhododendron spp. were 
found at lower altitude (28 m in Machermo, 72 m in 
Luza, and 98 m in Dole), indicating that Rhododendron 
forms larger clumps at lower altitude and is more spar
sely distributed at higher elevations. Juniperus spp. 
showed similar patterns (range = 24 m or less, typically) 
across all three sites.

Discussion

What is the spatial grain of patterns in plant 
communities in the HAZ from in situ observations?

In this study, we investigated the dwarf plant distribu
tion pattern from in situ photogrammetry and PCQM 
measurements. The PCQM result showed that the 
number of plant species varied from one to five within 
the 12.9 to 45.8 m range (Table S5). We have not been 

able to find other studies that deliver comparable data 
on woody plant density in similar Himalayan systems, 
beyond one that reported a shrub diversity survey in 
the HAZ (altitude of 3,560–4,485 m), which found 
a higher average number of thirty-two shrub species 
within a 20 × 20 m plot (Rana, Samant, and Rawat  
2011). Our shrub diversity result indicated that map
ping LC classes in the HAZ at the plant community 
level required remote sensing data at fine spatial reso
lution (e.g., 2 m of WV-2 compared with 10–60 m of 
Sentinel-2; details are provided in Supplementary 
data D) for the distinction of Juniperus spp. and 
Rhododendron spp. This is likely due to the specific 
spatial grain of plant canopy structure in these domi
nant species.

Secondly, the measurements from PCQM displayed 
a denser distribution of Rhododendron spp. than 
Juniperus spp. in 86 percent of the survey sites in this 
study (n = 75). A similar vegetation distribution pattern 
was also shown in the photos from the KAP survey—the 
plant density in Juniperus-dominated areas was visually 
sparser than that in Rhododendron-dominated areas, and 
the gaps between Juniperus spp. were not mirrored in the 
Rhododendron-dominated areas (Figure 10). Also, accord
ing to the PCQM result, Juniperus-dominated south-facing 

Figure 14. Continuous coverage variograms within Rhododendron spp.– and Juneripus spp.–dominant areas in (a), (d) Dole, (b), (e) 
Luza, and (c), (f) Machermo. In each figure, the curve represents the spherical function fitted to the semivariance model, the distance 
range is marked, and the photos from our in situ survey present the ecological situation in each site.

Table 5. Range variances extracted from model variograms within Rhododendron spp. (R) and Juniperus spp. (J) in Dole, Luza, 
and Machermo.

Site Dole (4,063 m.a.s.l.) Luza (4,336 m.a.s.l.) Machermo (4,426 m.a.s.l.)

Plant community R J R J R J

Range (m) 98.37 22.14 71.96 23.52 27.87 21.41
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areas had lower density than Rhododendron-dominated 
north-facing areas. Higher vegetation density in north- 
facing forests compared to south-facing areas has been 
reported in Manang Valley—a semi-arid area located in 
central Nepal (Ghimire et al. 2010; Måren et al. 2015), 
because the higher solar radiation, higher evapotranspira
tion, and less available snowmelt water dry out the south- 
facing forests faster, hence reducing tree growth (Måren 
et al. 2015). Indeed, the rounded patches of J. indica shown 
in Figure 10 with gaps between them reflect the gradual 
expansion of this recently protected species into suitable 
habitat, after many years of burning and harvesting. In less 
disturbed alpine areas, dwarf J. indica forms a continuous 
cover, mixed with other dwarf shrubs.

The ecological pattern difference between Rhododendron 
spp. and Juniperus spp. communities was also demonstrated 
through geostatistical analyses (section “Quantitative analysis 
of the ecological pattern within plant communities” in this 
article), and patterns shown here reflected observations 
made in the field, which was that Rhododendron spp. formed 
a more continuous canopy cover than Juniperus spp. across 
all three sites (Table 5). The geostatistical results did reveal an 
altitudinal trend in Rhododendron spp. where the range 
reduced at higher altitude (Table 5), and this corresponds 
with our in situ survey photos shown in Figure 14 where 
Rhododendron spp. formed a coalesced canopy over visually 
larger areas in Dole compared to Luza and Machermo. Dole 
village lies close to the tree line. These geostatistical results 
also correspond with PCQM data that showed that Juniperus 
spp. (1.92 individuals/m2) was more sparsely distributed 
than Rhododendron spp. (37.38 individuals/m2).

The differences between ecological patterns of 
Rhododendron spp. and Juniperus spp. could be attrib
uted to the aspect of their dominant areas. Plant species 
richness was found to be higher in south-facing com
pared to north-facing areas in subarctic Canada, attrib
uted to the higher soil temperature and active layer 
depth in south-facing areas (Dearborn and Danby  
2017). The decreases in vegetation cover were linked 
with decreasing temperature with increasing altitude in 
our study area (Figure 13); this temperature-driven 
vegetation distribution pattern mirrors previous 
reports from the alpine Himalaya (Telwala et al. 2013; 
Hamid et al. 2020). However, Kutiel and Lavee (1999) 
highlighted that moisture plays a deterministic role in 
the composition, structure, and density of plant com
munities in areas with less than 600 mm annual pre
cipitation. Although there is a dearth of data on alpine 
communities in this regard and so it is difficult to make 
comparisons or corroborations, we posit that a similar 
moisture-driven pattern is possible in the HAZ area of 
Khumbu because the region experiences an annual 
precipitation of 525 mm (Perry et al. 2020).

Previous studies have demonstrated the important 
effects on hillslope–stream connectivity from the varia
tion in vegetation pattern, density, and landscape het
erogeneity in semi-arid ecosystems (Emanuel et al. 2014; 
Saco et al. 2020), because plants impact soil–water bal
ance, available energy (from solar radiance), and preci
pitation distribution patterns (Keim, Skaugset, and 
Weiler 2006). The hydrological changes brought by 
vegetation density variation are also possible in the 
HAZ, because the limited available precipitation and 
temperature fluctuations (during the day and at night) 
also occur in alpine mountain systems, so this requires 
deeper consideration and perhaps new empirical experi
ments to test ecohydrological relationships in the HAZ.

Readers should note that we performed our field 
surveys during the spring months of April/May when 
some species had not leafed out. Therefore, there will be 
some biases in our PCQM results—notably, two species 
are missing from our survey data that might be expected 
to be present. Potentilla fruticosa var. arbuscula is 
a common alpine shrub on moister north-facing slopes 
that had been observed previously in the Khumbu area 
up to 5,000 m elevation (Byers 2022). Similarly, Ephedra 
gerardiana is a common subshrub on drier slopes in the 
alpine zone (Byers 2022) and was also missing from our 
plant survey records.

To what extent are dwarf plant communities in the 
HAZ spectrally separable based on spectral 
information from in situ and satellite datasets?

Spectral similarities among dwarf plant species from the 
same genus (i.e., J. ecurve and J. indica, R. anthopogon, 
R. setosum, and R. lepidotum) were observed in the mea
surements of ALTA and MMR (Figure 7). From in situ 
measurements, three vegetated LC classes—Juniperus 
spp., Rhododendron spp., and meadow—showed visually 
separable spectral reflectance in red, green, and NIR 
bands (Figure 7). The spectral separability between 
Juniperus spp. and Rhododendron spp. could be explained 
by the difference between their leaf color and shape: 
Juniperus spp. have dense needle-like leaves, greener 
than the broad leaves of Rhododendron spp. (Mishra 
et al. 2014). Corresponding with the in situ measure
ments, the top-of-atmosphere (TOA) reflectance (derived 
from WV-2) of Juniperus spp., Rhododendron spp., and 
meadow was also spectrally separable (Figure 7; J = 1.99), 
particularly in red and NIR bands. Red and NIR bands 
have been associated strongly with vegetation detection 
(Carlson and Ripley 1997; Pettorelli et al. 2011) and also 
have been reported to be useful for alpine vegetation 
monitoring; for example, the flowering time of wild
flowers in the Cascade Range (John et al. 2020), 
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fractional VC of tundra in the Arctic (Riihimäki, Luoto, 
and Heiskanen 2019), and alpine meadow phenology in 
the Alps (Rossi et al. 2019).

However, the challenges of conducting in situ surveys 
in the Himalayas limited the number of measurements 
that could be captured during fieldwork. The spectral 
measurements of plant canopies in this study were only 
obtained in four bands (blue, green, red, and NIR). The 
spectral characteristics of plant canopies can reflect their 
traits and structures (Homolová et al. 2013), which are 
important metrics for exploring the ecohydrological 
processes in HAZ, because the temperature and moist
ure conditions in the microenvironment under dwarf 
plant canopies predominantly drive their interactions 
with snow (Löffler et al. 2022).

Also, red-edge and shortwave infrared (SWIR) bands 
from Sentinel-2 have been identified as being sensitive to 
plant traits (Ramoelo et al. 2015; Sibanda, Mutanga, and 
Rouget 2016), such as the concentration of chlorophyll 
(Sims and Gamon 2002), water, nitrogen, and carbon 
(Laurin et al. 2016). By band fusion with satellite missions 
carrying sensors with wider wavelength (e.g., Sentinel-2 or 
Landsat 8), WV-2 may provide more vegetation character
istics with finer spatial resolution and larger area in HAZ.

Do WV-2 data provide the capacity for land cover 
classification at the plant community level?

According to the in situ plants species and spectral 
survey results, mapping vegetation distribution in the 
HAZ using remote sensing methods requires a satellite 
data set with a spatial resolution finer than 20 m. The 
advanced properties of WV-2 (eight multispectral bands 
and a panchromatic sensor, spatial resolution of 2 m 
[multispectral] or 0.5 m [panchromatic]) provides 
potential for mapping vegetation distribution in the 
HAZ at the plant community level, as demonstrated in 
this study. Combined with elevation and aspect bands, 
an LC map of the SNP with high accuracy (OA = 
92.56 percent, κ = 0.9) is shown in Figure 12.

However, some misclassification was observed in the 
SNP LC map (Figure 12). Firstly, although previous 
studies demonstrated that the imbalanced LC classes 
can be used to improve the RF classifier without signifi
cantly compromising overall and other per class classi
fication results (Mellor et al. 2015; Noi and Kappas  
2017), the rare LC still might be underrepresented rela
tive to more abundant classes, resulting in poor accuracy 
for minority classes (Chen, Stow, and Gong 2004), 
which could explain the misclassification between bare 
soil and meadow in this study (Figure 10). Secondly, the 
WV-2 image in this study was acquired during the post- 
monsoon season (November). Juniperus spp. and 

Rhododendron spp. may have different phenological 
phases in the pre-monsoon season (March–May) that 
influence their spectral response and, subsequently, spe
cies classification (Shoko and Mutanga 2017). 
Additional phenology information may reduce some 
confusion in the LC classification; for example, meadow 
and bare soil. In this regard, the accuracy of mapping 
and monitoring the dwarf plant distribution in the HAZ 
may be improved by identifying the optimal period for 
monitoring. Constant observations of vegetation traits at 
some key sites in this zone (e.g., by operating pheno
cams) could provide useful phenological information to 
improve the LC classification. Furthermore, the alpine 
zone in Nepal usually has a growing season that coin
cides with the Asian monsoon period (Rai et al. 2021), 
where cloud cover is very high, and therefore this may 
preclude optical remote sensing from satellite 
approaches. Radar data from satellite platforms (e.g., 
Sentinel-1 SAR) with the capacity to penetrate clouds 
promise to be useful for the development of mapping LC 
and monitoring snow dynamics in the HAZ, if terrain 
effects can be reduced and spatial resolution can be 
improved (Ranson et al. 2001).

How does the plant community composition in the 
HAZ vary with elevation, aspect, and slope?

We found that dwarf Rhododendron spp. preferred to 
grow on the north-facing slopes, dwarf Juniperus spp. 
were found preferentially on the south-facing slopes, 
and the reduction in density of Rhododendron spp. 
with altitude increase is slower than Juniperus spp. 
Aspect-related differences in vegetation composition 
are not uncommon in alpine regions (Dearborn and 
Danby 2017; Yang, El-Kassaby, and Guan 2020), but 
variation in exposure to solar radiation may influence 
environmental variables differently depending on the 
geographic location of the study (Dearborn and Danby  
2017). Yang, El-Kassaby, and Guan (2020) found that in 
dry mountainous valleys, north-facing slopes were asso
ciated with higher soil moisture and nutrient than 
south-facing slopes, which benefited plant growing and 
enriched the species diversity in north-facing slopes. In 
contrast, in subarctic alpine mountains, Dearborn and 
Danby (2017) found that the plant community compo
sition difference on south- and north-facing slopes was 
driven primarily by soil temperature, associated with the 
variation in exposure to solar radiation. Furthermore, 
the gradient variation of meadow demonstrated in 
Figure 13 concurs with findings from other shrub 
encroachment studies in the Himalayas—shrub 
encroachment in the alpine Himalayas and meadows at 
the lower elevations of the alpine zone (between 4,000 
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and 4,200 m) were encroached most rapidly (Brandt 
et al. 2013; Zhang et al. 2022). This could explain the 
peak value of meadow density found around 4,900 m 
elevation in this study.

It is notable that human activities result in land use 
change with potentially dramatic effects on vegetation dis
tribution in the HAZ (Xie et al. 2021). Grazing patterns are 
changing as outmigration limits the available workforce for 
herding, and the increasing price of cattle is resulting in sell- 
off of yaks and yak–cow crossbreeds (Byers and Shrestha  
2022). Less livestock also means less burning (to increase 
grass/sedge cover and reduce shrub cover for grazing). The 
need for yak dung to power stoves for tourist lodges results 
in livestock being kept closer to lodges and out of the 
highest pastures (Aryal, Maraseni, and Cockfield 2014). 
Local protection of dwarf juniper in Khumbu and provision 
of porter shelters has reduced fuelwood harvesting pressure 
on dwarf shrub communities (Byers and Shrestha 2022). 
These activities are predicted to enhance the vegetation 
changes under a warming climate; for example, expanding 
greenness at higher elevations and, potentially, shrub 
encroachment. Hence, exploring the hydrological mechan
ism and potential impacts between the dwarf plants and 
snow in the HAZ is particularly vital for the downstream 
basin safety and resilience. Consideration of land use his
tories and their effects on vegetation community patterns is 
beyond the scope of this study but would be a particularly 
interesting area for further exploration in heavily impacted 
or managed areas within the HAZ.

Conclusion

In this study in situ spectral measurements, field eco
logical observations and WV-2 data were analyzed to 
establish the spectral separabilities within the main 
dwarf plant communities in the HAZ. According to 
the spectral information and in situ survey, WV-2 
and GLO-30 data sets were combined to assess their 
capacity for LC classification at the plant community 
level. To the best of our knowledge, this LC map has the 
finest spatial resolution (2 m) in the SNP and is the first 
to characterize the vegetation distribution pattern at 
the plant community level in the HAZ. Based on the 
LC map with the optimal band set in the SNP, we 
analyzed the distribution pattern of three vegetation 
communities: Juniperus spp., Rhododendron spp., and 
meadow. Altitude and aspect are predominantly driv
ing the plant distribution pattern in the HAZ: Juniperus 
spp. are predominantly growing on south- and east- 
facing slopes, and Rhododendron spp. are predomi
nantly growing on north- and west-facing slopes; 
Rhododendron spp. have a wider growing gradient 
than Juniperus spp. in our study area.

Moving forward, to explore the feedback from the 
Himalayas to climate change, more targeted in situ mea
surements of metrics identifying ecohydrological interac
tions between dwarf plants and snow is needed. Citizen 
science efforts could provide opportunities for wide and 
effective monitoring in this region. With the support 
from multisource remote sensing data sets, tracking 
backwards and forward for decades would be beneficial 
for further understanding about feedback in response to 
climate change from this sensitive mountain system.
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