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Abstract 

Bayesian Latent Class Models (BLCMs) are algorithms that are used to infer 

disease prevalence when true disease statuses and gold-standard diagnostic 

tests are not available. However, limited attention has been given to the 

specification and validation of BLCMs, which are necessary if credible estimates 

of diagnostic test performance and disease prevalence are to result. 

Across six technical chapters, this thesis investigates the fundamental principles 

of specification and validation via a series of experiments that apply BLCMs to 

ante-mortem diagnostic test data. To achieve this, simulated arrays of 

diagnostic test data are generated to reflect the reality of the imperfect trapping 

and testing efforts that take place in nature. Moreover, the classic Hui-Walter 

algorithm is generalised within a Bayesian framework to unlock the capability of 

BLCMs to handle both varying prior information and varying hypotheses 

simultaneously. 

Methods to validate BLCMs are developed and then scaled up across a wide 

range of possible diagnostic testing scenarios via the creation of procedures to 

explore high-dimensional parameter spaces. For the first time, it is 

demonstrated that the credibility of BLCM inferences is in fact predictable. 

Among the key findings discovered are dependence structures that are critical 

to the identifiability of BLCMs; these structures are uncovered at the limits of 

parameter spaces, and between the means and variances of the inferred 

statistics. Accordingly, methods are explored to mitigate for these structures as 

a further prerequisite to obtaining credible estimates. 
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Attention then turns to testing the core assumptions used to specify the 

generalised Hui-Walter algorithm. The assumptions about where the true values 

of diagnostic test performance and disease prevalence exist are removed, and 

the resulting sensitivity analyses provide confirmation that the findings reported 

throughout the thesis are indeed generalisable, even to unusual testing 

scenarios. 

With a rigorous validation protocol in place, a novel class of time-dependent 

BLCMs is specified, and then provided with data from one of the world’s longest 

running wildlife studies. New and rigorously validated inferences of disease 

prevalence are revealed, and anecdotal trends are corroborated, highlighting 

the real-world applications of this thesis.  
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Preface 

I spent many happy childhood summers on my Grandad’s farm in 

Herefordshire, where there was a large sett of badgers in the woodland above 

his top field where he used to keep game birds. At dusk, if I lay very still on the 

grassy slope of the field before the cattle wire fence, I could experience the thrill 

of seeing and hearing the badgers move up close. Having recently lived on a 

cattle farm in Cambridgeshire, which this year experienced an inconclusive 

reactor, I have a first-hand understanding of the upset that even the suspicion of 

bovine TB in a herd can cause. 

I am fortunate to have had a fascinating exposure to our natural world, which 

has inspired and shaped my career in conservation, but my specific interest in 

wildlife disease modelling unexpectedly began during my Master’s degree in 

2016. After my dissertation project based around the use of fixed-point 

photography fell through, I found myself with an unexpected alternative project, 

kindly supervised by Prof. Dave Hodgson, who supervised this present thesis. 

This alternative project required me needing to learn how to code, and to then 

be able to simulate disease flows between social animals. “Baptism of fire” 

somehow understates the experience. But gratifyingly, I was able to offer 

improvements on the well-known susceptible-infected-recovered model, and I 

became fascinated both by the subject, and coding, and—in combination—what 

I could possibly do next. 

After an expedition to remote South Africa researching leopards, this part-time 

and self-funded PhD project started on 05 February 2018, on the same day as 

my first job at Natural England. In total, these past five and a half years have 
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brought with them five new jobs, four house moves—and a lot of work—and I’m 

now finishing this PhD thesis where it all began, back in Cambridge.  

I’m proud to have established myself as an environmental planning 

professional, at a principal grade, at the same time as making my ambition to 

“discover” using wildlife disease models a reality—particularly in the aftermath 

of the COVID-19 pandemic. 

Globally, the evidence seems clear: we’re in a climate and nature crisis, and I’m 

excited to combine my skills from “work” and “PhD” to contribute to making a 

difference in the battle that lies ahead. 
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Definitions 

This section provides definitions for the key terminology employed within this 

thesis. Listed in alphabetical order, they provide a convenient reference 

resource for the reader, complimenting the more substantive terminology 

definitions and explanations provided in the core chapters one to eight. 

Definitions are necessary, because throughout the relevant literature, there is 

widespread inconsistency in the usage of many of the terms in question. For 

instance, the terms “estimate”, “predict” and “infer” are often used 

synonymously, with precise definitions being difficult to come by; and the 

definition of “error”—a metric used to quantify “noise” in a system—is highly 

specific to the experimental design in question. None of these variations in 

usage are necessarily “wrong”, but the resulting discordance is hardly helpful to 

either practitioners or the broader development of the Bayesian Latent Class 

Models with which this thesis is concerned. 

Three specialised dictionaries published by the Oxford University Press have 

been consulted when formulating this lingua franca: A Dictionary of 

Epidemiology 6th Edition (Porta, 2016), A Dictionary of Statistics 3rd Edition 

(Upton and Cook, 2014), and A Dictionary of Ecology 5th Edition (Allaby, 2015). 

Accordingly, the collection of 36 select definitions outlined below should form a 

welcome contribution to the discipline of disease ecology since it provides a 

summary of the words crucial for communicating to fellow academics—

statisticians, ecologists, epidemiologists and beyond—on the subject of 

Bayesian Latent Class Models. 

Accuracy: A metric summarising the distance between an inferred value and 

the truth (Cochran, 1977), with small values describing a relative lack of error 
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(Porta, 2016) associated with that inference. Accordingly, this thesis examines 

the accuracy of diagnostic test sensitivity (Se), diagnostic test specificity (Sp) 

and disease prevalence (P), where a high degree of accuracy is achieved when 

the posterior inference is close to the parameter’s true value. Specifically, the 

accuracies of Se and Sp indicate how well a “test”—i.e., a diagnostic test for a 

wildlife disease—can produce a correct outcome, whereas the accuracy of P 

indicates how well a Bayesian Latent Class Model infers the proportion of 

infected individuals within a sampled population. In this thesis, accuracy is 

quantified by the metric inferential error or the metric inferential bias, and the 

term accuracy should not be confused with the term diagnostic accuracy. 

Bayesian Latent Class Model (BLCM): A method for classifying observed 

data into unobservable groups using Bayesian inference (Li et al., 2018). This 

method offers an approach to inferring Se, Sp and P using probability 

distributions given multiple imperfect tests, and given test data where the true 

disease statuses of individuals are unknown. In this thesis, BLCMs are declared 

using the JAGS language and may be referred to as “the model” or “models” for 

brevity. 

Bias: see inferential bias. 

Constraint: A condition placed on either the prior knowledge that a model uses, 

or the inference framework, in order to direct model outcomes (Berkvens et al., 

2006). Two types of constraint are defined for the purposes of this thesis: 

parameter constraints are used to control the space in which the truth can lie, 

and are applied to the true values in simulation studies; and prior constraints 

are used to direct the information provided to the BLCM and are applied by 

restricting prior distributions to justified ranges. 
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Degrees of freedom: The number of freely varying units of information 

associated with an inference (Lynn and Healey, 1992), which in this thesis is 

calculated as the number of possible diagnostic test outcomes minus one, in 

accordance with Siegel and Castellan, 1988. Note, a second type of degrees of 

freedom exists within the work presented in this thesis, associated with the 

regression models that are specified. Degrees of freedom in this case are 

calculated as a function of the sample size used, and are not explicitly reported 

given that each regression uses data from hundreds of simulations. 

Deterministic method: An approach to calculating Se, Sp and P perfectly 

(Upton and Cook, 2014; Porta, 2016) under the assumption that all the required 

data is present, i.e. that a population has been censused perfectly. The work 

presented within this thesis tests this assumption, and so calculates Se, Sp and 

P using stochastic methods.  

Diagnostic accuracy: A term that expresses the collective Se and Sp of an 

imperfect diagnostic test (Porta, 2016). The diagnostic accuracy of any 

diagnostic procedure or test describes how well it discriminates between health 

and disease, and improvements in diagnostic accuracy bring the diagnostic test 

closer to a gold standard diagnostic test. 

Diagnostic Test: Any procedure or information—such as a medical observation 

or an expert opinion—that can be used to diagnose infections with an assigned 

diagnostic accuracy. Note, the term “battery of diagnostic tests” (McDonald and 

Hodgson, 2018) is used in this thesis to describe groups of two or more 

diagnostic tests. 

Disease Prevalence (P): the proportion of infected individuals within a 

population (Porta, 2016). 
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Error: see inferential error. 

Global statistic: Global statistics or “grand means” are arithmetic averages, 

calculated irrespective of group (Upton and Cook, 2014), that are used to 

provide signals that make meaningful statements at a given level (Vesely, Finos 

and Goeman, 2021). Accordingly, in this thesis global statistics describe the 

collective accuracy or precision of diagnoses by averaging across all inferred 

parameters—Se, Sp and P—for a given position in parameter space, where the 

subsets of values making up the average inferences of Se, Sp and P are of an 

equal sample size, and are considered irrespective of any biological 

implications of Se, Sp and P. The experiments described in this thesis therefore 

use global statistics to highlight volumes of parameter space that require further 

statistical investigation—i.e., to provide a preliminary determination of those 

regions where truth influences the accuracies and precisions of inferences of 

Se, Sp and P in different ways—but not to infer causation, in order to avoid 

making inferences that might be in conflict with Simpson’s Paradox (Simpson, 

1951). Note, in this thesis, the inferential error of a global statistic is termed a 

global error, and the inferential bias of a global statistic is termed a global bias.  

Gold standard: A diagnostic test where both Se and Sp have true values of 

one, meaning that diagnostic accuracy is perfect. Note, even this well-known 

phrase is subject to a diversity of usage, for example, it is used synonymously 

with the phrase “reference standard” (Bachmann et al., 2005; Hahn, Schwarz 

and Frickmann, 2019), which is often used to mean a widely accepted but 

imperfect standard (Miller, 2012) that may theoretically be bettered. To address 

this diversity, diagnostic standards have been sub-classified as, for example, 

“silver” standards, when Sp is perfect and Se is imperfect, and “bronze” 

standards, when Se is perfect and Sp is imperfect (Wu et al., 2016). 
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Importantly, the work presented in this thesis addresses ecologists’ requirement 

to diagnose infections ante-mortem, in instances where gold standard tests are 

desired but not available. It follows that while "gold", "silver", and "bronze" 

standards are useful and of value, they cannot be applied to the problem of 

diagnosing ongoing infections in many wildlife disease systems—such as the 

badger-bovine tuberculosis system investigated in Chapter 8—where perfect 

diagnoses can only be established post-mortem.   

Hyperparameter: A configuration variable given to a BLCM that defines how it 

should operate. The hyperparameters defined for the purposes of this thesis are 

described in  

Table 10-3: The MCMC hyperparameters used to define the JAGS models 

written using the jagsUI package (Kellner, 2015), their values, and why those 

values were chosen. These hyperparameters are relevant to the simulation 

analyses conducted between Chapters 5 to 7. 

. 

Identifiability: A term to describe whether inferring Se, Sp and P is possible, 

given a model and the available data. The word possible is caveated by the fact 

that the BLCM may produce inferences, but these inferences sometimes may 

not be rational, or improve on the existing prior information. 

Inference: Inferences describe characteristics of a posterior distribution using 

the best available evidence (Upton and Cook, 2014), therefore offer informed 

estimates of true parameter values, and in this thesis inferences are made 

using Bayes’ theorem. Note, in contrast to an inference, a prediction is an 

evidence-based speculation, usually regarding the probability of certain 

outcomes (Upton and Cook, 2014), that for the purposes of this thesis is made 
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outside of the frameworks of a regression or a Bayesian inference. Moreover, in 

contrast to an inference or a prediction, an estimate is a realised value given 

data (Upton and Cook, 2014), which in this thesis describes the population-level 

findings of regression analyses. 

Inferential bias or “bias”: The systematic difference between an inference and 

the truth (Rothman, Greenland and Lash, 2014; Allaby, 2015). Biases represent 

the directionality of inferential error. Accordingly, bias is calculated in this thesis 

as the difference between inferred values of Se, Sp or P and the true values of 

Se, Sp or P. Bias indicates if a parameter has been underestimated or 

overestimated, where a negative bias corresponds to an underestimation and a 

positive bias corresponds to an overestimation, and a bias value close to zero is 

close to the truth. Bias measurements are particularly relevant when a single 

truth can be inferred by replicated simulations: the bias of the average inference 

shows whether a BLCM “tends” to overestimate or underestimate that truth. 

Inferential error or “error”: The degree to which a measurement is mistaken 

(Porta, 2016). Accordingly, in this thesis, error is calculated as the absolute 

value of the difference between the inferred values of Se, Sp and P, and the 

true values of Se, Sp or P. This method of calculating error can be used to 

represent a single simulation of a BLCM, or represent the mean difference 

between the truth and the sample mean, across all replicates of the model; the 

results of this thesis consider the latter. Error therefore represents a difference 

between probabilities, and errors are reported on in terms of their magnitudes. 

Inferred parameter: an estimate of the true value of a parameter using 

Bayesian inference, with an associated accuracy and precision. In this thesis, 

when the term is used as a plural—inferred parameters—the inferred values of 
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Se, Sp and P are being referred to collectively, and this phraseology is not to be 

confused with a global statistic. Inferred parameters are often represented by 

the mean of the posterior inference, and as a rule, the terms “posterior 

inference”, “inference”, and “inferred parameter” should all be interpreted as 

describing the mean of the posterior inferences for a given parameter.  

Latent Class Model (LCM): A statistical method to classify the unobservable 

heterogeneity within sampled data into subgroups (Andersen, Hagenaars and 

McCutcheon, 2003; Rothman, Greenland and Lash, 2014). Accordingly, in this 

thesis, individuals from infected wildlife populations are classified into the 

categories infected or uninfected based on information from multiple diagnostic 

tests.  

Markov Chain Monte Carlo (MCMC): An algorithm used to explore likelihood 

functions—i.e., all the statistical evidence that the available data can provide—

across parameter spaces while working to infer the posterior distribution. 

Monte-Carlo methods allow the estimation of the properties of a distribution by 

analysing random samples, and a Markov Chain is the enabling sequential 

process (van Ravenzwaaij, Cassey and Brown, 2018). To realise these 

methods in this thesis, the Bayesian modelling tool JAGS is used to sample 

probability distributions using verified methods, avoiding the need to write an 

MCMC sampler from scratch. 

Mean-variance relationship: A statistical relationship describing how the 

variance of parameter values change as a function of the mean of parameter 

values, which in this thesis relates to how the accuracy or precision of inferred 

parameters vary across a parameter space.  
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Model validation: A process to evaluate whether an inferential method is 

sound (Porta, 2016). Model validation is used in this thesis to evaluate of the 

ability for a BLCM to infer values of Se, Sp and P in terms of the data available. 

Parameter: Parameters, in this thesis, are latent population-level metrics that 

numerically describe a version of the truth. These parameters are described 

within the model using the JAGS language and can be inferred using given data 

to identify values of Se, Sp and P. These parameters are defined in Table 10-2. 

Parameter space: A parameter space, in this thesis, is a reference to a defined 

point within a hyperdimensional space, an entire hyperdimensional space, or 

the space that an MCMC sampler is given to search for the posterior distribution 

within. A global parameter space is a fully unconstrained parameter space 

containing all feasible values of parameters Se, Sp and P.  

Posterior distribution: Probability density functions that summarise the 

information that a Bayesian model can infer about a latent parameter (Upton 

and Cook, 2014). 

Posterior inference: A metric that describes the posterior distribution of an 

inferred parameter. The preferred metric used in this thesis is the mean of the 

posterior distribution. 

Precision: A metric summarising the ability to estimate consistently (Hellmann 

and Fowler, 1999) in terms of the quality of a single outcome, or the closeness 

of replicate outcomes to each other (Feinleib and Zar, 1975). Accordingly, in 

this thesis, precision is used to describe the replicability of inferred parameters, 

and is studied as an among-replicate metric representing the mean of the 

standard deviations of the posterior distributions. Note, as the standard 
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deviation of posterior distributions increase, the precision of the posterior 

distributions decreases.  

Prior distribution: A probability density function that summarises what is 

already known about a parameter. 

Prior information: This term is used to describe any existing beliefs about a 

parameter than can be supplied to the BLCM via a range of methods including 

the specification of prior distributions and their constraints, the provision of 

further diagnostic tests, the provision of more samples, and—for simulation 

analyses—the constraints of true values.  

Sensitivity analysis: A method to evaluate the ability of models to infer values 

given new information, or changes to model assumptions (Porta, 2016). 

Accordingly, in this thesis the models are BLCMs, and the inferred values relate 

to the parameters Se, Sp, and P. A Global Sensitivity Analysis is a method that 

allows all uncertainties associated with an experiment to vary simultaneously 

across simulations (Saltelli et al., 2020). This approach, applied in Chapter 7, 

tests the robustness of a BLCM across the full range of true values it could be 

presented with, i.e. the global parameter space.  

Statistical artefacts: Observed errors in the statistical representation of data 

(Scott and Marshall, 2009). Accordingly, in this thesis, statistical artefacts are 

statistical trends that directly influence how “solvable” any region of parameter 

space is. 

Stochastic method: A modelling approach where random processes are used 

(Porta, 2016). Stochastic approaches are used in this thesis to generate the 

true values of Se, Sp, and P for use in simulation analyses, accounting for the 

inability to trap an entire population of animals, and the resulting inability to 
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therefore test an entire population of animals for an infection (note, this thesis 

uses the words infection and disease synonymously).  

Test Sensitivity (Se): The probability that a positive test outcome correctly 

describes infection (Rindskopf and Rindskopf, 1986). 

Test Specificity (Sp): The probability that a negative test outcome correctly 

describes the absence of infection (Rindskopf and Rindskopf, 1986). 

Truth (or true values): The known values of Se, Sp, and P in a simulation 

analysis. The true parameter is latent and so error free, but never known in the 

real world; but true parameters can be set in simulation analyses. 

Consequently, in this thesis the truth is a feature of a population. 

Time decomposition: A statistical technique used to manipulate longitudinal 

data into categorical time-dependent components (Tuncer, Tanik and Allison, 

2008), which is applied to the specification and capability of BLCMs in Chapter 

8 of this thesis in order to unlock their ability to infer trends and change points in 

Se, Sp and P through time. 
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Abbreviations 

A concise list of the abbreviations most used throughout this thesis. 

BLCM – Bayesian Latent Class Model. 

LCM – Latent Class Model. 

LMM – Linear Mixed effects Model. 

MCMC – Markov Chain Monte Carlo. 

P – Disease Prevalence. 

Se – Diagnostic test Sensitivity. 

Sp – Diagnostic test Specificity. 

Phat – The mean inferred value of disease prevalence. 

Sehat – The mean inferred value of diagnostic test sensitivity. 

Sphat – The mean inferred value of diagnostic test specificity. 

n.tests trend – A trend showing that as the numbers of diagnostic tests 

available increase, the error of the inference decreases. 
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Chapter 1 

1. General Introduction 

The estimation problem that this thesis concerns is “how to accurately diagnose 

infection in wild animals”. Ultimately, this is an ecological problem, with its 

resolution reliant upon statistical modelling. This chapter is an introduction to 

the ecological problems that motivated the statistical models advanced within 

this thesis. A specific introduction to these statistical models is provided in 

Chapter 4, which also serves as an overview of the 6 simulated datasets listed 

in Table 10-1. 

Foreword 

Any infection that can spill between animals and humans or vice versa is called 

a zoonosis, and zoonoses are responsible for most new diseases in humans. 

On 11 March 2020 the World Health Organisation declared the outbreak of 

severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) (WHO, 

2020)—the causative agent of COVID-19—to be a global pandemic. 

SARS‑CoV‑2, thought to originate from bats, overcame species boundaries to 

successfully maintain infections in humans, and is one of at least 250 known 

zoonotic viruses (Mollentze and Streicker, 2020) that have the potential to follow 

suit.  

Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB), is 

another example, this time bacterial, of a zoonosis with reported spillover 

infections into humans, that in England are largely controlled by the 

pasteurisation of milk. The bTB epidemic in England has been persisting in 
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reservoir i.e., primary, and secondary, wildlife hosts such as badgers for well 

over 50 years, and its control remains a “perfect storm” (Allen, Skuce and 

Byrne, 2018) despite long-term research focused on wild badger Meles meles 

reservoirs—for example at Woodchester Park, Gloucestershire, England. 

Regardless of the pathogen—or how it may currently be controlled—these 

important zoonoses have brought to the fore the complexity of infection 

management, and testing. The pandemic has also highlighted that information 

about zoonoses still confined to their wildlife reservoirs is critical to both wildlife 

and public health disease management globally; and gathering this information 

is dependent upon being able to reliably test animals for infection. 

We need to reliably test animals for infection. 

In 2021, medical journal The Lancet reported that the number of COVID-19-

related publications on the PubMed database surpassed that of any disease 

outbreak in the last hundred years: in March 2021 the count was greater than 

110,000 (Winkler et al., 2021); a statistic that in January 2023 was a count of 

greater than 330,000, illustrating just how important it is to understand wildlife 

reservoirs. 

Most epidemics and pandemics in humans originate from human interactions 

with reservoirs of disease maintained across wild animal populations, and these 

diseases are often of concern for humans and livestock (Krebs et al., 1998). For 

instance, the commonly recognised infections that cause measles, mumps and 

rubella are all thought to have originated from human interactions with 

domesticated animals and or wildlife (Wolfe, Dunavan and Diamond, 2007; 

Bennett et al., 2020; Düx et al., 2020).  These interactions are complex and 

appear to be a consistent driver of zoonotic concern (Gibb et al., 2020) common 
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to most circumstances via which zoonoses are thought to proliferate, inclusive 

of the spatial proximity of humans to livestock and or rodents; the taxonomic 

relatedness between humans and other primate species susceptible to the 

same pathogens; and the increasing anthropogenic disturbance of mammals 

such as bats, which are reservoirs of multiple viral pathogens. 

While the SARS-CoV-2 virus is thought to have emerged from reservoirs of 

betacoronaviruses in bat populations (Andersen et al., 2020), to have certainty 

in this, it is likely that a great many bat populations from across the world would 

need to be sampled and tested for betacoronaviruses. And here lies the 

estimation problem that this thesis addresses: how to accurately diagnose 

infection in wild animals. 

The epidemiological challenge  

Zoonoses emerge from complicated interactions between social and ecological 

systems, and are a threat compounded by our inability to accurately estimate 

disease parameters (DiRenzo et al., 2018) in the absence of data to inform 

critical decisions about the species of the highest zoonotic concern. The risk of 

zoonoses, coupled with global declines in biodiversity, are therefore the key 

drivers of wildlife disease research, inclusive of this thesis. 

The accurate diagnosis of infection in wild animal populations can be quantified 

by two parameters—the sensitivity (true positive rate) and specificity (true 

negative rate) of a diagnostic test—in addition to the parameter disease 

prevalence: the percentage of individuals in a population infected by a given 

pathogen (Jovani and Tella, 2006).  
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True diagnostic test sensitivity (Se) and specificity (Sp), and disease prevalence 

(P), are calculated as follows in Equation 1 to Equation 3, respectively. 

Equation 1 

𝑆𝑒 =  
𝑇𝑃

𝑁+
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Where in Equation 1, TP is the number of true positive diagnoses, FN is the 

number of false negative diagnoses and N+ is the number of real infections. 

Equation 2 

𝑆𝑝 =  
𝑇𝑁

𝑁−
=  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Where in Equation 2, TN is the number of true negative diagnoses, FP is the 

number of false positive diagnoses and N- is the number of real negative 

infections. 

Equation 3 

𝑃 =  
𝑁+

𝑁+ + 𝑁−
 

A second example of zoonoses is a group of bacteria called the Mycobacterium 

tuberculosis complex (MTC), which is inclusive of Mycobacterium tuberculosis, 

the causative agent of tuberculosis (TB). Like SARS-CoV-2, Mycobacterium 

tuberculosis is maintained by humans, and can infect animals via spillover 

events, a transmission event where pathogens cross the human to animal 

boundary (Becker et al., 2019) or vice versa (Ellwanger and Chies, 2021). TB is 

the leading cause of human deaths from infectious disease worldwide, 

surpassing COVID-19 in second place (WHO, 2022), and most cases of TB are 

hidden, exhibiting latency, i.e. a period where individuals are infected but lack 
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the ability to infect (Barreto, Teixeira and Carmo, 2006); with one third of the 

world’s population likely to be infected by latent TB (Fogel, 2015). Yet latent TB 

does not have a gold standard diagnostic test, and therefore the disease cannot 

be diagnosed perfectly (Pourakbari et al., 2018). A positive blood test result for 

Mycobacterium tuberculosis for instance does not provide discrimination 

between latent and active infection, for this, additional non-perfect diagnostics 

such as x-rays and or the clinical evaluation of symptoms may be used to 

increase the certainty of a diagnosis. While a fundamental aim of wildlife 

epidemiologists is to accurately diagnose infection, the need for better 

diagnostic tools strongly underpins both human and veterinary medicine.  

Another bacteria of the MTC is Mycobacterium bovis, the causative agent of 

bTB, which in England are maintained by populations of the European badger 

Meles meles, the wildlife reservoir, supported by secondary hosts, such as deer 

(Collard, 2023). In England, bTB is costly to the agricultural sector due to the 

number of infected cattle that must be culled, in combination with the isolation 

and testing protocols that farmers must comply with; bTB is also costly to the 

taxpayer, who funds the Government’s badger control efforts. Diagnostics for 

bTB in live badgers do not have a gold standard—which in this thesis is defined 

as a diagnostic test where both Se and Sp are 100%—and so possessing 

reliable measures of estimated diagnostic accuracy is critical to understanding 

the success of any badger control strategy. 

The diagnostic accuracy of tests for Mycobacterium bovis, like for 

Mycobacterium tuberculosis, are complicated by, for example, an insensitivity 

towards disease latency, or mild infections with the absence of physical 

symptoms (Fitzgerald and Kaneene, 2013). In badgers, even post-mortem 

pathological examination is associated with a low sensitivity (Gavier-Widén et 
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al., 2009). Diagnostic accuracy is highly dependent upon the context in which 

the test is used; and this context includes the process in which disease spreads 

i.e., the pathogenesis, disease prevalence, and any badger control strategies 

being used. 

Why is inferring disease prevalence a key challenge for ecologists? 

This thesis does not claim that inferring disease prevalence, ante-mortem, 

where imperfect gold standards must be relied upon, is a new challenge. True 

disease prevalence is always a latent and population-specific parameter of 

diseased wildlife populations, and its inference is always likely to be inaccurate, 

yet its estimation is critical at the population level for fully understanding disease 

epidemiology; informing disease control strategies by providing point inferences 

of the number of infected individuals within a target population which can in turn 

explain disease dynamics (Helman et al., 2020); and confirming disease control. 

Even small improvements to the accurate estimation of disease prevalence are 

therefore useful to researchers (Flor et al., 2020), and the challenge lies in 

demonstrating to the scientific community that any reported estimates of 

disease prevalence have been obtained using transparent and robust 

methodologies. 

A reliable inference of diagnostic accuracy is key to minimising 

false positive diagnoses. 

Most diagnostic tests used in wildlife disease studies are not gold standards i.e., 

they are not error free (Dendukuri et al., 2004), due to a combination of reasons 

inclusive of the costs of “better” tests, ethical considerations, procedural risks or 

invasiveness considerations, the need for specialist expertise, and laboratory 
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delays. Disease prevalence is usually estimated in contexts where the 

proportion of a population that is diseased is the minority—as is the case at the 

start of an epidemic—and where a majority of truly uninfected animals must be 

tested. In this scenario, there is an inherent risk that the number of falsely 

positive diagnoses will exceed the number of truly positive diagnoses simply 

due to the proportion of healthy individuals that require testing for disease 

elimination. This scenario is central to the problem that this thesis addresses, as 

the following example makes clear.  

Consider a scenario where the true positive rate, Se, is calculated as per 

Equation 1, the true negative rate, Sp, is calculated as per Equation 2. In 

addition, the false positive rates of infection, and the false negative rates of 

infection are calculated using Equations 4 and 5 respectively. 

Equation 4 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 = 1 −
𝑇𝑁

𝑁
 

Equation 5 

𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 = 1 −
𝑇𝑃

𝑁
 

Under such a scenario, a given population of wild animals is suspected of 

having a disease, infection X, which is thought to infect 2% of these animals. 

The best available diagnostic test for infection X has a reasonably high 

diagnostic accuracy, meaning that if animal A has infection X, it will produce a 

positive test result 95% of the time; and if animal A does not have infection X, it 

will produce a negative test result 95% of the time. 1000 animals could be 

tested. 



56 
 

Given this scenario, 68 tested positive (total positives), with 19 true positive and 

49 false positive; and 932 tested negative (total negatives), with 931 true 

negative and 1 false negative. Although the best available test correctly 

identifies true positives or true negatives 95% of the time, 49 animals were 

classified as infected when they were not. This means that given a positive test 

result (of which there were 68), the actual probability of the individual having the 

disease given 19 true positive results is just 27.9%.  

This scenario makes it clear that if diagnostic accuracy is not error free—like 

most diagnoses in real life—diagnostic tests should not be used naively to 

confirm the presence or absence of infection. Further, given that diagnostic 

accuracy is situation-dependent, information about the diagnostic situation 

should also be used to infer diagnostic accuracy. For example, diagnostic 

accuracy is influenced by variables such as testing strategy and sampling 

strategy as well as latent variables such as stage of infection at the individual 

level and pathogenesis at the population level.  

Using the same “best available” test, if it is now suspected that 5% of animals 

are infected, a researcher could expect 48 false positives and 47 true positives. 

Meaning that a positive test result would only be ~50% likely to be true. And if 

the diagnostic accuracy of the test is now suspected to be 90%, a positive test 

result would only be ~32% likely to be true. 

This simple example concerning the hypothetical infection X highlights that what 

is initially believed—from here on termed “prior information”—about disease 

prevalence and test performance can significantly influence the expected 

number of positive test results, and our interpretation of the truth. To 

emphasise, the above example reports frequencies; assumes that diagnostic 
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test sensitivity and diagnostic test specificity are known via the use of a 

reference test; and that disease prevalence is a point value i.e., measured 

independently of time at a specific point in time. In this thesis, these 

assumptions are removed, and the values of diagnostic test sensitivity, 

diagnostic test specificity and disease prevalence are inferred using 

probabilities; when their values are not known; when accounting for the 

uncertainty associated with testing capability and sampling strategy; and in 

Chapter 8, through time. 

Understanding infection systems is directly applicable to the Bayesian 

philosophy of thinking, which can be used to create statistical models that 

incorporate prior information about the unknown parameters diagnostic test 

sensitivity, diagnostic test specificity and disease prevalence in the format of 

updateable and user-defined probability distributions.  

A brief introduction to Bayesian philosophy 

Information that is known about any complex system is rarely certain and often 

subject to additional information being provided. While this concept is just 

common-sense, it is also the cornerstone of the Bayesian philosophy, which 

allows a level of uncertainty about any assumptions used to create a Bayesian 

model, and therefore creates inferences that are essentially “a best guess”. 

Modern Bayesian analysis brings robustness to this framework by allowing the 

combination of prior information with data to yield powerful inferences using 

Monte-Carlo Markov Chain (MCMC) algorithms. In other words, given some 

awareness about how reasonable some data is, and if that awareness agrees 

with some newly available data, then it is possible to determine the probability 

of a hypothesis being correct using Bayes’ theorem (Bayes, 1763). This method 
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provides ecologists with a way of cultivating certainty in their knowledge about 

ecological processes by supplementing an often data-limited study with their 

own logic and expertise to extract a small number of reasonable solutions from 

a large number of probabilities. 

Diagnosing infection without a gold standard test 

Ecologists researching wildlife infections often work in an environment where an 

individual’s true disease status is unknown, i.e. latent, and a gold standard 

diagnostic test is not available. So in this situation, statistical classification 

methods—belonging to a group of models termed Finite Mixture Models 

(McLachlan, Lee and Rathnayake, 2019)—must be used to infer diagnostic test 

sensitivity, diagnostic test specificity and disease prevalence given observed 

diagnostic test data and the subgroups infected or uninfected. 

Latent Class Analyses are arguably the state-of-the-art (Toft et al., 2007) means 

of estimating unknown diagnostic test sensitivity, diagnostic test specificity and 

disease prevalence (Hui and Walter, 1980). In essence, this is because: 

1. The subgroups infected and uninfected are defined as probabilities, and 

memberships to each group are not fixed. Since class membership is not 

directly observed, classification could potentially differ between 

classifiers. 

2. The parameters diagnostic test sensitivity, diagnostic test specificity and 

disease prevalence can be inferred. 

3. The required diagnostic tests do not have to be perfect. 
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4. A reference test is not required, which is an advantage since it avoids the 

“Catch-22” situation of having to first evaluate the diagnostic accuracy of 

this test (Rydevik, Innocent and McKendrick, 2018). 

5. Imperfect test data can be used that includes conflicting test results. 

6. True diagnostic test sensitivity, diagnostic test specificity and disease 

prevalence can be inferred with associated accuracies and precisions. 

7. The quality of individual diagnostic tests within a battery of diagnostic 

tests can be determined. 

A Latent Class Analysis approach assumes that an individual’s true infection 

status is latent, i.e. hidden, within an array of binary diagnostic test results 

described at the population level. Individuals are associated with a probability of 

being infected (+) or uninfected (-) given the results of multiple, inaccurate, and 

independent diagnostic tests (Helman et al., 2020). And tests within a battery of 

diagnostic tests may be considered independent from each other if each test 

acts on a different biological component. 

The dataset required for a Latent Class Analysis using three independent 

diagnostic tests would be categorised as the frequencies of subjects with the 

following sequences of diagnostic outcomes: +++; ++-; +--; ---; --+; -++.  For 

wildlife disease researchers, Latent Class Analyses that are modelled within a 

Bayesian framework, i.e., within a Bayesian Latent Class Model (BLCM) are 

especially useful, since prior information such as expert opinion can be used to 

inform the likelihoods of values of diagnostic test sensitivity, diagnostic test 

specificity and disease prevalence. 



60 
 

There has been a small and recent increase in the application of BLCMs to 

wildlife disease research. For example, the approach has been used to infer the 

performance of tests for brucellosis (Pfukenyi et al., 2020), feline foamy virus 

(Dannemiller et al., 2020), as well as the diagnostic accuracy of anecdotal 

reports of foot-and-mouth disease (van Andel et al., 2020). In general, 

inferences of diagnostic test sensitivity, diagnostic test specificity and disease 

prevalence are often difficult to obtain due to the lack of field data—which in the 

case of van Andel op cit, was addressed by informing the BLCM with proxy 

anecdotal tests. 

Even with multiple independent diagnostic tests, and some other prior 

information, it appears that ecologists in practice require better tools and 

guidance to use the BLCM approach effectively. This is because the theory 

behind, and the application of BLCMs is complex, combined with an apparent 

lack of tools and guidance on Bayesian Latent Class Analyses specifically 

accessible to wildlife disease ecologists. The gulf between what BLCMs can 

theoretically deliver, and the complexities of actually deploying them—that this 

thesis attempts to bridge—has almost certainly contributed to why BLCMs have 

been “applied sparsely in wildlife systems” (Helman et al., 2020).   

The sources of bias when testing for infected wild animals using 

BLCMs  

There are three key differences between the contexts of testing regimes 

applicable to human and wildlife studies, and these differences affect how 

diagnostic accuracy should be modelled. First, wildlife studies often require the 

trapping of animals whereas human studies are carried out using voluntary 

subjects and larger sample sizes can generally be attained. Second, the drivers 
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of pathogenesis in ecosystems differ to those in human systems, meaning that 

the environmental stochasticity that must be accounted for in human versus 

wildlife models is different. Specifically, the results of diagnostic testing regimes 

in ecological studies may be driven by latent variables characterising elements 

of wild host-pathogen systems, creating high levels of stochasticity in test 

results. Third, diagnostic testing regimes in human studies often adhere to 

widely accepted or gold standards, whereas the diagnostic testing regimes for 

wildlife diseases most often include imperfect tests, which have been used in 

comparatively fewer studies with highly variable contexts.  

Understanding these biases, and understanding how to take account of them 

when adopting a BLCM approach, is central to facilitating the greater use of 

BLCMs within the ecologist community. Those goals are in essence the subject 

matter of this thesis, and so the three key biases in question are now discussed. 

First, animals in wildlife studies must first be trapped prior to testing, and 

trapping efficiency is rarely 100%; trappability may vary according to, for 

example, physical and demographic traits; and the stage of infection within the 

trapped portion of individuals may not be representative of the population—for 

example, it may have been easier to trap diseased animals.  

Second, in addition to the different testing contexts between human and wildlife 

studies, biological changes across ecosystems also influence pathogenesis via 

a network of diverse and mostly hidden mechanisms. This concept is usefully 

illustrated by Darwin’s tangled bank theory (Darwin, 1859)—a metaphor for the 

complex heterogeneity of species and their interactions within the natural 

environment—which emphasises that the core of how ecosystems evolve and 

survive is based on co-dependencies (Plotkin, 2017) that may, for example, link 
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demography to immunity. And while the formal co-dependency between 

ecological networks and infectious disease was stated in the 1950s by ecologist 

Charles Elton (Richardson and Pyšek, 2007; Johnson, Ostfeld and Keesing, 

2015) research on ecological networks in the context of trophic interactions 

predominates (Berlow et al., 2009; Ings et al., 2009; Kéfi et al., 2012). 

Importantly, the systems we observe are only a small subset of those which 

could possibly exist or be modelled, and many of the co-dependencies that 

Darwin alludes to in his tangled bank theory will be relevant to understanding 

disease spread.  

Third, this thesis employs BLCMs as a tool to extract “certainty” from imperfect 

diagnostic test data. A key part of using a BLCM is understanding when it is 

“identifiable”, i.e. whether deriving diagnostic test sensitivity, diagnostic test 

specificity and disease prevalence is possible given both the model and data 

available. Practical identifiability (Kao and Eisenberg, 2018) describes the fit 

between a BLCM, and the data used to inform it, a fit which includes how well 

environmental errors are represented (Roosa and Chowell, 2019). The 

environmental errors that must be accounted for by a BLCM are specific to the 

contexts within which human and wildlife diseases are studied, with key 

differences including the variation in possible testing conditions between 

predominantly clinical and field-based studies—with variation among field-

based wildlife disease studies often attributable to latent ecological processes—

and the accessibility of subjects to test. Consequently, when models have 

practical identifiability, the environmental realism that they infer can be applied 

to wildlife disease data with a greater confidence, with diagnostic test sensitivity, 

diagnostic test specificity and disease prevalence usually being more precise.  
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The study population 

Long-term datasets detailing the infection history of diseased wildlife 

populations are rare and valuable (Barroso, Acevedo and Vicente, 2021). In 

Chapter 8, this thesis applies BLCMs to a longitudinal dataset of diagnostic test 

results obtained from a wild population of ~300 badgers (Drewe et al., 2010) at 

Woodchester Park, Gloucestershire, England, in order to infer diagnostic test 

sensitivity, diagnostic test specificity and disease prevalence. The Woodchester 

Park mark-and-recapture study has been running since 1975 (Delahay, 

Cheeseman and Clifton-Hadley, 2001), and the population is naturally infected 

with bTB. Approximately 80% of the population is trapped each year (White and 

Harris, 1995), and badgers are trapped following seasonal patterns to avoid 

trapping lactating females that may have dependent cubs underground 

(personal communications, 28 March 2018). The long-term nature of the study 

means that a body of previous literature is available on the Woodchester Park 

badgers, including previous estimates of diagnostic test sensitivity, diagnostic 

test specificity and disease prevalence to compare findings to; as well as a 

library of published information about the study population itself, for example, 

see McDonald, Robertson and Silk, 2018.  

Thesis outline 

This thesis contributes to the small but growing body of work devoted to 

applying BLCMs to wildlife disease data; and the even smaller body of work 

focused on developing its proper application. The models and workflows 

presented are highly generalised, meaning that they can be quickly adapted to 

a diversity of real-world and hypothetical disease monitoring scenarios for both 

wildlife and human host-pathogen systems without the need for significant 
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changes to the contributed code available at https://github.com/annabush/PhD. 

Moreover, the models and workflows presented in this thesis build on two 

approaches to large-simulation analyses already well-described in ecological 

literature: Bayesian approaches using the BUGS language, and maximum-

likelihood approaches using the R package lme4 (DiRenzo, Hanks and Miller, 

2023). 

This thesis specifies a series of BLCMs run on simulated diagnostic test data, 

and then uses this architecture to demonstrate clear workflows allowing the 

robust inferences of diagnostic test sensitivity, diagnostic test specificity and 

disease prevalence. If model uncertainty is better understood, and more co-

dependencies of the ecological networks in which disease spreads can be 

better accounted for within models, then the key epidemiological parameters of 

interest to this thesis—diagnostic test sensitivity, diagnostic test specificity and 

disease prevalence—can theoretically be better inferred. 

Chapter 1 discusses the problems faced by ecologists when estimating 

diagnostic test sensitivity, diagnostic test specificity and disease prevalence in 

diseased wildlife populations, and outlines the requisite tools for addressing 

these problems. Chapter 2 then provides a literature review on the importance 

of modelling wildlife disease across ecological scales using a Bayesian 

framework. Chapter 3 describes and justifies the modelling architecture—i.e., 

the BLCMs and their enabling functions written in R code—that underpins the 

remainder of this thesis. 

Chapters 4–8 then advance this modelling architecture throughout five empirical 

chapters, “stress testing” the architecture’s ability to infer diagnostic test 
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sensitivity, diagnostic test specificity and disease prevalence via the following 

four analytical approaches: 

(a) Model validation (Chapter 4) i.e. assessing model fit in terms of the data 

available. 

(b) Uncertainty analyses—the quantification of the confidence in BLCM 

inferences and a type of model validation—via the interrogation of two 

statistical artefacts, i.e. trends explainable by statistics rather than 

ecology. These trends are the relationships between the accuracies of 

diagnostic test sensitivity, diagnostic test specificity and disease 

prevalence (Chapter 5), and the observed effects on the robustness of 

inferences of diagnostic test sensitivity, diagnostic test specificity and 

disease prevalence at the “extreme” limits of their possible values 

(Chapter 6). 

(c) Sensitivity analyses (Chapter 7)—an examination of whether BLCMs 

are sufficiently robust to new information, or changes in model 

assumptions. 

(d) Time decomposition (Chapter 8)—a statistical procedure enabling the 

BLCM to infer the diagnostic test sensitivities, diagnostic test specificities 

and disease prevalence of a real-world dataset—from the Woodchester 

Park study—through time.  

Finally, Chapter 9 draws together the contributions made, and outlines what 

they mean for ecologists wishing to use BLCMs for their own research. 
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Chapter 2 

2. A perspective on the Bayesian modelling of wildlife 

disease across ecological systems 

Introduction 

Statistical methods have long been used to better understand disease data. In 

1854, for instance, John Snow discovered the source of a cholera outbreak by 

cluster-mapping infections across Soho, London (Snow, 1856). Similarly, 

inferring disease prevalence is a critical tool for quantifying the number of 

infected individuals within a sample, group, or population. The challenge 

involved is clear: in ante-mortem animal studies, the value of disease 

prevalence can only be determined using statistical methods that can operate 

across ecological levels, and particularly at the levels of individuals and 

populations.  

This chapter postulates the argument that the accurate estimation of disease 

prevalence involving wildlife host-pathogen systems calls for a better 

representation of ecological hierarchy, i.e. the multiple ecological levels 

involved; and a better understanding of the statistical hierarchy involved, i.e. the 

sources of bias at each level of the ecological hierarchy (Farnsworth et al., 

2005; McClintock et al., 2010; Lachish and Murray, 2018). While this chapter’s 

recommendations are unlikely to surprise statistical epidemiologists, this double 

hierarchy has not yet been clearly described for a single system. Research that 

reflects this double hierarchy is what is termed in this thesis as a “whole-system 
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approach”, with the end goal being host-pathogen systems that can be 

described by “whole-system models”. 

If the latent parameters of host-pathogen systems are influenced by parameters 

belonging to other ecological levels, then statistical models used to predict 

population-level parameters may be more reliable if data is available at both the 

individual and population levels (Tompkins et al., 2011). Given such data, multi-

level regression models can be useful prediction tools, as they have the 

potential to uncover more sources of bias within a host-pathogen system than 

when a single-level regression model is used, since the applicable regression 

coefficients can vary by discrete groups, which in this example are ecological 

levels (Gelman, 2006). 

Multi-level modelling is not a new technique to wildlife disease research (Cross 

et al., 2010; Manzoli et al., 2013; Raghavan et al., 2016) but is undeniably a 

technique that has been less commonly applied to this field when used inside a 

Bayesian framework, and even less so when applied to more than one 

ecological level. The penultimate chapter of this thesis demonstrates the 

specific application of Bayesian multi-level modelling to wildlife disease 

research using real-world data on bTB infections in a badger reservoir 

population. Given this focus, and the fact that bTB host-pathogen systems are 

high-profile, and dominate the wildlife disease literature, the final section of this 

present chapter presents a case study on how Bayesian inference has already 

been applied to this specific body of work. 

Eventually, it is perfectly possible that ecologists may wish to use Bayesian 

multi-level or “hierarchical” models to fully realise and explain (Feki-Sahnoun et 

al., 2018) the latent relationships and interacting factors that make up disease 
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systems (Ting and Shaolin, 2008). To facilitate this, there is consequently a 

need to explain how these models may benefit ecologists, and this is the 

principal aim of this chapter. 

That said, this chapter does not aim to reignite the debate on whether 

frequentist or Bayesian approaches are better in the round, or more appropriate 

in the context of disease modelling, or to indicate that alternative ways to infer 

data such as machine learning (Fountain-Jones et al., 2019) aren’t useful. 

Clearly, the Bayesian approach is intrinsically different from mechanistic 

methods of disease analysis that apply Ordinary Differential Equations—or 

frequentist methods such as variations of the Susceptible-Infected-Recovered 

models—because they offer a different type of flexibility to infer the noise of 

ecological processes (Zhuang et al., 2013). And since the definition of likelihood 

functions for observed data is usually possible in disease analyses, the 

Bayesian approach can usefully be used to maximise the information known to 

an ecologist.  

One immediate challenge encountered in this chapter was the difficulty in 

sorting studies by the specific type of model that they apply. This hurdle is 

reflective of the “terminological confusions” noted at several points in this 

thesis—including within the definitions section at the start of this thesis—

regarding, for example, the terms model validation, or sensitivity analysis. For 

this chapter, it was found that many hierarchical models are not referred to as 

“hierarchical”; and it was suspected that many systems-level approaches will 

not use the word system. So, an important caveat is that literature selected from 

the various searches employed were only included for consideration in this 

chapter if the type of model used could be clearly identified. It was also 

assumed that the frequencies of published papers belonging to any well-
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recognised type of model should still be revealed from the combinations of word 

searches described. For example, it was assumed that using the search term 

“state-space model” would reveal most publications that use a state-space 

model. 

Finally, this chapter has benefited from comments received from two editors of 

the Wiley journal Ecology Letters, and a historic version is hosted on Authorea 

Preprints (DOI: 10.22541/au.164621773.37508959/v1). My PhD supervisor 

Professor Dave Hodgson also contributed to this preprint version by assisting 

with the development of ideas and providing edits.  

In this chapter the term “scale” refers to the single level, or multiple levels, of a 

hierarchical system that a study may concern.  

Why look at wildlife disease on a systems scale? 

Host-pathogen systems are characterised by the complex networks of 

interactions (Sander, Wootton and Allesina, 2017) between an infectious agent 

and its host species (Forst, 2010). Examples of such host-pathogen systems 

include bovine tuberculosis (Böhm, Hutchings and White, 2009), avian influenza 

A (H5N1) or “bird flu” (Webster et al., 2005), Severe Acute Respiratory 

Syndrome coronavirus (SARS-CoV) (Li et al., 2005) and the (yet-unidentified) 

wildlife host of SARS-CoV-2—the causative agent of COVID-19.  

Given the severity and economic impact of these and similar diseases, 

improving the capability of statistical models to describe entire ecological 

systems is an important and desired advance in disease ecology, particularly 

since understanding wildlife health is critical to its management (Calenge et al., 

2021) and the risks posed to human health. Importantly, the ability to model 
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wildlife disease on a systems scale is likely to unlock more information about 

how human-wildlife interactions drive host-pathogen systems, supporting the 

One Health concept (Bordier et al., 2020) of decompartmentalising human, 

animal, and ecosystem health. Emerging methods capable of uncovering 

missing links within entire host-pathogen systems have been termed “zoonotic 

risk technology” (Carlson et al., 2021), a term also applicable to methods 

available to achieve a whole-system approach. 

This chapter specifically proposes that a whole-system approach to studying 

wildlife disease is essential for a proper understanding of disease ecology, 

because most mechanisms of wildlife disease transmission co-vary with other 

ecological parameters, are not fully understood, and are impossible to measure 

directly. For example, substantial gaps in our knowledge of Chronic Wasting 

Disease (CWD) ecology have been identified, such as its unidentified reservoir 

species, and the biogeography of CWD transmission (Escobar et al., 2020): a 

Bayesian whole-system approach could usefully fill such gaps by linking 

infection processes across ecological scales using prior information. 

In comparison to models of human epidemiology, models of wildlife disease are 

usually created in a data-poor environment. As Chapter 1 emphasised, animals 

tend to be hard to track and or trap, and infection states can be hard to infer due 

to imperfect diagnostic tests. Accordingly, a frequent purpose of wildlife disease 

models is to infer latent parameters or associations between factors that make 

up a disease system, to better understand how disease spreads. Importantly, 

this chapter is restricted to statistical rather than algebraic models of disease 

processes because the parameters that may describe these processes vary 

stochastically, as well as in time and space; and are rarely, if ever, known 

(Zhuang et al., 2013).  
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Studying disease at a systems scale involves recognising the hierarchy of 

interacting levels over which disease dynamics persist—termed in this chapter 

as the ecological hierarchy (Figure 2-1)—and requires the adoption of 

hierarchical models in the broadest sense, i.e. models that are capable of 

investigating multiple levels of organisation. The classical definition of 

hierarchical models is focused on in this chapter, and this starts from the 

premise that a hierarchy of scale exists across ecological systems (King, 1997; 

Wu and David, 2002; Allen and Starr, 2017) that can be used to explore the 

nested relationships between differently scaled variables through sub-models, 

which then link together to form a full model. 

Wildlife disease studies using hierarchical models have made exciting 

discoveries. For example, major progress in eliminating the Sarcoptes scabiei 

mite from bare-nosed wombat populations was facilitated by considering the 

disease statuses of wombat burrows at the metapopulation level as well as of 

the individual wombats; and consequently, both the burrows and the wombats 

were modelled as hosts (Martin et al., 2019). Hierarchical modelling has also 

enabled a database of bat hibernation roost surveys to be analysed through 

time, space, and across five species, to determine the latent disease severity of 

Pseudogymnoascus destructans infections—the causative agent of white-nose 

syndrome—at species and regional scales in North America (Cheng et al., 

2021). 
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Figure 2-1: A stommel diagram illustrating the concept of an “ecological 

hierarchy” on a logarithm base 10 grid. 

Within Figure 2-1, hierarchical ecological information, defined by the grey 

rectangular outlines—spanning from a single pathogen to a host assemblage—

may contribute to a whole-system model that describes disease flow within a 

host-pathogen system. As the time since an initial infection increases on the y-

axis, transmission events may also increase, as well as the budget of 

susceptible organisms, represented on the x-axis, that could be exposed to 

infection. The diagram represents both the structures and processes acting 

throughout an ecosystem, on a scale that could be parameterised by 

dynamics—such as host or population behaviour(s) or group demographic 

processes—which describe expected fluctuations around ecological equilibria 



74 
 

(Cushman, 2010). Coloured polygons therefore propose example locations for 

these latent dynamics in the context of a whole-system model.  

The statistical modelling of ecological hierarchies. 

In hierarchical models, the individual level is defined as the smallest 

measurable unit of that system (Kéry and Schaub, 2011): for example, genes, 

such as those coding for disease susceptibility, could be viewed as the 

individual unit; alternatively, detailed models might consider individual 

pathogens; coarser models might start with the individual host and model 

within-host infection processes in the abstract. When Bayesian methods are 

used to infer latent and unmeasurable states, truly binary or categorical states 

such as dead or alive; infected or uninfected; can be inferred as probabilities, 

which better reflect their lack of direct measurement (Buzdugan et al., 2017). 

Parameters and processes of interest to ecologists act at the individual level up 

to higher levels of the ecological hierarchy. Within this hierarchy pathogens are 

clustered into biological and environmental reservoirs; hosts are structured 

socially and into (meta)populations; host species are members of assemblages; 

and system dynamics play out through time and space. At each level, different 

sets of predictors influence outcomes: host condition might relate to pathogen 

load; social context might influence transmission; host age might influence 

mortality hazard and susceptibility to infection; weather might influence 

population level epidemiology; wildlife management might affect the host 

assemblage; climatic and anthropogenic change might influence the prevalence 

of disease and the risk of epidemics or host-shifts. In short, a system—with 

linkages to and dependencies on pathogens—is at work. 
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Expanding on Figure 2-1, infection status or “being infected” is an example of a 

host-specific latent variable, which may inform processes at all levels of an 

ecological model. Likewise, ageing is an example of a demographic process 

that could reasonably influence multiple levels of an ecological hierarchy (Jones 

and Vaupel, 2017), and age itself could be considered a feature of a pathogen, 

a pathogen reservoir, an individual host, an individual infection, a social group 

of hosts or even whole host populations.  

This chapter also draws attention to a second type of hierarchy typical of data 

associated with wildlife: the statistical hierarchy (Table 2-1). This hierarchy 

maps onto the ecological hierarchy, recognising that different model 

parameters, and different predictor variables, are relevant to each stratum. For 

example, host condition is likely to relate to the individual host’s susceptibility to 

infection, its propensity to suffer disease, and its role in transmitting infection to 

other hosts. Other predictors vary at higher levels of the ecological hierarchy, 

for example weather conditions varying weekly, seasonal conditions varying 

annually, and climate varying over longer timescales; for example, density-

dependent transmission varying at the scale of social groups, sub-populations 

or whole populations. 

The statistical hierarchy must avoid problems of pseudoreplication—i.e., the 

incorrect assumption that all replicates are independent (Lazic et al., 2020)—by 

recognising independent survey units on each stratum of the hierarchy or by 

accounting for stratum-specific spatial, temporal, genetic or social 

nonindependence. Another important feature of the statistical hierarchy is any 

mismatch between the parameters that researchers wish to infer, and the data 

that they are able to collect. Often the hidden network of latent variables that 

researchers wish to infer, such as being infected or being dead, can only be 
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measured by proxy, such as through live trapping, or by analysing the results of 

imperfect diagnostic tests. The statistical hierarchy therefore includes a state-

space representation of many parameters (Table 2-1).  

Within Table 2-1, a broad statistical method used to infer each respective latent 

parameter is also suggested. As the strata increase with respect to the number 

of organisms present, the statistical methods that may be used to infer common 

latent parameters become broader. Consequently, a large variety of spatio-

temporal methods may be used to infer latent parameters above the host level 

using proxy data. As the strata represent more complex latent data, the need for 

Bayesian state-space models increases, and the number of commonly reported 

statistical methodologies to infer common latent parameters decrease. A whole-

system model would be a spatio-temporal modelling technique able to infer 

latent parameters within any stratum of an epidemiological system, which may 

themselves be dependent on latent parameters in other strata.
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Table 2-1: Examples of latent parameters that wildlife disease researchers may wish to infer and their proxy measures that 

may be chosen given each stratum of a typical wildlife disease system. Statistical methods that may be used to infer the latent 

parameters are suggested. The need to infer latent parameters using state-space approaches increases as the number of 

organisms belonging to the ecological layer at which the latent parameter is being inferred increases.  

Layer of ecological 

network 

Latent parameter to 

infer 

Proxy measure in host Statistical method to infer 

latent parameter 

Pathogen Virulence Observation of symptoms 

(physical/behavioural) in host 

Logistic regression of pathogen 

versus host survival  

Basic Reproduction 

Number 

Serosurveys or behavioural surveys in 

host 

Logistic regression of proxy 

measure versus time 

Presence/absence Laboratory culture of host serosurvey 

data 

Latent Class Model to account 

for imperfect testing 

Host Location Telemetry Home range analyses using 

kernel density estimation 

Infection status Diagnostic test outcomes Multi-event analyses 

Alive/dead Capture-mark-recapture Dynamic occupancy modelling 

Group Membership Social co-dynamics Spatio-temporal analyses 
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Social Contact Network Social co-dynamics Spatio-temporal analyses 

Population Temporal/spatial 

abundance 

Camera trapping (presence/absence) Spatio-temporal analyses 

Population size Resource abundance Spatio-temporal analyses 

Disease prevalence Diagnostic test outcomes  Latent Class Models to account 

for imperfect detections 

Metapopulation Connectivity Topography Spatio-temporal analyses 

Colonisation Telemetry Spatio-temporal analyses 

Gene flow Capture-mark-recapture Spatio-temporal analyses 

Assemblage Species interactions Prey kills in wild Spatio-temporal analyses 

Species distribution Camera trapping (presence/absence) Spatio-temporal analyses 

Species richness Stable isotopes Spatio-temporal analyses 
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For ecological systems in which the definition of likelihood functions for 

observed data is possible, the Bayesian approach is both rigorous (O’Hare et 

al., 2014), and also capable of parameterising the “double-hierarchy” of whole-

system disease models, i.e. the ecological levels that must be represented by 

different statistical levels. Where complexities prevent the definition of likelihood 

functions, analysts might look to Approximate Bayesian Computation 

(Benavides et al., 2017) or machine learning techniques (Pandit and A. Han, 

2020) to guide understanding of the system. 

Throughout this chapter, attention is drawn to two variables “disease status” 

and “mortality status” because these variables are of primary interest to wildlife 

epidemiologists. Despite this concentrated focus, a whole-system model is 

referred to as one that can describe as many aspects of an ecological network 

as possible, across a hierarchy of ecological and statistical scales (Figure 2-1, 

Table 2-1). 

The remainder of this chapter is structured as follows: first, a consideration of 

why Bayesian inference should be used to model wildlife disease; second, a 

review of the application of Bayesian methods to wildlife epidemiology; third, a 

consideration of the importance of considering latent variables and individual 

heterogeneities for a whole-system model of wildlife disease; and finally, a 

demonstration of how Bayesian modelling has informed research into wildlife 

reservoirs of bovine tuberculosis (bTB). The literature surveyed suggests that 

Bayesian approaches to the modelling of wildlife disease are (a) relatively 

scarce, and (b) tend to infer only limited subsets of a whole-system model. 
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Why use Bayesian inference to model wildlife disease? 

A Bayesian model can be loosely defined as any model deriving its inference 

from a posterior probability distribution, acquired from a prior probability 

distribution and its associated likelihoods, using Bayes’ theorem and any 

available data or prior knowledge (Pearl, 1988). Powerfully, a disease ecologist 

can consequently combine all known ecological information relating to a host-

pathogen system, drawn from disparate sources, into a single, integrated model 

(Dunson, 2001). Bayesian models have already influenced our understanding of 

disease risks from invasive species (Lohr et al., 2017), the potential for disease 

transmission (Lau et al., 2017), and vulnerabilities within livestock systems to 

foot and mouth disease (Manyweathers et al., 2020).  

The primary goal of statistical epidemiology is to understand parameters most 

relevant to the understanding and management of epidemics, particularly 

infection prevalence, severity and spread. A current focus of disease ecologists 

is to understand and differentiate among interactions and relationships within a 

complex host-pathogen system (Milns, Beale and Anne Smith, 2010), despite 

the multiple complications this entails. For instance, when modelling disease 

systems, network complexity is known to add to “network fragility” (Milns, Beale 

and Anne Smith, 2010)—a somewhat vague graph theory term that in essence 

means “less stable”—largely due to increasingly unpredictable ecological 

responses to perturbations (Montoya, Pimm and Solé, 2006). Examples include 

social perturbation, i.e., individual dispersal in response to management 

interference, as observed during badger culling (Woodroffe et al., 2006; Carter 

et al., 2007) and wider anthropogenic perturbation from the threats to wildlife 

from human activity. A further complication is that the causative pathogens 
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themselves may cause potentially bi-directional—i.e., host to pathogen and 

pathogen to host—behavioural alterations affecting transmission (Weber et al., 

2013; Ezenwa et al., 2016; McDonald, Robertson and Silk, 2018). Constructing 

a realistic host-pathogen network, including these fine-scale interactions such 

as individual behaviours, remains a key challenge to the development of a 

whole-system model.  

The many benefits of Bayesian approaches to inference, and the Monte-Carlo 

Markov Chain algorithms usually used to implement them, are well documented 

(Kéry and Schaub, 2011; Hooten, Hobbs and Ellison, 2015). However, in the 

context of wildlife-disease modelling, the benefits of adopting a Bayesian 

approach include, but are not limited to:  

1. The ability to use prior information when available. 

2. The flexibility to describe a hierarchy of states, processes and their noise 

in a single model. 

3. A clear approach to inferring latent variables and parameters. 

4. The ability to combine across multiple sources of data and multiple 

statistical processes. 

5. And, the flexibility to work with a wider-than-usual range of likelihood 

functions (van de Schoot et al., 2021) such as computationally expensive 

likelihood functions that are slow to evaluate. 

In contrast, the costs of adopting Bayesian methodologies include: 

1. The learning of new statistical concepts and software. 

2. The dropping of ingrained allegiances to tests of significance or 

information criteria (Halsey, 2019). 
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3. The computational expense of running long, iterative chains of likelihood 

calculations. 

4. The lack of consensus on how to judge the importance of rival models 

(Harrison et al., 2018). 

Recent advances in computation, methodology, education, and software are 

already helping to minimise these apparent costs. 

Bayesian inference is particularly useful to disease ecologists because field 

data from real-world, diseased, or healthy wildlife populations is sparse but can 

often be supplemented by expert prior knowledge. Therefore, a Bayesian 

modeller has the flexibility to combine both quantitative and qualitative data 

(Wijesiri et al., 2018). Further, Bayesian hierarchical techniques can capture the 

intricacies of level, scale and hierarchy within ecosystems by simultaneously 

accounting for their uncertainties and handling a hierarchy of predictors as fixed 

or random effects (Wikle, 2003). Consequently, the uncertainty in latent 

epidemiological variables (Drewe et al., 2010) such as an individual’s infection 

status, can be both accounted for, and inferred.  

Bayesian Inference for Wildlife Disease: Examples 

To date, Bayesian hierarchical methods have been applied only sparingly to 

wildlife disease problems. For example, only eight examples (Table 2-2) of 

Bayesian hierarchical methods can be found using a Web of Science search— 

dated March 2022—given combinations of the terms: “Bayesian”; “hierarchical”; 

“model”; “wildlife”; “animal”; “disease”; “infection”; “system”. Naturally, such a 

paucity of citations will not adequately embrace every paper that uses Bayesian 

hierarchical methods to model disease, but certainly serves to characterise its 

limited application. What is more, Bayesian hierarchical models also seem to 
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have been applied to the field of wildlife disease epidemics in something of a 

“scattergun” manner across disease systems, levels of the ecological hierarchy, 

or in terms of the process that is being inferred. They have rarely been used to 

explore individual, group, and population hierarchies within the same model.  



84 
 

Table 2-2: Examples of wild host-pathogen systems that have been investigated using Bayesian hierarchical modelling where 

S = spatial, and T = temporal. 

Host-pathogen system Scale(s) 

of study 

Key parameters 

investigated 

Key ecological finding Reference 

T S 

bTB in European badgers ✓  Survival; recruitment Life history and recruitment 

characteristics of badgers 

ensure that the bTB reservoir is 

maintained 

(McDonald et 

al., 2016) 

Devil Facial Tumour Disease 

(DFTD) in Tasmanian devils 

(Sarcophilus harrisii) 

✓  Survival; fecundity DFTD affects the most 

reproductively valuable devils 

(Wells et al., 

2017) 

CWD in white-tailed deer 

(Odocoileus virginianus) 

 ✓ Likelihood of 

infection 

How CWD may be spatially 

distributed 

(Evans et al., 

2016) 
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CWD in North American elk (Cervus 

elaphus nelsoni) 

✓ ✓ Prevalence; allele 

frequency 

The relationship between CWD 

prevalence, and the PRNP 12L 

allele, which may extend the 

latency of CWD in North 

American elk 

(Monello et 

al., 2017) 

Influenza A in captive mallard (Anas 

platyrhynchos) and lesser snow 

geese (Chen caerulescens); 

Yersinia pestis in coyotes 

✓  Time since infection; 

force-of-infection 

A method to estimate force-of-

infection from individual antibody 

data 

(Pepin et al., 

2017) 

Brucellosis (Brucella abortus) in 

wild elk and livestock herds 

✓ ✓ Probability a region 

has brucellosis 

infections in its 

livestock 

The spillover of brucellosuis from 

elk to livestock may happen 

more in regions where unfed elk 

are contracting the disease from 

fed elk 

(Brennan et 

al., 2017) 
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CWD in mule deer (Odocoileus 

hemionus) 

 ✓ Prevalence The impacts of CWD on 

population growth rate, and 

covariates which moderate 

disease dynamics 

(Geremia et 

al., 2015) 

Five pathogens (porcine 

reproductive and respiratory 

syndrome virus, pseudorabies 

virus, Influenza A virus, Hepatitis E 

virus, and Brucella spp.) infecting 

wild pig (Sus scrofa) 

✓  Seroprevalence Demographics were not good at 

predicting seroprevalence. It is 

important to account for 

detection error when estimating 

the sensitivity and specificity of a 

diagnostic test. 

(Tabak, 

Pedersen 

and Miller, 

2019) 
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The information in Table 2-2 provides corroboration that Bayesian hierarchical 

models are useful for generalising large within-population and or landscape-

scale processes, and that they are broadly applicable across disease systems. 

Despite this, studies across broad ecological levels and scales are rare. The 

information in Table 2-2 also suggests that studies purely investigating disease 

spatially, or spatially and temporally, are less common than those that have a 

temporal investigation alone. Equally, as is demonstrated by the bTB case 

study in the final section of this chapter, Bayesian hierarchical analyses of 

evolving longitudinal datasets are also rare but are likely integral to the 

discovery of fine-scale ecological interactions pertinent to understanding 

disease processes. 

Modelling latent variables is essential to the whole-system 

approach. 

Bayesian state-space models are a form of Bayesian hierarchical model that 

allow Bayesian networks to easily distinguish dynamic biological processes 

such as changes through time (Beyer et al., 2013; Auger-Méthé et al., 2016) 

from unavoidable errors due to the imperfect detection of disease, host survival 

or transmission events. This chapter’s review of examples of Bayesian 

inference in wildlife disease research reveals a suite of latent variables that can 

be inferred from the capture and diagnosis data that are typically collected 

(Table 2-3). Specifically, state-space models achieve this inference by 

accounting for whether a parameter is unobserved or observed, as well as any 

associated sampling error (Royle and Young, 2008). This means that Bayesian 

state-space models are especially good at, for example, teasing apart 
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demographic stochasticity and sampling error (Newman, 1998; Patterson et al., 

2008).  
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Table 2-3: Examples of inferred wildlife disease parameters investigated using Bayesian state-space models. 

Host-pathogen 

system 

The Bayesian state-space model 

 

Inferred disease 

parameters 

General ecological 

finding 

Reference  

Observed time series Unobserved 

State 
Serology Other data 

Swine Influenza in 

domesticated 

Chinese swine 

✓ Virological Probability of 

exposure 

Force-of-infection; 

risk of exposure 

Early life exposure to 

Influenza in swine 

populations is 

increasing 

(Strelioff et 

al., 2013)* 

CDV in lions 

(Panthera leo) and 

domesticated dogs 

(Canis lupus 

familiaris) 

✓ regional 

vaccination 

coverage 

Probability of 

infection 

Seroprevalence; 

impact of 

vaccination 

CDV infection in lions is 

becoming more frequent 

(Viana et 

al., 2015)† 
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Morogoro virus in 

multimammate mice 

(Mastomys 

natalensis) 

✓ weight; 

infection 

patterns 

Natural 

infection 

patterns 

Time of infection No evidence suggesting 

that natural and 

laboratory infection 

patterns are not similar 

(Mariën et 

al., 2017)‡ 

Hantavirus in 

striped field mice 

(Apodemus 

agrarius) 

✓ NA Seasonal 

transmission 

rates 

Risk of hemorrhagic 

fever with renal 

syndrome (caused 

by Hantavirus) in 

human populations 

Hantavirus spillover  is 

driven by seasonality 

and dynamics of 

Hantavirus in rodent 

reservoir populations 

(Tian et al., 

2017)‡ 

CDV in grizzly bears 

(Ursus arctos) and 

wolves (Canis 

lupus) 

✓ NA Timing of 

infection 

CDV exposure in 

wolves and bears 

How CDV dynamics 

vary temporally in 

wolves and bears 

(Cross et 

al., 2018)† 

Fox (Vulpes vulpes) 

rabies 

✓ NA Demographic 

data, spatial 

data, 

Transmission 

heterogeneity; 

probablility of 

Information about the 

local transmissive 

(Baker et 

al., 2020)† 
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vaccination 

rate 

infected fox moving 

area; observation 

rate; environmental 

noise 

processes of rabies in 

foxes 

Avian malaria 

(Plasmodium 

relictum) in 

Hawaiian 

honeycreeper 

species 

✓ NA Age-

prevalence 

model, 

demographic 

data 

Prevalence; 

intensity of infection 

Patterns of prevalence, 

transmission, and 

mortality rates 

(Samuel et 

al., 2015)† 

* Web of Science one-term and one-topic search; † Web of Science five-term search; ‡ ad hoc search 
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The inferred latent variables and ecological findings of the Bayesian state-space 

models presented in Table 2-3 demonstrate that disease parameters are mainly 

studied at the group level or population level (Osada et al. 2015) even though 

most of them used individual serology data to inform models. Table 2-3 

highlights that the application of Bayesian state-space models within wildlife 

disease epidemiology is limited, but the search was hampered by vague or 

inconsistent model terminologies. Underpinning this observation are three 

search methods referenced within Table 2-3. The first is a Web of Science 

search using combinations of the terms: “Bayesian”; “state-space”; “disease”; 

“wildlife”, which only yielded four relevant studies. A further relevant study was 

found using the search topic “state-space model” when filtering by the Web of 

Science category “ecology”. Two additional relevant examples were found in the 

absence of either “state” or “space” as a keyword. 

Three key observations can be drawn from the examples contained in Table 

2-3. First, that observed serological data is common to all studies, presumably 

because most disease states in wildlife remain latent following visual 

surveillance. Second, it is encouraging that ecological stochasticity is modelled 

in the dimensions of space and time, often within the same study. And thirdly—

and most importantly—the observations drawn by all the examples in Table 2-3 

only regard population- or species- levels. Based on these observations, it is 

found that state-space models often span two levels of a hierarchy but rarely 

multiple latent variables. An example of this is demonstrated within previous 

work on the badger-bTB system (McDonald et al., 2016), which used state-

space models to infer the latent variable “alive” but ignored uncertainty in 

diagnostic test outcomes. 
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Table 2-3 convincingly demonstrates that serological data collected over space 

and time can, when combined with Bayesian state-space methods, yield 

powerful conclusions about high-level disease parameters. But state-space 

models are also an obvious tool for filling in any unknown relationships between 

individual disease states. For example, multi-state modelling using maximum 

likelihood methods revealed that epidemiological and demographic parameters 

vary between disease states in badgers (Graham et al., 2013), yet a significant 

number of unknown complexities still exist within this relationship which cannot 

be quantified without Bayesian methods. There is a fundamental need to 

parameterise processes within disease models more rigorously by applying 

Bayesian state-space theory. Although the need for good epidemiological 

parameter inference has been apparent for over a decade (Simmons et al., 

2006; Craft et al., 2008), the potential of state-space models has not yet been 

realised: they can help define the mutable nature of disease across any level of 

the whole-system model, inclusive of space as well as time.  

Including individual heterogeneities is essential, but difficult.  

Studying the spread of infection or disease among individual hosts can be 

challenging because single transmission events are not just impossible to 

observe in the wild, but also associated with a wide variety of host 

characteristics that are difficult to measure and monitor, such as behaviour, 

immunity, age, movement and crucially the interactions between infected and 

susceptible individuals.  

Wildlife diseases are often studied using data on antibodies or general 

pathological observations (Mariën et al., 2017). Consequently, many 

epidemiological state-space models are based on serology records (Gilbert et 
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al., 2013; Benavides et al., 2017). Although the seropositive statuses of most 

wild host species are unknown (Benavides et al., 2017), it is becoming 

increasingly important to look at the information that serology records provide, 

to reveal individual heterogeneities. For example, in Eidolon helvum fruit bats, 

seropositive thresholds were used to distinguish between the genetic and 

acquired immunities to Lagos bat virus and African henipavirus, using Bayesian 

mixture-models (Peel et al., 2018). Here, Bayesian inference determined that 

immunity relied on patterns in disease transmission (Peel et al., 2018), 

suggesting that serological data is a useful way to measure individual 

heterogeneities. In turn, this suggests that estimating seroprevalence is a good 

proxy for inferring the probability of infection in the absence of reliable testing. 

Yet even though the state-space models described in Table 2-3 are based on 

individual-level data, the inferences are usually population-level parameters, 

with highly generalised disease processes (Viana et al., 2015), illustrating the 

difficulty in disaggregating the individualistic characteristics of disease 

processes. 

A further difficultly in representing the individual state within state-space models 

is the complexity of the data involved. For example, ageing is a latent individual 

process that is difficult to understand, particularly in terms of its relationship with 

disease. Serological data has been directly associated with age to infer infection 

rate, the probability of antibody loss, and recovery rates in brucellosis-infected 

Elk (Benavides et al., 2017). Yet to infer these parameters, the authors adopted 

Approximate Bayesian Computation methods due to the difficulty in writing 

closed form likelihood functions for the study parameters, and the associated 

difficulty of then implementing them within a standard MCMC algorithm 

(Benavides et al., 2017). This is an example of where the usefulness of 
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Bayesian state-space modelling is currently limited in terms of its accessibility to 

disease ecologists. The latent process of ageing is intrinsically linked to disease 

via a host of known and unknown latent variables which should be accounted 

for in a whole-system model. Bayesian methods are a practical tool of choice for 

modelling complex systems, but realistically, the modelling of whole systems 

using the Bayesian hierarchical approaches described within this chapter will 

rely on stronger collaborations between statisticians, epidemiologists, and 

ecologists.  

CASE STUDY: Use of Bayesian inference to research wildlife 

reservoirs of bTB 

Bovine tuberculosis (bTB) infections—caused by zoonotic bacteria 

Mycobacterium bovis—are globally relevant, difficult to control, and scrutinised 

by disease ecologists across many host species. Research on mammals 

maintaining bTB reservoirs over wildlife-livestock boundaries dominate the 

literature, and the disease is high-profile and economically important. Yet 

researchers continue to find new wildlife reservoirs of Mycobacterium bovis 

(Varela-Castro et al., 2021), any of which could influence the transmission and 

spread of disease among livestock. Bayesian approaches could help bridge the 

data gaps between rarely studied and well-studied bTB hosts by enabling 

information on host ecology from non-disease studies to inform future 

epidemiological models.  

In badger-bTB research, a better understanding of pathogen transmission within 

and among badger reservoirs, as well as between badgers and cattle, or other 

non-reservoir host species, is required. Like all disease systems, the 

understanding of the badger-bTB system is constantly shifting with new pieces 
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of information, which can act to better inform priors with expert knowledge and 

improve our beliefs. For example, the rapid serological Dual-Path Platform 

VetTB test has recently been validated for bTB testing in badgers (Arnold et al., 

2021) and a badger behaviour called super-ranging has been detected, which is 

potentially responsible for long-distance bTB transmissions (Gaughran et al., 

2018). Consequently, these specific pieces of information could help provide 

updated estimates of disease transmission and disease progression within a 

badger-bTB system (McDonald et al., 2016). 

Although the number of “how-to” papers describing the power of Bayesian 

inference in the context of wildlife epidemiology is increasing (Enright and 

O’Hare, 2017; Conn et al., 2018), research incorporating Bayesian modelling 

strategies specifically focused on the ante-mortem badger-bTB system is 

limited, with the result that its benefits to wildlife disease research are not widely 

appreciated. Six known studies of primary research (Drewe et al., 2010; 

McDonald et al., 2014, 2016; McDonald, Robertson and Silk, 2018; Crispell et 

al., 2019; Hudson et al., 2019) that used Bayesian methods to explore badger-

bTB transmissions on a “landscape-scale” were considered. All six studies 

defined landscape-scale as the geographical extent of Woodchester Park, 

Gloucestershire, UK, a 7km2 region where the capture-mark-recapture data 

common to all six studies was collected.  

In South Island, New Zealand—where brushtail possum (Trichosurus vulpecula) 

were speculated to be the keystone reservoir species of bTB for circa three 

decades (Trichosurus vulpecula) (Morris and Pfeiffer, 1995)—recent Bayesian 

research (Crispell et al., 2017) has provided confirmation that its possum 

population is responsible for South Island’s bTB maintenance; rather than its 

cattle population. In the UK, although it has been confirmed via Bayesian 
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Integrated Population Models why Woodchester Park badgers are an efficient 

bTB reservoir (McDonald et al., 2016), the directionality of bTB transmissions 

between badgers and cattle remains debated, and it is suspected that badgers 

are responsible for roughly half of bTB infections in cattle within high cattle-bTB 

incidence areas (Donnelly and Nouvellet, 2013). Another analysis concluded 

that badger to cattle transmissions were ~10.4 times more frequent than vice 

versa (Crispell et al., 2019).  

A whole-system model of bTB systems, capable of linking information 

throughout an ecological hierarchy, is required, and an example of what this 

model may look like is presented in Figure 2-1. A particular limitation in the 

development of such a model is the ability to incorporate individual badger 

heterogeneities: individual traits are often neglected in disease models since 

detailed longitudinal datasets of individuals within diseased populations—such 

as the Woodchester Park dataset—are rare. 

Within the badger-bTB system, heterogeneities among badgers (McDonald, 

Robertson and Silk, 2018)—such as gender, inbreeding, disease, social group 

and age (Benton et al., 2018)—act as proxies for infectiousness or “risk” 

(VanderWaal and Ezenwa, 2016), and are thought to drive fine-scale bTB 

dynamics. Fundamentally, an understanding of fine-scale disease processes in 

combination with Bayesian methodologies arms ecologists with the ability to 

parameterise previously unobservable processes, such as actuarial senescence 

(Hudson et al., 2019), gender-differences in susceptibility to bTB (McDonald et 

al., 2014) and on the diagnostic accuracies of badger-bTB tests (Drewe et al., 

2010): information which improves our capability to model badger 

heterogeneities in the future.  
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The idea of achieving a better understanding of the bTB system in wildlife hosts 

using a whole-system approach is not a new one. Analogous to the whole-

system model posited within this chapter, Silk et al., 2017 proposed the need for 

a novel modelling framework, and McDonald, Robertson and Silk, 2018 

recommended a comprehensive epidemiological model. In addition, White, 

Forester and Craft, 2017 suggested that combining contact networks with 

Bayesian inference is the future direction for understanding wildlife epidemics. 

The inclusion of a hierarchy of scale within whole-system ecological models in 

general has been recommended by several authors (Tonnang et al., 2017; 

Fountain-Jones et al., 2018). 

Conclusion  

Modelling host-pathogen systems can be considered a “wicked problem” (Rittel 

and Webber, 1973): its success is dependent on multidisciplinary thinking 

(Benjamin-Fink and Reilly, 2017) between statisticians, epidemiologists, and 

ecologists; and there is a balance between accepting over-simplified solutions 

and being overwhelmed by overly complex ones (Defries and Nagendra, 2017). 

Moreover, any solution involves balancing conflicting and fluid temporal and 

spatial ecological scales (Waltner-Toews, 2017). In addition to space and time, 

the environmental processes that describe host movement—such as climate or 

seasons—are often disregarded, yet essential, dimensions required to model 

disease systems (Merkle et al., 2018).  

A deeper forensic approach (Benton et al., 2018) is required to better 

understand and parameterise complex host-pathogen systems, and the 

Bayesian toolkit provides a good starting place for this. Overall, future studies of 

host-pathogen systems require a better representation of scale, which needs to 
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be examined in terms of applying suitable Bayesian methods (statistical 

hierarchy) and by paying attention to the complexity of the system that is being 

analysed (ecological hierarchy). The connection between these different scales 

has rarely been studied within ecological systems, and has never been 

completed for a single system, yet is essential to providing a whole-system 

model.  

This survey of the wildlife disease literature demonstrates that the current 

application of Bayesian networks to solving wildlife disease problems is limited: 

in particular, there is a paucity of hierarchical analyses that infer truly latent 

parameters or individual heterogeneities across ecological scales. While 

Bayesian methods are now being used in several wildlife disease systems, they 

are usually only used to tackle standard hypotheses at a single level of the 

ecological hierarchy or, at most, span two levels of the ecological or statistical 

hierarchies.  

By developing Bayesian hierarchical modelling methods and integrating them 

with real-world empirical data that is not exclusively serological, the potential 

exists for ecologists to create whole-system models that can provide unique 

insights into the epidemiology of wildlife disease networks. The first step 

towards the whole-system model is to develop a Bayesian hierarchical model 

that spans the state-space nature of each level of the host-pathogen ecological 

hierarchy. 

With the complexities of the Bayesian modelling of wildlife disease across 

ecological systems considered, this thesis turns to presenting the general 

modelling architecture underpinning all empirical chapters. 
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Chapter 3 

3. Generalised methodologies for generating diagnostic 

test data, and parameterising and calibrating 

Bayesian Latent Class Models. 

From this point, the true parameters diagnostic test sensitivity, diagnostic test 

specificity, and disease prevalence are abbreviated in-text to Se, Sp and P 

respectively due to their frequency of use; with the abbreviations Sehat, Sphat 

and Phat indicating where an inferred value is being referred to.  

Introduction 

Conventionally, the management of disease—including newly emerged 

diseases and zoonotics that have crossed geographic or species boundaries—

rely on the accurate estimation of epidemiological parameters at the ante-

mortem stage (DiRenzo et al., 2018). Since gold standard reference tests are a 

rarity for wildlife diseases, metrics describing disease in wildlife systems are 

largely reliant on statistical alternatives to such tests, particularly Latent Class 

Models. These alternatives, however, pose significant statistical challenges in 

respect of their proper application, and meeting these challenges is a 

prerequisite to accurate and precise inferences of the epidemiological 

parameters of interest. 

With this in mind, Chapter 3 outlines the generalised structure of the BLCMs, 

and the associated modelling architecture employed in the remainder of this 

thesis. As such, this chapter does not aim to be a background text on BLCMs; 
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for this, already-published reviews—such as Wang, Lin and Nelson, 2020 and 

Li et al., 2018—are more appropriate. 

With the general modelling architecture duly outlined, each subsequent 

technical chapter—Chapters 4 to 8—simply describes the specific modifications 

to this generalised modelling structure, made in order to allow specific 

investigations into the particular research questions that they address. 

An introduction to model power 

In general terms, a model’s power is its ability to find a signal when a signal 

exists, and this is usually conditional on the sample size available, since the 

standard error of the parameter being estimated is dictated by sample size 

(Gelman and Hill, 2006; Gelman and Carlin, 2014). Power analyses are 

traditionally associated with frequentist studies intending to determine the 

statistical significance of a signal given a null hypothesis (Gelman, Meng and 

Stern, 1996).  

For Bayesian studies, support exists (Cumming, 2014; Gelman and Carlin, 

2014; Kruschke and Liddell, 2018), for a “shift of emphasis away from null 

hypothesis significance”, and instead the emphasis moves towards analyses 

that consider the magnitudes and uncertainties of error structures, and therefore 

the credibility of inferences (Kruschke and Liddell, 2018). This shift of emphasis 

has been termed “The New Statistics” (Cumming, 2014). As part of this thinking, 

a Bayesian New Statistic termed Bayesian Generalised Power has been set out 

as an alternative measure of model power for Bayesians (Kruschke and Liddell, 

2018). For simulation analyses, Bayesian Generalised Power is “the proportion 

of times that a goal is achieved”, where the “goal” is simply an a priori 

assumption based on real or hypothetical data (Kruschke and Liddell, 2018). 
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A central goal of this thesis is to evaluate how accurately and precisely BCLMs 

can infer Se, Sp and P. And with the notion of the New Statistics in mind, this 

thesis redefines model power as the relative accuracies and precisions of 

inferences of Se, Sp and P when compared to other BLCMs. The power of a 

BLCM in this thesis therefore indicates the quality of its diagnostic abilities, i.e. 

the ability to discriminate between infected and uninfected individuals. Model 

power is therefore a measure of the usefulness of a BLCM in terms of its 

performance, and the trust that can be assigned to its inferences. 

In essence, for this thesis, model power provides a qualitative metric which can 

be used to compare the performance of BLCMs under different modelling 

conditions. Model power is informed by the accuracies and precisions of 

inferred parameters across parameter spaces, and these statistics can be 

visualised on heatmaps to enable qualitative analyses (see Chapter 5).  

Parameter imperfection and model usefulness 

The performance of a BLCM is dependent on the complex interactions among 

inferences of the latent parameters Se, Sp and P, which for batteries of 

diagnostic tests, are not fully understood. 

Importantly, within this thesis, a “parameter” is a latent population-level metric, 

which numerically describes the “truth”, and an inferred parameter is the output 

of a BLCM which describes a version of that truth. A parameter is both a 

component of a model, and a latent feature of a population which we wish to 

infer. Fundamental to this concept is the understanding that inferences of the 

parameters Se, Sp and P cannot ever achieve “perfection”. Diagnostic 

perfection is not a logical research ambition—and certainly not the goal of this 

thesis—since statistical diagnoses only exist due to the absence of gold-
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standard diagnoses. Instead, a core aim of this thesis is to better understand 

when and how parameters are not perfect, as it is impossible to truly know 

whether a parameter is perfect—even with unlimited modelling.  

Accordingly, this thesis focuses on improving model power—inclusive of the 

levels and sources of error that can contribute to a parameter inference—rather 

than model parameterisation, which is already well-established for Latent Class 

Models emulating diagnostic tests (Hui and Walter, 1980; Joseph, Gyorkos and 

Coupal, 1995; Enøe, Georgiadis and Johnson, 2000). This focus, and the 

Bayesian context in which it is applied, conforms to the concept of “model-

dependent realism”—which is “the idea that a physical theory…is a model…and 

a set of rules that connect the elements of the model to observations” (Hawking 

and Mlodinow, 2010)—since the studies presented in this thesis place 

importance on the usefulness of models, rather than their deterministic 

perfection. In short, model power is the metric that this thesis uses to qualify the 

usefulness of a BLCM. 

A note on the levels and sources of the uncertainty of posterior 

distributions. 

The following list describes the key sources of what this thesis terms the error 

(Equation 16), bias (Equation 17), and precision (Equation 18)—here, 

collectively termed the uncertainty (Porta, 2016)—of posterior distributions.  

1. Given a selected model and prior, the uncertainty of a single simulation 

could be due to the choice of initial value when setting MCMC algorithm, 

a lack of identifiability, or any mistakes made by the MCMC algorithm. 

The error of a single simulation is the difference between the truth and 
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the inference. The precision of a single inference can be described as a 

credible interval, i.e. the width of a posterior distribution.  

2. Given a selected model and prior, the uncertainty of multiple replicates is 

reflected in the confidence that can be attributed to the posterior mean. 

This thesis reports uncertainty in terms of among-replicate accuracy or 

precision, for a given volume of parameter space, and given modelling 

conditions. Among-replicate measures of accuracy describe how far from 

the truth the posterior mean sits from the prior mean. Among-replicate 

measures of precision can be determined by taking the mean of the 

standard deviations of each simulated posterior distribution, and these 

metrics describe the average variation associated with inferred values of 

Se, Sp or P. 

3. The power of a BLCM—as previously defined, a qualitative metric to 

compare the performance of BLCMs under different modelling conditions 

informed by the accuracies and precisions of inferences of Se, Sp or P 

across parameter space on heatmaps.  

4. The power of a BLCM as a function of the prior information provided, i.e., 

the method or methods used to supply a BLCM with existing beliefs 

about a parameter. 

5. Selecting the truth, which could be easier or harder to infer dependent on 

the precision of its prior distribution.  

6. A biased sample of diagnostic test data, which is not necessarily 

representative of the study population.  
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An introduction to parameter space 

The parameters Se, Sp and P can obviously take any one of an infinite number 

of values, which are conventionally bounded above by one and below by zero 

as the probability scale is most useful for discussing values of Sehat, Sphat and 

Phat. It can therefore be useful to consider the set of possible values that a 

given parameter might possess as comprising the “parameter space” for that 

parameter. When multiple parameters are being considered at the same time, 

parameter space becomes multidimensional, given that the values of individual 

inferred parameters Se, Sp and P might not constrain each other. The number 

of such individual parameters gives the “dimensionality” of the parameter space, 

and within this multidimensional space are all the possible parameter values 

that characterise a particular solution (Vaseghi, 2008). 

Within this thesis the term “parameter space” therefore represents a conceptual 

space in which the truth must lie, and is used interchangeably, as a noun, in 

one of three senses: 

1. A one-dimensional space encompassing the range of possible values 

for a single parameter, Se, Sp or P.  

2. A multidimensional space in which the true combination of 

parameters—or the truth—must lie.  

3. The space explored by an MCMC algorithm (Kosmala et al., 2016; 

Hu, Gonzales and Gubbins, 2017; Vehtari et al., 2020; Ragonnet-

Cronin et al., 2021) that is defined by prior distributions. MCMC 

algorithms investigate parameter spaces while working to infer the 

posterior distribution of credible inference. The truth, which is usually 

fixed for simulation studies in order to provide controlled study 
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environments—or alternatively that is unknown when observed data 

is used—exists in MCMC parameter space. 

When we as ecologists “simulate” diagnoses, we inevitably set a truth belonging 

to the parameters concerned. Consequently, this thesis investigates the 

hypothesis that model power depends on the position of the truth within 

parameter space. The remainder of this chapter outlines, in general terms, the 

overarching framework and rationale used to test this hypothesis.  

The statistical challenge 

Host detection is conventionally regarded as imperfect through a reliance on 

imperfect capture-mark-recapture studies, and the unpredictability and 

randomness to which they are subject. There is also a deeper layer of 

uncertainty to consider: the imperfect detection of pathogens within a sample of 

captured, live hosts (Kellner and Swihart, 2014).  

As already alluded to, the data underpinning BLCMs is impacted by two 

stochastic processes that influence the uncertainty of diagnoses: first, the 

inability to trap an entire population of animals, and second, the inability to 

therefore test an entire population of animals for an infection. In practice, when 

undertaking theoretical studies—that may have the purpose of supplementing 

or validating real-world studies—most ecologists and researchers side-step 

these considerations and instead employ deterministically-calculated test data 

(Clark, 2005) that obey mathematical equations (Pool, 1989). Deterministically-

calculated test data is generally easier to understand, particularly since the test 

outcomes are exactly predictable. 

The limitations of deterministic approaches include the difficulty of using 

multiple data sets; the assumption that the process behind the parameters is 
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known; the inability to fully model existing a priori understanding; and the 

difficulty in integrating many layers of complex interactions (Clark and Gelfand, 

2006). Since the outcomes of deterministic approaches are entirely predictable, 

or “idealised” (Sharkey, 2008), they can be thought of as having an ambiguous 

“conceptual status” (Gelman et al., 2010) simply because models are never 

perfect. Ultimately, when modelling deterministically, if any information is 

incomplete, then predictions made from the governing equations will be 

imperfect (Hastings et al., 1993), and the resulting uncertainty will be difficult to 

retrospectively compensate for (Omurtag and Fenton, 2012; Uusitalo et al., 

2015) or determine via model checking, since there is no sampling distribution 

to compare the data with (Gelman et al., 2010). 

Consequently, this thesis argues that the data inputted into theoretical BLCMs 

should ideally account for two important stochastic processes: the inability to 

trap entire wildlife populations, and inability to consequently test entire wildlife 

populations. The distinction between stochastically- and deterministically- 

derived test data is important and can have a significant impact on the power of 

a BLCM. 

This is easily illustrated with a simple thought experiment. If P is 20% and 100 

individuals are captured, deterministically calculated test data would not reflect 

the real-world studies that rarely capture the expected 20 infected individuals. 

Furthermore, if 20 known infected individuals are tested, and the Se and Sp of 

the test is 80%, a deterministic study would report exactly 16 positive test 

results, with which a real-world study would be unlikely to agree. Actual wildlife 

test data is difficult to decipher because it includes the random and often 

imperfect processes that characterise trapping and testing in the field. 
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Consequently, it is possible that the power of BLCMs when using 

deterministically calculated data would be overestimated.    

Perfect trapping efficiencies in wildlife populations are rarely attainable, and so 

this is a further source of uncertainty that should be considered. Moreover, it is 

already known that imperfect trapping efforts, when combined with imperfect 

diagnostics, contribute to biased estimates of Phat, which—regardless of the 

method for its prediction—is an often-underestimated parameter of interest 

(Lachish et al., 2012; Miller et al., 2012). Consequently, inferences of Se, Sp 

and P if based on an unknown population size, will have a high likelihood of 

being biased by the impossibility of trapping an entire population (Smith and 

Vanderweele, 2019).  

For example, in badgers, “trappability” is known to vary among badger 

individuals (Byrne et al., 2012), and trapping conditions vary among trapping 

events (Noonan, 2015) thereby impacting population-level trapping efficiencies 

(Tuyttens et al., 1999). Nor is this impact relatively insignificant: estimates of 

trapping efficiencies in badgers range between 34% (Byrne et al., 2012) and a 

figure greater than 80% (Smith and Cheeseman, 2007).  

To complicate matters further, P in the field, as opposed to historic estimates of 

apparent P from sampled data (Lewis and Torgerson, 2012), is thought to 

associate with covariates such as host trappability, weather (Martin et al., 

2017), as well as the performance of already imperfect diagnostic tests in 

largely unknown ways. These findings only reinforce the need to account for 

imperfect trapping and testing in simulation studies using BLCMs, since these 

limitations present unavoidable sources of uncertainty. 
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Consequently, understanding how sampling error may affect estimates of Se, 

Sp and P—on a population level, where population size is unknown—must be 

regarded as a significant gap in ecologists’ ability to quantify disease in live 

populations. 

Parameterising this challenge 

Conventionally, a specific output 𝑦 is expected to occur when models are run 

with parameters denoted 𝜃. Consequently, in deterministic modelling, when 

given a parameter 𝜃, the same outcome 𝑦 is expected no matter how many 

times the model is run. In contrast, to model stochastically, ecologists must 

associate many observed outcomes of 𝑦 with 𝜃 via a probability distribution 

𝑃𝑟(𝑦|𝜃), where 𝑃𝑟 is the likelihood function better reflecting the realities of 

testing environments in the field. Since the likelihoods of Se and Sp are not 

derived using P, a stable expression of test performance can be expected. 

In this thesis, stochastic methods are used to generate arrays of expected 

binary diagnostic test results by using two random binomial processes to 

account for the dependencies of Se, Sp and P on theoretical diagnostic test 

outcomes and sampling efforts. The parameters of interest—Se, Sp or P—

represented in their unconstrained state are all bounded above by one and 

below by zero to remain on an interpretable probability scale, and are 

associated with an accuracy and precision specific to their location within 

parameter space.  

Most statistical alternatives to gold standard diagnostics infer Se, Sp and P 

using the latent class probabilistic models first derived during the 1980s, such 

as the Hui-Walter model (Hui and Walter, 1980), which—usually via maximum-

likelihood methods—work to describe the link between observed test results 
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and latent true infection statuses. To model this link, it is a common perspective 

(Dendukuri, Bélisle and Joseph, 2010; Jones et al., 2010) that at least three 

diagnostic tests should be employed when gold-standard tests are not 

available, though this is not always essential (Goodman, 1974), and so in this 

thesis, experiments are designed to explore flexible parameter spaces to verify 

when parameters can be inferred.  

The Hui-Walter Latent Class Model is an extendable statistical tool used to 

overcome the impossibility of assessing diagnostic test accuracy and disease 

prevalence in infected wildlife and human populations (Hui and Walter, 1980). 

By advancing maximum-likelihood approaches to BLCM approaches, previously 

difficult-to-quantify disease parameters may be inferred, since prior information 

can explicitly resolve their otherwise missing values.  

A further challenge in estimating the latent parameters Se, Sp and P is that 

even their best inferences may vary widely between published studies of the 

same host-pathogen system, and even the same study population—for example 

as explained by Greiner and Gardner, 2000—often due to commonly-cited 

reasons such as biological differences between sampled populations, 

methodological differences in sampling strategies or efforts, and or changes in 

the specifications of a diagnostic test such as its cut-off point, i.e. the agreed 

threshold at which a diagnostic test result can be perceived as positive or 

negative. 

This thesis examines a less frequently cited but also important reason for 

variations in the inferences of Se, Sp or P which is the specification of the 

BLCM itself, including the impact of stochastic test data and the prior 

distributions used on a BLCM’s explanatory power. For ecologists, the need to 

do this arises because of a lack of standard specifications for BLCMs, and due 
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to the absence of available procedures for validating a BLCMs’ algorithms, data, 

and assumptions. The implications of this are explored further within Chapter 4.  

Broadly speaking, however, the more accurately and precisely posterior 

inferences can describe the likelihood of a parameter, given some data, then 

the closer the model represents reality, and the more powerful it becomes.  

In summary, for the power of a BLCM to be known across the required 

parameter space, the ecologist’s toolkit needs to include general methods for 

stochastic data generation, and a verified means of generalising latent class 

probabilistic models across tests and populations. 

Consequently, the modelling framework and associated infrastructure described 

in this chapter is integral to the data generation and pre-inference data 

processing employed throughout the studies presented in Chapters 4 to 8. This 

framework constitutes a stochastic modelling framework written in R (R Core 

Team, 2023) version 4.2.2 to generate theoretical diagnostic test data that is 

paired to a BLCM using the jagsUI package (Kellner, 2015). The BLCM is 

programmed using JAGS (Just Another Gibbs Sampler) version 4.3.1—a C++ 

language with similarities to the software BUGS (Bayesian inference Using 

Gibbs Sampling) (Lunn et al., 2000)—and is used to infer results via a relevant 

MCMC sampler. Specifically, using JAGS as the Bayesian modelling tool 

provides an easy way to conduct Gibbs sampling without the need to derive the 

full conditional distributions, or write an MCMC sampler. 

While the specifications of each simulation scenario presented will of course 

vary along with the specific hypothesis being tested, all models, in each 

chapter, conform to this general specification. It is presented here to avoid 

chapter-by-chapter repetition. 
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How is the diagnostic test data generated? 

First, the stochastic methodology is applied in order to simulate arrays of 

diagnostic test results. Then, a BLCM uses this test array to instruct the relevant 

MCMC algorithm to infer the values for parameters Se, Sp and P. All the 

simulated data is determined by seed—a feature that can ensure the 

repeatability of experiments using randomly generated data—in order to 

facilitate the comparison of experiments as well as an understanding of how the 

observed data impacts on a model’s ability to infer the truth. 

When true values for Se, Sp and P are given, the infection statuses and 

resultant test outcomes of individuals can be sampled from binomial 

distributions to introduce stochasticity, i.e. random noise. The inclusion of this 

random noise sets this thesis apart from studies such as Johnson et al., 2009, 

and previous models by Branscum, Gardner and Johnson, 2005, where 

deterministically-generated data is used. The studies present in this thesis use 

stochastically-generated test data, which accounts for the random noise 

associated with the imperfect trapping and testing of animals. To the best of this 

author’s knowledge, Helman et al., 2020 are the only authors to have used 

stochastically-generated test data to study wildlife disease.  

The function, in pseudocode, that is used to generate diagnostic test results 

from the true values provided works as follows. This function is termed 

get.values and its various specifications can be found within the online 

repository at https://github.com/annabush/PhD. 

Inputs: 𝑃, 𝑆𝑒, 𝑆𝑝, 𝐷, 𝑀 

Output: simulated diagnostic test outcomes 
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FOR each of the 𝑀 individuals 

 SET the individual’s infection status, 𝑠 =  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃)  

 FOR each of the 𝐷 diagnostic tests 

  SET the probability of a positive result,  

𝑞 = 𝑠 ∙ Se + (1 − s)(1 − 𝑆𝑝) 

  SET the test outcome 𝑑 =  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞) 

 STORE each of the individuals test outcomes in binary 

format 

TALLY the number of each combination of test outcomes 

 

The true values for Se, Sp and P are then inputted, along with the number of 

diagnostic tests 𝐷, and number of individuals, 𝑀 that control the simulation 

outside of the model. The infection status, 𝑠, of each individual is drawn using a 

single trial from a Bernoulli distribution, 𝐵, such that 𝑠 = 𝐵(𝑃).  

For each of the given diagnostic tests, the probability, 𝑞, that an individual 

returns a positive result can be calculated according to Equation 6. 

 Equation 6 

𝑞 = 𝑠 ∙ 𝑆𝑒 + (1 − 𝑠)(1 − 𝑆𝑝) 

And the subsequent test outcome, 𝑑, can also be drawn from a Bernoulli 

distribution, such that 𝑑 = 𝐵(𝑞). All diagnostic test results can then be tallied to 

quantify the number of observed positive (1) and negative results (0).  

The generation of diagnostic test data is a crucial part of the general workflow 

required to produce the datasets described in Table 10-1, this workflow is 

outlined in pseudocode below. 
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SET parameters (Table 10-2) and hyperparameters ( 

Table 10-3: The MCMC hyperparameters used to define the JAGS models 

written using the jagsUI package (Kellner, 2015), their values, and why those 

values were chosen. These hyperparameters are relevant to the simulation 

analyses conducted between Chapters 5 to 7. 

) 

DEFINE functions (Table 10-4) 

EXECUTE 

INITIALISE an array to collect simulation outputs 

GET diagnostic test data (see get.outcome.matrix, 

Table 10-4) 

COMPILE all required data into a list for 

simulation 

RUN simulations over multiple cores 

STORE simulation outputs into results array and save 

 

Why is a generalisation of the Hui-Walter model necessary? 

A generalised Hui-Walter model can simultaneously test hypotheses concerning 

any number of independent diagnostic tests and or populations without the 

need to re-parameterise; with a core benefit being flexibility in the amount of 

information available for making inferences. This section identifies five specific 

reasons why a generalised Hui-Walter model is required. 

Batteries of tests are used in many diagnostic settings in human and animal 

health, for example the use of molecular and antigen tests for detecting 

infection with SARS-CoV-2. Nevertheless, in the field of infectious wildlife 
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disease—where there is often a paucity of real-time and longitudinal disease 

data—it is critical that wildlife epidemiologists can utilise all the information that 

they have on a specific disease to fill this data gap. Bayesian ecologists 

sometimes account for this data gap by providing BLCMs with informative 

priors, yet successful modelling calls for a careful balance between the quality 

of prior information and “enough” diagnostic tests (or populations)—which could 

be inputted by proxy—in order to meaningfully direct the MCMC sampler.  

The degrees of freedom of a statistical problem is a value describing the 

number of independent pieces of data that are free to vary when solving it 

(Rodríguez et al., 2019). Regarding the studies presented within this thesis, the 

statistical problem is the identifiability of the BLCM, and the data, in this context, 

are the parameters that must be inferred by the BLCM. Following this logic, the 

degrees of freedom of any diagnostic testing scenario using multiple tests is 

calculated using the rule 𝑁 − 1 (Siegel and Castellan, 1988), where N is the 

number of possible test outcomes available. Using this rule, Table 3-1 describes 

the degrees of freedom available in Latent Class Modelling situations of one to 

five tests.  

Table 3-1: The degrees of freedom available to an estimation problem given 

batteries of binary diagnostic tests.  

Number 

of tests 

Number of 

parameters 

(𝟐𝑫 + 𝟏) 

Number of test 

outcomes 

(𝟐𝑫) 

Degrees of 

freedom 

(𝟐𝑫−𝟏) 

Are the degrees 

of freedom ≥ 

number of 

parameters? 

1 3 2 1 N 

2 5 4 3 N 
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3 7 8 7 Y 

4 9 16 15 Y 

5 11 32 31 Y 

 

A standard maximum-likelihood construct of the Hui-Walter model assumes that 

two imperfect tests and two populations are available, providing six degrees of 

freedom (Enøe, Georgiadis and Johnson, 2000). But in many cases, 

researchers do not have access to two study populations, and modelling one 

population as two subpopulations based on a selected splitting characteristic 

(Enøe, Georgiadis and Johnson, 2000) is not without risk, as it can be difficult to 

ensure that this characteristic is truly independent of diagnostic accuracy and P. 

Therefore, to satisfy the degrees of freedom rule, logic dictates that the simplest 

Latent Class Model must have three independent diagnostic tests and one 

population, and this is termed the Walter and Irwig 1988 model (Walter and 

Irwig, 1988).  

Therefore, a “Three-Test, One-Population” BLCM—the Walter-Irwig model—is 

functionally equivalent to the “Two-Test, Two-Population” archetype termed the 

Hui-Walter paradigm common to wildlife disease literature (for example, 

Johnson, Gastwirth and Pearson, 2001) since it provides the minimum model 

identifiability required in terms of degrees of freedom versus the number of 

parameters to be inferred. 

Considering this, the models developed for this thesis build on the concept of 

the Walter and Irwig “Three-Test, One-Population” model described in Drewe et 

al., 2010 and McDonald and Hodgson, 2018, though they are specified 
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differently. A generalised “Any-Test, Any Population”—a generalised Hui-Walter 

model—in the form described is required for five main reasons: 

1. The accuracy of a diagnostic test—i.e., its ability to produce correct 

results (Gardner et al., 2000)—is dictated by the values of Se and Sp. In 

turn, any inferences of Se, Sp and P will have their own accuracies and 

precisions, defining the power of the BLCM. The sensitivity of BLCMs 

must be validated across the entire parameter space to ensure that their 

power and assumptions do not break down within parameter space (see 

Chapter 7). Accordingly, to test this, the BLCM specification must be 

flexible across different numbers of tests and populations, though the 

latter does not apply within this thesis as splitting characteristics are not 

explored (the infrastructure is however supplied for population-based 

studies). A non-generalised Hui-Walter model does not meet this 

specification. 

2. The quantity of both tests and populations are limiting factors for real-

world studies, and so ecologists may wish to include proxy information—

such as the expert analysis of clinical information, which can be 

considered a diagnostic test in its own right if associated with an Se and 

Sp (Albert and Dodd, 2008)—in order to ensure that the number of tests 

and populations required satisfies the degrees of freedom rule. Proxy 

information can be used to substitute for a biological diagnostic, and 

further examples of proxy tests might include expert elicitation (van de 

Schoot et al., 2021) based upon veterinary opinion, proximity-logged 

information to known infected individuals, or expert opinion from animal 

behaviouralists. For example, Mazeri et al., 2016 used cattle inspection 

data as proxy for classical diagnostics in a study on liver fluke Fasciola 
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hepatica in cattle, finding expected diagnostic accuracies for five fluke-

specific tests. The Bayesian framework allows such proxy tests to be 

included, often in the form of beta distributions, enabled by software such 

as the R version of Wes Johnson’s and Chun-Lung Su's Betabuster tool 

(Stevenson et al., 2020). A non-generalised Hui-Walter model is not 

flexible enough to integrate new proxy tests without re-parameterising 

the model. 

3. A generalised Hui-Walter model is particularly useful for ecologists 

because gold standard field tests are rare, imperfect tests are expensive, 

and there are rarely more than two of them, but the broad ecological 

knowledge of infected populations is usually large. And it is this 

ecological knowledge—such as area-specific population densities that in 

turn can inform predictions on probable trapping efficiencies—that can be 

combined with existing imperfect diagnostic tests as a proxy to improve 

inferences. Mainly, this information is indirectly related to the 

epidemiology of the infected population. A single non-generalised Hui-

Walter model cannot include this information readily without the use of 

multiple models. 

4. While authors such as Berkvens et al., 2006, Ochola et al., 2006, and 

Pereira et al., 2012 do reference generalisations of the Hui-Walter 

paradigm, algorithms for an Any-Test, Any-Population model have yet to 

be made accessible or available for ecologists to use in the context of 

sensitivity analyses. Once again, the desirability of a generalised Hui-

Walter model is apparent.  

5. The first BLCM was published in 1995 by Joseph, Gyorkos and Coupal, 

and the first estimable Bayesian Hui-Walter model—i.e., a model in 
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which all nonseparable parameters Se, Sp and Pi were identifiable 

(Ponciano et al., 2012)—was published six years later in 2001 (Johnson, 

Gastwirth and Pearson, 2001). Yet while it is clear that a third test allows 

a simple one-population study to satisfy the degrees of freedom rule—

and the first BLCMs were now published nearly 30 years ago—only one 

analysis has been found on of the importance of the third diagnostic test 

in understanding batteries of non-gold diagnostics (Dendukuri, Bélisle 

and Joseph, 2010). The importance of the third test is clearly in doubt: 

indeed, the Three-Test, One-Population scenario has been disparagingly 

referred to as “not exactly estimating the parameters, merely rewriting 

data” (Toft, Jørgensen and Højsgaard, 2005). Yet again, a non-

generalised Hui-Walter model is unsuitable for studying BLCMs using 

differing numbers of tests simultaneously. 

Although latent class methods were popularised by Hui and Walter, the sheer 

volume of studies published over the past few years indicate that Latent Class 

Analysis is a rapidly evolving field of study. 

The Bayesian specification of the extended Hui-Walter paradigm 

“Bayesian inference is the re-allocation of credibility across the overall 

parameter space” (Kruschke and Liddell, 2018). 

The results presented in this thesis are generated from an MCMC sampler 

implemented using JAGS (Plummer, 2003), which constructs Markov chains 

over parameter spaces that converge and provide posterior distributions of 

interest. The JAGS “black box” is relied upon to decide the exact sampler 

required, as well as the MCMC parameter space in which posterior credibility 

lies. 
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When considering a One-Test, One-Population model, the diagnostic test can—

for any given individual—return one of two possible outcomes: positive (1), or 

negative (0). And, once each individual has been tested, all the diagnostic test 

results can be tallied into a single vector: 𝑁 = [𝑁0 𝑁1], where 𝑁0 is the number 

of negative test results, and 𝑁1 is the number of positive test results. However, 

when considering a Three-Test, One-Population model, the combined results 

from each of the three diagnostic tests can be categorised into one of eight (23) 

possible outcomes—a negative result from each test (000), through to a positive 

result from each test (111)—but can still be tallied into a single vector, 𝑁, as 

shown in Equation 7.  

Equation 7 

𝑁 = [ 𝑁000 𝑁001 𝑁010 𝑁011 𝑁100 𝑁101 𝑁110 𝑁111]. 

A diagnostic test will be negative if it correctly determines that a healthy 

individual is not infected, or if it incorrectly infers that an infected individual is 

healthy. Therefore, when 𝑑 is the diagnostic test outcome, and 𝑠 is the infection 

status of the tested individual the probability, 𝑞0, that a single diagnostic test 

returns a negative result can be expressed as shown in Equation 8. 

Equation 8 

𝑞0 = 𝑃𝑟(𝑑 =  0 | 𝑠 =  0) + 𝑃𝑟(𝑑 =  0 | 𝑠 =  1) 

On the other hand, a diagnostic test will be positive if it correctly determines that 

an infected individual is in fact infected, or if it incorrectly infers that a healthy 

individual is infected. Therefore, the probability, 𝑞1, that a single diagnostic test 

returns a positive result can be expressed as shown in Equation 9. 

Equation 9 
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𝑞1 = 𝑃𝑟(𝑑 =  1 | 𝑠 =  1) + 𝑃𝑟(𝑑 =  1 | 𝑠 =  0) 

If an individual is selected at random from a population, the probability of that 

individual being infected is determined by disease prevalence, P. If the 

individual in question is in fact infected, then the probability that the diagnostic 

test returns a correct result is determined by Se. If, on the other hand, the 

individual is healthy, then the probability of a correct diagnostic test result is 

given by Sp.  

Consequently, the probability that a diagnostic test is negative, 𝑞, can be 

calculated as: 

Equation 10 

𝑞0 = (1 − 𝑃) ∙ 𝑆𝑝 + 𝑃(1 − 𝑆𝑒) 

And the probability that a diagnostic test is positive, 𝑞1, can be calculated as: 

Equation 11 

𝑞1 = 𝑃 ∙ 𝑆𝑒 + (1 − 𝑃)(1 − 𝑆𝑝) 

Extending this construct to a Three-Test One-Population scenario increases the 

number of possible diagnostic test outcomes to eight, and so when a testing a 

single, randomly-selected individual, the probability of each outcome being 

reported can be expressed as: 

Equation 12  

𝑞000 = (1 − 𝑃) ∙ 𝑆𝑝1 ∙ 𝑆𝑝2 ∙ 𝑆𝑝3 + 𝑃(1 − 𝑆𝑒1)(1 − 𝑆𝑒2)(1 − 𝑆𝑒3) 

𝑞001 = (1 − 𝑃) ∙ 𝑆𝑝1 ∙ 𝑆𝑝2(1 − 𝑆𝑝3) + 𝑃(1 − 𝑆𝑒1)(1 − 𝑆𝑒2) ∙ 𝑆𝑒3 

𝑞010 = (1 − 𝑃) ∙ 𝑆𝑝1(1 − 𝑆𝑝2) ∙ 𝑆𝑝3 + 𝑃(1 − 𝑆𝑒1) ∙ 𝑆𝑒2(1 − 𝑆𝑒3) 
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𝑞011 = (1 − 𝑃) ∙ 𝑆𝑝1(1 − 𝑆𝑝2)(1 − 𝑆𝑝3) + 𝑃(1 − 𝑆𝑒1) ∙ 𝑆𝑒2 ∙ 𝑆𝑒3 

𝑞100 = (1 − 𝑃)(1 − 𝑆𝑝1) ∙ 𝑆𝑝2 ∙ 𝑆𝑝3 + 𝑃 ∙ 𝑆𝑒1(1 − 𝑆𝑒2)(1 − 𝑆𝑒3) 

𝑞101 = (1 − 𝑃)(1 − 𝑆𝑝1) ∙ 𝑆𝑝2(1 − 𝑆𝑝3) + 𝑃 ∙ 𝑆𝑒1(1 − 𝑆𝑒2) ∙ 𝑆𝑒3 

𝑞110 = (1 − 𝑃)(1 − 𝑆𝑝1)(1 − 𝑆𝑝2) ∙ 𝑆𝑝3 + 𝑃 ∙ 𝑆𝑒1 ∙ 𝑆𝑒2(1 − 𝑆𝑒3) 

𝑞111 = (1 − 𝑃)(1 − 𝑆𝑝1)(1 − 𝑆𝑝2)(1 − 𝑆𝑝3) + 𝑃 ∙ 𝑆𝑒1 ∙ 𝑆𝑒2 ∙ 𝑆𝑒3 

And the probabilities derived from Equation 12 can be incorporated into a single 

vector, 𝑄, as shown in Equation 13. 

Equation 13  

𝑄 = [ 𝑞000 𝑞001 𝑞010 𝑞011 𝑞100 𝑞101 𝑞110 𝑞111] 

If varying numbers of tests are required within a study, including information that 

can serve as a proxy for a diagnostic test such as veterinary opinion, the Hui-

Walter model can be generalised to any number of diagnostic tests, 𝐷, as 

follows, where ⊙ denotes component-wise multiplication, and 𝛺 denotes a 

2𝐷  ×  𝐷 matrix of all possible diagnostic test outcome combinations (see 

get.outcome.matrix , Table 10-4): 

Equation 14  

𝑄 = (1 − 𝑃) ∏(𝑆𝑃𝑇 ⊙ (1 − 𝛺) + (1 − 𝑆𝑃𝑇) ⊙ 𝛺)

2𝐷

𝑖=1

+ 𝑃 ∏(𝑆𝐸𝑇 ⊙ 𝛺 + (1 − 𝑆𝐸𝑇) ⊙ 𝛺)

2𝐷

𝑖=1

 

Importantly, the counts of the different observations, 𝑁, are assumed to have 

independent multinomial sampling distributions (since there are usually more 

than two outcomes) as shown in Equation 15.  
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Equation 15  

𝑁 ∼ 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑄, ∑ 𝑁𝑖

𝑛

𝑖=1
) 

The calculation of 𝑄 as shown in Equation 14 also relies on the following five 

assumptions, noting that Hui and Walters’ assumption of independent disease 

prevalence does not apply in the Walter-Irwig construct since only one 

population is studied.    

1. Each test is equal in its diagnostic capability across different stages of 

disease progression. 

2. Diagnostic accuracy is independent of population. 

3. All tests are conditionally independent of each other in terms of how they 

measure infection, i.e. the results of a second test do not rely on the 

results of the first, and the testing mechanisms are sufficiently different 

so that they are not, for example, both blood tests. Violations of this 

assumption are studied elsewhere (Branscum, Gardner and Johnson, 

2005; Toft, Jørgensen and Højsgaard, 2005). 

4. The combinations of test outcomes, for any number of tests, follows a 

multinomial distribution since more than two outcomes are possible. 

5. Diagnostic test accuracy is independent to individual-level 

heterogeneities in the ability to diagnose.  

The following JAGS code within the set.model function provides a generic 

example of the Bayesian specification of the Any-Test, Any-Population model. 

This function below writes the BLCM definition to file. 

set.model <- function(filepath="model.txt") { 

 

  writeLines( 

"model{ 

  for (i in 1:n.tests) { 
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    se[i] <- mu.se[i] 

    sp[i] <- mu.sp[i] 

  } 

  pi <- mu.pi 

  for (i in 1:n.outcomes) { 

    for (j in 1:n.tests) { 

      # A = se if badger is positive, 1 - se otherwise 

      # B = 1 - sp if badger is positive, sp otherwise 

      A[i, j] <- outcomes[i, j] * se[j] + (1 - outcomes[i, j]) * (1 - 

se[j]) 

      B[i, j] <- outcomes[i, j] * (1 - sp[j]) + (1 - outcomes[i, j]) * 

sp[j] 

    } 

    p[i] <- pi * prod(A[i, 1:n.tests]) + (1 - pi) * prod(B[i, 

1:n.tests]) 

  }  

  y[1:n.outcomes] ~ dmulti(p[1:n.outcomes], n)  

  for (i in 1:n.tests) { 

     mu.se[i] ~ dnorm(prior.se[i], precision) T(se.limit[1], 

se.limit[2]) 

     mu.sp[i] ~ dnorm(prior.sp[i], precision) T(se.limit[1], 

sp.limit[2]) 

  } 

  mu.pi ~ dunif(pi.limit[1], pi.limit[2]) 

}",  

    con=filepath,  

  ) 

} 

 

Calibrating three important model performance indicators of BLCMs 

Performance indicator 1: prior distributions 

Constraining prior distributions according to a priori assumptions, is a widely 

used method for limiting the size of parameter space. A model given 

constrained priors can be thought of as a nested version of a full model—i.e., a 

model capable of searching the entirety of parameter space—as it represents a 

proportion of space within it. There are two general types of constraint applied 

in this thesis that should not be confused. One is the application of constraints 

to prior distributions activated within the BLCM construct in order to limit the 

parameter space searched by the MCMC (prior constraints) (Gelman and 

Carpenter, 2020). The second is the constraining of the true values generated 

at the same time as the stochastic test data, in order to ensure that the truth 

does not lie outside of the given prior distributions (constraints to true values). 
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The latter method does not preclude the former, but experiments where the 

truth lies outside of the given prior distributions are redundant, and both 

methods may be classified as supplying forms of prior information (see Figure 

7-1).  

For prior constraints, limits are applied to prior distributions using reasonable 

assumptions. In this case, a constrained parameter space is generally that 

where values of P are less than 0.5 and values of Sp are greater than 0.5 (see 

Appendix 2: Key parameters, hyperparameters and functions for justifications).  

Constraints are mechanisms to provide posterior inferences without 

overburdening a computer with a prohibitive number of model runs (Berkvens et 

al., 2006; Gonçalves et al., 2012) and thus extending the computational 

runtime. This is an important consideration given that the number of possible 

combinations of parameter values increases exponentially with the dimension of 

parameter space being considered. For example, Gelman and Carpenter, 2020 

used constraint to set the prior scale of Se to 0.5 or less to rule out the 

possibility of a very high values of P corresponding to an unrealistic Se values. 

If priors do not cover the range of expected true values, then the model is over-

constrained. 

Accordingly, constraint is specifically employed within this thesis to improve the 

accuracy and sometimes identifiability (Wu et al., 2021)—in situations where 

parameters are able to be inferred though the inputted data contains limited 

information about the parameter of interest (Ponciano et al., 2012)—of any 

solutions to Equation 14. Despite valid solutions existing across 

hyperdimensional parameter space, the answer may be incorrect unless 

constraint is applied, and so constraint is required in order to direct models 
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towards sensible solutions. Constraint has been found to be particularly useful 

when the number of true values is small (Wu et al., 2021). 

The purpose of this form of constraint can be usefully thought of as follows. 

Considering an infected population of 𝑋 infected individuals and 𝑁 total 

individuals, the fact that the population is infected means that the statement 

𝑋 >  0 must be true, while the statement 𝑋 >  𝑁 cannot be true, so to assist a 

model in providing meaningful answers these conditions could be inputted as 

constraints.  

As outlined by Hobbs and Hooten, 2015, model parameters can be constrained 

via their prior distributions in order to find more certain models, and this includes 

any prior distribution that is uniform. Importantly, valid inferred values—and 

therefore outcomes available to a Bayesian model—are largely based on the 

information contained in priors, which must be elicited appropriately. Within the 

workflow in this thesis, parameter space exists according to the constraints 

assumed within the process for selecting true values.  

Within ecology, debate remains on how to specify prior information (Banner, 

Irvine and Rodhouse, 2020), and in studies employing BLCMs, poor prior 

specification often causes inconsistent model conclusions (Hobbs and Hooten, 

2015) but the adverse effects of this are often nullified by the fact that prior 

information can be provided to improve model success (Gonçalves et al., 2012).  

It is considered that a BLCM’s performance should ideally be analysed given a 

normal prior, no matter how informative (Gelman, Simpson and Betancourt, 

2017). However, in this thesis, the performance of BLCMs given normal priors is 

compared to the performance of BLCMs given uniform priors to understand 

whether uniform priors can be useful to BLCM analyses, particularly given that 
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ecologists often choose uniform priors as default (Banner, Irvine and Rodhouse, 

2020). 

This section now describes the general methodology for ensuring that BLCMs 

do not have an excessive reliance on priors. Broad definitions for the common 

types of priors available are described in Banner, Irvine and Rodhouse, 2020. In 

this thesis informative priors are referred to as “precise” priors, weakly 

informative priors are referred to as “imprecise” priors, and non-informative 

priors are referred to as “uniform” priors. 

To ensure that no intrinsic correlations between true and inferred values exist 

among parameters, the known true values of each stochastic method are 

inputted as either randomly generated fixed values, or values randomly selected 

from the uniform distribution, 𝑈, where 𝑈 =  𝑢𝑛𝑖𝑓(0,1). To avoid bias, it was 

ensured that uniform distributions on the interval [0,1] were used for the 

selection of true values, as outlined in Toft, Jørgensen and Højsgaard, 2005. 

For tests which specify prior information via normal priors, the true values are 

initially used as the mean for a truncated normal distribution specified as 

𝑁(𝑈, 𝑠𝑖𝑔𝑚𝑎)𝑇(0,1) on the probability scale, where sigma is the given standard 

deviation signifying how closely the prior information matches the true value for 

each draw. The mean of the prior distribution is then drawn from the truncated 

normal distribution in order to ensure that the prior distribution is not introducing 

bias by being centred exactly on the true value (Figure 3-1). Defining the draw 

standard deviation is particularly important considering that the density of the 

prior information, may look like the distribution shown in Figure 3-1 for any given 

parameter with the same truth. 
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Normal priors were specified rather than the alternative option of using beta 

priors—where two shape parameters must be specified—due to their flexibility 

to inform models, i.e. symmetrical, unimodal, and zero-mean priors could be 

specified with known variances. The prior distributions used in this thesis were 

first examined visually (Figure 3-2) to verify their expected shape and behaviour 

around the truth. 

The following pseudocode illustrates how arrays of true values and arrays of 

prior means are generated. 

Inputs: P limits, Se limits, Sp limits, n.sim, n.tests. draw.sd 

Outputs: array of true values, array of prior means 

FOR each simulation 

 FOR each test 

  SELECT true Se from U(Se, limits) 

  SELECT true Sp from U(Sp, limits) 

  SELECT true 𝑃 from U(0, 1) 

  STORE true values in an array 

  SELECT prior Se from N(true Se, draw.sd) T(0, 1) 

  SELECT prior Sp from N(true Sp, draw.sd) T(0, 1) 

  STORE values of prior means in an array 
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Figure 3-1: A schematic illustrating that in simulation studies the means of 

informative prior distributions are selected from a probability density function 

with the truth as its mean, and a standard deviation that avoids the generation 

of over-informative priors. The “prior mean” is just one realisation of the draw 

from the distribution of means. 
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Figure 3-2: An example of a visual prior-posterior check. The probability 

densities of the posterior inferences of Se are in blue—where each function 

relates to a single simulation—and can be compared to the probability density 

of the informative prior of Se in red, given a set truth shown in green. The visual 

shows that as the number of diagnostic tests available increase, the posterior 

density moves closer towards the common truth. 
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Figure 3-3: Hypothetical probability densities of precise, imprecise, and 

uninformative prior precisions of a parameter where the given truth is 0.3. 

Performance indicator 2: addressing non-convergence. 

In ecology, checks for convergence in general are often only undertaken 

visually, such as those undertaken by Arango-Sabogal et al., 2019. Any 

subsequent degree to which convergence issues can be corrected—usually via 

re-parameterisation—is largely dependent on further computation and therefore 

the amount of RAM available, since MCMC calculations are dependent on in-

memory computation. 

For this thesis, the amount of RAM available was maximised via parallelisation 

across the available cores on the University of Exeter’s remote Linux servers, 

situated in its High-Performance Computing facility. Each instance of Linux was 

accessed via the remote networking software MobaXterm, with processing 
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conducted by two RStudio Pro servers, enabling additional parallelisation 

through the use of two concurrent R sessions. The “tuning” parameters that 

must be set when using an MCMC model are described and justified in Table 

10-3. Importantly, while access to High-Performance Computing offered a 

considerable time saving, access to large amounts of RAM is not prerequisite to 

running the supplementary code to this thesis available at 

https://github.com/annabush/PhD. 

The traceplot function of the coda package (Plummer et al., 2006) was used 

to check for convergence, and it was ascertained that convergence could have 

been achieved throughout all the models in this thesis through a visual 

“convergence check”. Ecologists however must be mindful that visual 

convergence checks can be less helpful for complex models searching in up to 

11-dimensional parameter space—for example, the sampler may become 

“stuck” in specific volumes of parameter space (Gelman and Rubin, 1992) 

disguising whether models have in fact mixed properly. For this reason, it was 

not considered that visual modelling diagnostics could provide certainty that 

convergence was achieved, and a more quantitative approach to diagnosis was 

explored.  

The quantitative convergence checks. 

Ensuring the absence of non-convergence enables MCMC chains to be 

irreducible, i.e. the chains can reach all places of the target distribution, and 

aperiodic, i.e. the chains do not get stuck in cycles (Roberts, 1995). It is 

assumed that since the parameters Se, Sp and P are intrinsically linked 

(Equation 14), there will always be some inter-correlation between these 

parameters (see Figure 3-4). Computational difficulties in achieving 

convergence—and specifically eliminating autocorrelation—were therefore 
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expected, and while one approach to the problem is to re-write the likelihood 

function (Liu et al., 2022), the purpose of this section is to describe how the 

authenticity of convergence was verified quantitatively.  

While some autocorrelation is inevitable, autocorrelation in general affects the 

amount of information available to a Markov chain and is a measure of how 

dependent any current value of a chain compares to previous values due to the 

iterative steps taken by the MCMC algorithm not being entirely random. Since 

convergence cannot be assured for any model apart from the simplest textbook 

examples (Lunn et al., 2000), it could be argued that—using inductive reasoning 

(Saint-Mont, 2022)—any proffered claims for achieving, or not achieving, 

convergence could become circular logic: for example, remedying 

autocorrelation by thinning removes even more information available to the 

Markov chain, information that could be regarded as useful for reducing 

autocorrelation (Link and Eaton, 2012). In short, guidance for ecologists 

describing how to address autocorrelation and associated non-convergence 

issues within complex MCMC algorithms is limited. 

Consequently, the approach to autocorrelation taken in the research described 

in this thesis begins with the observation and agreement with Link and Eaton, 

2012 that addressing complex autocorrelation via thinning—the apparent 

standard for addressing autocorrelation—is not robust. Next, it was noted that 

autocorrelation was smaller in longer MCMC chains compared to when thinning 

was used but thinning comes at the cost of a loss of precision in the subsequent 

model outputs due to the reduction of data available to construct posteriors.  

Autocorrelation was consequently addressed by maximising the number of 

MCMC iterations to provide “effectively independent” samples (Link and Eaton, 

2012).  
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The Effective Sample Size (ESS) is the number of effectively independent 

draws from the posterior distribution that the Markov chain is equivalent to i.e., 

the sample size adjusted for autocorrelation. Markov chains with a high 

autocorrelation have a low ESS per unit of computational time and this causes 

another convergence issue called the “slow mixing problem” (Duan, Johndrow 

and Dunson, 2018), which is an additional drain on RAM. Addressing 

autocorrelation becomes less important when the ESS is above the minimum 

ESS—which should not be below 10,000 in complex models (Kruschke, 

2014)—required to produce good quantile estimates at 95% confidence. 

The JAGS hyperparameters ( 

Table 10-3: The MCMC hyperparameters used to define the JAGS models 

written using the jagsUI package (Kellner, 2015), their values, and why those 

values were chosen. These hyperparameters are relevant to the simulation 

analyses conducted between Chapters 5 to 7. 

) were chosen after an analysis of whether the number of iterations had 

achieved the minimum ESS, using the minESS function in the mcmcse package 

in R (Flegal et al., 2017) where the dimensions of the estimation problem are 

calculated as 2𝐷 +  1 where 𝐷 is the number of diagnostic tests. The minimum 

ESS was exceeded in every model, for every parameter; and true ESS was 

found to be of a magnitude large enough to fully account for autocorrelation 

within the posterior inference. Specifically, multivariate ESSs—for one MCMC 

chain using the multiESS function of the mcmcse package op cit.—were 

calculated since it could not be assumed that the MCMC algorithm would carry 

out fully independent sampling (Vats, Flegal and Jones, 2019). 
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Using this heuristic, and to provide illustrative figures only, the ESS of a 

randomly selected Three-Test, One-Population model within this thesis was 

calculated to be 441,608 with a 0.8% tolerance level (Flegal et al., 2017)—

indicating that the MCMC model can in general be expected to be within 0.8% 

of the posterior inference 95% of the time.  

Addressing the label switching problem 

When unconstrained parameter space is studied in theoretical settings, and 

particularly with uniform priors, it is possible that convergence may suffer from 

the ‘label switching problem’ (Celeux, 1998). This can be illustrated using 

Equation 12, where switching 𝑆𝑒 with 1 –  𝑆𝑝, 𝑆𝑝 with 1 –  𝑆𝑒 and 𝑃 with 1 –  𝑃 on 

the right-hand side, would yield the same result on the left-hand side, meaning 

that while posterior values could be resolved, an incorrect or bimodal 

distribution could result.  

Toft, Jørgensen and Højsgaard, 2005 propose that one solution to the label 

switching problem is to require Se and Sp to sum to above one, which was the 

method employed within this thesis. In addition, a second rule to avoid the label 

switching problem was investigated, requiring P to be less than 0.5 and Sp to 

be above 0.5. A third solution to the label switching problem required the 

provision of at least some prior information and to then use multiple chains 

(Collins and Huynh, 2014); accordingly, three chains were always used (see  

Table 10-3: The MCMC hyperparameters used to define the JAGS models 

written using the jagsUI package (Kellner, 2015), their values, and why those 
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values were chosen. These hyperparameters are relevant to the simulation 

analyses conducted between Chapters 5 to 7. 

). Despite this, some hypotheses investigated within this thesis required the 

provision of uniform priors—it is important to still test models with uniform priors 

to, for example, ensure that the posteriors are informed by data rather than the 

prior—and unconstrained parameter space (see Chapter 7 and Chapter 8). 

Checking for correlation between true and inferred values 

Correlation density plots demonstrated that the values of Sehat and Sphat are 

not intrinsically correlated and are normally distributed (Figure 3-4). This check 

was completed using the correlationPlot function from the 

BayesianTools package (Hartig et al., 2017), and suggests that correlations 

between parameters are not biasing the MCMC sampler. The Pearson 

coefficients did not exceed the widely accepted threshold for a significant 

correlation, which is 0.7 (Ratner, 2009). Note, some level of correlation is 

expected between the true and inferred values given randomly selected truths; 

this bias was accounted for by running each chain for many iterations. 



 

138 

 

Figure 3-4: A correlation density plot showing the densities and Pearson 

correlation coefficients of the true and inferred values for each parameter within 

a randomly selected three-test model, where [1] denotes diagnostic test 1 and 

so on. 

Performance indicator 3: The accuracies and precisions of BLCM 

inferences. 

In short, the ability of a model to identify the truth with certainty is determined by 

measuring the accuracy and precision of replicate inferences, and is dependent 

on how easily the parameters can be inferred by the model (Ponciano et al., 
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2012). These measures are specifically defined in Equation 16, Equation 17, 

and Equation 18 below. 

In general, the accuracy of Se and Sp describe how well a diagnostic test can 

produce a correct outcome, and the accuracy of P describes how well the 

model inferred the proportion of infected individuals in a population, based on a 

sample from that population. In contrast, the precision of a parameter is 

indicative of how much credibility we can place on its inference, inclusive of how 

consistent that inference should be: precision is often an ignored indicator of 

assurance (Toft, Jørgensen and Højsgaard, 2005) when BLCMs are reported. 

The accuracy measure termed “error”, describes the absolute inferred 

difference between the truth and the mean posterior inference for a given 

parameter (Equation 16), 

Equation 16 

𝐸𝑟𝑟𝑜𝑟 = |𝑦̂ − 𝑦| 

where 𝑦̂ is the predicted value, and 𝑦 is the truth. Error is generally calculated 

as a mean error inclusive of all replicate inferences for either Se, Sp or P. 

In contrast, the accuracy measure termed “bias”, describes the raw inferred 

difference between the truth and the mean posterior inference for a given 

parameter (Equation 17). 

Equation 17 

𝐵𝑖𝑎𝑠 =  𝑦̂ − 𝑦 

The precision of a parameter is defined in accordance with Equation 18, where 

𝜎 is the mean of the standard deviations of the simulated posterior distributions. 

This definition is used in preference to other possible definitions—for example, 
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the definition within Lunn et al., 2000—since 𝜎 is measured in the same units as 

the parameter.  

Equation 18 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

𝜎2
 

Conclusion 

This chapter has outlined the general underlying methodology that forms the 

basis of the stochastic framework and BCLMs employed within this thesis. It is 

recognised that the concepts are not all new, and that the correction of false 

positive and false negative diagnoses is a well-known probability problem—

especially when P is low, as is the case in many persistent wildlife infections—

but that general agreement is still lacking among researchers regarding the 

“right” combination of tools for interpreting stochastically-generated diagnostic 

test data across multidimensional parameter space. 

The generalisation of the Hui-Walter paradigm, capable of handling the Walter-

Irwig construct, is described: its functions are generalised to handle any number 

of diagnostic tests—and populations—within the same simulation. And, a novel 

stochastic modelling architecture is described, advancing previously 

deterministic versions within the wildlife disease literature (Branscum, Gardner 

and Johnson, 2005; Drewe et al., 2010; McDonald and Hodgson, 2018). The 

stochastic framework accounts for noise when applying latent class 

methodology to real-world scenarios in terms of detection error, and the use of 

imperfect testing information.  

To summarise, a generalised Hui-Walter model is required for the following five 

reasons: 
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1. Models should be flexible across numbers of tests (and populations). 

This is because any confidence in inferred values is dependent on the 

power of the BLCM itself. 

2. Models should be flexible across the type of tests employed. This is 

because expert prior elicitation in Bayesian frameworks can account for 

proxy tests; and a prior is only as good as its justification. Proxy tests 

may increase the ability for many disease studies to meet the minimum 

number of degrees of freedom for parameter identifiability. 

3. Models must be flexible about how existing imperfect tests are specified. 

This is because the general knowledge base on infected populations is 

often larger than the knowledge of the latent parameters of interest, but 

the general knowledge base is often intrinsically linked—via other latent 

parameters—to the latent parameters of interest.  

4. No generalisations of the Hui-Walter model have been specified in the 

ecological literature or are accessible to ecologists particularly to use for 

sensitivity analyses.  

5. No known research examines the important of the third opinion needed 

to satisfy the minimum degrees of freedom required to identify the Three-

Test, One-Population scenario investigated in this thesis.  

Based on the general methodologies described—that are modified as 

appropriate for the purposes of each chapter—subsequent Chapters 4 to 8 use 

generalisations of the Hui-Walter model to interpret stochastically-generated 

diagnostic test data across multidimensional parameter spaces. 
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Chapter 4 

4. Considerations for the validation of Bayesian Latent 

Class Models using simulated data. 

Introduction 

The World Organisation for Animal Health (OIE) endorsed the use of Latent 

Class Models for the estimation of epidemiological parameters as recently as 

2013 (Gardner et al., 2021), despite the fact that the first Latent Class Model—

termed ‘latent structure model’—was published in 1968 (Lazarsfeld and Henry, 

1968), and that BLCMs have been widely adopted since 1995 (for example, 

Joseph, Gyorkos and Coupal, 1995; Johnson, Gastwirth and Pearson, 2001; 

Branscum, Gardner and Johnson, 2005). Only since 2017 have researchers 

(such as Krolewiecki et al., 2018; Rahman et al., 2019; Islam et al., 2020) been 

able to follow the 30-point checklist (Kostoulas et al., 2017) making up the 

Standards for the Reporting of Diagnostic Accuracy studies that use Bayesian 

Latent Class Models (STARD-BLCM).  

Currently, even with OIE’s global advocacy for the use of LCMs for diagnosing 

animal disease, and the existence of a standard protocol for presenting 

research using BLCMs, ecologists still lack a standard protocol for describing 

how to validate their custom-built BCLM algorithms—a procedure that should 

ideally occur before any model selection (Hobbs and Hooten, 2015) takes 

place, before any diagnostic test performances are validated, and certainly 

before any research is presented.  
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Accordingly, this chapter presents two model validation examples, which can 

serve as a foundational template for model validation exercises by ecologists 

wishing to evaluate their own BLCMs. These are based around seven general 

“stylised facts” (Kaldor, 1961) to be identified across the parameter spaces 

explored within this chapter, which demonstrate the specific type of information 

that can be gathered from validating BLCMs. These findings, or stylised facts, 

relate to the accuracy of BLCM inferences, specifically in terms of the 

magnitude of error (Equation 16), and are: 

1. Seemingly successful inferences in two-test scenarios may simply be due to 

the posterior replicating the prior, and so should be treated with caution. 

2. Unidentifiable areas of parameter space may occur where error does not 

decrease when the number of diagnostic tests available for inference increase.      

3. Increasing the number of diagnostic tests has the greatest effect on 

decreasing the error of Phat. 

4. Prior constraints are particularly important for reducing errors associated with 

Sphat over and above the reduction in errors associated with increasing the 

number of diagnostic tests. 

5. Prior precision is particularly important for reducing errors associated with 

Phat and Sphat in addition to the reduction in error from increasing the number 

of diagnostic tests. 

6. The errors associated with Sehat are inversely proportional to the errors 

associated with Sphat. 

7. Phat is particularly difficult to infer when Sp is low. 
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The findings within this chapter have implications for researchers who consult 

both the medical and wildlife literature for what to consider when validating a 

BLCM, or even when considering the intended use of a specific diagnostic test. 

This work provides a stepping-stone towards further research that can map 

specific volumes of parameter space that may lack practical identifiability, a 

term describing how confidently a BLCM can infer parameters given noisy data. 

To summarise, the use and interpretation of BLCMs demands care (Schofield et 

al., 2021), specifically in terms of understanding how accurately BLCMs infer 

Se, Sp and P in the required parameter space. To do this, it is important to 

validate the power of a BLCM before it is used, yet there are no standardised 

ways to do this, and it is likely that publication of models in ecology that have 

not been validated are “more common than appreciated” (DiRenzo, Hanks and 

Miller, 2023). This chapter addresses this problem in the following three ways. 

1. Model validation is defined, and the critical connection between model 

validation and robust BLCMs is made. 

2. Two examples of how a BLCM could be validated are provided. 

3. The specific type of information that can be gathered from validating 

BLCMs is demonstrated.  

What is model validation, and why do it? 

Model validation is a process for verifying “that a model is acceptable for its 

intended use because it meets specified performance requirements” (Rykiel, 

1996). Within this thesis, the term is used to describe an evaluation of the ability 

of a BLCM to infer Se, Sp and P given simulated data. While model validation is 

not a prerequisite to inference, it is a prerequisite to drawing valid conclusions 

from inferences (Tredennick et al., 2021). 
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Model validation according to its “classical” definition as stated above is only 

possible if independent data is available (Yates et al., 2018), which in the field 

of wildlife disease ecology generally means simulated data. Model validation on 

simulated data can provide useful information to real-world studies with no 

known truths, including a better understanding of the requisite BLCMs and their 

assumptions, as well as the reliability of a BLCM’s inferences (DiRenzo, Hanks 

and Miller, 2023). For these reasons ecologists should not consider model 

validation as a secondary or subsidiary type of analysis but should instead 

consider validation as a key part of model development. 

Standard protocols on how to present ecological models are increasingly 

common, with the STARD-BLCM—that describes how to present BLCMs—

already available. Despite this, within ecology, standard protocols describing 

how to validate the algorithms ecologists write remain a rarity (DiRenzo, Hanks 

and Miller, 2023). This disparity, while recognised in the ecological literature 

(Rykiel, 1996; Augusiak, Van den Brink and Grimm, 2014; Mouquet et al., 

2015), is at odds with common practice in other fields of research such as 

physics, mathematics, data science and beyond. 

Before applying inferences from a BLCM to real world scenarios, it must first be 

established that the BLCM can produce credible inferences, i.e. inferences that 

are expected, and to which researchers are willing to assign confidence 

(Cordes, 1980). This is particularly important when models are custom-built, 

complex, when there are uncertainties in how a model has been specified (Wu 

and Li, 2006), or when models appear to be forcing inferences in accordance 

with the given prior information (Chivers, Leung and Yan, 2014). Published 

standards for the validation of ecological models in general are rare, and a 

literature search for such standards completed in March 2022 only uncovered 
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only two papers on the topic (Augusiak, Van den Brink and Grimm, 2014; 

Prowse et al., 2016). For BLCMs, model validation should be a standard step in 

the inference-checking process, and to do this, the availability, accessibility, and 

use of standardised validation approaches is important. This is particularly 

crucial, given that differing implementations of a BLCM can impact how an 

MCMC sampler may interpret the same test array (Albert and Dodd, 2004). 

Key to model validation is understanding whether the accuracy and precision 

associated with a BLCM’s inferences is dependent on the true values of Se, Sp 

and P, and whether any trends in the reliability of inferences across parameter 

space exist and can be usefully generalised. The ability to evaluate positions of 

truths in parameter space is important for determining whether model 

identifiability changes relative to nearby truths, or whether certain volumes of 

parameter space lack identifiability altogether, and this information may direct 

how BLCMs should be applied. Identifiability issues can be described in terms 

of “practical identifiability”, a measure of how confidently a BLCM can infer 

parameters given noisy data (Dendukuri, Bélisle and Joseph, 2010); as well as 

in terms of “structural identifiability”, a prerequisite to practical identifiability 

describing whether a BLCM is able to infer the parameter values given error 

free data (Yates et al., 2018). Reporting on any practical and structural 

identifiability issues are forms of model validation. 

The two validation examples presented in this chapter explore error under two 

scenarios.  

Validation Example A explores the error (Equation 16) associated with a 

disease testing scenario based around a defined single position in parameter 

space—described by the true values of Se, Sp and P—while Validation 
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Example B explores the error (Equation 16) across a random slice of 

parameter space when multiple sets of truths are randomly selected. 

Relevant to both validation examples is the understanding that a simulation is a 

proxy for a defined position in parameter space—i.e., the true value of Se, Sp 

and P. The number of simulations describes how many times a BLCM has been 

replicated, and each replication may define a fixed or random set of truths, 

depending on how the BLCM has been specified. Note, the validation exercises 

presented do not analyse whether the precision of inferences of Sehat, Sphat 

and Phat is dependent on their respective true values, however the procedures 

described may also be applied to this dependent variable.  

Methods 

Three key building blocks underpin the Validation Examples presented. First, 

the hypothetical modelling scenario and its assumptions are described. Second, 

the purposes, models, and predictions for Validation Examples A and B are 

outlined. And third, the specifications of the Linear Mixed Effects Models 

(LMM’s) that are used to analyse the response variable error are presented. 

The hypothetical modelling scenario 

The hypothetical modelling scenario considers theoretical ante-mortem 

diseased populations of 500 wild animals. True parameter values are provided 

for Se, Sp and P, and up to five different diagnostic tests are then used to infer 

their values via a BLCM. Within this framework, the effect of position in 

parameter space on the errors of Sehat, Sphat and Phat are explored across 

the two examples. Post-hoc analyses are then conducted using LMM’s and 

likelihood ratio test procedures (see Table 10-5 to Table 10-12 for the results of 

these analyses), which are used to understand how error (calculated in 
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accordance with Equation 16) changes given position in parameter space, as 

well as the modelling conditions described. 

In addition, the following assumptions were made when considering the 

hypothetical modelling scenario described: 

1.  Constrained prior distributions are a valid source of prior information.  

2. Test one and test two parameters—i.e., Se1, Sp1, Se2, Sp2, the 

parameters common to all models simulating two to five tests—are 

assumed to behave similarly, though independently. This assumption 

was made to avoid additional noise within the random effects resulting 

from the potential for the accuracies of test one and test two parameters 

to be highly dependent on their respective positions, and or if one of the 

parameters within either test is consistently difficult to identify. Here on, 

and to avoid confusion, results are generally reported on using the 

general acronyms Se and Sp only; rather than Se1, Se2 and so on. 

3. It is important that all truths are not assigned fixed values, since it has 

been proven that Se, Sp and P change as a function of many external 

biological factors (Begg, 1987; Greiner and Gardner, 2000). 

Validation Example A: a basic validation simulation, based on a fixed 

point in parameter space, with replication. 

PURPOSE: To explore the sources of error associated with a single position in 

parameter space. That is, the error associated with (i) the variation among 

independent replicate inferences; (ii) the posterior inference when each position 

in parameter space is manipulated by +/- 0.1; and (iii) the number of diagnostic 

tests.  
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MODEL: A fixed set of true parameters was inferred across a battery of five 

diagnostic tests. The initial set of fixed truths were randomly selected and are 

as follows: P=0.4, Se1=0.81, Se2=0.71, Se3=0.66, Se4=0.52, 

Se5=0.59, Sp1=0.51, Sp2=0.56, Sp3=0.91, Sp4=0.94, Sp5=0.72 . 

Parameters Se, Sp and P are then, in turn, increased and decreased by a value 

of 0.1, creating six new sets of truths. Each scenario was inferred across 10 

simulations. No prior distributions were constrained in Validation Example A, 

and the prior distributions used are as specified in Table 10-2. 

PREDICTIONS: 

(a) The error of posterior inferences is sensitive to small changes in parameters. 

(b) If parameter space is fixed to a single point, this baseline can be used to 

detect changes in the errors of posterior inferences when this baseline is 

increased or decreased (by a value of 0.1) across a small volume of parameter 

space. 

Validation Example B: a basic validation simulation, based on randomly 

selected points across parameter space, without replication. 

PURPOSE: To understand how the accuracies of posterior inferences vary 

when multiple sets of truths are randomly selected across parameter space.  

MODEL: 25 randomly selected truths for a battery of five diagnostic tests were 

drawn from parameter spaces bounded by zero and one, unless constraints 

were applied. For each truth, one set of diagnostic test outcomes were 

simulated, and used to infer Se, Sp and P. All random processes within the 

stochastic framework were seeded for repeatability. Note, given that the 25 

truths are drawn across an 11-dimentional space, it was not considered that 

these samples could fully represent the variability in the accuracy of inferences 
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across parameter space, including at the edges of parameter space. Rather, the 

effect of prior precision and constrained true values on the magnitude of error at 

random positions in parameter space is investigated. 

Several differences exist between the methodologies for Validation Examples A 

and B. In Example B, true values are randomly selected from parameter space 

using the uniform distribution to ensure that there are no intrinsic correlations 

among Se, Sp and P; and within the BLCM, the prior distributions are defined 

using two levels of standard deviations, creating precise (σ=0.05) and imprecise 

(σ=0.15) priors (see Table 10-2 for a full justification of these values). The 

variation in truth, and the extent of the prior information provided are also 

considered to be additional sources of noise when compared to Example A.  

Note, constrained models are defined as models where the prior distributions 

informing inferences of P and or Sp are restricted in accordance with the 

justifications described in Table 10-2. 

PREDICTIONS: 

(a) A random choice of truths will make Se, Sp and P more difficult to infer—i.e., 

associated with greater errors—since volumes of high-dimensional parameter 

space may have complex regions of posterior density. 

(b) Informative prior information will improve inference by directing the MCMC 

algorithm into more identifiable regions of posterior density.  

(c) The errors of Se, Sp and P will be affected by the different levels of 

constraints applied in this chapter, which can be summarised as: unconstrained; 

constrained Sp; constrained P; and constrained Sp and P. 
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Analysing error using Linear Mixed Effects Models 

LMM’s have been identified within the work of this thesis as a useful means of 

interrogating the error attached to BLCM inferences, revealing the structure of the 

random effects that influence accuracy, and going some way towards explaining 

parameter-specific errors. 

LMM’s are a type of linear regression which can model fixed and random 

effects. Fixed effects are explanatory variables which describe an explicitly 

chosen treatment to investigate in comparison to other explanatory variables 

(Bennington and Thayne, 1994; Upton and Cook, 2014). Random effects are 

explanatory variables where the levels of effects under investigation have not 

been explicitly chosen (Bennington and Thayne, 1994). Random effects are not 

used to test the differences of values belonging to a hierarchy. In this chapter, 

random effects are used to understand the variance among values describing 

inferential error given the true values of Se, Sp, and P. To avoid confusion 

between an LMM and a BLCM, the word “model” is used in reference to 

BLCMs, and is not used in reference to LMM’s. 

The LMM’s were written in R, using packages lme4 and lmerTest (Bates et 

al., 2015; Kuznetsova, Brockhoff and Christensen, 2017). Specifically, the 

LMM’s were used to determine how the errors of Sehat, Sphat and Phat are 

affected by the number of diagnostic tests and prior information, by partitioning 

the noise associated with position in parameter space from the variation among 

simulations. Note, all scripts used to specify the LMMs used within this thesis 

can be found on https://github.com/annabush/PhD. 

For Example A, noise due to position in parameter space is included as a 

random effect within LMM’s using the relative truths of Se, Sp and P. In this 
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case, a relative truth is the difference between the manipulated truth and the 

original set of true values, and it can take the values 0.1, -0.1, or 0. For 

Example B, the true values are entered into the LMM as random effects.  

Any residual random effects within all LMM’s can be attributed to the variation of 

test arrays between simulations, and this can be affirmed by the fact that 

parameter identity is explicit within each LMM. Importantly, identifying between 

the noise attributable to position in parameter space, and the noise among the 

random processes of testing, allows us to define the sources of error from the 

LMM results. 

Coding the Linear Mixed Effects Models in Chapter 4 

 For Example A, LMM’s were specified in pseudocode as follows: 

value ~ n.tests + (1 | P.rel) + (1 | Se.rel) + (1 | Sp.rel), 

where the dependent variable “value” is the relevant absolute error for an 

explicit parameter, the variable “n.tests” is the number of diagnostic tests 

available, and the random intercepts denoted as parameter.rel indicate 

where relative truths have been inputted. 

For Example B, LMM’s were specified in the pseudocode as follows: 

value ~ n.tests + prior.information + (1 | pi.truth) + (1 | 

se.truth) + (1 | sp.truth), 

where in addition to the parameters defined above, the variable 

“prior.information” describes the relevant prior precision or constraint, and 

the random intercepts denoted as “parameter.truth” indicate where true 

values have been inputted.  
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A note on the specification of random effects. 

This note applies to Chapters 4, 5 and 6 of this thesis.  

It is hypothesised that inference—including the “error structures” of an 

inference—may in some instances be strongly dictated by position in parameter 

space. For these reasons the identity of parameters needs to be accounted for 

within LMM’s, so that the impact of truth on error, given the groups Se, Sp and 

P, could be evaluated without (a) needing to evaluate the specific true value, 

given that truths are randomly selected (Barr et al., 2013) and known; and (b) 

conflating the variation among replicates with the differences among 

parameters. 

The truths of Se, Sp and P were applied as crossed random effects since the 

groupings do not represent levels in a hierarchy. The continuous nature of the 

values that make up the truths of Se, Sp and P were ignored, since the 

biological meaning of each value was not being explicitly investigated. Instead, 

it is assumed that Se, Sp and P govern the variance structure of the variable 

value, that this structure can vary over three different intercepts, and that when 

interpreted together, Se, Sp and P can help diagnose infection. 

Results 

Table 10-5 to Table 10-12 show the full set of results for cross-referencing 

purposes. Table 10-5 to Table 10-7 present the results relevant to Validation 

Example A, and Table 10-8 to Table 10-12 present the results relevant to 

Validation Example B. 
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Validation Example A 

(i) How do the number of diagnostic tests affect the errors of Sehat, Sphat 

and Phat? 

Error generally decreases as the number of diagnostic tests increase (Figure 

4-1 and Figure 4-2), with reductions in the errors of Phat (LMM1) and Sehat 

(LMM2) being particularly responsive to the number of diagnostic tests 

available. Likelihood-ratio tests confirm that the number of diagnostic tests 

available is not an important predictor of the magnitude of Sphat errors within 

the small region of parameter space explored; however Sphat errors are 

surprisingly small in two-test models (Figure 4-2). 
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Figure 4-1: On average, the errors of Phat (red), Sehat (green), and Sphat 

(blue) generally decrease as the number of diagnostic tests available increase 

from two to five. This general trend is termed the “n.tests trend”. The error bars 

show the standard deviations of the mean posterior inferences. When five 

diagnostic tests are available, the errors of Phat, Sehat and Sphat are of similar 

magnitudes. 
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Figure 4-2: How the errors of Phat (red), Sehat (green) and Sphat (blue) change 

as the number of diagnostic tests available increase, when Se, Sp and P are 

increased or decreased by the value of 0.1 in comparison to the “original” true 

values. This baseline set of true values are as follows: P=0.4, Se1=0.81, 
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Se2=0.71, Se3=0.66, Se4=0.52, Se5=0.59, Sp1=0.51, Sp2=0.56, 

Sp3=0.91, Sp4=0.94, Sp5=0.72 .  

(ii) What are the dependencies influencing the errors of Sehat, Sphat and 

Phat? 

The variance in the errors of Sehat, Sphat and Phat not explained by the 

number of diagnostic tests available is likely due to the variance among 

simulations. The variance not explained by the number of diagnostic tests 

available accounts for 83.8% and 66.1% of variance in Se1 and Se2 errors 

respectively, and 95.3% and 93.3% of variance in Sp1 and Sp2 errors, 

respectively (LMM4 and LMM5) providing confidence in the decision to restrict 

the reporting of analyses to Se1 and Sp1 only across Chapters 5 to 7 of this 

thesis. The average error and variation of error associated with Phat increases 

when the true value of Sp was decreased (Figure 4-2). 
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Validation Example B 

(i) Checking how BLCMs respond to the information provided matters 

Three key findings from the plotting exercises were: 

1. The accuracies of Sehat, Sphat and Phat generally increase as the 

number of diagnostic tests increase, and this was found to be true across 

all the BLCMs specified for Example B (Figure 4-3 and Figure 4-4) 

2. The accuracies of Sehat, Sphat and Phat are dependent upon model 

constraint (Figure 4-2) 

3. Models provided with more precise prior information provide 

comparatively better inferences of Se, Sp and P than those that are 

supplied with imprecise prior information (Figure 4-4).  

In addition, the regression analyses (see LMM 6 to 11 described in Table 10-8 

to Table 10-9) suggest that: 

1. The accuracies of Sphat are least affected by changes in the number of 

diagnostic tests. 

2. The accuracies of Phat are least reactive to changes in model constraint. 

3. The accuracies of Sehat are least reactive to changes in prior precision. 

(ii) The effect of constraining true values on the errors of Sehat, Sphat and 

Phat. 

The error of Phat is generally increased by the application of constraint; the 

errors of Sphat are only decreased when the values of both Sp and P are 

constrained; and the errors associated with Sehat are higher when Sp is 

constrained, and vice versa (Figure 4-3). 
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Perhaps surprisingly, the errors of Sphat increase with constraint (Table 10-8), 

yet the errors of Sehat and Phat generally decrease with constraint when either 

Sp, Pi or Sp and Pi are constrained (Table 10-8). To complicate matters, the 

errors of both Sehat and Sphat have an apparently significant relationship with 

constraint when both Sp and Pi are constrained (Table 10-8). Despite this, 

likelihood ratio tests show that only the errors of Sehat and Sphat are 

significantly affected by constraint (Table 10-9). Constraint appears to be 

particularly important for reducing the errors of Sehat and Sphat further to the 

reduction in error that can be achieved by increasing the number of diagnostic 

tests alone (Table 10-9). 

(iii) The effect of the number of diagnostic tests used on the errors of 

Sehat, Sphat and Phat 

As expected, the errors of Sehat, Sphat and Phat are all reduced as the number 

of diagnostic tests increases (Table 10-8, LMM’s 6–8). In addition to this, it was 

found that prior information in the format of constrained or precise priors, 

consistently decreases the errors of Sehat, Sphat and Phat compared to when 

information is added via constrained or precise priors alone (Table 10-10). 

Despite this, the reverse situation—that information from diagnostic tests, and 

constraint or precise priors is always better than information from diagnostic 

tests alone—is not always true (Table 10-9). 

For example, likelihood ratio tests show that Sehat is more accurate when prior 

precision and constraint are not provided, i.e. in situations where models are 

only informed by information from increasing numbers of diagnostic tests (Table 

10-9). The number of diagnostic tests available to a model, in addition to any 

improvements in prior precision or constraint that is available, strongly 
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associates with a model’s ability to accurately infer P, over and above its ability 

to accurately infer Se or Sp (Table 10-10).  

(iv) The effect of changing the precision of normally distributed priors on 

the errors of Sehat, Sphat and Phat 

The errors of Sehat, Sphat and Phat generally decrease when precise priors 

are used (Table 10-9), and becomes less parameter-specific, i.e. different 

between inferences of Se, Sp and P. Precise priors seem critical for the 

inference of P and Sp, over and above the reductions in error that can be 

attributed to increasing the number of diagnostic tests alone (Table 10-9).  

(v) The effect of the information supplied, and the position in parameter 

space, on the errors of Sehat, Sphat and Phat. 

When BLCMs are informed by precise priors, the errors of Sehat, Sphat and 

Phat are least affected by the position of P (Table 10-11). This is not the case 

when constraint is used to inform the BLCM: in this case, the errors of Phat are 

least affected by the position of Se; the errors of Sehat are least impacted by 

the position of P; and the errors of Sphat are least affected by the position of Sp 

(Table 10-11).  

Further when precise priors are used, the random variance within the LMM’s 

used is dominated by variation across simulations, accounting for 74.3% of the 

random variance of Phat errors; 56.6% of the random variance of Sehat errors; 

and 42.7% of the random variance of Sphat errors (Table 10-12). It appears that 

random variance is also dominated by variance across simulations when 

models are informed by constrained priors (Table 10-12). 
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Figure 4-3: How the absolute error of parameters Phat (red), Sehat (green) and 

Sphat (blue) change over number of diagnostic tests in scenarios where given 

truths are either unconstrained or constrained.  
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Figure 4-4: How the errors of Phat (red), Sehat (green) and Sphat (blue) change 

over the number of diagnostic tests available when prior precision is precise 

compared to when it is imprecise.  

Discussion 

Although it is widely accepted that data from multiple diagnostics can improve 

existing reference standards via Latent Class Analyses (Rydevik, Innocent and 

McKendrick, 2018; de Bronsvoort et al., 2019; McAloon et al., 2019; O’Hagan et 

al., 2019), the Latent Class Models that demonstrate this are rarely validated 

across a wide range of diagnostic outcomes and true parameter values (Hobbs 

and Hooten, 2015; DiRenzo, Hanks and Miller, 2023). Before inputting real 
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data, a careful validation of BLCMs using simulated data is critical to the ability 

to confidently infer parameters (Bermingham et al., 2015) and to establish 

useful priors (McAloon et al., 2019). Accordingly, this section outlines seven key 

findings that emerged from the two model validation examples demonstrated in 

this chapter, with each finding being presented in the form of a stylised fact.  

It is recognised that the results presented within this chapter are specific to the 

small number of truths that were tested, and that consequently, the noise 

among simulations was the greatest source of noise among the random effects. 

Further, it is recognised that some regions of parameter space may be over-

sampled during random simulations while others may be under-sampled. These 

two aspects of study design are addressed in the following chapters. Despite 

this, Validation Examples A and B demonstrate that error does depend on 

position in parameter space.  

This discussion was written after reflecting on a remark by Agresti, who writes 

that “A danger with latent variable models… is the temptation to interpret latent 

variables too literally…One should realize the tentative nature of the latent 

variable. Be careful not to make the error of reification – treating an abstract 

construction as if it has actual existence” (Agresti, 2003). Model validation on 

simulated data helps us to understand how literally latent variables may be 

interpreted, and how much weight a theoretical BLCM should have in the real 

world.  

While latent variables such as P, Se and Sp have a greater likelihood of 

representing the truth when prior information can be verified (Schofield et al., 

2021)—i.e., if the precision of the prior information can be evidenced—this 

verification exercise is complex, and particularly in the field of wildlife disease, is 

also open to debate, and so the problem of “better representing the truth” must 
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often be answered post-inference. By validating theoretical BLCMs under a 

variety of testing situations, the practical limitations of a BLCM can be better 

understood. 

In short, it is possible to offer ecologists an insight into the accuracies of Sehat, 

Sphat and Phat summarised as seven stylised facts—broad conclusions, that in 

line with Agresti’s considerations, generalise over the simulations concerned.  

STYLISED FACT 1: Seemingly successful inferences in two-test scenarios 

may simply be due to the posterior replicating the prior, and so should be 

treated with caution. 

Although the posterior distribution does not seem to precisely replicate the prior 

distribution in a two-test model, there was much less variation among 

simulations in the two-test scenario, and practical identifiability cannot be 

assumed. This finding was expected, since according to Hui and Walter (op. 

cit.), it is not possible to estimate 5 parameters, and 4 potential test outcomes, 

with only 3 degrees of freedom (Table 3-1). 

This observation highlights an important point: beware of successful inference 

in two-test BLCM scenarios since the posterior may just be replicating the prior, 

and the associated inference may be false. This is the most probable reason 

why Sp is successfully inferred in two-test models, and highlights that for real-

world applications an understanding of exactly how prior information creates a 

“successful” inference, particularly for a two-test model, is critical. 

Importantly, non-identifiability in two-test models was not observed in Validation 

Example B, where some prior information was provided to every model, 

suggesting that appropriate prior information can aid model identifiability in two-

test models. 
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STYLISED FACT 2: Unidentifiable areas of parameter space may occur 

where error does not decrease when the number of diagnostic tests 

available for inference increase.      

Validation Example A shows that the errors of Sehat, Sphat and Phat decrease 

over increasing numbers of diagnostic tests. And this trend persists despite the 

model being provided by randomly selected truths in example B.  

This trend is both under-researched and important to note for two reasons. First 

it is hypothesised that when this trend breaks down, parameter space may be 

unidentifiable. Second, reductions in the errors of inferences attributable to 

increases in the number of available diagnostic tests are separate to, and can 

be in addition to, reductions in the errors of inferences from the provision of 

prior information.  

STYLISED FACT 3: Increasing the number of diagnostic tests has the 

greatest effect on decreasing the error of Phat. 

The finding that increasing the numbers of diagnostic tests markedly reduces 

the error of Phat indicates that proxy tests may be a simple way for ecologists to 

optimise BLCMs. While the concept of a “third opinion” as a proxy test to aid 

model identifiability has already been discussed (Dendukuri, Bélisle and 

Joseph, 2010), as well as the use of anecdotal proxy tests in animal disease 

research (Leeflang et al., 2013), ecologists have ready access to a wealth of 

information—such as opinion on infection presence or absence from experts, 

documentations of historic infections, or research on geographically separate 

reservoirs of a pathogen of interest—that could be used to develop a proxy test.  

Validation Example A demonstrated that relative to the errors of Sehat and 

Phat, the errors of Sphat are the least reactive to changes in the number of 
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diagnostic tests across the chosen true values of Sp that range from 0.51 to 

0.94. This finding—that the numbers of diagnostic tests available is potentially 

not a critical dependency of the errors of Sphat—is also replicated in Example B 

when truths were randomly selected. This is suspected to be a statistical 

issue—it is likely that constraining Sp values ensures the MCMC algorithm 

remains in useful parameter space (see stylised fact 4), and that in comparison 

to inferring P, solutions to the values of Se and Sp (to satisfy Equation 14) 

prove more difficult for the MCMC algorithm to find.  

For most wildlife diseases, tests with suitably high values of Sp—i.e., values 

close to 1—are rarely available, but due to the P of wild disease in animals 

usually being low, the need for most regimes to identify true negative cases is 

high. This means that optimising the inference of Sphat is arguably more 

important than optimising the inference of Sehat. The theory that minimising the 

errors of Sphat is particularly important when sample size and P are both low is 

both logical, and in agreement with recent research by Helman op cit. 

STYLISED FACT 4: Prior constraints are particularly important for 

reducing errors associated with Sphat over and above the reduction in 

errors associated with increasing the number of diagnostic tests. 

In wild animals, many diseases persist with low values of P—such as Bovine 

viral diarrhoea virus (Casaubon et al., 2012) and Brucellosis (Godfroid et al., 

2005)—and it is reasonable to assume that most endemic wild diseases infect 

less than half of the population at any one time. This means that most sampled 

individuals are true negatives, and implies that the ability to reduce the errors of 

Sphat in preference to reducing the errors of Sehat is sensible. 
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While Validation Example B demonstrates that constraint is a comparatively 

important source of prior information for accurately estimating Sp compared to 

Se or P, a qualitative analysis of Figure 4-3 suggests that this trend may not be 

uniform across parameter space: the error of Sphat seems to only decrease by 

constraining P too.  

Overall, the influence of constraint on error seems less significant than the 

effects on error given more diagnostic tests, indicating that increasing the 

number of diagnostics is a more powerful way to improve the accuracies of 

inferences. Nevertheless, prior constraints remain a valuable source of 

information, since they can reduce the parameter space (Hobbs and Hooten, 

2015) in which the MCMC algorithm must search. In fact, Berkvens et al., 2006 

suggests that the only way to accurately estimate P is by introducing external 

knowledge through constraint. When researchers can speculate on the 

parameter space in which the truth likely lies by offering the BLCM broad 

constraints—for example, give or take 25%—Sp estimates can be improved, 

and in turn, those of P.  

STYLISED FACT 5: Prior precision is particularly important for reducing 

errors associated with Phat and Sphat in addition to the reduction in error 

from increasing the number of diagnostic tests. 

Prior precision is a valuable source of prior information for accurately inferring 

P, and unlike constraint, it has the same magnitude of effect on the error of Phat 

as increasing the numbers of diagnostic tests available. However, increasing 

prior precision decreases the error of Sphat more than increasing the number of 

diagnostic tests.  
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Despite this, the errors of Sehat seem the least responsive to the provision of 

precise prior information, suggesting that for Validation Example B, Sehat is 

both difficult to provide useful prior information for, and highly dependent on 

prior information. This finding is substantiated by Liu et al., 2014, who find that 

the prior of Se is more important than that of Sp: and this in turn could be 

because diseased animals are, in general, less likely to be recorded in test 

arrays than healthy animals. Despite this, ecologists should be mindful that 

providing precise priors is not as important as maximising the number of 

diagnostic tests if the model does not have the minimum degrees of freedom 

that it requires. 

STYLISED FACT 6: The errors associated with Sehat are inversely 

proportional to the errors associated with Sphat. 

The Se-Sp trade-off, or reciprocal relationship, is well cited, and its properties—

that describe the ability of a given test to determine “noise” from “signal plus 

noise” (Green and Swets, 1966)—have particularly important implications for 

the classification threshold of a positive or negative test, as well as the power of 

a BLCM. Since the 1970’s it has been known that the properties of Se and Sp 

are not stable (Ransohoff and Feinstein, 1978), and further insights into the 

trade-off remain of inherent value to disease researchers.  

Insights into a second trade-off that exists between the accuracies of Sehat and 

Sphat, belonging to a given test, have not seemingly been published. 

Accordingly, this chapter reports on five underlying trends concerning the errors 

of Sehat and Sphat: 

1. Constraining P reduces the error of Sehat but increases the error of 

Sphat. 
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2. Constraining P and Sp increases the error of Sehat and reduces the 

error of Sphat. 

3. Prior precision has more influence on the errors of Sphat than constraint. 

4. Constraint has more influence on the errors of Sehat than prior precision. 

5. Increasing the number of diagnostic tests reduces the errors of both 

Sehat and Sphat. 

While the above five tendencies may be unique to Validation Example B, they 

provide an insight into how to prioritise the prior information that a BLCM should 

be given to maximise its model power, as well as information useful for the 

calibration of cut-off thresholds.  

STYLISED FACT 7: Phat is particularly difficult to infer when Sp is low. 

Understanding how the errors of Phat can be biased is fundamental to wildlife 

disease ecology, particularly since diagnostic accuracy is dependent on P 

(Brenner and Gefeller, 1997; Gardner, Johnson and Norris, 2009). A key output 

from Validation Example A was the finding that variance in the errors of Phat is 

largely explained by variance in the values of Sp. 

While the existence of a P-Sp trade-off has not been frequently cited, it sits in 

agreement with both medical literature (Leeflang et al., 2013) that reports 

“differences in prevalence mainly represent changes in the spectrum of people 

without the disease of interest”, as well as wildlife disease literature (Helman et 

al., 2020), which reports that the optimal Se and Sp of a superior test is 

dependent on P. It is probable that there is a further but potentially less 

important P-Se trade-off among the other recognised trade-offs between Se and 

Sp, as well as between P and Sp. 
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Conclusion  

What is a model validation? How should it be done? And can we learn more 

about how a BLCM may infer Se, Sp and P across parameter space? By 

addressing these questions in turn, this chapter responds to the lack of 

information on how to validate BLCMs and shows that model validation can be 

used to provide important insights into how latent parameters may be inferred. It 

is demonstrated that the dependencies between the accuracies of Phat, Sehat 

and Sphat, and the given modelling conditions, are complex. 

The chapter should, however, be interpreted within the context of its limitations, 

which are chiefly a result of the small number of simulations and truths studied. 

It is hypothesised that variation in test outcomes, which creates noise among 

replicate simulations, should become less significant as the number of 

simulations increase. In turn, it is expected that the effect of position in 

parameter space will become more prominent as the number of simulations 

increase, and this has the potential to change or verify the trends described in 

this chapter. 

That said, it is important to note that this present chapter has not found 

unidentifiable parameter space in modelling situations where the degrees of 

freedom rule has been satisfied, indicating that larger studies—embracing more 

simulations and more truths—would be required to locate these volumes of 

parameter space (if they exist).  

Are the seven stylised facts presented generalisable? Do instances where 

parameter accuracy (and precision) improve with the number of diagnostic tests 

serve as a proxy to illustrate where the practical identifiability of a BLCM is 
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possible, and where it is not possible? When is a model identifiable? 

Subsequent Chapters 5, 6 and 7 proceed to test these hypotheses. 

 

  



 

173 

Chapter 5 

5. When are BLCM inferences uncertain? 

Introduction 

Critical to this chapter is the distinction between the metrics of BLCM 

performance—or power—calculated in terms of error, bias, and standard 

deviation; and the metrics of a diagnostic test, inferred as Sehat and Sphat. 

This chapter concerns a simple problem that a researcher may wish to ask 

about parameter space: “is there a region of my parameter space where 

condition X holds?” (Chalom and de Prado, 2012); and responds to the same 

question as op. cit. Chalom and de Prado pose, where in this case condition X 

is the question of practical identifiability. To achieve this, the model validation 

methodology described in Chapter 4—which aimed to establish whether a 

BLCM can infer theoretical scenarios as expected, and for the correct 

reasons—is expanded to explore where BLCM inferences are uncertain across 

a wide range of possible diagnostic testing scenarios.  

Specifically, this chapter expands on two key findings of Chapter 4. First, the 

finding that it is important to examine the error structures of simulation analyses, 

because the accuracies and precisions of inferred parameters are variable, 

even when small volumes of high-dimensional parameter space are studied. 

And second, the finding that the number of diagnostic tests available is a key 

driver of the performance of BLCMs, but that other drivers exist. One of these 

drivers is the apparent relationship (see stylised fact 6) between the inferred 

values of Se and Sp in terms of their respective accuracies. The aim of this 
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chapter is to develop understanding around combinations of parameter values 

that may lack practical identifiability (Munch, Poynor and Arriaza, 2017), 

specifically as a contingent of the presumed relationship between Se and Sp, 

which is now hypothesised to be a key artefact—i.e., a trend explainable by 

statistics rather than ecology—defining BLCM performance. 

For a single diagnostic test, the widely reported reciprocal relationship between 

Se and Sp (for example, see Shreffler and Huecker, 2023) is a commonly cited 

reason for why a gold standard cannot be attained, and is also used to explain 

the reason why thresholds for positive diagnoses are disputed when serological 

data is used. Importantly, the work presented in this chapter does not repeat the 

creation of a classical Receiver Operating Characteristic (ROC) curve for single 

diagnostic tests (explained in Appendix 2: Key parameters, hyperparameters 

and functions), this is because the focus is on understanding the relationship 

between Se and Sp in the context of the better understanding of batteries of 

diagnostic tests, i.e. when two or more diagnostic tests are available, a critical 

consideration for ecologists wishing to adopt a BLCM approach. 

To expand, the relationship between Se and Sp for single non-gold diagnostic 

tests is commonly represented on ROCs—i.e., plots showing the estimated Se 

and Sp for all cut-off values (Fischer, Bachmann and Jaeschke, 2003); with an 

assumed proportionately inverse relationship between Se and Sp, given that the 

parameters are normally distributed. 

To better understand how identifiability changes across regions of parameter 

space, the statistical artefacts present need to be distinguished from the 

ecological artefacts—such as population level disease traits, or the dependency 

between the behaviour of diagnostic tests and the stage of disease (Ransohoff 

and Feinstein, 1978)—that the data given to a BLCM represents (Hallman and 
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Robinson, 2020). The accessibility of methods to explore high-dimensional 

parameter space is key to uncovering statistical artefacts and presents a 

problem relevant to the whole of systems biology (Vernon et al., 2018). For this 

thesis, representing high-dimensional parameter space is critical for 

understanding where inferred parameters lack identifiability across a wide range 

of possible diagnostic testing scenarios. 

BLCM performance can change with any factor that may also alter model 

identifiability, which could include the degrees of freedom available to the 

model, or the sample size available to infer the required statistics in real-world 

studies—particularly when the conditional independence of results is assumed 

(Dendukuri, Bélisle and Joseph, 2010). Importantly, model performance and the 

identifiability of posteriors are related but not mutually exclusive since it is 

possible for a BLCM to generate posteriors that do not identify the latent 

parameters. And for clarity, model identifiability is not explicitly quantified in this 

chapter; rather, the relationships between indicators of BLCM model 

performance are defined, and this information is used to question practical 

identifiability. 

Validating models across high-dimensional space has been termed “uncertainty 

analysis” (Volodina and Challenor, 2021), which is a term adopted in this thesis, 

and is used to describe the variation in BLCM outputs given variation in BLCM 

inputs. In the present chapter, these measures of uncertainty are the errors 

Equation 16) and standard deviations of BLCM posterior inferences, as well as 

the global statistics, across a larger volume of parameter space than that 

explored in Chapter 4. These statistics are used to develop a series of 

heatmaps and regression analyses that represent the resulting uncertainty 

across parameter space as six conditions shown in Table 5-1 are varied.   
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These two methodologies—the development of heatmaps to visualise the 

uncertainty associated with predicted values across parameter space, and the 

specification of LMMs to quantify hypothesised dependencies between 

uncertainty, and modelling conditions (Table 5-1)—are used to indicate where 

practical identifiability exists across a range of infection scenarios. Identifiability 

issues established, researchers can then ascertain when tests stop being 

useful, when the interpretation of inferred parameters becomes tricky, and look 

for any resulting statistical artefacts. In this chapter, attention is given to a 

specific artefact—the relationship between Se and Sp across batteries of 

tests—which is hypothesised to drive identifiability issues. 

Accordingly, this chapter examines the following three questions, which are 

underpinned by lower-level findings from the analysis of heatmaps and 

regression models. 

1. Does the tendency to overestimate or underestimate Sehat and Sphat 

depend on the true value of Se, Sp and P?  

2. Does the size of the absolute error of Sehat and Sphat depend on the 

true value of Se, Sp and P?  

3. Does the standard deviation of the posterior inferences of Sehat and 

Sphat depend on the value of Se, Sp and P? 

Ultimately, these questions are used to examine the hypotheses that: 

1. Specific volumes of parameter space are associated with specific 

“uncertainties”, which may indicate identifiability issues. 

2. The relationship between Se and Sp across batteries of tests is 

associated with identifiability issues across parameter space. 
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Methods 

The hypothetical modelling environment 

The overarching assumption within this environment is that if diagnostic 

accuracy varies across populations, diagnostic tests must be influenced by the 

heterogeneities between diseased populations. As a result, it is assumed that 

the position of any true value within parameter space will be associated with a 

parameter-specific error. Further, based on this logic, it is assumed that the 

errors of Sehat, Sphat and Phat will not improve uniformly across parameter 

space when the six conditions (detailed in Table 5-1) are applied; for example, 

when the number of diagnostics increase. Note, given that only one population 

is studied at a time in the hypothetical modelling environment relevant to this 

chapter, the assumptions of the Hui-Walter model are not violated. 

A further 12 assumptions help to define the hypothetical modelling environment, 

and are as follows: 

1. The error of global statistics—i.e., a mean statistic of Phat, Sehat and 

Sphat—is independent from the choice of truth, the error of an MCMC 

sampler, or model identifiability issues. This error describes the average 

error of Sehat, Sphat and Phat given any volume of parameter space. 

2. Uncertainty is dependent on infection scenario. 

3. In a parameter space, regions can be identifiable, other regions can be 

non-identifiable; and identifiability can be inferred. 

4. The relationship between the errors of Sehat and Sphat influences 

practical identifiability. 

5. Uncertainty can be quantified by proxy via understanding the accuracies 

(and precisions) of Sehat, Sphat, Phat and the global statistic. 
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6. It is hypothesised that the probability scale may be hard to trust when 

representing data on heatmaps. 

7. It is hypothesised that while the relationship between Se and Sp may be 

reciprocal, it is complex. 

8. It is possible to optimise the estimation of Se and Sp using batteries of 

diagnostics. 

9. Diagnostic accuracy is not stable across testing environments. 

10. The relationship between Se and Sp given P is not stable. 

11. The ultimate reason behind variations in diagnostic accuracy is due to 

ecological factors, but first statistical artefacts must be known. 

12. Based on the findings of Chapter 4, diagnostic tests one and two have 

similar variances, and so inferences for both diagnostic tests one and 

two do not need to be reported. 

The truths of Se, Sp and P were systematically set to vary across simulations, 

while the truths of Sp for tests two to five, and the truths of Se for tests two to 

five, were set to known fixed values that remained the same across all 

simulations. The truths are as follows: Se [2:5] = 0.71, 0.66, 0.52, 

0.59 and Sp [2:5] = 0.56, 0.91, 0.94, 0.72 , and were randomly 

chosen whereas P = {0.05, 0.1 … 0.45}, Sp [1] = {0.55, 0.1 … 

0.95} and Se [1] = {0.05, 0.1 … 0.45} . 

True values of P and Sp were restricted—as a separate process to applying 

prior constraints—to reflect a realistic modelling scenario. Values of P were 

restricted to between 0 – 0.5, and values of Sp to between 0.5 and 1. These 

restrictions reduce parameter space by a quarter of its former volume (from 10 

x 10 x 10 to 10 x 5 x 5) and create a smaller volume of posterior density 

for the MCMC algorithm to search within. These restrictions also ensure that 



 

179 

truths remain identical between scenarios where priors are either unconstrained 

or constrained, and that the volume of parameter space searched in every 

modelling scenario is equal.  

To expand, constraints on the true values of Sp and P were applied using an 

assumption that most sustained wildlife infections have P of below 50%, and 

tests should be constrained to tailor to a scenario where most individuals—i.e., 

the greatest proportion—are not usually diseased (see Table 10-2 for full 

justification). This means that when Sp is constrained, its true values are limited 

to those greater than 0.5, and when P is constrained, its true values are limited 

to those less than 0.5. 

Simulated dataset 3 (Table 10-1) contains results for four modelling scenarios, 

where each 0.1 x 0.1 x 0.1 voxel of parameter space is replicated 10 

times: 

1. Normal priors, constrained priors. 

2. Normal priors, unconstrained priors. 

3. Uniform priors, constrained priors. 

4. Uniform priors, unconstrained priors. 

Within each modelling scenario, the number of diagnostic tests, and the sample 

size of the target population was varied. Within modelling scenarios that use 

normal priors, prior precision was varied.  

This modelling setup is specified to inform the Any-Test, Any-Population BLCM 

as described. In comparison to the BLCMs specified for Chapter 4, the BLCMs 

used in Chapter 5 are modified to allow the influence of six conditions (Table 

5-1) on the accuracies of Sehat, Sphat and Phat to be tested. 
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Table 5-1: Modelling conditions referenced in Chapters 5, 6, and 7, and the 

levels of each condition. The rationale behind the levels chosen can be found in 

Table 10-2.  

Condition Levels 

The number of diagnostic tests 2, 3, 4, 5 

The sample size of the target 

population 

500, 1000, 1500 

The prior precision of informative 

priors 

Imprecise, Precise 

Uninformative and informative 

priors 

Normal, Uniform 

Constrained priors 

 

Constrained, Unconstrained 

Edge of parameter space TRUE, FALSE 

 

The “15% scenario” and its rationale 

Note that the results for what this chapter terms the “15% scenario” were 

extracted from the four modelling scenarios described in the previous section. 

Consider a scenario where 15% of individuals are infected. This is a typical 

modelling scenario in ecology, as most individuals within wild animal 

populations are expected to be healthy. For this situation, Sp must be 

maximised in preference to Se in order to avoid misclassifying more of the most 

abundant class of individuals, namely the uninfected (Rydevik, Innocent and 

McKendrick, 2018). However, as Sp is maximised, the behaviour of Se also 
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changes in response, and so the most suitable values of both Se and Sp need 

to be chosen. 

While the correlation of diagnostic tests in terms of false positive and false 

negative rates is a well-known probability problem, no known study has 

evaluated the nature of the hypothesised relationships between Se and Sp 

when using the BLCM approach. To do this the 15% scenario is analysed—

using a subset of data where P = 0.15 extracted from the four scenarios listed 

above—and compared with the results across parameter space where p 

assumes a range of values between 0 and 0.5. The purpose of this study is to 

test how “generalisable” the trends outlined in Chapter 4 are, using a probable 

modelling scenario. 

Generating representative truths using grid sampling 

Grid sampling is a methodology developed within this thesis to ensure that true 

values can be sampled across a parameter space without the introduction of 

sampling bias. 

The BLCMs simulate batteries of diagnostic tests of up to five tests, and so a 

method to systematically sample across 11-dimensional parameter space—

sampled in accordance with any constraints applied to true values—was 

required, in order to ensure that every 0.1 x 0.1 x 0.1 (Se1 x Sp1 x P)  

space contains a defined number of simulations. Estimating probability 

distributions across 11 dimensions—and in a study demanding high levels of 

replication—is challenging, since the number of possible sequences that an 

MCMC sampler may follow grows exponentially as sequence length increases; 

and with the increasing dimensions come consequent reductions in the 

ecologically relevant space (Chen et al., 2020). As a result, the estimation 
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problem must be (i) simplified without introducing further bias; (ii) a parameter 

space that can be efficiently traversed by the MCMC algorithm; (iii) and a 

parameter space that can be fully represented by the given parameters. 

To do this, the simulations required a systematic way of generating true values 

for Se1, Sp1 and P. To be clear, the word systematic applies to the method—

termed in this study grid sampling—used to ensure that every possible 

parameter value of each parameter does not need to be sampled; this 

experiment would be termed a “complete parameter space exploration”. 

Further, a random sampling approach was not adopted since it could introduce 

bias by oversampling some regions of parameter space and undersampling 

others. 

When solving Equation 14 across 11-dimensional space it is advisable to hold 

parameters constant (Yang and Atkinson, 2008) in order to avoid having to 

simulate the entire volume of parameter space: and so, a variation on a method 

called Individual (Chalom and de Prado, 2012) or singular Parameter 

Perturbance (Watts, 2008) was explored. 

A parameter space exploration of only test one parameters was done using the 

grid sampling approach, which simplified the full parameter space exploration 

by using “cells” to discretise, i.e. subsect the sampling problem, and generate 

areal, i.e. gridded data. The truths of parameters belonging to tests two to five 

were fixed to specific values as described. As well as implementing elements of 

Individual Parameter Perturbation, the grid sampling method also used a key 

aspect of Latin Hypercube sampling (McKay, Beckman and Conover, 2000) as 

it ensured that each cell was sampled with an equal intensity. 

The grid sampling technique was developed to satisfy three criteria: 
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1. The sampling method must be capable of sampling across 11-

dimensional space, and the consequent results must be able to be fixed 

across eight dimensions since it is only practical to represent up to three 

dimensions within a schematic.  

2. True values of parameters must be fixed to ensure computational 

efficiency. This is because the amount of “noise” associated with 11 

varying parameters is large, so a trade-off presents itself: with more 

varying parameters comes more noise, and this in turn demands more 

replication within the BLCM.  

3. To enhance computational efficiency, P and Sp must be restricted as 

separate processes to applying constraints to the BLCM, in order to 

ensure that the results between scenarios are both relevant to most 

wildlife disease scenarios, and also directly comparable (see Figure 7-1). 

Parameter space is divided into a 3D grid of (𝑁𝑃 × 𝑁𝑆𝑒1
× 𝑁𝑆𝑝1

) voxels of width 

0.1, where 𝑁𝑃 is the number of voxels in the direction of P, 𝑁𝑆𝑒1
 is the number of 

voxels in the direction of Se1, and 𝑁𝑆𝑝1
 is the number of voxels in the direction 

of Sp1. For all experiments in this chapter, 𝑁𝑃 was given a value of 5 to create 5 

voxels between 0 and 0.5, 𝑁𝑆𝑝1
 was given a value of 5 to create 5 voxels 

between 0.5 and 1, and 𝑁𝑆𝑒1
 was given a value of 10 to create 10 voxels 

between 0 and 1. At each voxel, simulations were replicated 10 times.  
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Figure 5-1: A schematic showing the sampling methods considered when 

selecting and developing the grid sampling method. 

Manipulating the parameter space data using the special.melt functions 

The challenge of manipulating 11 dimensions of simulated data into a format 

suitable for generating heatmaps of parameter space and specifying regression 

models was overcome by the creation of two complex functions—called 

special.melt and special.melt2, available at 

https://github.com/annabush/PhD—to manipulate and store data generated 

using normal and uniform prior distributions respectively. In short, 

special.melt and special.melt2 initialise dataframes of the right number 

of columns, rows and dimensions to automatically organise the outputs of the 

MCMC sampling. The key difference between special.melt and 

special.melt2 is the dimensions of the dataframe requiring initialisation, as 
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data generated using informative priors corresponds to a level of prior precision, 

and therefore requires an additional dimension of storage.  

The general workflow to manipulate data for use in LMM’s and heatmaps is as 

follows. This workflow allows a single dataframe to be generated, with columns 

for all variables that may need to be called, and rows for each observation. The 

size of the single dataframe containing the results analysed in this present 

chapter is 180,000 observations by 57 statistics. 

1. Set the libraries and working directory. 

2. Define special.melt and special.melt2. 

3. Load results files in R Data File format from the required simulated 

dataset Table 10-1 and reformat the results using the special.melt 

functions. 

4. Combine dataframes by row using the rbind.fill function of the plyr 

package (Wickham, 2011), which fills missing columns. 

Generating the heatmaps of parameter space 

The purpose of the heatmaps was to visualise high-dimensional numeric data, 

and to do this 11-dimensional space was condensed into three dimensions P x 

Se1 x Sp1. Heatmaps were used in order to explore the sensitivity of the 

response variables—error (Equation 16), bias (Equation 17), and standard 

deviation—across parameter space, which is graded according to the error 

specific to a 0.1 x 0.1 grid cell. This type of analysis is common when 

plotting landscapes of gene expression, which inspired the shinyheatmap 

package (Khomtchouk, Hennessy and Wahlestedt, 2017), though in this case 

heatmaps were created using the package ggplot2 (Wickham, 2014) with the 
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generalised plotting code provided below, and full plotting manuscripts found on 

GitHub (https://github.com/annabush/PhD). 

Overall, the bias, error, and standard deviation of inferences of P, Se, Sp—or 

inferences made regarding the global statistic—were plotted across matrices of 

heatmaps using the following facets via the facet_grid function of ggplot2: 

1. Prior precision. 

2. Constraint given normal data. 

3. Constraint given uniform data. 

4. Number of samples. 

5. Number of diagnostic tests. 

6. Prior distribution. 

Overall, 54 heatmaps were produced to represent simulated dataset 3 (Table 

10-1) across the three response variables (bias, error, standard deviation), the 

six facets, and for each of the four parameters under investigation (P, Se, Sp, 

global metric). Heatmaps are referenced numerically based on groups of 18 as 

shown in Table 5-2. 

Table 5-2: For each response variable Phat, Sehat, Sphat and the global 

statistic, the heatmaps produced for Chapter 5 are numbered as follows. This 

full directory of 54 heatmaps can be found on GitHub 

(https://github.com/annabush/PhD). 

 Scale of heatmap 

Facet of heatmap Error Bias Standard 

deviation 

Imprecise versus precise priors 1 2 3 
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Constrained versus unconstrained priors 

using data derived from normal distributions 

4 5 6 

Constrained versus unconstrained priors 

using data derived from uniform distributions 

7 8 9 

Number of samples 10 11 12 

Number of tests 13 14 15 

The prior distribution used 16 17 18 

 

Importantly, the following three rules were used to format the colour scales of 

heatmaps. To create the colour scales, lists of manually specified colours—

shown in pseudocode below—were passed into the scale_fill_gradientn  

function of the ggplot2 package. 

1. The scales of error are coloured c("green", "pink", "red") and 

forced to start at 0, since absolute values can be thought of as a distance from 

0, with the colour red indicating the greatest distance from 0. 

2. The scales of bias are coloured c("blue", "white", "red")  and 

centered at 0 to enable inferences that are overestimates (coloured red) to be 

quickly differentiated from those that are underestimates (coloured blue).  

3. The scales of standard deviation are coloured c("green", "pink", 

"red") and not forced since all values are relative: comparatively small 

standard deviations (coloured green) indicate precise inferences; and 

comparatively large standard deviations (coloured red) indicate imprecise 

inferences. 

The code used to produce the heatmaps using ggplot2 is available at 

https://github.com/annabush/PhD. 
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Specifying the Linear Mixed Effects Models 

42 LMM’s (Table 10-13) were used to study variations in the bias, error and 

standard deviation of Sehat, Sphat and Phat across up to 11-dimensional 

parameter space. 

The LMM’s were specified in accordance with the following pseudocode, with 

each variable described in Table 5-3: 

value ~ prior.precision + constraint + n.samples + n.tests * 

extreme + prior.distribution + (1 | P.truth) + (1 | 

Se.truth) + (1 | Sp.truth), 

where value is a metric of either accuracy or precision; the fixed effects are 

changed to specify model condition; the random effects are kept constant 

between LMM’s; and the data used is the filtered data frame initialised by the 

special.melt and or the special.melt2 functions described. All LMM’s are 

fitted using Restricted Maximum Likelihood methods.  

Table 5-3: A complete list of the fixed and random effects specified within the 

regression analyses conducted in Chapter 5 and Chapter 6. Column 2 shows 

how each variable was declared in R for use by the lmer function of the lme4 

package. 

Variable name in full Variable name as 

declared 

Continuous fixed effects  

The number of diagnostic tests n.tests 

The sample size of the target population n.samples 

Categorical fixed effects  
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The prior precision of informative priors prior.precision 

Uninformative and informative priors prior.distribution 

Constrained priors constraint 

Edge of parameter space extreme 

Random effects  

True values of P P.truth 

True values of Se Se.truth 

True values of Sp Sp.truth 

Response variables  

The accuracies and precisions of inferences of 

Se, Sp or P, or any inferences made regarding the 

global statistic. 

value 

 

Checking the assumptions of the Linear Mixed Effects Models. 

The following four checks comprised the workflow for ensuring that the general 

assumptions (Schielzeth et al., 2020) of LMM’s were satisfied. The values 

required to complete the LMM model checking were obtained from the common 

return values of merMod objects (see Table 8, lme4 vignette, Bates et al., 

2015). 

1. Residual values—i.e., the level 1 variance not attributed to position in 

parameter space—were extracted and compared to the quantiles of a 

standard normal distribution using quantile-quantile plots to test for 

normally distributed residuals.  
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2. Residual values were extracted and plotted against the fitted values, 

i.e. predicted values of each independent variable to test for linearity 

(using boxplots for the categorical predictors). 

3. Residual and fitted values were extracted and plotted against each 

other using quantile-quantile plots to test for non-constant variance.  

4. Random effects values—i.e., the level 2 variance that is associated 

with position in parameter space—were extracted and compared to 

the quantiles of a standard normal distribution using quantile-quantile 

plots to test for normally distributed random effects. 

Combinations of conditions tested by Linear Mixed Effects Models (1-7 

repeated for 15% scenario, where P is restricted to 0.15). 

1. The dependencies of all fixed effects on the variable value given data 

informed by normally distributed priors. 

2. The dependencies of all fixed effects on the variable value given data 

informed by imprecise prior information. 

3. The dependencies of all fixed effects on the variable value given data 

informed by uniform distributions. 

4. The dependencies of prior distribution on the variable value given all 

data. 

5. All manipulations on the variable value given all data regarding the 

inference of Se1. 

6. All manipulations on the variable value given all data regarding the 

inference of Sp1. 

7. All manipulations on the variable value given all data regarding the 

inference of P. 
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A note on the how the Linear Mixed Effects Models in Chapter 5 and 

Chapter 6 are reported. 

Coefficients of the LMM regressors are reported on only in terms of their 

contrasting magnitudes and directions. This is because each fixed effect is 

dummy coded to represent the predicted difference between its reference level 

and its contrasting levels (Crawley, 2012), meaning that each fixed effect 

coefficient can be challenging to directly interpret, with the intercept 

representing the estimated response at the reference level for all categorical 

variables, and not a mean response.  

The reference levels for the categorical variables used were automatically 

selected by the lmer function (i.e., alphabetically), and are as follows in the 

format of effect:reference level. 

1. prior.precision:imprecise 

2. constraint:constrained 

3. extreme:FALSE 

4. n.tests*extreme:FALSE 

5. prior.distribution:normal 

An effect-size parameter was not calculated since the data provided to the 

LMM’s is synthetically generated and expected to be noisy (Gelman, 2019). 

Further, due to the coefficients being only “partially standardised”—i.e., not 

nested—with a maximum of three levels (for the categorical variable prior 

precision), any effect sizes could not be directly compared (Lorah, 2018). The 

variance explained by the LMM’s in terms of the usually reported penalised R-

squared values (Nakagawa and Schielzeth, 2013; Johnson, 2014) was not 

reported since this approach for non-nested LMM’s is “riddled with complication” 
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(Bolker, 2020) and is not agreed amongst practitioners (Rights and Sterba, 

2019). Moreover, since the number of observations, i.e. total sample size, used 

to calculate the regression coefficients always exceeded 12,000 samples, 

sampling bias was also not a concern to this study—despite the number of 

groups of observations being small, i.e. less than ten (Maas and Hox, 2005; 

Bell, Ferron and Kromrey, 2008)—due to the well-cited problem of diminishing 

p-values and small standard errors with large sample sizes (Halsey et al., 2015; 

Amrhein, Greenland and McShane, 2019). 

Results 

Table 10-13 serves as a look up point for the reader for the LMM’s referred to in 

this chapter, and the conditions they concern. Table 5-2 provides a look up 

point for all 54 heatmaps that informed this results section. For practical 

purposes, only select heatmaps are shown in this section, and all heatmaps are 

produced as multi-panel plots to facilitate quick visual comparisons between 

variables. 

The following three sub-sections report on the accuracies and precisions of 

Sehat, Sphat and Phat across parameter space, in comparison to the 

accuracies and precisions of Sehat, Sphat and Phat across global parameter 

space. 

The following comparisons are critical to the evaluation of the strengths and 

weaknesses of the global statistic. It is important to note that the scales of the 

heatmaps discussed throughout this results section are not always directly 

comparable (see the three colour coding rules above), and the x, y and z axes 

represent predicted rather than true values. 
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The accuracy (Figure 5-3) and precision of Phat versus the global statistic 

(Figure 5-2) across parameter space 

When informative priors are provided to the BLCM, Phat is estimated to be 

more accurately inferred and less precisely inferred across parameter space 

than the heatmaps of global errors suggest. When prior constraint is applied, 

Phat shows a similar response. If values of P are low, i.e. less than 0.4, and the 

model has been provided with uninformative priors and priors are 

unconstrained, P is likely to be accurately inferred, and this is a similar finding 

within the heatmaps of global errors. For this same modelling scenario, 

estimates suggest that Phat cannot be precisely inferred if values of P are close 

to 0.5. Moreover, it is estimated that Phat is consistently underestimated when 

uniform priors are used and values of P are less than 0.4, whereas the 

heatmaps of global errors only show that the lower diagonal of parameter space 

is underestimated for this scenario. Interestingly, the maps of Phat error show 

no edge effects—i.e., statistically relevant changes in the accuracies or 

precisions of inferred values, which have been noted to occur when the truth 

lies within 0.1 units from the edge of a parameter space—when compared to 

the heatmaps of global errors when values of P are less than 0.3 when priors 

are constrained or unconstrained, or when the number of samples changed. 

The accuracy (Figure 5-4 

Figure 5-4) and precision of Sehat versus the global statistic (Figure 5-2) 

across parameter space. 

In general, it is easier to precisely estimate Sehat across all modelling scenarios 

than the global statistic suggests. For example, the precision of Sehat is largely 

unaffected by changes in sample size, in contrast to the change in global error 
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as sample size changes. It appears that Sehat is easier to infer than the global 

statistic suggests when the value of P is higher; for example, the global statistic 

indicates that inferences of Sehat when values of P are greater than 0.3 are 

consistently overestimated. When imprecise priors are given to the BLCM, it 

appears to be difficult for the model to accurately infer Sehat when values of P 

are less than 0.1, and when values of Se are greater than 0.9. When 

informative priors are used, the errors of Sehat exhibit strong edge effects 

compared to the errors of the global statistic when the values of Se are greater 

than 0.9. However, there are no edge effects in the parameter spaces of Sehat 

errors, or global errors, when prior constraints are used, and this is in contrast 

to when precise priors are used. 

The accuracy (Figure 5-5) and precision of Sphat versus the global 

statistic (Figure 5-2) across parameter space. 

The level of information provided by an informative prior—imprecise or 

precise—does not significantly influence the accuracy of Sphat, and this 

contrasts with the impact of informative priors on the accuracy of the global 

statistic. In general, it is found that inferences of Sp are less accurate when 

inferred using a global metric, particularly when values of P are low. Also, when 

values of P are low, there is little difference between the accuracy of Sphat 

when the number of diagnostics used for inference is two, or three, suggesting 

a potential identifiability issue. When the errors of Sphat are plotted across 

parameter space there is only an edge effect when the values of Sp are greater 

than 0.9, and this edge effect is both greater than the corresponding edge effect 

on the map of global error, and is particularly visible when the values of P are 

high, i.e. when they are close to values of 0.5. These edge effects are also 



 

195 

visible when standard deviations are plotted across parameter space and show 

unusually precise inferences in these regions. 
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Figure 5-2: Heatmaps showing the bias (left panel) and error (right panel) of predictions of the global statistic given imprecise 

and precise priors.  
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Figure 5-3: Heatmaps showing the bias (left panel) and error (right panel) of Phat given imprecise and precise priors. 
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Figure 5-4: Heatmaps showing the bias (left panel) and error (right panel) of Sehat given imprecise and precise priors. 
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Figure 5-5: Heatmaps showing the bias (left panel) and error (right panel) of Sphat given imprecise and precise priors. 
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Four scenarios are now reported on: the 15% scenario; situations where 

parameters Sehat and Sphat are overestimated and underestimated; the 

artefacts present across parameter space; and the magnitude of global error 

across parameter space. 

Analysis of the 15% scenario 

When BLCMs are provided with normal prior distributions, prior precision is 

generally the most effective source of information for improving the power of a 

BLCM (LMM’s 14, 35, 36, 38, 39, 41, 42). There is also evidence to suggest 

that providing precise priors is less important for accurately estimating Sphat by 

one order of magnitude, compared to when precise priors are used to infer 

Sehat or Phat (LMM 38). This evidence further suggests that providing more 

diagnostics is the best source of prior information for accurately estimating 

Sphat (LMM 38). The benefits of providing more diagnostics in comparison to 

improving other modelling conditions is not unique to the 15% scenario (LMM 

38, LMM 29). 

When uniform priors were provided to the BLCM (LMM 20 and 21), the 

application of constraint and increasing the number of diagnostic tests is 

estimated to result in the decreased error and increased precision of all inferred 

parameters by the greatest order of magnitude, compared to the effect of 

increasing sample size.  

When normal priors were used to inform the BLCM, regression analyses show 

that improving prior precision—rather than increasing the number of diagnostic 

tests—is the best way to reduce the magnitude of errors associated with Sehat 

and Phat. But for Sphat, the magnitude of error was similarly influenced by prior 

precision and the number of diagnostic tests. 
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The variance in Se appears to be responsible for a large amount of variance in 

the errors of Sehat and this is the same for Sp and Sphat; however, P seems 

heavily influenced by variations in the accuracy of Sehat.  

When is Se and Sp biased, i.e. overestimated or underestimated? 

Comparing models informed by imprecise and precise priors. 

When values of P are less than 0.3, Sehat and Sphat are more likely to be 

underestimated. In general, as P increases, Sehat and Sphat are more likely to 

be underestimated when Se and Sp take values of less than 0.8. When values 

of P are between 0.3 and 0.5 there are few notable differences between the 

inferences of Se and Sp in terms of bias, even when imprecise and precise 

modelling scenarios are compared. However, when values of Se are above 0.8, 

Sehat is most likely to be overestimated regardless of the value of P. In general, 

as values of P increase, Sehat and Sphat are more likely to be underestimated 

when Se and Sp take values of less than 0.8. 

Comparing constrained and unconstrained priors given informative 

priors. 

Sehat and Sphat are more likely to be overestimated in constrained scenarios 

when values of P are more than 0.3. And for scenarios where values of P are 

less than 0.3, the directionality and magnitude of the accuracies of Sehat and 

Sphat seem very similar between constrained and unconstrained scenarios. 

Comparing constrained and unconstrained priors given uninformative 

priors. 

When uniform priors are used and the model is unconstrained it becomes easy 

to decide when the errors of Sehat and Sphat are likely to be over- or 

underestimated, regardless of the value of P. As a rule, as Se and Sp become 
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larger, their errors are likely to be overestimated. And as P increases, the 

threshold at which the errors of Sehat and Sphat are overestimated occur at 

lower values of Se and Sp, in addition, the error associated with inferences at 

these lower values increase. 

Comparing models given differing sample sizes. 

The number of samples does not significantly influence the magnitude or 

directionality of the accuracies of Sehat or Sphat.  

Comparing models given differing numbers of diagnostic tests. 

When more than three tests are supplied to the model, the effect of 

overestimating or underestimating parameters becomes negligible compared to 

when two tests are used. 

Further artefacts discovered. 

Edge effects 

It was found that regardless of the value of P, patterns in the errors of 

inferences (see plots 1, 4, 7, 10 and 13) occur at the edges of parameter space 

when values of Se are either low (less than 0.1) or high (close to 0.9) and Sp is 

high (close to 0.9). These “edge effects”—shown in Figure 5-6—are also 

present when the variance of error is plotted across parameter space (see plots 

3, 6, 9, 12, 15, 18), for example, while sample size has a small effect on 

precision in general (plot 12), as sample size increases, unusually precise 

results occur at the edge of parameter space; though edge effects are less 

present when the number of diagnostic tests increase (plot 15). 
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These “edge effects” were not present when the biases of inferred parameters 

were plotted across parameter space, indicating that the edges of parameter 

space influence the magnitude of error more than its directionality. 

Structured variance of error across parameter space. 

It was expected that the variance of error across parameter space would be 

naturally constrained by a pattern of binomial variance. 

It was found that the variance of error is always affected in a structured way 

(see plots 3, 6, 9, 12, 15, 18). When the data represented across parameter 

space was derived from normally distributed priors, or priors are constrained (or 

both), the structure can be described as a “ball of higher standard deviation” 

(Figure 5-7) in the centre of parameter space. When the data represented 

across parameter space is derived from uniform priors, or priors are 

unconstrained, the structure can be described as having a higher range of error 

values in the upper diagonal of parameter space (Figure 5-8).  
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Figure 5-6: A heatmap showing that edge effects associated with the bias of 

Sehat (for this example) decrease as the number of diagnostic tests available 

increase from two to five.
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Figure 5-7: A heatmap showing what is described as a “ball of imprecision” in 

the middle of constrained parameter space, which for this example is 

associated with the standard deviation of the global statistic when priors 

(normal) are either constrained or unconstrained. 
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Figure 5-8: A heatmap representing the standard deviation of Phat given 

constrained or unconstrained priors (normal) to illustrate the “diagonal” pattern 

through parameter space. 

On the magnitude of error across parameter space 

Presenting error on heatmaps removes edge effects (plots 2, 5, 8, 11, 14, 17). 

When true Se and Sp is high, i.e. close to values of one, large errors can be 

expected when either uniform priors are used, or when the model is 

unconstrained. Errors are comparably small—even between treatment types 

such as between imprecise and precise priors—when the model is informed by 

normally distributed priors. Although in two-test parameter space when true Se 

and Sp is high, the magnitude of error is close to 0. 
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Discussion 

There remains a discrepancy between studies that assume that the stability of 

Se and Sp changes with P (Brenner and Gefeller, 1997; Leeflang et al., 2013) 

and studies that assume that diagnostic accuracy is stable across testing 

environments (Li and Fine, 2011) and species—given the lack of validation for 

testing protocols such as for bTB across species (Jia et al., 2020). This is the 

first known study to evaluate how Sehat and Sphat can be optimised across 

hyper-dimensional parameter space. 

This discussion investigates the assumption of an unstable relationship 

between Se and Sp given P using simulated data and experiments with two to 

five diagnostic tests. It is however recognised that a stable relationship may be 

justified—for example, when agreed cut-offs succeed in improving estimates of 

P (Helman et al., 2020); or when “bronze” (Lynch et al., 2010; Wu et al., 2016) 

diagnostics such as a bacteriological culture tests with Sp values of 1 are 

included within a wildlife disease study.  

This assumption that diagnostic accuracy varies across populations sits in 

agreement with research such as Bermingham et al., 2015, with the ultimate 

explanation behind variations in diagnostic accuracy underpinned by ecology. 

For example, attributed to heterogeneities in life history factors such as age or 

immune status (Pollock, Welsh and McNair, 2005), for instance, Se is known to 

vary with calf age in tests for bovine cryptosporidiosis (De Waele et al., 2011). 

While research such as by Leeflang et al., 2013 describe the assumption that 

diagnostic accuracy varies across populations as anecdotal, others assume 

(Gardner et al., 2011), or find (Brenner and Gefeller, 1997), that Sehat and 

Sphat varies with P. To understand the ecology that prompts diagnostic 
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accuracy to vary, it first needs to first be understood how the accuracy and 

precision of inferred parameters varies across modelling situations, and how 

much variation in accuracy and precision can be accounted for by modelling 

bias rather than the causative ecology. In this study, many thousands of artificial 

populations are tested for disease across a variety of conditions. 

Understanding how well BLCMs can infer Se, Sp and P is therefore the first 

step towards understanding the hypothesised reciprocal relationship between 

Sehat and Sphat, which can only be carried out once Sehat and Sphat are 

themselves robustly inferred. 

General findings 

This study finds that Phat has an intricate relationship with Sehat and Sphat 

which is not the same as between Phat and Sehat, and as between Phat and 

Sphat. Phat and Sehat were generally more accurate—and Sehat was 

generally more precise—when single parameter statistics were analysed 

(measures of accuracy and precision directly associated with the inferences of 

parameters Se, Sp or P, rather than a global statistic). However, global statistics 

of precision appear to overestimate the precision of Phat. The accuracies and 

precisions of Sphat were similar across parameter space when the inferences 

of Sp and those made regarding the global statistic was compared: it seems 

that the global metric is generally “good” at inferring P and Sp, and “less good” 

at inferring Se. 

In response to the three high-level research questions listed within the 

introduction of this chapter, three following high-level dependencies have been 

found: 
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1. Using the metric global bias, Sehat and Sphat are likely to be 

underestimated if values of P are less than 0.3. In contrast, using 

parameter-specific metrics of bias suggest that while Sphat is likely to be 

underestimated, this is not true for Sehat. 

2. The errors of Sehat and Sphat are dependent on Se, Sp and P and are 

structured across parameter space. Despite this, it was found that the 

errors of Sehat and Sphat are more dependent on prior information than 

position in parameter space. 

3. The precision of Sehat and Sphat is strongly dependent on position in 

parameter space, and prior distribution.  

Common to these three findings is a strong relationship between the error 

(Equation 16) and bias (Equation 17) of the mean posterior inference, and the 

position in parameter space. Accordingly, these three high-level findings 

suggest that P should only be inferred once the accuracy and precision of Sehat 

and Sphat has been determined, as well as the relationship between them.  

The remainder of the discussion expands on these findings.  

What can the 15% scenario tell us about diagnostic accuracy? 

The 15% scenario examined the accuracies and precisions of inferences when 

values of P are 0.15. Analyses showed that Sehat and Phat generally react 

similarly to the given modelling conditions and in contrast to Sphat; this was 

reinforced by the finding that the accuracies of Sehat and Phat have similar 

dependencies (Table 10-13), which were edge effects and informative priors. 

This work sheds further light on a potential relationship between Sehat and Phat 

first reported in Chapter 4, which is not the result of collinearity integral to the 

BLCM (Figure 3-4), and that holds the potential to influence experimental 
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design. This finding is important to ecologists wanting to better inferences of P, 

since when infection rates are low, improving Sehat could be a viable strategy. 

And one way to do this could be to not trust global statistics of accuracy and 

precision as being representative of Se. 

The 15% scenario also highlighted that the accuracy of Sphat was found to be 

less sensitive to precise priors than Sehat or Phat. When normal priors were 

provided, the accuracy of Sphat was more sensitive to the provision of further 

diagnostics. And when uniform priors were provided, the accuracy of Sphat 

increased when provided with constraints and further diagnostics, rather than 

when sample size increased. These findings suggest that when infection rates 

are low, including more diagnostic tests—probably by proxy—would be the best 

way to improve inferences of Sp, regardless of how the priors are specified, and 

regardless of whether it is accuracy or precision of the parameter that the 

researcher wished to improve. These findings are in agreement with the finding 

(Liu et al., 2014) that the prior of Sehat is more important than Sphat when P 

has values of less than 0.5.  

What can we learn from mapping across parameter space? 

A notable outcome from the heatmap analysis using global statistics is that 

Sehat and Sphat are very likely to be underestimated if values of P are less 

than 0.3. This finding was unaffected by changes in how prior precision was 

specified, how prior constraint was specified, or the number of samples used to 

build the test array; and agrees with the findings of Helman et al., 2020 in both 

their simulated study and wildlife case study. The only condition that 

contradicted this finding was the two-test scenario, where Sehat and Sphat 

were poorly underestimated (in scenarios when values of P are less than 0.3) 

when compared to the bias of Sehat and Sphat given the same modelling 
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conditions, and three diagnostic tests. However, it was shown that Sehat is not 

underestimated when values of P are less than 0.3, providing another example 

of when the performance of the global metric is suboptimal. 

The finding that the global bias was largely independent of experimental 

conditions—and dependent on the value of P—is not replicated when the 

magnitude of error for Sehat and Sphat is considered, which seems very 

dependent on prior specification. It is found that the least accurate inferences 

generally occur when the values of Se and Sp are high, i.e. when better tests 

are used; and when either uniform priors are used, or when the model is 

unconstrained. Considering this, normal priors should always be preferred over 

uniform priors, even if they are imprecise. The single parameter experiments, 

i.e. those where global errors were not used, confirm that the least accurate 

inferences can be mostly attributed to edge effects. The finding that the biases 

in inferences of global error was largely dependent on P is also reflected in the 

single parameter studies, which find that P is dependent on prior specification to 

avoid the underestimation of error. 

Heatmapping also highlighted a structuring of the variance of error across 

parameter space that is dependent on whether uniform or normally distributed 

priors were used. When priors are normally distributed, the variance of error is 

greatest in the centre of parameter space; and when priors are uniform then the 

variance of error is greater the closer the test is to a gold standard. These 

findings suggest that trusting precise values of Sehat and Sphat at the edges of 

parameter space should be avoided, and that prior information needs to be 

provided to the model to avoid overestimates of Sehat and Sphat when values 

of Se and Sp are above 0.5. 
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Further evidence of edge effects as a statistical artefact 

On average, when error is absolute, the accuracy of Sehat and Sphat appears 

high. But underneath this general finding, there is evidence that a mean-

variance relationship is partially responsible for the observed edge effects. In 

general, parameters seem most difficult to infer when on the edge of parameter 

space. For models provided with constrained truths this means when values of 

Se are either very low or very high (near values of 0 or 1), when values of Sp 

are low (near values of 1), and or when values of P are high (near values of 

0.5). Uncovering edge effects supports existing findings such as that low Se 

and or Sp values reduce model identifiability (Bujang and Adnan, 2016); that the 

accuracy of Sphat is generally lower when P is higher (Leeflang et al., 2013); 

and that Phat is inaccurate when Se is low (McDonald and Hodgson, 2018). 

Are edge effects related to constraint? 

This research supports the view that edge effects are directly influenced by the 

constraints applied to the priors that inform the BLCM. For example, when prior 

constraint is applied there are no apparent edge effects on heatmaps of global 

errors across parameter space or heatmaps of Sphat. However, when prior 

constraint is applied, edge effects are present on heatmaps representing global 

standard deviations. Edge effects on maps representing the standard deviation 

of Sphat across parameter space show unexpectedly precise inferences, 

indicating that these edges could be hard to trust. And for maps representing 

the errors of Sphat, edges are more inaccurate than can be seen on the 

heatmaps of global errors across parameter space, indicating strong edge 

effects. However, when values of P are low, i.e. less than 0.3, there are no edge 

effects in constrained or unconstrained models indicating that for most wildlife 

infections scenarios, edge effects of P are less relevant considerations. 
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This analysis of edge effects suggests that tests with high values of Se are 

particularly difficult to accurately infer using unconstrained models, that 

heatmaps of global errors across parameter space do not reflect the true edge 

effects for Sp, and that tests with high values of Se and Sp are particularly 

difficult to precisely infer, suggesting that this is a limitation to estimating Phat 

accurately within the BLCM structure specific to this chapter. It may be that P is 

the most “volatile” parameter within BLCMs, and this is supported by the finding 

by McDonald and Hodgson, 2018, that Phat is unreliable when diagnostic 

uncertainty is not taken into account. 

Are edge effects related to prior distributions? 

Every source of prior information acted to reduce error when prior precision was 

normally distributed, with the most significant reductions in error attributed to 

precise prior precisions and the least significant reductions attributed to sample 

size. In contrast, when priors were uniformly distributed, constraint became the 

most influential model condition. Although it has been suggested (Bujang and 

Adnan, 2016) that subjectively larger sample sizes are needed to estimate 

Sehat when values of P are low, and that larger sample sizes are needed to 

estimate Sphat when values of Sp are high, this study finds that—using 

relatively large sample sizes—sample size is largely irrelevant to these 

estimation problems.  

Conclusion 

This chapter has aimed to advance the understanding of combinations of 

parameter values that lack practical identifiability, and in particular, those that 

arise due to the hypothesised reciprocal relationship between Se and Sp. To do 

this, a method for exploring high-dimensional parameter space was described 
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and executed, and dynamics between Se and Sp are quantified. In addition, the 

chapter described and further explored three high-level trends that characterise 

the relationship between Se, Sp and P suggesting how the accuracy and 

precision of—and the relationship between—Sehat and Sphat can depend on 

model specification. This research is thought to be the first to suggest how 

information should be added into BLCMs to improve inference. In summary, it 

was found that there are structured patterns in the variance of error across 

parameter space. These mean-variance relationships were hypothesised to be 

another integral statistical artefact that will be critical to understanding how 

identifiability changes across regions of parameter space. 

But can this hypothesised mean-variance relationship be distinguished from 

identifiability issues? And is this relationship simply due to less identifiable 

parameter space? In other words, are answers to the simultaneous equations 

that underpin Equation 14 more difficult for the MCMC algorithm to solve at the 

edges of parameter space? The following chapter, Chapter 6, turns to these 

important considerations. 
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Chapter 6 

6. Investigating the interactions between edge effects, 

BLCM identifiability, and the mean and variance of 

error. 

Introduction 

The previous chapter showed that regions of extreme parameter space were 

“dependence structures”—places where dependencies existed between two or 

more variables of interest—that were critical to BLCM identifiability. Clearly, for 

real-world studies, the risk exists that if unaccounted for, the inaccuracies 

associated with the presence of such artefacts—that is, trends explainable by 

statistical vagaries such as edge-effects, rather than ecology—could result in 

flawed disease management decisions. 

The relationship between a BLCM’s power and its potential to influence wildlife 

disease management decisions is only recently being explored: for example, 

within Helman’s recent study on Leptospira infection in California sea lions 

(Helman et al., 2020). The present chapter contributes to this specific body of 

research by investigating the potential ramifications of addressing edge-effects, 

i.e. the mean-variance relationship identified across parameter space that 

describes the variance of error.  

Understanding the biological (Horne and Schneider, 1995) or statistical 

meaning behind the non-constant variance of response variables across 

“space”—genetic, geographic, or even theoretical space, such as parameter 

space—is complex (McClintock et al., 2010) and infrequently a core research 
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ambition of ecologists. Few examples of research with such ambition can be 

found in the fields of species distributions (Palmer, Hakenkamp and Nelson-

Baker, 1997; Elith and Leathwick, 2009), disease, and survival (McDonald et al., 

2016). Importantly, to-date, inferences on the mean dominate the field of 

ecology, including wildlife disease research, despite it being understood that 

“failing to account for [mean-variance relationships] appropriately can introduce 

serious artefacts into analysis” (Warton and Hui, 2017).  

Binomial data—such as those recording the presence or absence of disease, or 

count data summarising the infection statuses of a population as determined by 

physical diagnostic tests—often presents a relationship between means and 

variances; the most common in ecology being overdispersion, when the 

variance is generally greater than the mean (Lindén and Mäntyniemi, 2011; 

Conn et al., 2018). Although studies on these mean-variance relationships are 

critical to analysing multivariate data (Warton and Hui, 2017), they have—since 

the publication of Taylor’s Power Law, shown in Equation 19, in 1961 (Taylor, 

1961)—been controversial: for example, see Warton, Wright and Wang, 2012, 

and subsequent responses by Roberts, 2017 and then Warton and Hui, 2017. 

While Taylor’s Power Law is the mean-variance relationship that has dominated 

ecology, and which usefully describes population sizes for many species, its 

principles have been widely extrapolated (Eisler, Bartos and Kertész, 2008). 

Equation 19 

𝑣𝑎𝑟(𝑌) = 𝑎𝜇𝑏 

In Equation 19, 𝑣𝑎𝑟(𝑌) is the variance of the size of an insect population, 𝜇 is 

the population mean, and 𝑎 and 𝑏 are both positive constants. 
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A basic assumption of mean-variance relationships in ecology is that most 

“environmental factors”, such as P, are bounded by 0 (Scheiner and Willig, 

2013), and in the case of probability parameters, with an upper bound of 1. The 

heatmaps of absolute mean error put forward in Chapter 5 are bounded by 0 

and 1, or 0.5, in all dimensions and show clear changes in inferences at 

“edges”, i.e. the space between a boundary edge and a 0.1 unit from that edge, 

which in this thesis represents the “extreme” limits of possible values for 

inferences of Se, Sp or P.  

Although Chapter 5 demonstrated the existence of a relationship between error 

and its variance across space, the exact shape of this relationship is unclear, as 

is the bias that it could represent. Further, the effect of the mean-variance 

relationship on error needs disentangling from the presence of identifiability 

issues, which could also force edge effects. This chapter therefore investigates 

whether edge effects are statistical artefacts that ecologists must understand 

prior to correctly interpreting model uncertainty. 

Edge effects in ecology are well-studied (Ries and Sisk, 2004) when they 

concern population-level responses to an environmental boundary, and the term 

“edge effect” in theoretical ecology is sometimes associated with graph theory. 

However, classical ecological definitions of an edge effect which invariably 

relate to changes in ecosystems at boundaries due to environmental factors 

(Ries et al., 2004), are still meaningful in studies of theoretical space because 

their definitions are researcher-dependent (Strayer et al., 2003), and their study 

relates to the prediction of population-level traits, in this instance P.  

How the variance of BLCM inferences is interpreted can directly influence 

wildlife disease management decisions. For example, Helman’s 2020 study on 

Leptospira infection in California sea lions was one of the first to be informed by 
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how the accuracy and precision of parameter inferences can change across 

parameter space as modelling conditions vary (Helman et al., 2020). Chapter 5 

noted that there is little guidance for ecologists on analysing BLCM inferences, 

this chapter focuses on how statistical artefacts such as heteroscedasticity—the 

increasing spread of residuals as the fitted values of the response value 

change—may be interpreted, and explores whether it can be separated from 

other biases such as model identifiability issues. Ultimately the ability to 

understand how statistical artefacts change with modelling conditions could 

have direct disease management implications, such as those indicated by 

Helman op cit. 

This chapter also advances the argument presented in Chapter 5 that the edges 

of parameter space—modelled in LMM’s by the variable “extreme”—are 

associated with dependence structures and statistical artefacts critical to both 

BLCM identifiability and parameter interpretation. In this chapter the variance of 

error across parameter space is analysed, and how the error structures of 

Sehat, Sphat and Phat may be interpreted across a range of modelling 

conditions are discussed. To accomplish this, this chapter first examines 

whether mean-variance relationships are present across parameter space, and 

second, explores how much distortion the mean-variance relationship causes in 

terms of the inference that should be expected when the mean-variance 

relationship is removed.  

Assumptions and Methods 

This chapter asks two key questions: 

1. Are mean-variance relationships present across parameter space? 
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2. How much distortion does the mean-variance relationship cause at edges? 

These explorations of the mean-variance relationship and its impact—or 

otherwise—on inferences are carried out by testing five hypotheses. These 

focus on exploring the accuracy of mean error across space, rather than the 

precision of mean error across space (which would be an analysis of the 

variance of variance estimates). Simulated dataset 3 (Table 10-1) is used, 

continuing the same basic hypothetical modelling scenario as described in 

Chapter 5, unless explicitly stated otherwise. 

The answers to these two questions lie in the construction and testing of 5 

hypotheses explained within this section. 

Are mean-variance relationships present across parameter space? 

To explore the existence of mean-variance relationships across parameter 

space, it is necessary to look for difficult-to infer parameter space, which 

involves making some basic assumptions about where the edge of parameter 

space is, the nature of the relationship between prior information and difficult-to-

infer parameter space, and probable impacts of edge-effects. 

Where is unidentifiable parameter space? 

When the number of diagnostic tests is five, and eight parameters are free to 

vary (Table 3-1), it can be assumed that more inferred values are closer to the 

edge of parameter space than if mapped using smaller batteries of tests. It is 

also assumed that a relationship exists between the prior information provided, 

and unidentifiable parameter space; as intuitively, prior information should 

improve inferences.  
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HYPOTHESIS 1: Inferences are associated with less accuracy as truths 

approach the edges of parameter space, and prior information affects this 

relationship. 

HYPOTHESIS 2: Edge effects cause a reduction in model power.  

Chapter 5 demonstrates that Sehat, Sphat and Phat do not behave similarly, so 

in this chapter their errors are modelled as independent response variables, in 

addition to the mean global error within each 0.1 x 0.1 x 0.1 cell of a 

maximum 1 x 1 x 1 parameter space. The decision to avoid total reliance on 

global statistics is further supported by the body of literature on Small Area 

Estimations (such as Jiang and Lahiri, 2006), in which each cell in parameter 

space may be considered one. The decision is also supported by Waller and 

Carlin, 2010 who remark that “such smoothing [i.e. taking averages across 

space] may not be appropriate if the goal is instead to identify boundaries or 

regions of rapid change [i.e. edge effects] in the response surface [i.e. the 

surface of parameter space], since smoothing is antithetic to this purpose.”  

Chapter 5 demonstrated that presenting the errors of Sehat, Sphat and Phat on 

heatmaps can remove edge effects. While there is evidence to support the 

assumption that when error is absolute, on average its value is not 

overestimated or underestimated, ecologists must be confident that absolute 

errors—when inputted into LMM’s—are representative of true accuracy. In the 

absence of further evidence to the contrary, mean-variance relationships 

automatically violate the familiar model assumptions (Gelman and Hill, 2006) 

behind LMM’s by introducing heteroscedasticity.  
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Assumptions about edge effects 

Chapter 5 provides evidence that in some instances edge effects represent a 

decrease in a BLCM’s ability to infer the truth, possibly due to unusual 

diagnostic outcomes at the edges of parameter space; for example, positive 

diagnoses are rare when Sp and P are low.  

HYPOTHESIS 3: The variance of the error of Sehat, Sphat and Phat across 

parameter creates edge effects. 

HYPOTHESIS 4: Both model constraints, and whether the errors of inferred 

values are absolute or not, influence the homogeneity of variance across 

parameter space.  

Prior to investigating hypotheses 3 and 4 it was confirmed that a correlation 

between the MCMC samples used to infer Sehat, Sphat and Phat was not 

present (Figure 3-4). 

Modelling the mean-variance relationship 

A modelling scenario with three diagnostic tests, 1000 individuals, and normal 

priors was generated, and then compared to a similar modelling scenario 

informed by uniform priors. This subset of simulated dataset 3 ensured that 

comparisons among and between modelling scenarios were manageable, and 

that all results could be directly comparable with Chapter 5 since the datasets 

used were of the same seed. 

The mean inferred values of Sehat, Sphat and Phat were plotted over five 

conditions, generating 15 mean-variance relationships for study shown in Figure 

6-1 to Figure 6-5. These conditions were: 

1. Uniform priors (control). 
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2. Precise priors and constrained parameter space. 

3. Imprecise priors and constrained parameter space. 

4. Precise priors and unconstrained parameter space. 

5. Imprecise priors and unconstrained parameter space. 

Mean-variance relationships of the mean posterior inferences were plotted—

rather than the error of mean posterior inferences calculated as per Equation 

16—to indicate the variance of parameter predictions rather than of error 

predictions. Note, the mean-variance relationship of the global statistic was not 

studied. The geom_smooth function of the ggplot2 package (Wickham, 2014) 

was used to provide a trend line through the point data, where each point 

represents a single posterior inference. 

How much distortion does the mean-variance relationship cause at 

edges? 

To explore the distortion that mean-variance relationships present across 

parameter space, it is necessary to identify whether transformations of error can 

address this distortion, to correctly specify and interpret LMM’s accordingly, and 

to be able to robustly check for the homogeneity of error across parameter 

space.  

Specifying the logit (i.e. log-odds) transformation of error 

So far, changes in error with respect to position in parameter space have only 

been examined in “absolute terms”, i.e. using comparisons of differences. In 

contrast, examining logit-transformed errors (Equation 20) across parameter 

space shows relative changes, and this has two purposes. 

1. To distinguish between edge effects and non-edge effects. 
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2. To investigate whether a logit-transformation of error removes edge 

effects by accounting for the heteroscedasticity in models where data 

can’t be represented on the probability scale. 

When the errors of Sehat, Sphat and Phat are transformed by the log-odds 

(Equation 20 and Equation 21), it is hypothesised (Hypothesis 5) that the 

variance of error is flattened across parameter space, leaving behind the edge 

effects, potentially removing and therefore explaining the edge effects. 

HYPOTHESIS 5: Edge effects can be removed from analyses by transforming 

errors using the logit link function. 

Logit-transformed errors across parameter space are not directly interpretable 

beyond this high-level trend, and further transformations to try and counter 

this—such as absolute logit-transformed errors, and inverse logit absolute logit-

transformed errors—suffer from similar interpretability issues. It is assumed that 

symmetrical errors on the logit scale become asymmetric on the probability 

scale unless values of P = 0.5. 

Equation 20 

𝐿𝑜𝑔𝑖𝑡 𝑒𝑟𝑟𝑜𝑟 =  𝑙𝑜𝑔 (
𝑦̂

1 − 𝑦̂
) − 𝑙𝑜𝑔 (

𝑦

1 − 𝑦
) 

Equation 21 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑙𝑜𝑔𝑖𝑡 𝑒𝑟𝑟𝑜𝑟 = |𝑙𝑜𝑔 (
𝑦̂

1 − 𝑦̂
) − 𝑙𝑜𝑔 (

𝑦

1 − 𝑦
)| 

Coding the linear mixed effects models 

As Hayes and Cai, 2007 write, “linear regression is a foundation upon which 

more complex models can be constructed.” The direction and magnitude of 

relationships between logit-transformed errors and predictor variables (those 
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considered are listed in Table 5-3) were analysed using LMM’s. 16 LMM’s were 

specified (Table 10-14) using the pseudocode as follows:  

value ~ prior.precision + constraint + n.samples + n.tests * 

extreme + prior.distribution + (1 | p.truth) + (1 | 

se.truth) + (1 | sp.truth), 

where the regression coefficients remain as defined within Chapter 5 (Table 

5-3), with the following three changes. 

1. The variable “value” can be any metric of accuracy for four 

parameters—global metric, Sehat, Sphat and Phat—with four variations: 

absolute and logit-transformed; not absolute and logit-transformed; not 

absolute and not logit-transformed; and absolute and not logit-

transformed. These four variations are referred to in accordance with the 

terms shown in Table 6-1. Note, the fixed effects are not changed. 

2. The random effects are kept constant between LMM’s and remain 

crossed, i.e. non-hierarchical in models that contain parameter-specific 

responses, as the relationship between Se, Sp and P is intrinsic to the 

BLCM.  

3. Data is the filtered data frame initialised by the special.melt and or 

the special.melt2 functions first described in Chapter 5. For this 

chapter data is filtered by normally distributed data only. 

Table 6-1: The four transformations of “error” analysed within Chapter 6. 

 No logit 

transformation 

Logit 

transformation 

applied 
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No absolute 

transformation 

Bias (Equation 

17) 

Logit error 

(Equation 20) 

Absolute 

transformation 

applied 

Error (Equation 

16) 

Absolute logit 

error (Equation 

21) 

 

Checking the homogeneity of the variances of errors across parameter 

space 

Standard plots (Crawley, 2012) of the fitted values, i.e. the predicted values of 

the LMM, versus the residual values, i.e. the difference between the predicted 

and actual values of the dependent variable, were created. The dependent 

variables are the measures of error, bias and standard deviation associated 

with the posterior inferences of a BLCM. 

Standard “fitted versus residual” plots were created to assess the homogeneity 

of the LMMs for three reasons. 

1. To ensure that the spread of residual variance is normally distributed. 

2. To ensure that the mean of the residuals is constant across space. 

3. To ensure that the fitted values for each regression analysis are 

associated with known errors. 

Accordingly, fitted versus residual plots are used in this thesis to examine where 

the biases of Sehat, Sphat and Phat may be overestimated or underestimated 

by the LMM.  

The following assumptions were applied when conducting the residuals 

analysis: 
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1. The difference between the fitted and true values can be used to quantify 

the power of the inferences obtained from a BLCM.  

2. In a “good” LMM, residuals will randomly deviate from zero in a 

symmetric way and be close to zero to demonstrate low variability.  

3. By plotting the residual versus fitted values, models can be visually 

examined for heteroscedasticity. 

For all modelling conditions, the residuals versus the fitted values of all LMM’s 

were extracted from the model output using the lme4 package (Bates et al., 

2015), and were colour-coded according to the following two rules, which 

provide the plots with differing information. 

RULE 1: Colouring residuals if they are associated with an edge of parameter 

space, where Se > 0.9 and Se < 0.1 and Sp > 0.9 and P < 0.1. 

RULE 2: Colouring residuals based on their position in parameter space, where 

“upper” = (Se > 0.9 and Sp > 0.9); “lower” = (Se < 0.1 and P < 0.1); and 

“middle” = all other space. 

The reformat and run_model functions specified within the online code 

repository (https://github.com/annabush/PhD) were constructed to enable 

plotting.  

Results 

Findings are reported in three sections. First the mean-variance relationships of 

Sehat, Sphat and Phat are described (see Figure 6-1 to Figure 6-5); second, 

regressions using logit-transformed Sehat, Sphat and Phat are reported (Table 

10-14), and third findings, from the fitted versus residuals plots are presented 
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(only select plots are reproduced in this section, for all plots see 

https://github.com/annabush/PhD). 

The mean-variance relationships of Sehat, Sphat and Phat  

The “control” modelling condition, Figure 6-1. 

When the mean-variance relationships of Sehat, Sphat and Phat were 

generated from uniform priors, new statistical artefacts were generated. The 

variance of Sehat and Sphat peaked twice at mean values of ~0.3 and ~0.6, 

and the mean-variance relationship of Phat was found to be highly skewed, 

where models with mean values of Phat between ~0.3 and ~0.6 exhibited a 

negative binomial correlation with the variance of Phat.  

In precise and constrained modelling conditions, Figure 6-2.  

The variance of Phat peaked between mean values of Phat of 0.3 and 0.4, and 

significantly dropped towards 0 when mean Phat became less than 0.2, or more 

than 0.4. The average variance of Phat was twice that of Sehat and Sphat 

under the same (precise and constrained) modelling conditions. 

The variance of Sphat was found to be highly dependent on the number of 

diagnostic tests and increased as mean Sphat increased. The variance of Sphat 

was smaller than Sehat or Phat by one order of magnitude. The variance of 

Sehat decreased at mean values of Sehat of less than 0.1 and at mean values 

of Sehat of more than 0.9, whereas the variance of Sphat decreased as mean 

Sphat increased. This latter finding is true for all mean-variance relationships 

that were based on data from models given informative priors. 
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In precise and unconstrained modelling conditions, Figure 6-3.  

The variance of mean Phat is greater than mean Sehat or mean Sphat, 

however (unlike when the constrained modelling condition was used) the 

variance of mean Phat does not drop towards 0 at mean values of 0.5: as mean 

Phat increases the variance increases. 

The mean-variance relationship of Sehat and Sphat in precise and 

unconstrained modelling conditions is similar to the mean-variance relationship 

given precise and constrained modelling conditions. 

In imprecise and constrained modelling conditions, Figure 6-4.  

The variance of mean Phat peaks between 0.2 and 0.3 and drops rapidly 

towards 0 at 0.3. The variance of mean Sehat and Sphat is generally greater by 

one order of magnitude than in precise and constrained modelling conditions. 

Values of mean Sehat are associated with the most variance, compared to 

mean Sphat or mean Phat, and this is also true when the precise and 

constrained modelling condition is used. 

In imprecise and unconstrained modelling conditions, Figure 6-5.  

In this modelling scenario the mean-variance relationships of Sehat, Sphat and 

Phat were skewed by outliers, and values of mean Sphat are associated with 

the greatest variances. As reported for the precise and unconstrained modelling 

condition, the variance of mean Phat does not drop towards 0.5. 
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Figure 6-1: The relationship between the mean (m.variable) and variance (sd.variable) of the posterior inferences of the 

replicated posterior means of P (top left), Se (top right) and Sp (bottom left) given data from a BLCM informed with uniform 

priors.  



 

231 

 

Figure 6-2: The relationship between the mean (m.variable) and variance (sd.variable) of the posterior inferences of P 

(top left), Se (top right) and Sp (bottom left) given data from a BLCM informed with precise priors and constrained truths. 
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Figure 6-3: The relationship between the mean (m.variable) and variance (sd.variable) of the posterior inferences of P 

(top left), Se (top right) and Sp (bottom left) given data from a BLCM informed with precise priors and unconstrained truths. 
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Figure 6-4: The relationship between the mean (m.variable) and variance (sd.variable) of the posterior inferences of P 

(top left), Se (top right) and Sp (bottom left) given data from a BLCM informed with imprecise priors and constrained truths. 



 

234 

 

Figure 6-5: The relationship between the mean (m.variable) and variance (sd.variable) of the posterior inferences of P 

(top left), Se (top right) and Sp (bottom left) given data from a BLCM informed with imprecise priors and unconstrained truths.
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Regressions using logit-transformed errors.  

The LMM’s referred to in this section are summarised in Table 10-14. General 

findings (a) to (f) are identified and discussed. 

(a) Not absolute error values appear unreliable. 

Three key observations have informed this finding: 

1. In models that do not use absolute error values, increases in sample size 

also result in an increase in global errors and in the errors of Sehat, 

Sphat and Phat (LMM 1a-d, 2a-d).  

2. The trend where error decreases as the number of diagnostic tests 

increase—termed the “n.tests trend” for brevity—is not always apparent 

in regressions when error is not absolute. For example, when prior 

precision is imprecise, the error of Sehat increases as the number of 

diagnostic tests increases (LMM2c), and this association is stronger by 

one order of magnitude than when priors are uniform (LMM3c). 

3. When errors are absolute, and prior information is normally distributed, 

the association between the response variable, and the resulting 

interaction between the number of diagnostic tests and extreme 

parameter space is always negative in direction; yet when errors are not 

absolute, the relationship is either positive or negative with no clear 

pattern. 

(b) Applying the logit function influences how error is interpreted in 

extreme parameter space. 

In every LMM that uses absolute values (LMM 1e, f, g, h, 2, 32, 26, 29) error 

decreases as the number of diagnostic tests increases. However, logit 

transformations of the errors of Phat appear to have positive relationships with 
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extreme parameter space, and breakdowns in the n.tests trend are apparent in 

this space. 

(c) Logit-transformed errors possess complicated dependencies with 

constraint and informative priors. 

Examples of these complicated relationships include the positive relationship 

between the logit-transformed global error and the logit-transformed errors of 

Phat and constraint (LMM1a and 1b), and the positive relationship between the 

similarly transformed errors of Sehat and Sphat with prior precision (LMM1c and 

1d). Although it may be possible to avoid these associations by altering how 

prior information is given to model, logit-transformed errors are not 

straightforward to interpret in this “latent space”—i.e., a multi-dimensional space 

containing transformed parameter values that cannot be directly interpreted, but 

that encodes a meaningful representation of a parameter space (Hoff, Raftery & 

Handcock, 2002). Consequently, it is not recommended that ecologists explore 

latent spaces to remove edge effects, as they are not readily interpretable. 

(d) The n.tests trend is dependent on whether the inferred parameter value 

is in extreme space. 

The n.tests trend breaks down with the presumed difficulty in sampling and or 

inferring extreme volumes of parameter space. Although the n.tests trend has 

already been established (Goodman, 1974) and discussed in previous chapters, 

this present chapter shows that this dependency is affected by extreme 

parameter space, and is not directly influenced by the logit-transformation of 

error (LMM’s 1a-h, 2a-h 3a-h). The n.tests trend is found to weaken at the 

edges of parameter space: for example, regression analyses which detect the 

n.tests trend also show that Phat increases in error when its values are 
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associated with extreme volumes of parameter space (e.g. LMM32, LMM1b; 

LMM1f).  

(e) Relying on global errors can lead to incorrect conclusions about 

extreme parameter space. 

The direction of association between the number of diagnostic tests available 

and extreme parameter space is chiefly influenced by parameter-specific errors. 

For example, the direction of association between the number of diagnostic 

tests and extreme parameter space is not the same between Phat, and Sehat 

and Sphat, when logit errors are used. Utilising global errors removes these 

important directions of association. 

(f) Error increases as the number of diagnostic tests available increase 

when uniform priors are used, trumping the need to consider edges. 

In general, this statement (statement f) is true when: 

1. Global errors are absolute (LMM20). 

2. The errors of Sehat are absolute (LMM3g). 

3. Global errors and the errors of Sehat and Sphat are not absolute, but 

logit-transformed (LMM 2c, 3a, 3c, 3d). 

Fitted versus residuals 

In total, fitted versus residual plots were constructed for each parameter Sehat, 

Sphat, Phat and global error, for each transformation of error described in Table 

6-1, and for Rule 1 and Rule 2. For illustrative purposes, all fitted versus 

residual plots for the not absolute and not logit-transformed errors can be found 

in Figure 6-6 and Figure 6-8 (where the Rule 1 method is applied) and Figure 

6-7 and Figure 6-9 (where the Rule 2 method is applied). All remaining fitted 
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versus residual plots can be found on GitHub at 

https://github.com/annabush/PhD. 

The fitted versus residual plots show that the mean of the residuals generally 

remains constant, confirming that the key artefact is the distribution of variance. 

In general, when error values are absolute, heteroscedasticity is inevitable, and 

the logit transformation has limited impact on this observable non-constant 

variance. This suggests that the rules of LMM’s are violated when error is 

absolute, however it is reasonable to conclude that the LMM’s in this thesis that 

employ absolute error are still reliable for the following reasons: 

1. Most real-world data is heteroscedastic, and the goal of thesis is to 

validate BLCMs for use in the real-world. 

2. The sample size is large enough to ensure that the regression fit is 

precise enough. 

3. There was no assumption that errors remain constant across 

parameter space. 

4. Unbiased estimates for the relationship between the predictor and 

response are still provided, as only relative relationships are 

examined, and no frequentist tests of significance are relied upon to 

produce these estimates. 

It appears that the logit transformation of error deals with a proportion of the 

variance that makes analyses on the probability scale hard to trust, i.e. it 

provides a degree of normalisation. Consequently, it is believed that the logit 

transformation improves homogeneity of variance to some extent. For 

example:  
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1. When error is absolute, the logit transformation helps visually 

distinguish between values on edges, and those that are not on 

edges. For example, see Figure 6-8 and in Figure 6-9. 

2. The logit transformation also helps visually discern differing patterns 

of variance between the errors of Sehat, Sphat and Phat.  

3. The logit transformation removes positive relationship between fitted 

and residual values that exists for mean global and Phat errors when 

this transformation is not applied.  

4. The logit transformation removes the peculiar, clustered relationships 

between fitted and residual values that exists when the errors of 

Sehat and Sphat are response variables in non-logit situations. 

However, relying on the global statistic also removes need to 

consider clustering.  
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Figure 6-6: The fitted versus residual values for P (top left), Se (top right), the 

global statistic (bottom left) and Sp (bottom right) when error is not absolute 

and not logit-transformed, drawn using Rule 1, where TRUE and FALSE 

indicate whether the data point sits near the “edge” of parameter space. 
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Figure 6-7: The fitted versus residual values for P (top left), Se (top right), the global 

statistic (bottom left) and Sp (bottom right) when error is not absolute and not logit-

transformed, drawn using Rule 2, where “upper” = (Se > 0.9 and Sp > 0.9); “lower” = 

(Se < 0.1 and P < 0.1); and “middle” = all other space. 

 



 

242 

  

Figure 6-8: The fitted versus residual values for P (top left), Se (top right), the global 

statistic (bottom left) and Sp (bottom right) when error is absolute and logit-

transformed, drawn using Rule 1, where TRUE and FALSE indicate whether the 

data point sits near the “edge” of parameter space. 
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Figure 6-9: The fitted versus residual values for P (top left), Se (top right), the 

global statistic (bottom left) and Sp (bottom right) when error is absolute and 

logit-transformed, drawn using Rule 2, where “upper” = (Se > 0.9 and Sp > 0.9); 

“lower” = (Se < 0.1 and P < 0.1); and “middle” = all other space. 
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Analyses of hypotheses 1 to 5. 

Each of the five hypotheses outlined above is now discussed in turn, in 

the context of these results. 

HYPOTHESIS 1: Inferences are associated with more error as truths approach 

the edges of parameter space, and prior information affects this relationship. 

The results show that the relationship between error and the number of 

diagnostic tests available is dependent on both extreme parameter space and 

an interaction effect between the number of diagnostic tests available and 

extreme parameter space. These dependencies are not constant between 

modelling scenarios, including those that have varied prior information, and are 

parameter-specific. For example, the relationship between the errors of Phat 

and the number of diagnostic tests is opposite to the relationship between the 

errors of Phat and the interaction effect between the number of diagnostic tests 

available and extreme parameter space, suggesting identifiability issues in 

extreme parameter space which result in the collapse of the n.tests trend. 

Notwithstanding the above, prior information in general is found to affect the 

relationship between edges and the n.tests trend. For example, when prior 

information is removed, the n.tests trend reverses, suggesting the collapse of 

the n.tests trend in non-identifiable situations, but also that given enough prior 

information edge effects may be identifiable. 

HYPOTHESIS 2: Edge effects represent a reduction in model power.  

When models are uninformed, the need to address edge effects seems to be 

overridden by the need to address more systemic identifiability issues. When 

prior information is provided, the variance of errors appears parameter-specific. 
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For example, when models are informed by precise rather than imprecise 

priors, the errors of Phat exhibit the most variance whereas when models are 

constrained, rather than unconstrained, the errors of Sehat and Sphat exhibit 

the most variance. It is suggested that a lack of prior information contributes to 

the presence of edge effects.    

HYPOTHESIS 3: The variance of the error of Sehat, Sphat and Phat across 

parameter creates edge effects. 

The mean-variance relationships of the errors of Sehat, Sphat and Phat do not 

exhibit a constant variance at the edges of parameter space. And although the 

definition of an edge used in this thesis captures the most pronounced of the 

non-constant variance, the relationships plotted suggest that edge effects are 

larger when less information is provided.  

HYPOTHESIS 4: Both model constraints, and whether the errors of the inferred 

values are absolute or not, influence the homogeneity of variance across 

parameter space. 

It is found that decisions on whether models should be informed by constraint or 

prior precision, and whether the resulting inferred parameters should be 

interpreted using the various transformations described in Table 6-1, are not 

straightforward and do not follow consistent rules. This is because it is 

suspected that the variance in error is affected by dependencies—such as 

between the n.tests trend and extreme parameter space; and how differently 

Sehat, Sphat and Phat react to prior precision and or constraint—in complex 

ways. Moreover, when conducting regression analyses there is a well-cited risk 

that linking predictors to response via a function—in this case via the logit and 
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absolute transformations—can easily result in complications (Bolker et al., 

2009; Harrison et al., 2018) 

HYPOTHESIS 5: Edge effects can be removed from analyses by transforming 

errors using the logit link function. 

Logit-transformed errors offered these analyses some improvements in the 

homogeneity of variance, but it did not eliminate heteroscedasticity. Despite 

this, the LMM’s used are still trusted not least because frequentist metrics such 

as p-values and 95% confidence intervals are not analysed or reported on 

(Cleasby and Nakagawa, 2011). And since the underlying mechanisms 

contributing to the observed heteroscedasticity were unclear, no further 

manipulations—such as investigating heteroskedasticity-consistent standard 

errors—were carried out. Despite these limitations, the linear regressions 

presented remain useful for understanding the relationships between error and 

predictors, with the caution that dependencies are difficult to interpret when 

logit-transformed. 

Discussion 

Twenty years ago, it was purported that “biological studies, even experimental 

ones, will often only explain a very small amount of variance” (Møller and 

Jennions, 2002) and that “ecologists using statistical models are explaining 

roughly half of the variability in dependent variables in their studies” (Peek et al., 

2003). To-date, the need to better understand different types and reasons for 

variance in ecological models still remains (Mitchell, Beckmann and Biro, 2021), 

and there is a widely-shared view in ecology that “a major unsolved problem in 

ecology is resolving the relative importance between different types and scales 

of variability to ecological processes” (Holyoak and Wetzel, 2020). Accordingly, 
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this chapter has attempted to contribute to the understanding of variance in 

Sehat, Sphat and Phat across parameter space.  

The experiments presented here examine the shape of the mean-variance 

relationships belonging to Phat, Sehat and Sphat, as well as the direction and 

magnitude of the predictors for these values. The conclusion is that at edges, 

ecologists should consider the errors belonging to the inferences of Phat, Sehat 

and Sphat separately; cautioning that while the analyses on global error 

reported on within Chapter 5 remain relevant, the global statistic is not to be 

used in extreme parameter space. Furthermore, the evidence presented here 

also suggests how the absolute and logit-transformed errors of Sehat, Sphat 

and Phat behave as modelling conditions vary, concluding that these 

transformations do not resolve issues of heteroscedasticity (for detailed figures 

see https://github.com/annabush/PhD).  

By looking at the inferences of Sehat, Sphat and Phat separately, it has been 

demonstrated that edge effects are relevant statistic artefacts for ecologists to 

consider in their analyses. The shape of the mean-variance relationships 

belonging to Sehat, Sphat and Phat all exhibit some degree of 

heteroscedasticity, and were found to be highly distinctive given any form of 

prior information. It has been shown that the mean-variance relationship of 

Sehat is only heteroscedastic at edges; the mean-variance relationship of Phat 

is positively correlated and clustered by the number of diagnostic tests; and the 

mean-variance relationship of Sphat values are negatively correlated. These 

relationships indicate that extreme values of Sehat may suffer from non-

standard error structures; that precise inferences of Phat are dependent upon 

the number of diagnostic tests available; and that as the mean of the value of 

Sphat increases, the inference of Sphat tends to become more precise. 
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Yet the size of the edge effects relating to inferences of Sehat, Sphat and Phat 

is dependent on the amount of prior information provided. With less information, 

inferences of Phat suffer the most variance compared to inferences of Sehat 

and or Sphat—and in precise scenarios, this effect size is several orders of 

magnitude—providing solid evidence that compared to Sehat and Sphat, Phat 

is the most difficult parameter to infer accurately particularly since inferences of 

Phat in extreme parameter space are most affected by constraint. Moreover, 

discovering that the shape of the mean-variance relationship is heavily biased, 

including by outliers, when none to very little prior information is provided 

supports the theory that heteroscedasticity is very context specific, and 

dependent on random effects (Schielzeth et al 2020). 

The dependency between edge effects and prior information, however, sits in 

agreement with the findings presented in Chapter 5, namely that when errors of 

Phat are small, they are not associated with edge effects; that errors of Sehat 

are associated with edge effects when prior precision is precise but not when 

constraint is applied; and that the errors of Sphat are most affected by edge 

effects when the values of both Se and Sp are comparatively high, i.e. close to 

the value of one. 

Broadly, the experiments presented have shown that analysing the magnitude 

and direction of the dependencies on error using regressions is crucial. And, 

that the logit transformation reduces some of the heteroscedasticity associated 

with the regressions that model responses on absolute error, but that logit-

transformed errors create difficult to decipher interactions, particularly between 

prior information and error. For instance, it was found that the effect of extreme 

parameter space on the errors of Sehat, Sphat and Phat, and the interaction 
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effect between extreme parameter space and the number of diagnostic tests 

available, was affected by the logit transformation in complex ways.  

Importantly, in studies that seek more accurate inference at the upper edges of 

parameter space, improving the number of diagnostic tests is particularly 

important. Three key findings support this suggestion and are essential 

takeaways from this chapter. First, the examinations of not absolute errors 

found that the n.tests trend—which this thesis assumes to be a proxy for model 

identifiability—disappears. Second, the examinations of absolute errors found 

that the n.tests trend conflicted with extreme volumes of parameter space, and 

that the errors of Phat are particularly influenced by this conflict. Finally, when 

there is no prior information, the n.tests trend reverses and overrides the 

importance of considering edge effects to achieve model identifiability.  

Overall, ecologists often rely on mechanistic models to justify their findings, and 

rely on ecological justifications (Lindén and Mäntyniemi, 2011) to justify their 

model specifications. In contrast, this chapter uses LMM’s as a mechanistic way 

to understand a dataset of errors across space, yet the justifications for the 

findings, and model specifications are largely statistical in nature.  

Conclusion 

So, what are the interactions between edge effects, BLCM identifiability, and the 

mean and variance of error? This chapter tested the assumption that extreme 

volumes of parameter space present identifiability issues using 5 hypotheses 

developed from the findings presented in Chapter 5. The resulting experiments 

investigated whether mean-variance artefacts exist across parameter space 

and examined the error structures at the edges of parameter space. 

Importantly, it was found that the shape of the mean-variance relationships of 
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the errors of Sehat, Sphat and Phat were each uniquely identifiable, but that the 

heteroscedasticity present was highly dependent upon modelling conditions, 

and random effects, and interpretability could not be substantially improved 

using transformations of error. It was found that identifiability issues were 

usually indicated by the absence of the n.tests trend, and that it difficult to 

interpret parameter space often occurs in extreme volumes of parameter space. 

Overall, the findings presented contribute to the understanding of variance in 

the errors of Sehat, Sphat and Phat across parameter space, and emphasise 

that patterns in these errors should not be neglected. 

Where next? So far in this thesis, parameter space has been constrained by 

only allowing the true values of P and Sp to take certain values. This means 

that parameter spaces where Sp is less than 0.5, and where P is greater than 

0.5 have not been examined in the experiments so far. Chapter 7 goes on to 

explore whether the findings of Chapters 4, 5 and 6 still hold when truths are 

simulated across unconstrained parameter space. 
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Chapter 7 

7. Generalisability across parameter space 

Introduction 

In Chapters 4, 5 and 6, model validation exercises were demonstrated with—

among other things—the aim of achieving “better” inferences of P using BLCMs. 

These model validation methods examined existing model fits based on the 

data available. In contrast to a model validation, a sensitivity analysis looks at 

the robustness of a model’s results given new information, or changes to its 

assumptions; and is accordingly the focus of Chapter 7. 

Consider the four types of experimental design portrayed in Figure 7-1. 

Chapters 5 and 6 of this thesis have so far explored options C and D of those 

four options under the overarching assumption that the parameter space (as 

defined within the model) should be constrained to values between 0.5 (Sp1) 

x 0.5 (P) x 1 (Se1) (see Table 10-2). And yet it is possible that in some 

instances, these restrictions may not be sufficient to allow the MCMC algorithm 

to yield enough solutions from the parameter space available, particularly if the 

cut-off for positive test results is disputed (Akobeng, 2007; Habibzadeh, 

Habibzadeh and Yadollahie, 2016), or if most of a population are infected.  

This chapter goes on to test the performance of stochastic BLCMs under option 

A (Figure 7-1) when the assumption of a constrained parameter space is 

removed, meaning that true values are located within a much larger volume of 

parameter space. 
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Figure 7-1 The relationship between the prior constraint applied (blue) and the 

true values that may be selected (red). For example, in this thesis an 

unconstrained three-dimensional parameter space has a volume of 1 x 1 x 

1, and a constrained parameter three-dimensional parameter space has a 

volume of 0.5 x 1 x 0.5.  

In Figure 7-1, the red lines show the volume of parameter space available as a 

proportion of the space where the model is informed to search for a correct 

inference (blue lines). Following this logic, the smaller circles are one quarter of 

the size of the large circles. In Chapters 5 and 6, hypotheses were investigated 

using partial parameter space, thus, options C and D were the experimental 

designs considered. In the present chapter, option A is investigated, and so a 

sensitivity analysis is conducted across global parameter space. Option B is not 

a model setup worth investigating because the truth may lie outside of the given 

prior distributions. 
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Why generalise? 

In ecology, model identifiability is generally considered in terms of unique sets 

of parameter values that have been calibrated to maximise the likelihood of a 

model under certain assumptions. But for models generated within a stochastic 

framework, not defining the “generality” of the findings (Spake et al., 2022) can 

be a dangerous practice, as partial observations often result in misleading 

likelihoods (Vernon et al., 2018; Stocks, Britton and Höhle, 2021). 

To generalise their findings, ecologists are often familiar with conducting “local” 

sensitivity analyses by varying one parameter and or value at a time 

(Naujokaitis-Lewis et al., 2009; Olsen et al., 2022) while others are fixed (Xu et 

al., 2004), as shown in Validation Example A of this thesis in Chapter 4. 

However, in studies across high-dimensional space, confidence in BLCM 

specifications and assumptions should be generalisable across the wide range 

of possible truths that may be encountered in nature; and to achieve this, Global 

Sensitivity Analyses are required. Accordingly, the Global Sensitivity Analysis 

presented in this chapter is highly relevant for ecologists wanting to determine 

whether their simulation models are sufficiently robust to new information, or to 

changes in model assumptions.  

Prior to using BLCMs on diseased populations of wildlife, it is therefore 

essential to subject the model to a Global Sensitivity Analysis (Wagner, 1995), 

which tests parameters across the full range of “total predictive uncertainty” 

(Cariboni et al., 2007), i.e. new information, or changes in model assumptions. 

However, it has been noted that “the widespread application of GSA [Global 

Sensitivity Analyses] in ecological models has been hindered because the 

model output can be unwieldy and methods of analyzing these data can be 

computationally intensive.” (Harper, Stella and Fremier, 2011) The term 
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“generalisability” is itself loosely defined in ecology (Spake et al 2022); and in 

this thesis is used synonymously with the term Global Sensitivity Analysis. 

As described in Figure 7-1, so far in this thesis, only one quarter of the possible 

three-dimensional parameter space of Se, Sp and P have been examined due 

to the constraint—of Sp to values greater than 0.5 and of P values to less than 

0.5—within each model. And in general, accepted practice among ecologists is 

that for most diseases, the constraint of truths avoids misclassifying more of the 

largest group, infected or uninfected, whichever that may be (Rydevik, Innocent 

and McKendrick, 2018). 

Consequently, this thesis has not yet reported on how the Any-Test, Any-

Population model will perform in “any” testing scenario and cannot determine 

whether the BLCM is robust until the error structure of an up to 11-dimensional 

parameter space has been examined. Furthermore, understanding uncertainty 

in the 3/4 of remaining parameter space is likely to be important for ecologists 

who wish to study diseases with high values of P—i.e., P values above 0.5—

that threaten extinctions, such as DFTD (McCallum et al., 2009). This is 

because the diagnostic test array will be dominated by true positives and false 

negatives, with fewer true negatives and false positives, forcing a higher 

estimate of Se and a lower estimate of Sp (Helman et al., 2020). Consequently, 

it is necessary for this chapter to explore if the methodology demonstrated up to 

this point can be applied more broadly to the wide spectrum of wildlife diseases 

that exist in the wild. 

Global Sensitivity Analyses of BLCMs 

As ecologists, if the disease systems that we observe in ecology are only a 

subset of those that could possibly exist, our models must be practical, but 
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suitably flexible to deal with the diversity of testing scenarios that may be 

encountered. So far in the research underpinning this thesis, constraining the 

model using reasonable assumptions freed enough of the available 

computational capacity to allow the MCMC to complete the required number of 

iterations in order to ensure convergence. 

This chapter now questions the assumptions behind the constrained parameter 

space used, by asking the higher-level question “when is it valid to fix and/or 

constrain truths?”. To do this, two experiments are reported on as follows: 

EXPERIMENT 1: where constrained parameter space—i.e., Sp values greater 

than 0.5 and P values less than 0.5—is modelled using “new” truths. The 

purpose of this experiment is to evaluate the extent to which the findings 

reported in Chapter 4 to Chapter 6 are specific to the “original” truths, or 

generalisable given “new” truths. 

EXPERIMENT 2: where unconstrained parameter space is explored by allowing 

the model to search for values of Se, Sp and P between the limits of 0 and 1 

and using the same true values as assigned in Chapters 5 to 7.  

So, what exactly do these two experiments test? 

Experiment 1 tests the bias introduced by deciding the values of truths by 

searching a very different 3D “slice” of up to 11-dimensional constrained 

parameter space. And Experiment 2 tests how our conclusions on parameter 

uncertainty are affected by searching global parameter space, i.e. a fully 

unconstrained parameter space, where a truth may be any value on the 

probability scale. 

Similarly, what are the specific questions examined? 
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1. How much influence do the fixed truths for tests two to five have on the 

error, bias, and standard deviation of Sehat, Sphat and Phat?  

2. How does the error, bias and standard deviation of Sehat, Sphat and 

Phat change when values of Sp can be less than 0.5, and values of P be 

greater than 0.5?   

Methods 

Hypothetical modelling scenario 

Experiment 1 tests a constrained BLCM under new truths (simulated dataset 

4,Table 10-1), and Experiment 2 tests an unconstrained BLCM under the same 

truths (simulated dataset 5, Table 10-1) as deployed in Chapters 5 and 6. In 

Experiment 1, the new fixed truths for tests two to five were set to Se2 = 

0.33, Se3 = 0.68, Se4 = 0.44, Se5 = 0.43, Sp2 = 0.94, Sp3 = 

0.56, Sp4 = 0.80, and Sp5 = 0.87. For Experiment 2, the truths for tests 

two to five are the same as Chapters 5 and 6, and Se1, Sp1 and P were set to 

randomly selected values between 0 and 1. Simulated datasets 4 and 5 record 

how the model performs using normal and uniform priors, and the resulting 

dimensions of datasets 4 and 5 can be found in Table 10-1.  

The intensive computational effort workload to generate the 720,000 

observations (Table 10-1) across unconstrained high-dimensional parameter 

space for Experiment 2 was mitigated by running the required simulations over 

20 cores on each of two servers of Exeter University’s High Performance 

Computer at the same time. 
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Experiment 1  

How much influence do the fixed truths for tests two to five have on the error, 

bias, and standard deviation of Sehat, Sphat and Phat? 

For experiment 1, 4 × 18 heatmaps were plotted to demonstrate how statistics 

describing the global and parameter-specific values for error (Equation 16), 

bias, (Equation 17) and standard deviation respond to changes in four 

modelling conditions—constraint, prior precision, sample size, and the number 

of diagnostic tests available—with levels as previously defined (Table 5-1). 

So far in this thesis, the research into the effect of sample size on error, bias, 

and the metric for precision has been limited, but it remains in the study design 

because Chapter 5 found that sample size has impacts on the variance of error 

and given that the availability of sample data from real-world wildlife disease 

studies is limited, any findings that could expand on this would be both relevant 

and informative. 

It was suspected that changing the fixed truths for tests two to five to different 

values will disrupt the generalisations made across constrained parameter 

space in Chapter 6.  

Experiment 2 

How does the error, bias, and standard deviation of Sehat, Sphat and Phat 

change when values of Sp can be less than 0.5, and values of P be greater 

than 0.5? 

For experiment 2, 4 × 12 heatmaps were plotted to demonstrate how the 

statistics describing the global metric, error (Equation 16), bias (Equation 17), 

and standard deviation change across parameter space given three modelling 



 

259 

conditions: prior precision, sample size and the number of diagnostic tests 

available, with levels as described in Table 5-1. 

It is suspected that the bias of the global statistic will not be consistently 

overestimated or underestimated across global parameter space; that edge 

effects will remain across global parameter space; that the value of P as well as 

the number of diagnostic tests available dictates the error, bias, and standard 

deviation of the inferred values. This chapter reports on the hypothesis posed in 

terms of these four predictions. 

Plotting 

Heatmaps were scaled and plotted using the same methodology as described 

in Chapter 5 to provide a consistency across analyses. The full directory of 72 

heatmaps used to generate the findings of this chapter can be found on GitHub 

(https://github.com/annabush/PhD). 

Results 

Note, values described as “high” or “low” are indicatory of their exact position in 

parameter space. A low value indicates a position closer to 0, and a high value 

indicates a position closer to 1. 

How much influence do the fixed truths for tests two to five have? 

The following results were obtained from analysing the 72 heatmaps generated; 

the following text summarises the high-level findings. 

It was hypothesised that changing the true values of tests two to five would 

change the errors of Sehat and Sphat, and therefore contradict the 

generalisations stated earlier in this thesis regarding the original set of true 

values. Yet the findings from Experiment 1 support those reported and 
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discussed in Chapter 6, with no contradictions so far discovered. For example, 

see Figure 7-2, which shows the bias of Phat given the original fixed truths for 

tests two to five compared to Figure 7-3, which shows the bias of Phat given the 

new fixed truths of Experiment 1.  

Experiment 1 provided the following high-level findings: 

1. The value of P dictated how constraint affected inferences regarding the 

global statistic, and the errors of Phat, in complex but structured ways. In 

addition, the value of P also affected the size of the errors of Sehat and 

Sphat. For example, when the values of P were low, the errors of Sehat 

and Sphat were high. These findings support research by Berkvens et 

al., 2006 suggesting that the only way to infer P is by introducing external 

knowledge through constraint. 

2. Overall, constraint did not significantly decrease the errors of Sehat, 

Sphat and Phat in comparison to the provision of informative priors. 

However, when priors are uniform, constraint appears important to 

achieving accurate inferences regarding global errors. These findings are 

supported by Chapter 6, which reports that prior precision is the best way 

to quickly improve accuracy of inferences in normal models, and that 

constraint is the best way to quickly improve accuracy of inferences in 

uniform models.  

3. For global inferences, when priors are normally distributed, Phat is 

consistently overestimated when values of P are close to 0.5, and 

consistently underestimated when values of P are close to 0; and this 

finding is consistent across modelling conditions. This finding is 

consistent with the finding in Chapter 6 that the biases in the inferences 
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of global error is largely independent of experimental conditions—and 

significantly, dependent on P. 

4. Global standard deviation is dependent on the number of diagnostic tests 

and sample size, though the standard deviations of Sphat, Phat, and 

particularly Sehat are dependent on the number of diagnostic tests only 

(see Figure 7-4 and Figure 7-5). This finding was also corroborated by 

Chapter 6 where it was discovered that increasing the number of 

diagnostic tests available to the model was the best way of improving the 

precision of Sehat, Sphat and Phat for the 15% scenario described there. 

For parameter-specific inferences, precision is generally not affected by 

sample size, but is affected by the number of diagnostic tests available. 
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Figure 7-2: The heatmap panels on the left show the bias of Phat across constrained parameter space given the original truths, and the 

heatmap panels on the right show the bias of Phat across constrained parameter space given the new truths of Experiment 1. 
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Figure 7-3: The heatmap panels on the left show the error of Phat across constrained parameter space given the original truths, and 

the heatmap panels on the right show the error of Phat across constrained parameter space given the new truths of Experiment 1. 
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Figure 7-4: A panel of heatmaps showing the standard deviation of Phat across batteries of two to five diagnostic tests in 

constrained parameter space given the original truths. 
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Figure 7-5: A panel of heatmaps showing the standard deviation of Phat across batteries of two to five diagnostic tests in 

constrained parameter space given the new truths of Experiment 1. 

 



 

266 

How does the error, bias, and standard deviation of Sehat, Sphat and Phat 

change when Sp is less than 0.5, and P is greater than 0.5? 

The answers to this research question, which form the Global Sensitivity 

Analysis, are provided to address the predictions that the bias of global 

statistics will not be consistently overestimated or underestimated across global 

parameter space; that edge effects will remain across global parameter space; 

that the value of P as well as the number of diagnostic tests available dictates 

the error, bias, and standard deviation present. 

Accordingly, four sub-questions are reported on that are now listed: 

1. Where is global parameter space being overestimated and 

underestimated? 

2. Do edge effects exist in global parameter space? 

3. Does P dictate error, bias, and standard deviation? 

4. How much influence does the number of diagnostic tests have on error, 

bias, and standard deviation? 

Where is global parameter space being overestimated and 

underestimated? 

Across unconstrained parameter space, four observations can be made from 

the 48 heatmaps that were plotted from the inferences associated with 

Experiment 2: 

1. When P is greater than 0.6 global error is overestimated, and when P is 

less than 0.4, global error is underestimated. 

2. The observation described in (1) is even stronger when the errors of Phat 

are plotted. 
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3. The observation described in (1) does not exist when the errors of Sehat 

and Sphat are plotted. 

4. When P is greater than 0.6 the errors of Sehat are more likely to be 

overestimated or underestimated, however when P is less than 0.6 the 

errors of Sphat are more likely to be overestimated or underestimated. 

Do edge effects exist in global parameter space? 

The linear edge effects that this thesis reports on are in relation to constrained 

parameter space. In unconstrained parameter space, the errors of Sehat and 

Sphat have a horizontal symmetry on a plane of P = 0.5, with a 90° rotation of 

each panel within a facetted heatmap (for example, see Figure 7-6 in 

comparison to Figure 7-7), which is an observation that involves but is not 

exclusive to “extreme” inferred values. 
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Figure 7-6: The bias of Sehat across unconstrained parameter space for 

batteries of two to five tests. This figure relates to Experiment 2. 
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Figure 7-7: The bias of Sphat across unconstrained parameter space for 

batteries of two to five tests. This figure relates to Experiment 2. 

Does P dictate error, bias, and standard deviation? 

The findings of Experiment 2 indicate that the uncertainty of Phat when inferred 

using uniform priors are similar to those obtained using normal priors when the 

value of P is close to 0.5 (Figure 7-8 and Figure 7-9). However, an analysis 

across the full directory of heatmaps (Plot A to Plot L) associated with 

inferences of Phat for Experiment 2 more generally suggest that Phat cannot be 

correctly inferred if the sum of Se and Sp are close to 1, possibly due to the 

label switching problem discussed in Chapter 3. 
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How much influence does the number of diagnostic tests have on error, 

bias, and standard deviation? 

While the errors of Phat are highly dependent on the number of diagnostic tests 

available, the errors of Sehat and Sphat are highly dependent on both the 

number of diagnostic tests available and values of P that are less than 0.2 and 

greater than 0.8. The errors of Sehat are higher when P is lower, and the errors 

of Sphat are higher when P is higher.  
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Figure 7-8: The bias of Phat across unconstrained parameter given either 

informative or uninformative priors. This figure relates to Experiment 2. 
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Figure 7-9: The error of Phat across unconstrained parameter given either 

informative or uninformative priors. This figure relates to Experiment 2. 
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Discussion 

There is a need to conduct sensitivity analyses when using BLCMs (McAloon et 

al., 2019, Beguin et al., 2012). Indeed, the requirement to do a Global 

Sensitivity Analysis is not only important to the use of BLCMs, but also key to 

any ecological study that deals with “imperfect” data, such as those studies 

which sample rare species or deal with imperfect detections (Belmont et al., 

2022). This chapter presents a Global Sensitivity Analysis of the Any-Test Any-

Population model by first varying the battery of fixed diagnostic tests (tests two 

to five)—in addition to Se1 and Sp1—and then by removing the assumption that 

“useful” parameter space would generally be within the confines of a 

constrained model. Since the ecological literature on BLCM sensitivity analyses 

are extremely limited, and furthermore largely confined to “local” rather than 

“global” analyses, this chapter’s results are mainly discussed in the context of 

previous chapters within this thesis.  

Experiment 1 confirms that the conclusions of Chapters 4 to 6 are generally 

robust against changes to the fixed diagnostic accuracies of tests 2 to 5. 

Consequently, this discussion focuses on the addressing the four predictions 

that underpin the question posed by Experiment 2: how does the error, bias, 

and standard deviation of Sehat, Sphat and Phat change when values of Sp 

can be less than 0.5, and values of P be greater than 0.5? 

The experiments within this chapter did not find evidence to show that 

parameter space has a limited use outside of the constraints of P and Sp 

enforced in previous chapters, and consequently this chapter does not advise 

ecologists to avoid it. Although it was initially hypothesised that identifiability 

problems would appear in parameter space when values of Sp are less than 
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0.5, Experiment 2 reveals that P is likely to be unidentifiable within spaces 

where values of P are greater than 0.4 and values of P are less than 0.6. Figure 

7-9 provides an example of this phenomenon, where BLCMs given uniform 

priors unexpectedly predict parameters with the same accuracy as those given 

normal priors when values of P are greater than 0.4 and values of P are less 

than 0.6. 

Where is global parameter space overestimated and underestimated? 

Experiment 2 reports on where global parameter space is overestimated and 

underestimated across four findings, and this section discusses whether these 

four findings can be generally applied. Overall, the four reported findings may 

be taken as a basic set of “rules” for interpreting bias in global parameter space. 

While Chapter 6 finds that in constrained parameter space the errors of Phat 

are more accurately inferred than global errors, Experiment 2 presents a crucial 

caveat to this finding with the discovery that whether Phat is overestimated or 

underestimated is dependent on the value of P, meaning that global statistics 

could in some instances be a more robust measure of accuracy. 

In addition, findings support the theory of a complex trade-off between the 

errors of Phat and Sphat, a finding that is further supported by stylised fact 7 in 

Chapter 5, which reports a heavy dependency between the errors of Phat and 

Sphat. In addition, Chapter 6 also supports the theory of a complex trade-off 

between the errors of Phat and Sphat, where in instances where the value of P 

is greater than 0.3 global errors are overestimated, the errors of Sehat and 

Sphat are unaffected. Importantly, the theorised reciprocal relationship or “Se-

Sp trade-off” first reported in this thesis in Chapter 5 (stylised fact 5) is 

supported across global parameter space. 
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Are edge effects relevant in global parameter space? 

Previous analyses in Chapter 6 generally show that edge effects are not 

present when parameter space is constrained (with an exception to this being in 

relation to the errors of Phat when values of P are low). Given the finding that 

there is a relationship between edge effects and constraint, a key aim of this 

chapter was to find out if edge effects persist in a completely unconstrained 

environment. Heatmaps show edge effects when the values of Sehat and Sphat 

are low and underestimated, as well as when they are high and overestimated. 

And the heatmaps of global errors across parameter space indicate that edge 

effects occur when the value of Sp is low. 

This chapter also confirms that establishing the directionality of error is not 

simple, a finding first advanced in Chapter 6 where it was observed that the 

errors of Sehat and Sphat exhibit the same directionality (i.e. either 

overestimated or underestimated) when given either high or low values of Se 

and Sp respectively. In addition, this chapter confirms that the directionality of 

error is dependent on the value of P, a finding also first advanced in Chapter 6 

where it was observed that the errors of Sehat are inaccurate when values of P 

are over 0.9, but also that the errors of Sehat and Sphat are likely to be 

underestimated when values of P are less than 0.3. 

Chapter 6 cautioned against forming conclusions about extreme parameter 

space using global errors in isolation. Experiment 2 supports this theory, 

particularly given that edge effects are not clearly visible on heatmaps of global 

errors across parameter space. 

Chapter 6 also theorises that the type of prior information that causes edge 

effects and advances the argument that the mean-variance relationships of the 
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errors of Sehat, Sphat and Phat are highly distinctive regardless of mean-

variance relationships. This present study across global parameter space 

indicates that both these assertions are true. 

The edges of parameter space are also important to consider when 

investigating the precision of BLCM inferences, particularly given that Chapter 5 

reported that the precision of parameter inferences at edges where values of Sp 

are greater than 0.9 are “overly precise”, raising questions about the 

trustworthiness of inferences in extreme space. Experiment 2 confirms that 

estimates on the edge of parameter space where values of Sp are greater than 

0.9 are not always “overly precise”, given the different structuring of variance 

between global and single parameter inferences, and the finding that the 

variance of error, bias and precision is structured differently across parameter 

space in unconstrained models.  

What happens to the n.tests trend across global parameter space? 

The n.tests trend was initially described in Chapter 5, stylised fact 3, which 

reports that increasing the number of diagnostic tests significantly reduced the 

errors of Phat compared to the errors of Sehat or Sphat. The simplicity of the 

n.tests trend means that it is powerful: it provides ecologists with a simple way 

of obtaining better inferences.  

The heatmaps of global errors across parameter space visually highlight 

dependencies between the errors of Sehat, Sphat and Phat and the number of 

diagnostic tests available, and provides further evidence that the definition of 

extreme parameter space (as a 0.1 unit from the edge of parameter space) is 

too prescriptive, and that extreme space may also occur in regions of parameter 

space that are not edges. Chapter 7 provides an analysis of the interaction 
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between extreme space and the n.tests trend as well as on the reversal of the 

n.tests trend given uniform data; this chapter indicates that both trends are 

supported across global parameter space. 

Can we trust inference when P is close to 0.5?  

There is a high possibility that inferences of P around the value of 0.5 may 

suffer from the label switching problem, given that all three rules for avoiding 

this problem as reported in Chapter 3 are violated within Experiment 2 due to 

the lack of constraint. 

The relationship between generalisability and identifiability. 

Overall, given that test data as well as model constraints and priors interact via 

a complex function to enable identifiability (Joseph, Gyorkos and Coupal, 1995), 

the findings of this chapter will not generalise to all testing scenarios. For 

ecologists wishing to conduct a sensitivity analysis of their BLCM, there remain 

good reasons to work in a constrained parameter space where the information 

exists to make assumptions about truths. However, this chapter shows that 

when using batteries of diagnostic tests, the use of tests that a typical ROC 

analysis would consider as no better than chance alone does not automatically 

prevent identifiability.  

Conclusion 

So, are the conclusions made in this thesis on constrained parameter space 

generalisable across unconstrained parameter space? The Global Sensitivity 

Analysis conducted in this chapter found a high level of consistency between 

the findings of the constrained and unconstrained analyses, suggesting that the 

conclusions made in this thesis on constrained parameter space are indeed 
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generalisable across the spectrum of testing scenarios that may be faced in the 

wild, and were not dictated by the choice of truth. The caveat to this is that edge 

effects are only obvious statistical artefacts on heatmaps in constrained 

experiments, and so conclusions regarding edge effects may not apply to 

unconstrained parameter space; and the described symmetry between the 

errors of Sehat and Sphat indicate another type of statistical artefact that 

requires further investigation. Critically, the finding that parameter space is 

useful to ecologists outside of the constraints of P and Sp is exciting: it supports 

the use of diagnostic tests with a low Sp to bolster the battery of tests available 

to a BLCM; and suggests that the methodologies developed within this thesis 

are applicable to any wildlife infection scenario. The following chapter now goes 

on to examine whether BLCMs can infer Se, Sp and P through time, and for the 

first time in this thesis, applies a new tranche of time-dependent BLCMs to real-

world test data. 
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Chapter 8 

8. BLCMs can be used to infer diagnostic accuracy and 

prevalence through time from historic datasets. 

Introduction 

The theory tested in this chapter is that in the real-world, Sehat, Sphat and Phat 

change as a function of the period across which they are being inferred. Based 

on this theory, the assumption posited in Chapter 5—that diagnostic accuracy is 

heterogeneous across populations—is expanded to allow diagnostic accuracy 

to be heterogeneous across time. Given that Sehat, Sphat and Phat are known 

to have latent dependencies on latent variables—such as changes in 

demographics (McDonald et al., 2016) or strain of pathogen (Strelioff et al., 

2013)—which change over time, this assumption clearly demands investigation. 

Ecologists need to understand artefacts of time series data, and a swathe of 

methods to do this are conveniently at hand. Less common mechanistic 

methods include the use of ecological diffusion theory to forecast disease 

spread spatiotemporally (Hefley et al., 2017), while more ubiquitous probabilistic 

tools for investigating time series data include naïve Bayes models (Lau et al., 

2017) such as Generalised Additive Mixed Models (von Brömssen et al., 2018), 

the application of conditional heterogeneity—the assigning of statistical rules to 

define variance between timesteps—and state-space models that can 

distinguish process errors from observational errors. This useful property of 

state-space models is important for wildlife disease testing, as it permits the 

error from imperfect testing to be distinguished from the error of imperfect 
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trapping. Consequently, this chapter describes a new tranche of BLCMs that 

combine state-space theory with Bayesian latent class theory, enabling a new 

modelling environment where epidemiological and diagnostic parameters can 

vary through time. 

In a time series, or an “antecedent analysis” as it is sometimes called (Bell et 

al., 2018) a response at time t, or the mean response, is related to preceding 

responses. To account for a change through time, a statistical task called a 

“decomposition through time” (Tuncer, Tanik and Allison, 2008) can be used to 

manipulate longitudinal data into categorical time-dependent components—

such as days, months, or years—increasing the degrees of freedom available to 

a BLCM (see Table 8-1). The main cost of decomposing a BLCM through time 

is a reduction in the number of test outcomes belonging to each element of a 

three-dimensional test array with dimensions as follows: 

1. The diagnostic test outcomes. 

2. The battery of diagnostic tests available. 

3. The number of timesteps included within the sample. 

Consequently, in a time-dependent BLCM, each possible testing scenario is 

informed by less data than is available to a time-independent BLCM. 

It is logical that a latent interaction effect between years may explain any 

change in the Sehat and or Sphat and or Phat belonging to a diagnostic testing 

regime that would remain undiscovered in time-independent BLCMs. 

Furthermore, these latent effects may change the ability of a model to detect 

infection. One reason for this could be a non-trivial probability that disease 

statuses of individuals change between each testing point. Most BLCMs in the 

wildlife disease literature to date assume that each test has the same diagnostic 
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accuracy each time that it is used (for example Drewe et al., 2010a and 

Buzdugan et al., 2017), and this present chapter tests the impact of making this 

assumption.  

It is already established that BLCMs can be used to detect change over time for 

Se, Sp and P, with compelling findings. For example, Helman et al., 2020 report 

that estimates of P made using Bayesian Latent Class Analysis may be more 

robust to changes in P across cyclical epidemics than estimates made using a 

single test. And Patel et al., 2022 find that the Sehat and Sphat of tests for 

Rabbit Haemorrhagic Disease viruses changed in response to changes in Phat 

over time. Even in the medical literature, for example, it has been discovered 

that time-varying values of Sehat are linked to mother-to-child HIV 

transmissions (Brown, 2010). Despite these findings, at present, BLCMs do not 

widely account for time-varying effects as the result of environmental drivers, 

changes in test manufacturing and or procedures, the availability of new types 

of diagnostic tests, or biological complexities such as a varying levels of 

immunity among individuals. 

This chapter posits that evaluating how Se and Sp change over time is critical 

for maximising model power, and also for understanding why Se and Sp may 

change over time. As such, it shifts the focus of this thesis away from theoretical 

testing scenarios with known “truths” by: (a) developing and validating novel 

and temporally-explicit BLCMs, i.e. BLCMs capable of estimating Se, Sp and P 

within a time series; and (b) using these validated temporally-explicit BLCMs to 

infer, with credibility, the Se, Sp and P for each year of a test array formed of 

ten years of data collection efforts at Woodchester Park, Gloucestershire.  

This chapter therefore poses and answers two key research questions: 
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1. Does decomposing through time enable BLCMs to improve their 

inferences of Se, Sp and P? 

2. Can the temporally-explicit BLCM infer Se, Sp and P through time given 

real-world test data? 

Methods 

Two methodologies are now described, which address the two research 

questions posed. The initial “validation experiment” uses simulated test data, 

the findings of which are used to inform the subsequent “real-world study”, 

which applies a longitudinal diagnostic test array from the Woodchester Park 

study on bTB infected badgers. 

The code for both experiments can be found on GitHub 

(https://github.com/annabush/PhD), with core functions printed in Table 10-4. 

The overarching experimental design. 

To ensure that the validation experiments could be usefully applied to the 

Woodchester Park data, it was important that the design of the validation 

experiments reflected the following three criteria: 

1. The simulated data must reflect the general dimensions of the subset of 

the available Woodchester Park test array. 

2. The BLCMs must be capable of identifying the types of trends through 

time that might be uncovered when decomposing the Woodchester Park 

test array. 

3. The BLCMs must be capable of handling different types of trends 

through time in the same simulation.  
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Accordingly, for the validation and real-world studies presented in this chapter, 

three diagnostic tests are modelled, and all three tests are reported on—unlike 

the previous chapters of this thesis which assumed that the results for 

diagnostic test one were representative of the complete battery of tests. 

Moreover, in comparison to the previous empirical chapters of this thesis, global 

statistics are not reported on in this chapter for two reasons. First, global 

statistics are mean functions and cannot be used as a proxy to infer Se, Sp and 

P over time since they don’t depend on time (either of all timesteps or each 

timestep). Second, the global statistic also cannot be used as a mechanism to 

provide a reduction in a models’ degrees of freedom requirements, which is a 

key purpose of a time decomposition.  

The following eight assumptions guided the designs of both the validation and 

real-world studies: 

1. P changes through time in wild populations. 

2. Se, Sp and P can be inferred at distinct points through time. 

3. There is a trade-off between the degrees of freedom available, the 

number of diagnostic tests available, and consequently the amount of 

data available to enable a time-dependent analysis (see Table 8-1). This 

is an assumption since 𝑛 − 1, where 𝑛 is the number of diagnostic 

outcomes (Siegel and Castellan, 1988), is not the only way to consider 

degrees of freedom (Bolker, 2020). 

4. A single timestep within a theoretical model is representative of an 

annual change within a real-world model. This chapter has focussed on 

modelling and describing temporal patterns in Se, Sp and P across 

years, yet the methods presented are not restricted by how a time 

interval may be defined. For instance, if the diagnostic data under 
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investigation reflects very short periods of rapid testing, the units of 

change may be swapped with hours, days, or weeks. 

5. For the real-world study—and as assumed in related research 

(McDonald and Hodgson, 2018)—the three available tests are assumed 

to be fully independent of each other, and able to diagnose infection at 

any infection stage. 

6. Adding the dimension of time to parameter space requires a new 

validation methodology to evaluate how robust the BLCM is to different 

patterns of change through time. 

7. The “Any-Test and Any-Population” model produces identifiable results 

for three-test situations over independent timesteps. 

8. Model power depends on how the time effects are specified. 

The detailed methodology for the validation experiment is described next, 

followed by the detailed methodology for the real-world study. 
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Table 8-1: The degrees of freedom available when up to five diagnostic tests 

are decomposed across up to three timesteps, under the assumption that Se 

and Sp can change across timesteps. 
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Validating the power of the time-dependent BLCMs. 

In this chapter, the diagnostic test results, and the total sample size of results 

available to the model, are explicitly defined across time. To do this, the general 

structure of the BLCMs used so far in this thesis is modified to update the model 

at each user-defined timestep by iterating for time around the likelihood 

function. 

The validation experiments therefore test whether different patterns of change 

in Se, Sp and P can be detected over time before the model is applied to real-

world test data. Regressions integral to the JAGS model are defined (Equation 

22 and Equation 23), which are shown to detect these patterns of change 

across time. 

In the validation experiments, each timestep is assumed to be one year, one 

population is studied, and the population is replicated. For comparison 

purposes, in the real-world study, each timestep represents one year of the 

trapping and testing cycle used to generate the data available to this study. 

For the validation experiments, uniform priors were used instead of normal 

priors for two key reasons: 

1. To isolate the noise of each model to the time effect, and the noise of 

that effect, only.  

2. To enable a series of seven of the simplest time decompositions to be 

investigated—which did not include the additional possible sources of 

bias from the need to provide informative priors to up to seven regression 

coefficients (Se1hat, Se2hat, Se3hat, Sp1hat, Sp2hat, Sp3hat, Phat; 

where Se1hat, for example, denotes the inferred value of Se for 
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diagnostic test 1 within a battery of diagnostic tests) across time—which 

were used to direct the choice of model for the real-world simulation. 

Therefore, the only prior information given to the models were parameter 

constraints, in addition to the time effect integral to each time decomposition. 

Each model was run using a simulated diagnostic test array with a sample size 

of 300 individuals, over five timesteps, and repeated across 50 simulations. 

These modelling conditions were chosen based on the following reasons: 

1. Around 300 badgers are trapped and tested in the Woodchester Park 

study per year. 

2. Limiting the experimental design to five timesteps across 50 simulations 

enabled a clear trend through time to be plotted, while avoiding the 

simulation of lengthy time series, which is computationally intensive. 

The following subsections describe how the true values—and the applicable 

time decompositions—were specified, before presenting the seven “scenarios” 

that form this validation methodology. In general, each scenario details a 

different method of generating the true values for Se1, Se2, Se3, Sp1, Sp2, Sp3 

and P, which becomes successively more complex. And truths from each of the 

seven scenarios are applied in turn to each time decomposition.  

How the truths are selected 

For each scenario, changes in Se1, Se2, Se3, Sp1, Sp2, Sp3 and P across time 

may be specified as being “constant”, “linear”, “independent”, or “mixed”, where 

the truths may therefore be categorised as follows: 

Independent: Se, Sp and P change independently through time. 

Constant: Se, Sp and P do not change across timesteps. 
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Linear: Se, Sp and P change linearly across timesteps. 

Mixed: Se, Sp and P can each have an independent, constant, or linear change 

across timesteps. 

It was considered important to select the true values of each timestep in 

different ways given that the relationship between truth and time is a latent 

variable in the real world. In addition, the linear and constant truths can be 

specified as having “noisy” relationships with time, given some random noise 

drawn from the gaussian distribution with a mean of 0 and a chosen standard 

deviation of 0.02. 

How the time decompositions were specified. 

Within the validation experiment, the time decomposition models were used to 

investigate model performance given a known trend through time. The 

knowledge gained from this investigation was then used to justify the choice of 

models used to infer Se, Sp and P through time given the Woodchester Park 

test data.   

Three types of time decomposition were specified as regressions within the 

JAGS code as follows. 

For the Three-Test, Five-Timestep constant model, all parameters were 

assumed to remain constant throughout all timesteps, such that: 

Equation 22 

𝑦̂𝑡 =  𝑦̂. 

For the Three-Test, Five-Timestep linear model, all parameters were assumed 

to have a linear relationship with respect to time, such that: 

 Equation 23 
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𝑦̂𝑡 =  𝑚̂𝑡 +  𝑐̂, 

where 𝑚̂ (gradient) and 𝑐̂ (intercept) are inferred by the BLCM.  

For the Three-Test, Five-Timestep independent model, all parameters were 

assumed to vary independently of time, this equates to the BLCM structure 

used in previous chapters being repeated for each timestep. 

The following JAGS code provides an example of the Bayesian specification of 

the Woodchester_linear_linear_independent model identified in results section 

2. Within this model, values of P are assumed to have a linear relationship 

across time, values of Sp are assumed to have an independent relationship 

across time, and values of Se are assumed to have a linear relationship across 

time. 

model { 

  # Set P 

  pi.m.prior ~ dunif(-(pi.limit[2] - pi.limit[1])/n.time, (pi.limit[2] 

- pi.limit[1]) / n.time) 

  pi.m <- pi.m.prior 

  pi.c.prior ~ dunif(pi.limit[1] + max(0, - pi.m * (n.time - 1)), 

pi.limit[2] - max(0, pi.m * (n.time - 1))) 

  pi.c <- pi.c.prior 

  for (t in 1:n.time){ 

    pi[t] <- pi.m * (t - 1) + pi.c 

  } 

   

  # Set Se 

  for (t in 1:n.time){ 

     for (i in 1:n.diag){ 

      se.prior[i, t] ~ dunif(se.limit[1], se.limit[2]) 

      se[i, t] <- se.prior[i, t] 

     } 

  } 

   

  # Set Sp 

  for (i in 1:n.diag){ 

    sp.m.prior[i] ~ dunif(-(sp.limit[2] - sp.limit[1]) / (n.time - 1), 

(sp.limit[2] - sp.limit[1] ) / (n.time - 1)) 

    sp.m[i] <- sp.m.prior[i] 

    sp.c.prior[i] ~ dunif(sp.limit[1] + max(0, - sp.m[i] * (n.time - 

1)), sp.limit[2] - max(0, sp.m[i] * (n.time - 1))) 

    sp.c[i] <- sp.c.prior[i] 

      for (t in 1:n.time){ 

    sp[i, t] <- sp.m[i] * (t - 1) + sp.c[i] 

    } 

  } 

   

  for (t in 1:n.time){ 
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    p[1, t] <- pi[t] * (1-se[1, t]) * (1-se[2, t]) * (1-se[3, t]) + 

(1-pi[t]) * sp[1, t] * sp[2, t] * sp[3, t] 

    p[2, t] <- pi[t] * (1-se[1, t]) * (1-se[2, t]) * se[3, t] + (1-

pi[t]) * sp[1, t] * sp[2, t] * (1-sp[3, t]) 

    p[3, t] <- pi[t] * (1-se[1, t]) * se[2, t] * (1-se[3, t]) + (1-

pi[t]) * sp[1, t] * (1-sp[2, t]) * sp[3, t] 

    p[4, t] <- pi[t] * (1-se[1, t]) * se[2, t] * se[3, t] + (1-pi[t]) 

* sp[1, t] * (1-sp[2, t]) * (1-sp[3, t]) 

    p[5, t] <- pi[t] * se[1, t] * (1-se[2, t]) * (1-se[3, t]) + (1-

pi[t]) * (1-sp[1, t]) * sp[2, t] * sp[3, t] 

    p[6, t] <- pi[t] * se[1, t] * (1-se[2, t]) * se[3, t] + (1-pi[t]) 

* (1-sp[1, t]) * sp[2, t] * (1-sp[3, t]) 

    p[7, t] <- pi[t] * se[1, t] * se[2, t] * (1-se[3, t]) + (1-pi[t]) 

* (1-sp[1, t]) * (1-sp[2, t]) * sp[3, t] 

    p[8, t] <- pi[t] * se[1, t] * se[2, t] * se[3, t] + (1-pi[t]) * 

(1-sp[1, t]) * (1-sp[2, t]) * (1-sp[3, t]) 

    y[t, 1:8] ~ dmulti(p[1:8, t], n[t]) 

  } 

} 

 

Accordingly—and separate from how the true values are selected—models 

were specified to fit four categories as follows. 

Independent: Se1, Se2, Se3, Sp1, Sp2, Sp3 and P are independently inferred 

for each timestep. This model is not strictly a time decomposition. 

Constant: For each timestep, the Three Test, Five Timestep constant model 

directly infers one value for each of Se1, Se2, Se3, Sp1, Sp2, Sp3 and P. This 

scenario tests what happens to the inferred values when the truth is inferred to 

not change across timesteps.  

Linear: For each parameter Se1, Se2, Se3, Sp1, Sp2, Sp3 and P, the Three 

Test, Five Timestep linear model infers a gradient and intercept of a linear 

relationship with respect to time. This scenario tests what happens to the 

inferred values when the truth changes linearly with timesteps. 

Mixed: A model that can infer Se1, Se2, Se3, Sp1, Sp2, Sp3 and P through 

time, where each parameter may be associated with a different trend through 

time, that can be independent, constant, or linear. 
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The combinations of truths and models that were investigated, and why. 

Scenario 1: Se, Sp and P are randomly generated. 

Scenario 1 serves as the “control” study, providing baseline inferences when 

there is no trend through time to detect. A time-independent Three-Test, One-

Population model, as specified within Chapter 3, is used. 

Scenario 2: Se, Sp and P are constant through time.  

Scenario 2 is the first “time decomposition” experiment, and tests whether a 

constant trend across time can be detected using the Three Test, Five Timestep 

constant model. 

Scenario 3: Se, Sp and P have a noisy constant relationship with time. 

Using the Three Test, Five Timestep constant model, Scenario 3 investigates 

what happens to inferred values when the truth changes slightly between 

timesteps. 

Scenario 4: Se, Sp and P have a linear relationship with time. 

Scenario 4 tests whether a linear trend across time can be detected using the 

second time decomposition model, the Three Test, Five Timestep linear model. 

Scenario 5: Se, Sp and P have a noisy linear relationship with time. 

Using the Three Test, Five Timestep linear model, Scenario 5 tests what 

happens to inferred values when the truth changes linearly with timesteps, and 

the linear relationship is not perfect. 

Scenario 6: Se, Sp and P each have a different relationship with time. 

Using the Three Test, Five Timestep mixed model, Scenario 6 tests what 

happens to inferred values when the truth for each parameter may each have a 
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different relationship across time. The specific situation where Se and Sp 

parameters have a constant relationship with time, and where P has a linear 

relationship with time, was investigated.  

Scenario 7: Se, Sp and P each have a different relationship with time, and 

this relationship is imperfect. 

Using the Three Test, Five Timestep mixed model, Scenario 7 tests what 

happens to inferred values when Se and Sp have a constant and noisy 

relationship with time, and where P has a linear and noisy relationship with time.  

Applying time-dependent BLCMs to the real-world testing scenario. 

The real-world models were supplied with test outcome data from the long-term 

epidemiological study of bTB infected badgers at Woodchester Park, 

Gloucestershire, UK, where yearly trapping and test data have been recorded 

since 1976 (Delahay, Brown, et al., 2000). The data available to this study 

consisted of the test results between 2006 and 2015, and throughout this period 

three routinely-used diagnostic tests were consistently recorded. None of these 

tests are a gold standard, and they can be summarised as followed: 

1. The gamma interferon release assay, which uses whole-blood samples 

(Dalley et al., 2008). 

2. The BrockTB Stat-Pak test, which uses serological samples to detect 

bTB antibodies (Greenwald et al., 2003). Note, this test has since been 

replaced by the Dual-Path Platform VetTB test (Arnold et al., 2021). 

3. The mycobacterial culture test, in which non-blood samples—such as 

oesophageal aspirate, tracheal aspirate, faeces, urine, and swabs from 

bite wounds and abscesses—are incubated to detect growths of the bTB 
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bacterium (Clifton-Hadley, Wilesmith and Stuart, 1993), which when 

completed post-mortem is a gold standard test. 

The raw data, which consisted of 3807 rows, was filtered (using the load.data 

function found on https://github.com/annabush/PhD) to ensure that the data 

complied with the following rules: 

1. For each trapping instance recorded, results were only inputted into the 

real-world test array if results for all three tests were available. 

2. Each result corresponds to one instance of one badger being tested, 

which may have been repeatedly captured, trapped, and tested.  

The total size of the filtered real-world dataset was 2533 rows across three 

diagnostic tests, inclusive of 10 timesteps. 

It is understood (Hodgson, 2022) that the ecological research community with 

an interest in the Woodchester Park badgers has speculated that a specific 

change point exists within the collected test data which marks an increase in the 

proportion of positive test results recorded. And specifically, that this change 

point is associated with the BrockTB Stat-Pak test. It is also thought that the 

proportion of positive test results indicate nonlinear trends in P through time 

(McDonald et al., 2016), which may be cyclical (Rogers et al., 1999). 

Accordingly, it is hypothesised that this change point may be identified by 

understanding the performance of the Woodchester testing battery at each 

yearly interval using time decompositions.  

Accordingly, the hypothesis that motivated this chapter is that the Sp of the 

BrockTB Stat-Pak test changes within the 2006 to 2015 period. This hypothesis 

is explicitly reported on in results section 2. 
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Note, each of the three diagnostic tests studied is allocated the same assumed 

trends in diagnostic accuracy through time, as dictated by the model reference. 

The models used to interrogate the Woodchester Park dataset investigate 27 

possible combinations of parameter relationships through time as described in 

Table 8-2; and for each model, it was considered that any differences among 

the responses of tests 1 to 3 to the assigned trends through time for P, Se or Sp 

may be visually determined (Figure 8-15 to Figure 8-21). 

How the validation experiment was analysed. 

Note, the plotting code for both the validation and real-world studies can be 

found on GitHub (https://github.com/annabush/PhD). 

To validate the time-decomposition models, three key outputs were analysed. 

1. Probability density functions that indicate the variation in the inferred 

errors of Sehat, Sphat and Phat (see Figure 8-2, Figure 8-4, Figure 8-6, 

Figure 8-8, Figure 8-10, Figure 8-12, Figure 8-14 inserted in-text in the 

order of Scenario 1 to Scenario 7). These figures demonstrate the 

certainty that can be attached to the mean error values that are reported 

in tables (see point 3).   

2. Plots (see Figure 8-1, Figure 8-3, Figure 8-5, Figure 8-7, Figure 8-9, 

Figure 8-11, and Figure 8-13 inserted in-text in the order of Scenario 1 to 

Scenario 7) showing the true and inferred values of each of Se1, Se2, 

Se3, Sp1, Sp2, Sp3 and P, for each timestep, facetted by the method 

used to select true values and the time decomposition chosen. 

3. Tables (Table 8-3 to Table 8-9) showing the error of each of Se1, Se2, 

Se3, Sp1, Sp2, Sp3 and P across each timestep, for each method used 

to select true values and the time decomposition chosen.  
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Note, these three key outputs are included within the text of this Chapter since 

the visual information that they represent is crucial to the reporting of each 

scenario.  

How the real-world experiment was analysed. 

In the real-world study, to understand how inferences of Se1, Se2, Se3, Sp1, 

Sp2, Sp3 and P change through time, and to ascertain whether the posited 

change point can be detected, the following two situations were investigated.  

1. Where Se, Sp and P are assumed to each have the same relationship 

with time across the time series, which may be constant, independent, or 

linear. 

2. Where Se, Sp and P are each assumed to have different relationships 

with time across the time series, which may be independent or linear 

only. 

Accordingly, the Woodchester Park data was subject to the assumptions and 

modelling conditions described in Table 8-2, and the outputs can be found from 

Figure 8-15 to Figure 8-21. Moreover, it is considered that the motivating 

hypothesis of this chapter—that the Sp of the BrockTB Stat-Pak test changes 

within the 2006 to 2015 period—can be tested within this modelling setup. 

A note on model comparisons. 

When truths are unknown, and in the absence of a “general consensus” on 

which Bayesian model comparison tool is appropriate (Hooten, Hobbs and 

Ellison, 2015), the following workflow was used to determine the credibility of 

inferred trends through time. 

1. The results of the validation experiment were used to understand the 

identifiability and accuracy of time-dependent and time-independent 
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BLCMs given hypothetical known trends through time. Identifiability was 

established by visually determining which BLCMs (described in Table 

8-2) can identify known trends through time. Models that successfully 

identified known trends with the least error were considered the “best”. 

2. Informed by the findings of the validation experiment, 27 models were 

specified (Table 8-2) and then provided with the Woodchester Park 

diagnostic test data. This selection of models allowed the hypothesised 

linear trend in Sp across time to be investigated in relation to the 

BrockTB Stat-Pak test, while also accounting for the possibility of 

additional unknown relationships between the values of Se, Sp and P 

and time. 

3. Visual comparisons across the posterior inferences of these 27 models 

(Figure 8-15 to Figure 8-21) enabled a rapid elimination of models that 

did not detect the presence of assumed trends. In addition, inferences 

from “independent” models—which served as control scenarios since 

they did not emulate a time series—were compared with inferences from 

time-dependent BLCMs to detect inconsistencies. Seven observations 

are reported on. 

4. The posterior inferences associated with the “best” models were 

compared to relevant published values (Table 8-13). 
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Table 8-2: The time-dependent and time-independent models applied to the 

Woodchester Park dataset. Assumptions are applied to the Se and Sp of all 

three tests. 

Assumption How each parameter is modelled. 

P Se Sp 

Se, Sp and P are independent 

with respect to time 

Independent Independent Independent 

Se, Sp and P have a constant 

relationship with time 

constant constant constant 

Se, Sp and P have a linear 

relationship with time 

linear linear Linear 

P is independent to time, Se and 

Sp can be linear or independent 

Independent Independent Independent 

Independent Independent Linear 

Independent Linear Independent 

Independent Linear Linear 

Se is independent to time, P and 

Sp can be linear or independent 

Independent Independent Independent 

Independent Independent Linear 

Linear Independent Independent 

Linear Independent Linear 

Sp is independent to time, Se and 

P can be linear or independent 

Independent Independent Independent 

Independent Linear Independent 

Linear Independent Independent 

Linear Linear Independent 

P has a linear relationship with 

time, Se and Sp can be linear or 

independent 

Linear Independent Independent 

Linear Independent Linear 

Linear Linear Independent 
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Linear Linear Linear 

Se has a linear relationship with 

time, P and Sp can be linear or 

independent 

Independent Linear Independent 

Independent Linear Linear 

Linear Linear Independent 

Linear Linear Linear 

Sp has a linear relationship with 

time, Se and P can be linear or 

independent 

Independent Independent Linear 

Independent Linear Linear 

Linear Independent Linear 

Linear Linear Linear 
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Results 

The results of this present chapter are split into two main sections. In section 1, 

the results of the validation tests are presented. In Section 2, validated models 

from analyses in section 1 are applied to real-world test data, and new findings 

relating to the battery of diagnostic tests belonging to the long-term 

Woodchester Park study are described. 

Section 1: The validation of the time-dependent BLCMs across seven 

progressively complex modelling scenarios  

This section focuses on reporting the magnitudes of the errors of Sehat, Sphat 

and Phat given the test arrays and time decomposition models as described. 

Accordingly, a key aim of this validation exercise was to ascertain which time-

dependent BLCM(s) should be used to simulate the historic values of Se, Sp 

and P from the Woodchester Park diagnostic test data. 

Notes on interpreting the tables and plots of Section 1. 

1. Within each table of Section 1 (Table 8-3 to Table 8-9), combinations of 

“truth” and “model” that produce the least error are emboldened. These 

combinations are referred to in the format of truth_model, where truth 

can be “independent”, “constant” and “linear” and model can be 

“independent”, “constant” and “linear” in accordance with the definitions 

provided. 

2. The probability densities referred to are used to visually demonstrate the 

variation belonging to the mean error values reported. 

3. The ggplots, Figure 8-1 to Figure 8-13, each show two empty plots as 

a consequence of faceting by parameters Se, Sp and P. 
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4. The purpose of the panel plots is to visually demonstrate which 

combinations of model and truth (as defined) are identifiable. To help the 

viewer pick out patterns by eye across the five simulated timesteps, the 

trend lines have been plotted using the function geom_smooth of the 

ggplot2 package (Wickham, 2014). 

5. Figure captions provide detailed interpretations of the panel plots. 

Scenario 1: Se, Sp, and P are randomly generated. 

Scenario 1 demonstrates that when there is no trend through time to detect—

and Se, Sp and P are inferred for each timestep independently of time—the 

constant and linear models do not outperform the independent model. Scenario 

1 establishes the posterior densities of Se, Sp and P that are attainable using 

the most data-limited model, the independent_independent model (Figure 8-2). 

For this model, the constraint of truth is the only source of prior information, and 

in comparison to Se, values of Sp and P are inferred with the least error. 

Table 8-3: The average errors across time of Se1hat, Se2hat, Se3hat, Sp1hat, 

Sp2hat, Sp3hat and Phat given Scenario 1.  
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independent_ 
independent 

0.096 0.152 0.142 0.145 0.042 0.048 0.042 0.095 

independent_ 
constant 

0.133 0.251 0.245 0.235 0.124 0.111 0.119 0.174 

independent_ 
linear 

0.144 0.252 0.220 0.238 0.107 0.101 0.105 0.167 
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Figure 8-1: True (purple lines) and inferred values (all other lines) for each 

parameter and each timestep in Scenario 1, for tests 1, 2 and 3. This panel 

demonstrates that when true values are randomly selected, and there is no 

clear trend through time to detect, the constant and linear models do not 

correctly infer the truth; this indicates that the time decomposition models (red 

and blue lines) are performing as expected. 
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Figure 8-2: Probability densities of the errors of Phat, Sehat and Sphat for 

Chapter 8, Scenario 1. This panel shows that in comparison to the constant and 

linear models, the accuracy of inferences from the independent models can be 

associated with the most precision. 
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Scenario 2: Se, Sp, and P are constant across time. 

When the truths are constant, the Three Test, Five Timestep constant model 

consistently infers each parameter with the least error in comparison to the 

linear or independent models, indicating that the constant trend was detected. 

Compared to Scenario 1, this significant reduction in error when using the most 

basic time decomposition model indicates that the decomposition is 

successfully improving inferences. Interestingly, the probability densities that 

inform scenario 2 (Figure 8-4) show that Sp is most accurately inferred across 

all models. 

Table 8-4: The average errors across time of Se1hat, Se2hat, Se3hat, Sp1hat, 

Sp2hat, Sp3hat and Phat given Scenario 2. 

truth_model Mean error across time 
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linear 
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constant 

0.089 0.114 0.116 0.135 0.027 0.029 0.035 0.078 

constant_ 
independent 
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Figure 8-3: True (purple lines) and inferred values (all other lines) for each 

parameter and each timestep in Scenario 2, for tests 1, 2 and 3. This panel 

demonstrates that when there is a known constant trend through time to detect, 

the constant model is able to detect this trend with more accuracy than the 

linear or independent models. 
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Figure 8-4: Probability densities of the errors of Phat, Sehat and Sphat for 

Chapter 8, Scenario 2. This panel shows that the regions of highest posterior 

density for the constant and linear models have become more obvious in 

comparison to Scenario 1, supporting the finding that when there is a trend 

through time to detect, time decomposition improves inferences. 
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Scenario 3: Se, Sp, and P are imperfectly constant across time.  

Scenario 3 demonstrates that even if the assumption of a constant relationship 

through time is not precisely true, i.e. noisy, the constant model is likely to offer 

inferences with the least error in comparison to the independent model. 

Interestingly, and in contrast to Scenario 2, the probability density functions of 

the inferred errors are similar between models, and for Phat and Sehat show 

bimodality (Figure 8-6). This indicates that there are only small differences 

between inferences from the constant, linear and independent models, and that 

in comparison to Sphat, all models require more information to infer Sehat and 

Phat more accurately in Scenario 3. 

Table 8-5: The average errors across time of Se1hat, Se2hat, Se3hat, Sp1hat, 

Sp2hat, Sp3hat and Phat given Scenario 3. 

truth_model Mean error across time 
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constant-
noisy002_ 
constant 
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constant-
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linear 

0.085 0.127 0.140 0.140 0.043 0.038 0.034 0.087 
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Figure 8-5: True (purple lines) and inferred values (all other lines) for each 

parameter and each timestep in Scenario 3, for tests 1, 2 and 3. This panel 

visualises the inference of parameters with a constant but noisy relationship 

through time with the constant, independent, and linear model. Moreover, while 

Table 8-5 confirms that the constant model will, on average, offer inferences 

with the least error in comparison to independent or linear models, this trend is 

not visually obvious, and there are little differences in the distributions of errors 

between all three models (Figure 8-6). 
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Figure 8-6: Probability densities of the errors of Phat, Sehat and Sphat for 

Chapter 8, Scenario 3. This panel shows that—similar to Figure 8-2 and Figure 

8-4, and for all models—the errors of Sphat can be associated with the most 

certainty, and that Phat and Sehat are often associated with two regions of 

higher posterior density. However, for Scenario 3, the distribution of the errors 

of Phat, Sehat and Sphat are similar between the constant, linear and 

independent models, indicating that all models infer the constant but noisy 

relationship through time with similar precisions. 
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Scenario 4: Se, Sp, and P have a linear relationship across time. 

In Scenario 4 where truth has a linear relationship across time, the linear model 

infers the values of Se, Sp and P with the least error. However, as with 

Scenario 3, the errors of Phat—and Sehat given the constant model—is 

bimodal Figure 8-8). 

Table 8-6: The average errors across time of Se1hat, Se2hat, Se3hat, Sp1hat, 

Sp2hat, Sp3hat and Phat given Scenario 4. 

truth_model Mean error across time 
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linear_ 
independent 
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linear_ 
constant 
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linear_ 
linear 
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Figure 8-7: True (purple lines) and inferred values (all other lines) for each 

parameter and each timestep in Scenario 4, for tests 1, 2 and 3. This panel 

visualises the inference of parameters with a linear relationship through time 

with the constant, independent, and linear model. In this instance the linear 

model (blue lines) appears to infer the trends with the most accuracy. 
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Figure 8-8: Probability densities of the errors of Phat, Sehat and Sphat for 

Chapter 8, Scenario 4. This panel shows that when there is a linear trend to 

detect, the linear model can infer the errors of Phat, Sehat and Sehat with the 

most certainty.  
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Scenario 5: Se, Sp, and P have a noisy linear relationship with time. 

When the truth has a noisy linear relationship across time, the linear model 

infers Se, Sp and P with the least error. In addition, both time decomposition 

models offered more accurate inferences than when the independent model 

was used, indicating that time decompositions add model power. Despite this, 

for some parameters (Table 8-7) the constant model appears to offer the most 

accurate inferences, and in contrast to the previous scenarios, includes 

unimodal probability densities of the errors of Phat; it is unclear whether this 

inference is trustworthy (Figure 8-10).  

Table 8-7 The average errors across time of Se1hat, Se2hat, Se3hat, Sp1hat, 

Sp2hat, Sp3hat and Phat given Scenario 5. 

truth_model Mean error across time 
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Figure 8-9: True (purple lines) and inferred values (all other lines) for each 

parameter and each timestep in Scenario 5, for tests 1, 2 and 3. This panel 

visualises the inference of parameters with a noisy linear relationship through 

time with the constant, independent, and linear model. In this instance the linear 

model (blue lines) appears to infer the noisy and linear trends with the most 

accuracy. 
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Figure 8-10 Probability densities of the errors of Phat, Sehat and Sphat for 

Chapter 8, Scenario 5. This panel shows that for the constant model, the 

posterior densities of the errors of Phat are unimodal in comparison to when 

inferred using the independent or linear models. This panel also shows that the 

errors of Sphat are more certain when inferred using the linear model. 
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Scenario 6: Se, Sp, and P can each have a different relationship with time.  

Note, in Scenario 6, Se and Sp have a constant relationship with time, and P 

has a linear relationship with time. Under this scenario, the average 

performances of each time decomposition become less varied compared to the 

previously reported scenarios, and the mixed model produces the most 

accurate inferences. In addition, the probability densities of the absolute errors 

of each parameter (Figure 8-12) show that Sp remains the most accurately 

inferred compared to P or Se, and that the bimodality issues of Phat reported in 

the previous Scenarios 1 to 5 are reduced. 

Table 8-8: The average errors across time of Se1hat, Se2hat, Se3hat, Sp1hat, 

Sp2hat, Sp3hat and Phat given Scenario 6. 

truth_model Mean error across time 
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linear 
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Figure 8-11: True (purple lines) and inferred values (all other lines) for each 

parameter and each timestep in Scenario 6, for tests 1, 2 and 3. This panel 

shows that when Se and Sp have a constant relationship with time, and P has a 

linear relationship with time, the mixed model, in this instance, identifies the 

linear trend in P with the most accuracy. Table 8-8 confirms that the mixed 

model in fact identifies every parameter with the most accuracy in this scenario.  
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Figure 8-12: Probability densities of the errors of Phat, Sehat and Sphat for 

Chapter 8, Scenario 6. This panel suggests that the highest regions of posterior 

density for each parameter Phat, Sehat and Sphat are associated with the 

mixed model. 
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Scenario 7: Se, Sp, and P can each have a different and noisy relationship 

with time. 

Note, in Scenario 7 Se and Sp have a constant noisy relationship with time, and 

P has a linear noisy relationship with time. 

In real-world testing scenarios, Se, Sp and P may not have the same 

relationships with time, and these relationships might be noisy. On average, the 

mixed_mixed model offered the greatest accuracies, including for the inference 

of P, suggesting that the mixed_mixed model is the most powerful given 

unknown trends through time. However, as in Scenario 6, there was little 

difference between the power of all the time decomposition models (Figure 

8-14), indicating that with more random truths, the time effect specified within 

the model becomes less important; and that any time decomposition model is 

an advantage to an independent model. 

Table 8-9: The average errors across time of Se1hat, Se2hat, Se3hat, Sp1hat, 

Sp2hat, Sp3hat and Phat given Scenario 7. 
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Figure 8-13: True (purple lines) and inferred values (all other lines) for each 

parameter and each timestep in Scenario 7, for tests 1, 2 and 3. This panel 

shows that when Se and Sp have a constant and noisy relationship with time, 

and P has a linear and noisy relationship with time, the mixed model, in this 

instance, generally identifies each parameter with the most accuracy. This 

panel also shows that the independent, linear and mixed models all identified 

the linear trend in P across the five timesteps that were modelled. 
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Figure 8-14: Probability densities of the errors of Phat, Sehat and Sphat for 

Chapter 8, Scenario 7. This panel shows that—in contrast to Scenario 6, where 

no noise is present—when Se and Sp have a constant and noisy relationship 

with time, and P has a linear and noisy relationship with time, the highest 

regions of posterior density for each parameter Phat, Sehat and Sphat, given 

any model, are more difficult to visually discern. 
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Section 2: How the validated BLCM infers historic values of Se, Sp and P 

using the Woodchester Park test array. 

This section focuses on reporting observations associated with new time-

dependent inferences of Se, Sp and P at Woodchester Park between 2006 and 

2015 using the novel BLCM constructs which are validated in section 1.   

Notes on interpreting the tables and plots of Section 2. 

The truth_model format used to reference the models used in section 1 is 

expanded to the format woodchester_Pmodel_Semodel_Spmodel. Accordingly, 

while the format woodchester_independent indicates that Se, Sp and P are 

modelled independently of time, the format 

woodchester_independent_linear_independent indicates that P is modelled 

independently of time, Se is modelled as a linear relationship with time, and Sp 

is modelled independently of time. 

The following list relates to the presentation of Figure 8-15 to Figure 8-21: 

1. The inferred values of Se, Sp and P are plotted directly with no trend line 

applied. 

2. The numeric facets on the x-axis of each plot are abbreviations for the 

following diagnostic tests: 1 = BrockTB Stat-Pak test; 2 = gamma 

interferon release assay; 3 = mycobacterial culture test. 

3. On each x-axis, timestep 1 relates to the year 2006 and timestep 10 

relates to the year 2015. 

4. The y-axis shows the inferred values. 

5. Figure captions provide detailed interpretations of the panel plots. 
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When Se, Sp and P are assumed to each have the same trend through 

time. 

The constant model is unable to identify trends through time (Figure 8-15). 

However, both independent and linear trends are identified through time for all 

parameters (for raw results see Table 8-10). Based on this result, the constant 

model is omitted from the further analyses of parameter-specific changes 

through time. 

 

Figure 8-15: The inferred values of Se, Sp and P for the Woodchester battery of 

diagnostic tests given the constant, independent and linear models.  
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Table 8-10: Raw inferred values for P, Se1, Se2, Se3, Sp1, Sp2, Sp3 at each 

timestep outputted from the Woodchester_independent model. In this model Se, 

Sp and P are modelled independently of time. 

Timestep Phat Se1hat Se2hat Se3hat Sp1hat Sp2hat Sp3hat 

1 0.05 0.57 0.64 0.15 0.98 0.95 0.99 

2 0.13 0.81 0.82 0.24 0.95 0.87 0.99 

3 0.17 0.71 0.87 0.09 0.96 0.88 1.00 

4 0.08 0.89 0.70 0.37 0.90 0.93 1.00 

5 0.17 0.91 0.79 0.27 0.88 0.90 0.99 

6 0.24 0.59 0.59 0.18 0.75 0.82 0.97 

7 0.14 0.78 0.84 0.22 0.71 0.92 0.99 

8 0.20 0.87 0.88 0.32 0.77 0.98 0.99 

9 0.25 0.94 0.68 0.28 0.79 0.97 0.98 

10 0.18 0.88 0.76 0.12 0.76 0.96 0.99 
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When Se, Sp and P are assumed to each have different trends through 

time. 

The following observations were made using Figure 8-16 to Figure 8-21 listed 

below. Note that observations referring to “Se” and “Sp” relate to all three 

diagnostic tests relevant to this study.  

1. Se does not have a linear relationship through time, and therefore should 

be modelled independently of time. When Se is assumed to have a linear 

trend through time, P is likely to be overestimated, and Se and Sp are 

likely to be overestimated.  

2. On average, Sp and P have linear relationships through time, which is 

negative for Sp and positive for P. Further, the assumption as to whether 

Sp has an independent or linear relationship across time matters least 

when P is linear, and Se is independent.  

3. Of the models investigated, the Woodchester_linear_independent_linear 

model is likely to be the most reliable, given that linear trends have been 

detected for P and Sp and non-linear trends have been identified for Se. 

4. Over the decade studied, P notably and steadily increases in the 

Woodchester Park badger population. Using the 

Woodchester_linear_independent_linear model, P is observed to have 

increased by 10%, at around 1 percentage point per year on average 

(see Table 8-11 and Table 8-12). 

5. The inferences of Se and Sp from linear and independent models are the 

least variable when a linear model is used to infer P. 

6. All three tests detect a non-linear trend through time for Se when Se is 

modelled independently to time. All models predicted that the battery of 

diagnostics had the lowest values of Se in 2006 (Table 8-10, Table 8-11, 
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Table 8-12). In addition, the Woodchester_linear_independent_linear 

model suggests significant variability in the Se of all diagnostic tests. 

7. Notwithstanding the above findings, the 

Woodchester_linear_independent_linear model does not enable the 

identification of any change points for Sp and P. To allow potential 

change points to be identified, the 

Woodchester_linear_independent_independent model was used to make 

three key observations (for raw values see Table 8-12). 

a. The Sp of the BrockTB Stat-Pak test decreased from 0.98 to 0.71 

between 2006 and 2012, at which point Sp then increased. 

b. The Sp of gamma interferon release assay decreased to below 

0.9 in 2007, 2008 and 2010. 

c. It is possible that P increased the most—up to 2%—between 2009 

and 2010. 

Does the Sp of the BrockTB Stat-Pak test change within the 2006 to 2015 

period? 

Yes. Linear trends in the value of Sp through time have been identified as 

belonging to the BrockTB Stat-Pak test. This inference was made using the 

Woodchester_linear_independent_linear model, which indicated that Sp 

generally decreased through time across the 2006 to 2015 period. Specific 

yearly change points were then identified using the 

Woodchester_linear_independent_independent model—in which Sp is inferred 

independently of time—and this inference suggests that the Sp of the BrockTB 

Stat-Pak test decreased from 0.98 to 0.71 between 2006 and 2012, at which 

point values of Sp then increased.  
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Table 8-11: Inferred values for P, Se1, Se2, Se3, Sp1, Sp2, Sp3 at each 

timestep outputted from the Woodchester_linear_independent_linear model. In 

this model P is modelled as a linear relationship with time, Se is modelled as an 

independent relationship with time, and Sp is modelled as a linear relationship 

with time. 

Timestep Phat Se1hat Se2hat Se3hat Sp1hat Sp2hat Sp3hat 

1 0.10 0.50 0.40 0.09 0.99 0.88 1.00 

2 0.11 0.83 0.84 0.26 0.96 0.89 1.00 

3 0.12 0.71 0.95 0.10 0.93 0.90 1.00 

4 0.13 0.87 0.59 0.30 0.90 0.91 1.00 

5 0.14 0.91 0.84 0.28 0.87 0.92 1.00 

6 0.16 0.81 0.86 0.23 0.84 0.93 1.00 

7 0.17 0.81 0.71 0.16 0.81 0.94 1.00 

8 0.18 0.89 0.89 0.34 0.78 0.96 0.99 

9 0.19 0.95 0.75 0.33 0.75 0.97 0.99 

10 0.20 0.83 0.78 0.11 0.72 0.98 0.99 
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Table 8-12: Inferred values for P, Se1, Se2, Se3, Sp1, Sp2, Sp3 at each 

timestep outputted from the Woodchester_linear_independent_independent 

model. In this model P is modelled as a linear relationship with time, Se is 

modelled as an independent relationship with time, and Sp is modelled as an 

independent relationship with time. 

Timestep Phat Se1hat Se2hat Se3hat Sp1hat Sp2hat Sp3hat 

1 0.09 0.45 0.61 0.09 0.98 0.96 0.99 

2 0.10 0.87 0.87 0.28 0.94 0.86 0.99 

3 0.11 0.84 0.91 0.11 0.95 0.85 1.00 

4 0.12 0.86 0.58 0.27 0.92 0.94 1.00 

5 0.14 0.93 0.84 0.29 0.86 0.89 0.99 

6 0.15 0.84 0.84 0.23 0.85 0.92 0.99 

7 0.16 0.74 0.83 0.18 0.71 0.94 0.99 

8 0.18 0.87 0.90 0.33 0.77 0.97 0.99 

9 0.19 0.95 0.78 0.31 0.76 0.96 0.98 

10 0.20 0.86 0.71 0.11 0.77 0.97 0.99 
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Figure 8-16: The inferred values of Se, Sp and P for the Woodchester battery of 

diagnostic tests when P is assumed to be independent of time, and Se and Sp 

are assumed to have either an independent or linear relationship with time. The 

lack of consensus across all four models could indicate that P should not be 

modelled as independent from time. Furthermore, the models that assume Se 

varies independently with time appear to agree, while the models that assume 

Se varies linearly with time do not. This may indicate that Se should be 

modelled as time independent.  
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Figure 8-17: The inferred values of Se, Sp and P for the Woodchester battery of 

diagnostic tests when P is assumed to have a linear relationship with time, and 

Se and Sp are assumed to have either an independent or linear relationship 

with time. The strong agreement between the green and blue, and purple and 

orange inferences respectively concur with Figure 8-16, that P should be 

modelled as having a linear relationship with time. Furthermore, both models 

where P is modelled as linear with time and Se is modelled as time independent 

(green and blue) appear to strongly correlate, indicating that it matters little 

whether Sp is assumed to vary linearly with time, or be time independent.  
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Figure 8-18: The inferred values of Se, Sp and P for the Woodchester battery of 

diagnostic tests when Se is assumed to be independent of time, and P and Sp 

are assumed to have either an independent or linear relationship with time. All 

four models appear to be in agreement, which may indicate that, in concurrence 

with Figure 8-16, Se should be modelled as time independent.  
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Figure 8-19: The inferred values of Se, Sp and P for the Woodchester battery of 

diagnostic tests when Se is assumed to have a linear relationship with time, and 

P and Sp are assumed to have either an independent or linear relationship with 

time. The lack of consensus across the four models indicates that Se should not 

be modelled as having a linear relationship with time. Furthermore, both models 

that assume P varies linearly with time appear to agree, while both models that 

assume P is time independent do not, which may indicate that, in concurrence 

with Figure 8-18, P should be modelled as linear with respect to time.  
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Figure 8-20: The inferred values of Se, Sp and P for the Woodchester battery of 

diagnostic tests when Sp is assumed to be independent of time, and P and Se 

are assumed to have either an independent or linear relationship with time. 

Assuming that P should be modelled as having a linear relationship with time 

and Se should be time independent, the lack of consensus across these four 

models is to be expected. 
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Figure 8-21: The inferred values of Se, Sp and P for the Woodchester battery of 

diagnostic tests when Sp is assumed to have a linear relationship with time, and 

P and Sp are assumed to have either an independent or linear relationship with 

time. Similar to Figure 8-20, assuming that P should be modelled as having a 

linear relationship with time and Se should be time independent, the lack of 

consensus across these four models is to be expected. 
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Table 8-13: Previous estimates (in bold) of Se, Sp and P given the Woodchester Park diagnostic test data, and the time 

periods that those estimates concern, in comparison to the estimates presented in Chapter 8 by the “best” models. Between 

2006 and 2008, the published estimates were obtained using Latent Class Modelling techniques given data from 305 

individuals tested using a battery of three diagnostics over 2.5 timesteps (Drewe et al., 2010). Between 2006 and 2013 a multi-

event capture-recapture approach was used given data from 541 individuals tested using a battery of three diagnostics over 8 

timesteps (Buzdugan et al., 2017). All estimates have been rounded to two decimal places. 

Diagnostic Test Model Diagnostic accuracy across specified years 

2006 to 2008 2006 to 2013 2006 to 2015 

Sehat Sphat Sehat Sphat Sehat Sphat 

gamma interferon 

release assay 

published 0.8 0.95 0.52 0.97 NA NA 

woodchester_independent 0.78 0.9 0.76 0.91 0.76 0.92 

woodchester_linear_independent_linear 0.73 0.89 0.76 0.91 0.76 0.93 

woodchester_linear_independent_independent 0.79 0.89 0.79 0.91 0.79 0.93 

BrockTB Stat-Pak 

test 

published 0.5 0.97 0.58 0.97 NA NA 

woodchester_independent 0.7 0.96 0.76 0.86 0.8 0.85 

woodchester_linear_independent_linear 0.68 0.96 0.68 0.89 0.81 0.85 

woodchester_linear_independent_independent 0.72 0.95 0.8 0.87 0.82 0.85 
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mycobacterial 

culture test 

published 0.08 0.99 0.08 1 NA NA 

woodchester_independent 0.16 0.99 0.23 0.99 0.22 0.99 

woodchester_linear_independent_linear 0.15 1 0.22 1 0.22 1 

woodchester_linear_independent_independent 0.16 1 0.22 0.99 0.22 0.99 
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Discussion 

The research in this chapter demonstrates to ecologists that time-dependent 

BLCMs can be used to robustly infer the Se, Sp and P of a real-world dataset at 

specific timepoints, advancing the power and usefulness of Bayesian Latent 

Class Analytics to the discipline. The methodologies and models presented can 

be applied to any array of diagnostic test data, and any time interval of interest, 

and may also be readily modified to make and explore spatially-dependent 

inferences. It has been demonstrated that synthetic datasets—with known 

truths that mimic likely real-world datasets—can be used to assign confidence 

to the specification of time-dependent BLCMs to infer values of Se, Sp and P. 

And critically, the use of uninformative priors proved that the posteriors reported 

are driven by the Woodchester test data, rather than the set of strongly 

informative prior distributions used to inform the previously published studies on 

the same Woodchester test data using Bayesian methods (Drewe et al., 2010; 

Buzdugan et al., 2017; McDonald and Hodgson, 2018). 

Overall, this chapter has contributed new model validation methodologies for 

time-dependent BLCMs, proof that time-dependent BLCMs increase the 

analytical power of diagnostic test data, and producing robust inferences of Se, 

Sp and P between 2006 and 2015 at Woodchester Park.  

For the first time—using time-independent and time-dependent BLCMs—the 

parameters Se, Sp and P are inferred for each year of a decade of trap and test 

data, which in this case belongs to the Woodchester Park study. It is found that 

Se, Sp and P each change over time in the Woodchester population in different 

ways. 
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On average, between 2006 and 2015, the values of P increased across time by 

10% whereas the values of Sp for the BrockTB Stat-Pak test decreased across 

time by 27% from 2006 to 2012. It was found that distinct change points and 

trends do exist among the yearly inferred values of Se, Sp and P, and these are 

now discussed in turn. 

Sehat 

The Se of the Woodchester diagnostics was found to be variable across years. 

For example, a 36% decrease in the Sehat of the gamma interferon release 

assay was identified between 2008 and 2009, following the finding of a 12% 

decrease in the Se of the BrockTB Stat-Pak test between 2007 and 2008, and a 

16% drop in the Se of the mycobacterial culture test in this same period. 

Despite these substantial decreases in test performance, Phat only increased in 

the Woodchester badger population by ~3% between 2006 and 2009. These 

change points of Sehat demonstrate how time-dependent BLCMs can be used 

to identify setting-dependent differences in the ability of a diagnostic test to 

detect infection across time, which may include a diagnostic test’s ability to 

detect latent infection. 

Given that the discovered change points are not reflected in the inferences of 

Sp or P—and that they are present for all three diagnostic tests—these change 

points are most likely to be dependent on ecological factors unknown to this 

study that have influenced population-level disease outcomes. It is also likely 

that these ecological factors are system specific. Interestingly, the 

Government’s trial of vaccinating badgers against bTB with Bacille Calmette–

Guérin was conducted between 2006 and 2009 on social groups of badgers in 

the same geographical region as Woodchester Park (Carter et al., 2012). And 

more generally, information from time-dependent BLCMs could be used to 
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answer questions such as “why is it important to vaccinate badgers?” by 

providing specific inferences of P.  

Importantly, there are discrepancies between the published values of Se at 

Woodchester Park (Table 8-13) for the three diagnostic tests of interest to this 

study, and the values inferred within this study using versions of the Three Test 

Five Timestep independent and linear models (see Table 8-10 and Table 8-11). 

While these discrepancies are unsurprising—the published BLCMs of the 

Woodchester system (Drewe et al., 2010; McDonald and Hodgson, 2018) have 

not been extensively validated against simulated and stochastic test data; they 

rely on the same expert-elicited prior information; and they have not been 

subject to time decompositions—it is possible that values of Se were particularly 

difficult for the BLCMs to accurately and precisely infer given the Woodchester 

Park test results.  

Importantly, despite large discrepancies in some year-on-year inferences of Se 

compared with the average estimates reported by Drewe and Buzdugan op 

cit.—for example, in 2010, the woodchester_independent model inferred the Se 

of the BrockTB Stat-Pak test to be 33% higher than the published value for the 

period covering 2010—the findings reported within this chapter agree with these 

previous estimates on average (Table 8-13). Moreover, the time 

decompositions reveal a lot more variation in Se than previously reported, 

suggesting that time decompositions are critical for researchers wishing to 

optimise Se.  

Sphat 

The Sp of the BrockTB Stat-Pak test was observed to have decreased by 22% 

between 2006 and 2015 (using the woodchester_independent model), meaning 
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that the number of falsely identified infected individuals throughout this decade 

is likely to have increased, potentially explaining the high number of positive test 

results recorded at Woodchester Park by the BrockTB Stat-Pak test (in 

comparison to the number of positive test results recorded at Woodchester Park 

by the gamma interferon release assay). This finding supports the hypothesis 

that motivated this thesis chapter: that the Sp of the BrockTB Stat-Pak test 

changes within the 2006 to 2015 period.  

Similar decreases in the Sp of the gamma interferon release assay or the 

mycobacterial culture test were not detected, indicating that there is a latent and 

test-specific dependency on the Sp of the BrockTB Stat-Pak test. Interestingly, 

previous research (Carter et al., 2012) on Gloucestershire badgers has found 

that the incidence of positive BrockTB Stat-Pak test results can decrease when 

badgers are vaccinated with Bacille Calmette–Guérin; and some social groups 

of badgers at Woodchester Park are vaccinated with Bacille Calmette–Guérin. 

However, the decrease in the performance of the BrockTB Stat-Pak test alone 

may also be due to any latent process that interacts with the badger-bTB host-

pathogen system, such as demographic trends, or whether there are multiple 

strains of bTB present in the population. Indeed, there is evidence to suggest 

that Stat-Pak may have become less useful at detecting badgers with the 

greatest transmission risk (Chambers et al., 2008). 

Phat 

In contrast to the predictions about P made by Rogers et al., 1999 and 

Mcdonald et al., 2016—as stated in the methodology of this chapter—this study 

finds that P assumes a linear and non-cyclical trend between 2006 and 2015 in 

the Woodchester Park badger population. A similar trend has been reported in 

terms of the annual apparent prevalence of bTB in cattle in the High Risk Area 
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that Woodchester Park was located within, in the period of this present study 

(More et al., 2018). It has been reported that prior to 2010, the P value of the 

Woodchester Park population had a 95% chance of falling within the range of 

16–35% (Drewe et al., 2010)—with true P likely being slightly higher than the 

estimated 2011 UK national average of ~16.6% (Allen, Skuce and McDowell, 

2011). However, this study finds that P could have been as low as 0.05 in 2006 

and as high as 0.25 in 2014 (using the woodchester_independent model); and 

when P is assumed to have a linear trend across time (between 2006 and 

2015), models indicate that P increased from 0.1 to 0.2 at a steady rate 

throughout this period. The values of Phat reported in this chapter are in closer 

agreement with the predicted annual estimates of P at Woodchester Park 

between the years 1982 and 1996, which are between 10.3% and 17.7% 

(Delahay, Langton, et al., 2000). Considering the potential number of false 

positive records in the Woodchester Park dataset attributable to the decreasing 

performance of the bTB BrockTB Stat-Pak test between 2006 and 2015, it is 

possible that there are significantly fewer bTB infected badgers at Woodchester 

Park than previously assumed.  

Investigating spatial dynamics next? 

This chapter has not investigated the possibility that in the real-world, Sehat, 

Sphat and Phat change as a function of the space across which they are being 

inferred. If Sehat, Sphat and Phat have latent dependencies on latent variables 

that are known to be heterogeneous across spaces—such as the genetic strain 

of Mycobacterium bovis as identified by spoligotyping (Swift et al., 2021)—then, 

in theory, the power of time-dependent inferences may be further improved. 

That is, if the relationship between diagnostic accuracy and space is 

understood, and diagnostic test data grouped by location is available, it is 



 

342 

hypothesised that the power of inferences of diagnostic accuracy will increase, 

and in turn, allow spatially-dependent inferences of P. 

Conclusion 

This chapter has demonstrated how time-dependent BLCMs can be specified, 

validated, and used to infer Se, Sp and P through time from historic datasets. 

The findings provide evidence to support the assumed existence of trends and 

change points in the year-on-year performance of the Woodchester Park 

diagnostics, as well as in the resulting P values. Importantly, since no prior 

information was provided to the BLCMs, all of the results were driven solely by 

the raw diagnostic test data. It was observed that the values of P increased 

linearly across time at a rate of 1 percentage point per year on average, while 

the values of Sp for the BrockTB Stat-Pak test significantly decreased across 

time. Importantly, on average, the inferred values of Se and Sp agree with the 

existing literature on the Woodchester Park bTB study, although evidence has 

been presented to suggest that values of P have been overestimated within 

these studies. Moreover, given the high year-on-year variability in the 

performance of the Woodchester Park diagnostic battery, BLCMs in general 

must be able to account for changes in a diagnostic test’s ability to detect 

infection as disease progresses. There is therefore a need for ecologists to 

model Se, Sp and P across independent time points to ascertain specific 

historic change points, and also across suspected trends in Se, Sp and P 

across time, to understand average changes in these parameters. In addition, 

this chapter illustrates that there is a demand for robust and standardised 

Bayesian model comparison tools. Finally, based on the high year-on-year 

variability in the performance of the Woodchester Park diagnostic battery, it is 
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recommended that ecologists should relax the assumption of the Hui-Walter 

theorem that Se and Sp are independent of diagnostic testing scenarios. 
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CHAPTER 9 

9. A summary of the contributions of this thesis and 

their impacts. 

Overview 

BLCMs are recognised as belonging within a class of models representing the 

state of the art for diagnosing infection in the absence of a gold standard test, 

and their application to the problem of diagnosing infection in wild animals is 

growing in frequency and importance. Yet evaluations of the usefulness of 

BLCMs in influencing wildlife disease management decisions are scarce, with a 

recent study on Leptospira infection in California sea lions (Helman et al., 2020) 

being the only obvious publication to cite at the time of writing this thesis. 

Across the five empirical chapters presented in this thesis (Chapter 4 to Chapter 

8), BLCMs have been applied to simulated data that was representative of 

diagnostic testing scenarios in diseased wildlife populations, and advances are 

identified in the application of BLCMs to the problem of how to accurately 

diagnose infection in wild animals.  

The paucity of information on ante-mortem disease states combined with a lack 

of standardised methods to evaluate the power of BLCMs were key motivators 

of this thesis. And in response, the studies presented demonstrate how 

simulated data and the Bayesian approach to LCM—as opposed to numerical 

estimation—enables information on disease states to be utilised flexibly.  

Researchers generally agree that Sehat, Sphat and Phat provide useful 

information when inferred using a BLCM specified to represent a Three-Test, 
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One-Population scenario. However, given that the Three-Test, One-Population 

scenario is associated with enough degrees of freedom to theoretically infer all 

required parameters—in most instances—it would be difficult not to achieve 

useful values of Sehat, Sphat and Phat with a deterministic modelling setup 

where an entire population is selected and tested. In response, while the 

studies presented in this thesis concern diagnostic scenarios where gold 

standard tests are unavailable, the data that informs these studies also 

accounts for the fact that it is impossible to achieve a perfect trapping effort in a 

wild animal population. 

So, what does this thesis contribute? 

This thesis provides original contributions to advance the discipline of disease 

ecology through the creation and interpretation of a substantial body of new 

knowledge regarding the inference of Se, Sp and P using BLCMs, which has 

resulted from testing and uncovering new theories and hypotheses. 

The contributions of this thesis can be considered in terms of its methodological 

contributions—inclusive of the library of bespoke functions, and the relevant R 

code used to formulate them (see https://github.com/annabush/PhD)—as well 

as the findings that these methodologies enabled, inclusive of the new theories 

and hypotheses that are put forward, and the extensive directory of code used 

to manipulate thousands of posterior inferences (Table 10-1) into formats 

suitable for plotting graphs and inputting into regression models. 

Five key contributions are made:  

1. A framework for the inference of P that (i) generalises the classic Hui-

Walter model for the handling of any number of diagnostic tests and 

populations that may describe a wildlife disease study; and (ii) describes 
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how diagnostic test data can be generated to account for the noise of 

trapping and testing live animals. This is the first known instance of an 

Any-Test, Any-Population BLCM being openly specified using BUGS-

type code, and only one other relevant study (Helman et al., 2020) has 

been found to explore the inferences of Se, Sp and P using stochastic 

diagnostic test data. The modelling framework presented is crucial for 

understanding the power of user-specified BLCMs using simulation 

analyses, prior to their application to real-world testing scenarios. 

2. Methodologies and hypotheses that contribute to an improved validation 

of BLCMs. These contributions provide a template to guide the validation 

of BLCMs in a field where no relevant guidance exists, but where the 

inferences of Se, Sp and P depend upon applying a model, with 

credibility, to the specific diagnostic testing scenario in which a 

researcher is interested.  

3. The identification of two statistical artefacts important to reporting 

credible inferences from BLCMs: (i) the reciprocal relationship between 

Sehat and Sphat and (ii) mean-variance relationships across parameter 

space. The existence of these artefacts is tested, and advances in the 

understanding of these artefacts are made. Understanding the statistical 

artefacts that may apply to any specific diagnostic testing scenario is 

prerequisite to understanding the credibility of any inferences of Se, Sp 

and P relating to that scenario. 

4. Methodologies to understand how generalisations of the Hui-Walter 

model are sensitive to changes in model assumptions and new 

information. These methodologies are critical to the credibility of any real-
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world study, since the range of possible truths that may be encountered 

in nature is always unknown, and may be unexpected. 

5. Methodologies enabling BLCMs to infer the Se, Sp and P of real-world 

data through time. These methodologies are critical to the discovery of 

trends and change points in diagnostic test data, which can provide 

valuable data for predictive models of P, and subsequent disease 

management decisions. 

The application of these five core methodologies to the experimental designs—

inclusive of data, assumptions and modelling conditions—that are analysed 

within this thesis resulted in a substantial body of new findings, which can be 

summarised on a chapter-by-chapter basis as follows: 

• Chapter 4 establishes the key relationships between BLCM model 

specifications and the errors of the resulting inferences for further 

investigation. 

• Chapter 5 discovers statistical artefacts key to the interpretation of 

BLCM posterior inferences, inclusive of relationships between error and 

position in parameter space, and the existence of edge effects. 

• Chapter 6 reports on the mean-variance relationships that exist across 

the constrained parameter spaces available to the experimental 

BLCMs—as identified in Chapter 5—and contributes further findings on 

the fundamental relationship between error and the number of diagnostic 

tests available as first reported in Chapter 4. 

• Chapter 7 provides evidence to demonstrate that the findings made in 

Chapters 4 to 6 are robust across most diagnostic testing scenarios, and 

further highlights where inferences should be interpreted with caution. 
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• Chapter 8 demonstrates that it is possible to infer changes in Se, Sp and 

P across time using real-world data, opening up a range of questions 

behind the efficacy of diagnostic testing in animal populations, and 

certainly at Woodchester Park. 

The following text highlights the core challenges behind, and contributions and 

impacts of, the five key methodologies presented within this thesis. 

Contribution 1: Developing a framework for the inference of P that (i) 

generalises the classic Hui-Walter model for the handling of any 

number of diagnostic tests and populations and (ii) describes how 

diagnostic test data can be generated to account for the noise of 

trapping and testing live animals. 

The challenge 

Although simulation analyses are commonly used to research data-poor 

problems, for the problem of diagnosing infection in wild animals, the data 

needs to be representative of imperfect trapping and testing. Therefore, the first 

challenge addressed by the body of work in this thesis was the development of 

a framework to generate noisy data, handle a variety of user-changeable 

modelling conditions, run over the required number of simulations automatically, 

and process the large amount of data efficiently. Resolving this challenge was 

the purpose of Chapter 3. 

The contribution 

This challenge was overcome with the creation of a modelling architecture 

capable of both generalising the original Hui-Walter construct to handle any 

number of tests and populations—by creating an Any-Test, Any-Population 
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construct—and allowing the stochasticity of synthetic diagnostic test arrays to 

represent imperfect trapping and testing. 

This modelling architecture is described in Chapter 3, and delivers three key 

advances: 

1. An environment where the practical advantages of Bayesian inference—in 

terms of the how prior information is specified—can be combined with the 

relaxation of the common assumptions that Sp should be fixed or close to 

100%, which is often not the case for real-world tests; and that perfect trapping 

and testing efficiencies should be modelled within simulation analyses. 

2. An environment where the focus of the user shifts towards evaluating the 

reasonableness of assumptions and provision of informative prior information, 

ultimately ensuring that BLCM inferences, when given real-world data, are 

scientifically reasonable. 

3. Guidance on how to calibrate three key performance indicators of BLCMs: 

specifying prior information, issues of non-convergence, and understanding the 

metrics accuracy and precision. 

Impacts 

The modelling architecture developed allows flexible study designs that have 

been used in this thesis to: 

1. Simultaneously evaluate improvements in the accuracy and precision of 

Sehat, Sphat and Phat given a 2nd, 3rd, 4th, and 5th, diagnostic when 

sampling and testing efforts are imperfect.  

2. Evaluate the credibility of Sehat, Sphat and Phat across many modelling 

conditions, and diagnostic testing scenarios, simultaneously. 



 

350 

3. Validate the credibility with which a BLCM can infer values of Sehat, 

Sphat and Phat from simulated test results before it is applied to real-

world data. 

4. Test the assumptions of BLCMs readily, for example, by removing 

constraints on parameter space, or by changing prior precision. 

5. Parameterise complex BLCMs, for example, Chapter 8 demonstrates 

how Sehat, Sphat and Phat can be inferred as a time series to test the 

assumption of non-constant diagnostic accuracy over years. 

Contribution 2: Developing methodologies and hypotheses to 

validate BLCMs. 

The challenge 

Currently, even with the OIE’s recommendation (Gardner et al., 2021) for the 

use of LCMs for diagnosing animal disease, and guidelines (Kostoulas et al., 

2017) for presenting research using BLCMs, ecologists still lack a standard 

protocol for describing how to validate their custom built BCLM algorithms—a 

procedure that should occur before any model selection (Hooten, Hobbs and 

Ellison, 2015) takes place, before any diagnostic test performances are 

validated, and certainly before any research is presented.  

The application of BLCMs for disease management seems conflicted by a 

confusion over how best to validate models (Augusiak, Van den Brink and 

Grimm, 2014), and also by the complexities of modelling uncertainty in natural 

systems themselves (Dietze, 2017). This has led to uncertainty analyses in 

ecology being sparsely applied (Hines, Ray and Borrett, 2018; Yanai, See and 

Campbell, 2018), complex (Milner-Gulland and Shea, 2017; Lachish and 

Murray, 2018), and difficult to quantify (Wu and Li, 2006), as well as to different 



 

351 

sources of uncertainty being poorly defined (Regan, Colyvan and Burgman, 

2002).  

The use and interpretation of BLCMs therefore demands care (Schofield et al., 

2021) and is dependent upon understanding how accurately BLCMs infer Se, 

Sp and P in the relevant parameter space. To do this, it is important to validate 

the power of a BLCM before inputting real diagnostic test data, in order to 

ensure that a BLCM can perform as expected. Resolving this challenge was the 

purpose of Chapter 4. 

The contribution 

Accordingly, Chapter 4 makes three core contributions to the validation of 

BLCMs: 

1. The development of methods to validate BLCMs, which may be 

replicated by ecologists wishing to evaluate their own BLCMs.  

2. The specification of LMM’s, which are shown to be a useful means to 

interrogate the accuracy of Bayesian inferences, revealing the structure 

of the random effects that influence accuracy, and going some way 

towards explaining parameter-specific errors. 

3. Seven general trends, termed “stylised facts” relating to evaluating the 

accuracy of BLCM inferences to be identified across the parameter 

spaces studied, demonstrating the specific type of information that can 

be gathered from validating BLCMs. These stylised facts also held true 

when simulation studies became more complex in later chapters.  

Four notable findings were made: 

1. Practical identifiability is influenced by the number of tests available, 

model constraints, and prior precision. 
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2. For any modelling scenario, the parameters Sphat and Phat are 

generally less accurately inferred than Sehat. 

3. A trade-off between the accuracies of Sehat and Sphat appears to exist. 

4. A positive relationship between diagnostic accuracy and the number of 

diagnostic tests available was demonstrated graphically, and produced 

for the first time using stochastically generated data. As a result, it was 

hypothesised that where the n.tests trend exists, practical identifiability of 

a BLCM is possible; a hypothesis supported by the findings presented in 

Chapters 4 to 8. 

Importantly, while the degrees of freedom rule may explain where practical 

identifiability can be found, the accuracies, and precisions of Sehat, Sphat and 

Phat are found to be dependent on a range of prior information being available, 

with differing numbers of diagnostic tests available being only one type of prior 

information with which a model could be provided. This finding sits in agreement 

with research such as Jones et al., 2010 and Goodman, 1974, which has 

already proved that the degrees of freedom rule alone cannot determine 

whether parameters of a Latent Class Model are identifiable. 

Impacts 

In ecology, mechanistic models are often used to justify ecological findings, and 

ecological justifications (Lindén and Mäntyniemi, 2011) are often used to 

determine model specifications. In contrast, the studies presented utilise LMM’s 

as a mechanistic way to understand datasets of the accuracies and precisions 

of Sehat, Sphat and Phat given truth. Yet the justifications for the findings that 

are reported in this thesis, as well as the models that are specified, are 

statistical in nature; this illustrates a critical step-change in how ecologists may 

wish to think about evaluating their BLCMs and sits in agreement with 
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(DiRenzo, Hanks and Miller, 2023) who emphasise that determining the 

statistical properties of an “estimation approach” is a critical step to model 

validation.  

The model validation approaches described in Chapter 4 enabled the 

identification of seven stylised facts, which have implications for researchers 

who: 

1. Consult the medical and the wildlife literature for what to consider 

when validating a BLCM. 

2. Are considering the intended use of a specific diagnostic test, which 

may be a proxy test. 

3. Have the freedom to determine diagnostic thresholds. 

4. Aim to understand the limitations of their BLCMs. 

5. Wish to understand how information should be added into BLCMs to 

improve the inference of Se, Sp and P. 

Contribution 3: Advancing understanding of two statistical artefacts 

important to understanding the inference from BLCMs: (i) the 

reciprocal relationship between Sehat and Sphat and (ii) mean-

variance relationships across parameter space. 

Note, contribution 3(i) relates to the findings of Chapter 5, and contribution 3(ii) 

relates to the work presented in Chapter 6. 

For real-world studies, if unaccounted for, the inaccuracies associated with the 

presence of artefacts—trends explainable by statistics rather than ecology—

could have direct disease management implications. Key to avoiding these 

inaccuracies is understanding how BLCM identifiability changes across regions 



 

354 

of parameter space, which may be attributed to artefacts. And key to monitoring 

changes across regions of parameter space is being able to represent high-

dimensional parameter space on an easily interpretable scale, accounting for 

key sources of bias. Methodologies that can represent high-dimensional 

parameter space are therefore critical for understanding where BLCM 

inferences lack identifiability across a wide range of possible infection 

scenarios.  

The premise of this challenge is usefully explained in the following quote: 

“Bayesian inference is conditional on the space of models assumed by the 

analyst. Within that assumed space, the posterior distribution only tells us which 

parameter values are relatively less bad than the others. The posterior does not 

tell us whether the least bad parameter values are actually any good.” 

(Kruschke, 2013). However little research has previously been conducted to 

evaluate parameter values across space. 

The questions on statistical artefacts that this thesis explores are useful to 

ecologists as they concern the “simplest” problem that a researcher may wish to 

ask about parameter space—“is there a region of my parameter space where 

condition X holds?” (Chalom and de Prado, 2012)—where condition X is 

practical identifiability. 

Contribution 3i: Advancing understanding of the reciprocal relationship 

between Se and Sp  

The challenge 

In non-gold experiments ecologists must invariably accept a trade-off between 

the Se and Sp available (Lütkenhöner and Basel, 2013), yet this dynamic is 

rarely quantified. For studies adopting BLCMs researchers should understand 
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the error, bias and precision associated with Sehat and Sphat. Chapter 5 

addresses this challenge. 

The contribution 

Two methods were developed and explored in Chapter 5: 

1. A method to sample across high-dimensional parameter space, allowing 

the dynamics between Sehat and Sphat to be quantified across 

parameter space of up to 11 dimensions. 

2. A method to map the error, bias, and precision of BLCM inferences, 

allowing the production of a series of heatmaps and regression analyses 

that represent uncertainty across parameter space as modelling 

conditions are varied. 

In combination, the two methods presented offer an alternative approach to the 

classical ROC approach for assessing diagnostic accuracy for batteries of 

diagnostic tests, specifically as a contingent of the relationship between the 

accuracies of Sehat and Sphat values. No known study has provided a 

methodology to evaluate how the relationship between Sehat and Sphat across 

hyper-dimensional parameter space can be optimised.  

In addition, advances are also made in uncovering structured patterns in the 

variance of error across parameter space, allowing hypotheses of edge effects 

to be made. 

These advances led to the following key findings: 

1. Phat has an intricate relationship with Sehat and Sphat which is not the 

same as between Phat and Sehat, and as between Phat and Sphat. 
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2. There is a strong relationship between error, bias and precision, and 

position in parameter space. 

3. Edge effects exist in “extreme” parameter space, and these effects 

interact with the provision of prior precision and constraint.  

Contribution 3(i) will be of interest to researchers who wish to understand: 

1. How the accuracy and precision of—and the relationship between—

Sehat and Sphat can be dependent on how the BLCM is specified. 

2. Combinations of parameter values that lack practical identifiability. 

3. The unstable properties of the relationship between Sehat and Sphat. 

4. When to use global error metrics. 

5. How to map the variance of a parameter across parameter space. 

Impacts 

Understanding the bias associated with diagnostic outcomes in specific 

volumes of parameter space is useful to any researcher with population-level 

diagnostic test outcomes which are a mixture of positive and negative test 

results. For example, it is found that when infection rates are low at ~0.15, 

including more diagnostic tests would be the best way to improve BLCM 

inferences of Sp, compared to the addition of information via other means, such 

as more informative priors.  

Fundamentally, methods to evaluate whether Sehat, Sphat and Phat are 

“actually any good” (Kruschke, 2013) are needed so that ecologists can be 

informed about when it is useful to use BLCMs to support a diagnostic testing 

regime.  
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Contribution 3ii: Advancing understanding of the mean-variance 

relationships across parameter space. 

The challenge 

When analysing a multivariate problem across space, changes in the variance 

of BLCM inferences across space are to be expected, as well as a variance in 

the prior information available. 

Volumes of extreme parameter space have been identified by this thesis as 

dependence structures—dependencies between two or more variables of 

interest—critical to BLCM identifiability. A relationship between mean error and 

its variance across space was uncovered in Chapter 6. Consequently, a need 

arose to understand the influence of this mean-variance relationship on the 

ability of the BLCM to infer parameters, as well as uncover any identifiability 

issues present. 

The contribution 

Methods to produce heatmaps were developed, which for the first time 

demonstrate how the errors of Sehat, Sphat and Phat change across parameter 

space given different modelling conditions. In addition, regressions were 

specified to demonstrate the dependencies that occur between error, bias and 

precision of Sehat, Sphat and Phat, and model conditions. Overall, the 

heatmaps and regression analyses presented in Chapter 6 allowed 

recommendations on how heteroscedasticity across parameter space should be 

interpreted. 

The key findings were: 

1. At edges, ecologists should consider the error Phat, Sehat and Sphat 

separately, rather than rely on a global metric. 
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2. The shape of the mean-variance relationships belonging to the errors of 

Sehat, Sphat and Phat all exhibit heteroscedasticity, and were found to 

be highly distinctive given any form of prior information. 

3. The size of the edge effects on the errors of Sehat, Sphat and Phat is 

dependent on the amount of prior information provided. 

4. The n.tests trend is a relevant consideration for researchers seeking 

identifiability in extreme parameter space. Notably, Chapter 6 confirms 

that the breakdown of the n.tests trend does indicate identifiability issues, 

and that this trend breaks down at edges.  

Impacts 

Contribution 3(ii) should interest ecologists seeking to understand: 

1. How BLCM inferences may vary as the information provided to the 

model changes. 

2. Variance in BLCM inferences. 

3. How to interpret inferences at the edges of parameter space. 

The heatmaps presented within this thesis were developed in order to respond 

to the need to reduce 11-dimensional data into information that can be readily 

interpreted. In combination with the use of LMM’s, the heatmaps proved 

essential to understanding the identifiability of BLCMs. More generally, this 

approach supports the notion put forward (Heisey et al., 2010) that to advance 

the field, data needs to be looked at “in as many ways as possible, Bayesian 

and otherwise, to ensure consistency and reasonableness. There is a paucity of 

useful diagnostic tools at present and this is an area that needs a lot of work.” In 

addition, the heatmaps presented also contribute more widely to the use and 

development of “global models”—an area of ecology focussed on mapping 
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global (though often geographic) data describing ecological parameters (Meyer 

and Pebesma, 2022). 

Contribution 4: Developing methodologies to understand how 

generalisations of Hui-Walter model are sensitive to changes in 

model assumptions and new information. 

The challenge 

In ecology, model identifiability is usually considered in terms of unique sets of 

parameter values that have been calibrated to maximise the likelihood of a 

model under certain assumptions. For stochastic models, however, not defining 

the “generality” of the findings (Spake et al., 2022) is known to mislead 

likelihoods (Stocks, Britton and Höhle, 2021).  

Local sensitivity analyses are the most common type of sensitivity analysis 

found in the field of ecology, where one parameter and or value is varied at a 

time (Naujokaitis-Lewis et al., 2009; Olsen et al., 2022) while others are fixed 

(Xu et al., 2004), as demonstrated with “Example A” in Chapter 4 of this thesis. 

However, in studies across high-dimensional space, confidence in BLCM 

specifications and assumptions should be generalisable across the possible 

truths that may be encountered in nature. Global Sensitivity Analyses of BLCMs 

are limited by the availability of methods, including how to manage “big data”. 

Addressing this challenge was the aim of Chapter 7.  

Contribution 

Methodologies are presented in Chapter 7 highlighting ways of conducting a 

Global Sensitivity Analysis across parameter space. The findings in question 

should be of interest to ecologists concerned with understanding identifiability 
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issues across parameter space in terms of inferential bias; edge effects; issues 

identifying P values around 0.5; and the dependencies between error, bias and 

precision on the “n.tests” trend.  

Notable findings include: 

1. Evidence to suggest that the findings of the preceding empirical chapters 

are generally robust to changes in the values of truths and the size of 

parameter space.  

2. Evidence to demonstrate that parameter space is useful for ecologists 

outside of the constraints of P and Sp enforced in previous chapters. 

3. A basic set of “rules” for interpreting the directionality of error in global 

parameter space. 

4. The finding that the n.tests trend is a useful proxy for unidentifiability in 

unconstrained parameter space. 

5. Evidence to suggest that Phat values of ~0.5 may suffer from the label 

switching problem. 

6. The finding that conclusions regarding edge effects may not apply to 

unconstrained parameter space. 

Impacts 

The findings of Chapter 7 should be of value to ecologists concerned with 

determining whether their simulation models are sufficiently robust to new 

information, or changes in model assumptions. Evidence is also provided to 

support the assumption that BLCMs are not automatically identifiable simply 

because their degrees of freedom are as large as the number of parameters 

(Jones et al., 2010). For example, Chapter 7 demonstrates that when using 

batteries of diagnostic tests, the use of tests that a typical ROC analysis would 
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consider as no better than chance alone does not automatically prevent 

identifiability. 

Given that test data, model constraints, and priors interact via a complex 

function to enable identifiability (Joseph, Gyorkos and Coupal, 1995)—and that 

model validation and sensitivity analyses do not guarantee good models 

(Gustafson et al., 2005)—this chapter’s findings will not generalise to all testing 

scenarios. However, for ecologists wishing to conduct a sensitivity analysis of 

their inferences, there remain good reasons to work in a constrained parameter 

space where the information exists to make assumptions about truths.  

Contribution 5: Developing a statistical procedure enabling the 

BLCM to infer the Se, Sp and P of real-world data through time. 

Challenge 

The values of parameters Se, Sp and P are known to be dependent on 

ecological variables such as the strain of pathogen, or variables that describe 

population demographics. Moreover, research such as Helman et al., 2020 and 

Patel et al., 2022 provide evidence to support this widely-held view in the 

context of ante-mortem wildlife disease studies. Yet time-dependent BLCMs for 

the inference of Se, Sp and P across relevant time intervals are not available to 

ecologists, and so trends and change points in the values for these parameters 

are not understood. The ability to detect trends and change points in the values 

of Se, Sp and P through time is powerful; the percentage of infected individuals 

can be understood as a function of time. This is particularly important for 

understanding diseases like bTB, where pathogens can exhibit latency in 

individuals. The information gained from applying time decompositions on 

historic datasets can therefore inform present disease monitoring decisions, and 
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ultimately, inform better future inferences of P. Accordingly, this was the 

challenge addressed in Chapter 8. 

Contribution 

Chapter 8 offers three key contributions: time-dependent BLCMs; evidence that 

synthetic datasets can be used to assign confidence to the specification of time-

dependent BLCMs; and the first historic inferences of how the values of Se, Sp 

and P have changed across a decade of real-world diagnostic test data at the 

well-studied Woodchester Park badger population. 

The time-decomposition methodologies presented in Chapter 8 advance the 

power and usefulness of Bayesian Latent Class Analytics to real-world wildlife 

disease studies, since Sehat, Sphat and Phat may be modelled as a function of 

the period across which they are being inferred. The time-dependent BLCMs 

can respond to different patterns of change through time, as well as handle the 

most efficient way of using degrees of freedom and prior information, including 

the number of tests available. 

Key trends and change points in the Woodchester Park data were uncovered, 

namely: 

1. On average, between 2006 and 2015, the values of P were observed to 

increase across time by 10%. 

2. The values of Sp for the BrockTB Stat-Pak test were observed to 

decrease across time by 27% from 2006 to 2012, supporting 

speculations to this effect from among the research community. 

3. Despite large differences between some year-on-year inferences of Se 

compared to average estimates for the same time interval reported within 
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the literature, the findings of Chapter 8 sit broadly in agreement with 

previously published estimates. 

4. Sehat is a highly variable parameter across all tests in the diagnostic 

battery.  

5. It is possible that there are significantly fewer bTB infected badgers in 

Woodchester Park than previously assumed. 

Impacts 

This thesis presents the first known time-dependent BLCMs, showcasing their 

ability to detect trends and change points in the values of Sehat, Sphat and 

Phat through time. This new capability significantly develops the power of the 

LCMs used in previous Woodchester Park badger studies, such as by 

Branscum, Gardner and Johnson, 2005; Drewe et al., 2010a; and McDonald 

and Hodgson, 2018. 

Critics of this finding may quickly point out that test outcomes depend heavily on 

the progression of disease in individual badgers, and cite work such as 

Buzdugan et al., 2017. This thesis considers that BLCMs are key to unlocking 

better inferences of Se, Sp and P at Woodchester Park—particularly since 

previous research (Buzdugan et al., 2017) indicates that new diagnostic tests 

need to have Se values of over 80% and Sp values of 94% or above—which in 

turn may unlock capabilities to form conclusions on disease progression at an 

individual level. 

Latent infections are not explicitly considered in this thesis, and so pre- and 

post-infection periods are not considered at an individual level, or the possible 

consequential lag periods post infectivity; these dependencies are useful 

directions for further research. However, this thesis provides the modelling 
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infrastructure needed to account for changes in a diagnostic test’s ability to 

detect infection as disease progresses, showing that the year-on-year variability 

in the performance of the Woodchester Park diagnostic battery is high.  

Critics may also point out that the findings presented do not suggest new cut-

offs for the Woodchester tests, however since these thresholds are ultimately a 

policy decision they are not debated in this thesis. Rather, this thesis presents a 

large amount of information that could help inform decisions on test 

performance. Critically, it is demonstrated that when using batteries of 

diagnostic tests, the use of tests that a typical ROC analysis would consider as 

no better than chance alone does not automatically prevent practical 

identifiability. A significant number of recommendations are also made in this 

thesis with respect to the reciprocal relationship between the accuracies of 

Sehat and Sphat, which support the argument that diagnostic uncertainty 

should be a key component of how to classify test results (Shinkins and Perera, 

2013).  

What do the contributions of this thesis mean for ecologists wishing 

to use BLCMs for their own research? 

The methods and findings presented in this thesis offer a wealth of information 

to ecologists wishing to specify their own BLCMs for use in both simulation 

experiments and real-world disease studies. A specific set of definitions for the 

communication of research on BLCMs is provided at the start of this thesis, and 

the repository of annotated code (provided on GitHub 

https://github.com/annabush/PhD) is already highly generalised, and written 

using a package of bespoke functions, which can be easily adapted to allow the 

inference of Se, Sp and P given a large range of modelling conditions. 
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In particular, the contributions presented within this thesis cater for those who 

wish to account for the errors of trapping and testing infected animals in their 

BLCMs, as well as understand the errors associated with making their 

inferences of Se, Sp and P. To do this, Chapter 3 provides methods for 

stochastic data generation, and a verified means of generalising BLCMs across 

tests and populations is provided. And based on this modelling framework, the 

subsequent chapters provide methods for validating BLCMs, interrogating 

statistical artefacts, and conducting Global Sensitivity Analyses—tasks which 

are essential to the production of credible inferences in wildlife disease 

studies—as well as the specification of novel time-dependent BLCMs. 

To summarise, each of Chapters 4 to 8 offers ecologists insights into the 

development of robust BLCMs as follows: 

Chapter 4 presents two model validation examples, which serve as a 

foundational template for model validation exercises. Insights into the 

accuracies of Sehat, Sphat and Phat across parameter space—summarised as 

seven stylised facts—suggest how ecologists may optimise their own BLCMs. 

Chapter 5 demonstrates the critical need for ecologists to understand the 

relationship between Se and Sp when using batteries of diagnostic tests, 

expanding on the information that this thesis provides on the optimisation of 

BLCMs. 

Chapter 6 expands on prerequisite awareness that ecologists developing 

BLCMs must have on the non-constant variance of error metrics across 

parameter space. Understanding this variance is key to correctly interpreting 

model uncertainty. 
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Chapter 7 is highly relevant for ecologists wanting to determine whether their 

simulation models are sufficiently robust to new information, or to changes in 

model assumptions. 

Chapter 8 is key for ecologists who wish to understand artefacts within a time 

series of diagnostic test data. Capabilities are provided for ecologists to model 

Se, Sp and P across independent time points to detect specific historic change 

points, and also across suspected trends in Se, Sp and P across time, to 

understand average changes in these parameters. 

How could the contributions of this thesis inform future wildlife 

disease management and or conservation policy? 

Finally, the research described in this thesis may be taken forward to benefit 

conservation practitioners in the following ways. 

1. This thesis shows how BLCMs can be used to understand how P 

changes given time using real-world historic diagnostic test data. This 

capability can be used to provide evidence on the efficacy and effects of 

policy decisions such as culling livestock in response to infection. 

2. This thesis describes methods to achieve robust inferences of P, which 

are necessary to support the future decision-making and risk 

assessments of epidemiologists and policy makers, for instance in 

response to new epidemics, or when novel pathogens emerge. 

3. This thesis demonstrates the importance of analysing the power of 

BLCMs using simulated diagnostic test data before applying BLCMs to 

real-world diagnostic test data. Using validated BLCMs, it is possible that 

more information about P can be inferred from data belonging to existing 

wildlife disease studies. 
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Concluding remarks 

The research put forward in this thesis has shown that simulation studies can 

be used to test the assumptions and fit of BLCMs to data representing 

diagnostic testing scenarios in wildlife populations. In achieving this, a number 

of advances have been made to the methodologies used to specify and check 

BLCMs including: a library of new modelling architecture, including functions 

required for manipulating the “big data” involved; methods for BLCM model 

validation and sensitivity analysis; methodologies to explore the error structures 

of Sehat, Sphat and Phat—and for the first time—time-dependent BLCMs have 

been developed. 

Equally as important, the directory of new findings—spread across empirical 

Chapters 4 to 8—resulting from these methodologies also forms a key 

contribution of this thesis. These core findings are communicated using a new 

lingua franca set out at the start of this thesis, and they relate to the use and 

specification of BLCMs in wildlife disease ecology, including the identifiability of 

BLCMs, the validation of BLCMs, the sensitivity of BLCMs to new data and 

assumptions, and the extension of the Hui-Walter model to allow the detection 

of change through time. These core findings include numerous new theories 

and hypotheses. 

So, in a sentence, what should ecologists take away from this thesis? Simply 

this: with BLCMs and simulated diagnostic test data now established as 

essential research tools for the estimation of P in infected wildlife populations, a 

significant amount of additional information relating to the trends of Se, Sp and 

P can be gained from the methodologies presented, furthering the potential of 

BLCMs in informing and influencing wildlife disease management decisions.  
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10. Appendices 

Appendix 1: Simulated datasets 

Table 10-1: The simulated datasets used by the experiments presented within this thesis, including the dimensions of those datasets and 

the total number of simulations that they represent. 

Simulated 

Dataset 

Name of dataset Method for simulated 

data generation 

Dimensions of the simulation problem analysed Total number of 

simulations 

1 Validation Example 1  Chapter 4 methods 10 replicas 

4 batteries of diagnostic tests 

7 sets of true values 

280 

2 Validation Example 2 Chapter 4 methods 25 sets of true values 

4 batteries of diagnostic tests 

2 levels of prior precision 

4 levels of constraint 

800 
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3 Unconstrained and 

constrained priors, 

original truths, 

constrained truths 

Chapter 5 methods 10 replicas per voxel of parameter space 

5 voxels in P-direction 

10 voxels in Se1-direction 

5 voxels in Sp1-direction 

4 batteries of diagnostic tests 

3 sample sizes (500, 1000, 1500) 

3 levels of prior precision 

2 levels of prior constraint 

180,000  

4 Unconstrained and 

constrained priors, 

new truths, 

constrained truths 

Chapter 7 methods 10 replicas per voxel of parameter space 

5 voxels in P-direction 

10 voxels in Se1-direction 

5 voxels in Sp1-direction 

4 batteries of diagnostic tests 

3 sample sizes (500, 1000, 1500) 

3 levels of prior precision 

180,000  
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2 levels of prior constraint 

5 Constrained and 

unconstrained priors, 

constrained and 

unconstrained truths, 

original truths 

Chapter 7 methods 10 replicas per voxel of parameter space 

10 voxels in P-direction 

10 voxels in Se1-direction 

10 voxels in Sp1-direction 

4 batteries of diagnostic tests 

3 sample sizes (500, 1000, 1500) 

3 levels of prior precision 

2 levels of prior constraint 

720,000  

6 Time decomposition 

validation 

Chapter 8 

methods 

50 sets of true values 

7 true parameter-time relationships 

4 assumed parameter-time relationships 

1 battery of diagnostic tests 

1 sample size (300 individuals) 

1 level of prior precision (uniform) 

1,400 
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1 level of prior constraint 
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Appendix 2: Key parameters, hyperparameters and functions 

Table 10-2: The standard user-changeable parameters provided to the BLCM, the abbreviations of those parameters in the format used 

within the supporting R code, their standardised input values if applicable, and their corresponding justifications and assumptions. 

Parameter Abbreviation Input Justifications and assumptions 

The number of 

diagnostic tests 

 

n.tests 2:5 In general, it was assumed that the accuracy and precision of Sehat, Sphat and Phat are 

positively influenced by the number of diagnostic tests available via a linear trend. 

However, underneath this assumption it was speculated that a step change (i.e., non-

linear trend) exists in the ability of a BLCM to infer the accuracy and precision of Sehat, 

Sphat and Phat between models using a battery of two diagnostic tests and models using 

a battery of three diagnostic tests. However, the circumstances of this “step change” were 

uncertain—given that it was initially unclear how prior information could influence the 

accuracy and precision of Sehat, Sphat and Phat—and so the simplest assumption was 

used: that the power of BLCMs increased linearly with the number of diagnostic tests 

available. Based on this logic, the parameter n.tests was modelled as a continuous 
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variable within LMM’s to facilitate an understanding of when the number of diagnostic 

tests available is related to robust inferences of Se, Sp and P given a range of testing 

scenarios (i.e. batteries of 2, 3, 4 or 5 diagnostic tests). For the avoidance of doubt, the 

parameter n.tests was not modelled as a categorical variable since evaluating the large 

number of combinations of dependencies between the accuracies and precisions of 

Sehat, Sphat and Phat, and batteries of 2, 3, 4 and 5 diagnostic tests, given any other 

modelling conditions, was not a research aim.  

The sample size 

of the 

population 

 

n.samples 500, 

1000, 

1500 

It was assumed that increases in sample size will decrease the variance of errors at any 

position in parameter space, and that it is necessary to investigate the effect of sample 

size in situations where gold standards are not available based on previous research 

such as (Rydevik, Innocent and McKendrick, 2018). Note, the chosen values (500, 1000, 

1500) loosely reflect the suggestion from the Bacille Calmette–Guérin badger vaccination 

study—namely that a representative mean badger population size is ~671 (Byrne et al., 

2012), and that ~300 badgers are trapped and tested in the Woodchester Park study per 

year. Based on these guidelines, the sample sizes were considered to reflect plausible 
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sizes of longitudinal test data collected in the field. Also based on these guidelines, in 

Chapter 8, sample sizes of 300 are used when validating the time decomposition BLCM 

prior to inputting the Woodchester Park test data. 

Prior precision 

 

prior.sd 0.05, 

0.15 

In ecology, the use of uniform priors appears the default choice (Banner, Irvine and 

Rodhouse, 2020), yet the consequences of this choice are rarely evaluated; in response, 

the power of BLCMs given two types of informative priors were considered and compared 

to the power of BLCMs given uniform priors. In models where priors are inputted as 

normal distributions, prior precision was specified as either being imprecise (𝜎 =  0.15) or 

precise (𝜎 =  0.05), where imprecise priors are weakly informative in comparison to 

precise priors, and precise priors do not fully inform the model, particularly given the size 

of each dataset (see Appendix 1: Simulated datasets 

Table 10-1). The values of sigma were chosen using a prior sensitivity analysis (see 

Figure 3-2).  
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Draw standard 

deviation 

Draw.sd 0.05 The draw standard deviation defines the proximity of the mean of the prior to the true 

value. This value is kept constant throughout each experiment to enable comparisons to 

be made. 

Number of 

simulations 

n.sim NA The number of simulations defines the number times the model is validated with different 

true values. The value is design-dependent to provide the maximum number of 

simulations given the RAM and time available. 

Number of 

cores 

n.cores NA The number of cores defines the number of parallel computer cores over which a model is 

run, and its purpose is to maximise computational speed. 

Seed seed NA The value of the seed defines the initial state of any random number generation 

processes within the R script to ensure that any experiment can be replicated. The seeds 

used can be found within scripts on GitHub (https://github.com/annabush/PhD). 

Limits of P pi.limit 0 – 0.5 The upper and lower limits of values of P. The limits of P were considered to represent 

most possible real-world testing scenarios, under the assumption that most individuals, 

even within diseased populations, are healthy. 
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Limits of Se se.limit 0 – 1  The upper and lower limits of values of Se. The decision to never constrain the limits of 

Se was made for two reasons. First, if both Se and Sp are constrained, there is a risk of 

identifiability issues due to the lack of reasonable solutions available to the MCMC 

algorithm. And constraining Sp was considered most important given the limits of P. 

Second, the battery of tests for bTB in badgers include Se values that range below 0.5 

therefore to retain realistic modelling conditions, the limits of Se were never constrained. 

Limits of Sp sp.limit 0.5 – 1  The upper and lower limits of values of Sp. The limits of Sp were considered to represent 

tests that are better than chance alone—i.e., epidemiologically “useful” parameter 

space—based on the theory of an ROC curve. An ROC curve for a single diagnostic test 

is a plot of true positives versus false positives i.e., sensitivity versus 1 – specificity. The 

Area Under the Curve (AUC) of an ROC plot represents an uninformative test of no better 

than chance alone. ROC curves are typically used to explain the trade-off between Se 

and Sp (Hanley and McNeil, 1982). On an ROC curve, a coordinate of (0, 1) describes a 

gold standard test, and a coordinate of (0.5, 0.5) a random test of no discriminating ability 

above chance. Based on this, a perfect diagnostic classifier (such as a BLCM) would 
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have Se and Sp values of 1, a random classifier would have Se and Sp values of 0.5 

(Swets, 1988), and useful tests would generally have a Se and Sp of above 0.5. 

Prior limits of P NA  The prior limits of P are set by the lower and upper limit for true prevalence values. 

Prior limits of 

Se 

prior.se  The maximum and minimum values for the distribution describing Se, assigned using 

se.limit. 

Prior limits of 

Sp 

prior.sp   The maximum and minimum values for the distribution describing Sp, assigned using 

sp.limit. 
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Table 10-3: The MCMC hyperparameters used to define the JAGS models written using the jagsUI package (Kellner, 2015), their values, 

and why those values were chosen. These hyperparameters are relevant to the simulation analyses conducted between Chapters 5 to 7. 

Hyperparameter Definition Values Why chosen 

ni Number of 

iterations 

1,000,000 A length of one million was chosen to ensure the required Effective Sample Size was 

met. The gelman.plot function of the coda package (Plummer et al., 2006) was used to 

visualise how the potential scale reduction factor changed throughout the MCMC chain 

to achieve convergence. 

nt Thinning 

interval 

1 Thinning was not required to address autocorrelation. Instead, chain length was 

maximised. The autocorr.plot function of the coda package op cit. was used to visualise 

the effect of chain length maximisation. 

nb Burn-in 

interval 

100,000 The burn-in interval was set to one-tenth of the number of iterations to ensure that the 

MCMC reached a reasonable posterior probability. The functions traceplot and 

gelman.plot of the coda package op cit. was used to visually decide the discard ratio. 
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nc Number of 

chains 

3 To increase reliability of any convergence achieved the default number of chains were 

used (Muma et al., 2007). 

na Adaptation 

period 

NULL The period before burn-in and sampling was not altered since the impact of na on 

MCMC is complex (Monnahan, Thorson and Branch, 2017) as it affects the proposal 

distribution. This parameter was set to NULL and JAGS was relied upon to tune the 

model automatically.  
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Table 10-4: A select list of key R functions created, their purposes, and how they are specified. 

get.outcome.matrix(tests)  

Parameters: 

• tests (integer), the number of diagnostic tests 

Returns: 

A matrix denoting all possible combinations of diagnostic test outcomes given the 

number of diagnostic tests, where 0=negative and 1=positive.   

 
get.outcome.matrix <- function(tests) { 
 
  # Initialise the (2^tests x tests) outcomes matrix with NA 
  outcomes <- matrix(data=NA, nrow=2^tests, ncol=tests) 
 
  # Populate all possible outcomes as a factorial array  
  # 0=negative, 1=positive 
  For (i in 1:tests) { 
    outcomes[, i] <- rep( 
      rep(c(0, 1),  
      each=nrow(outcomes) / (2^i)), 2^(i - 1) 
    ) 
  } 
 
  return (outcomes) 
} 
 

get.test.results(pi, se, sp, n.tests seed=NULL)  
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Parameters: 

• pi (float), disease prevalence  

• se (vector of floats), diagnostic test sensitivities 

• sp (vector of floats), diagnostic tests specificities 

• n.tests (vector of integers), the number of diagnostic tests to 

consider 

• seed (integer), seed for random number generation 

Returns: 

A list of diagnostic test outcome summaries for each number of diagnostic tests, 

where each summary is a matrix with of length 2tests. 
 
get.test.results <- function(pi, se, sp, n.tests, seed=NULL){ 
 
  # Set seed for random number generation 
  if (!is.null(seed)) { 
    set.seed(seed) 
  } 
 
  # Set array to store resuts for each badger 
  raw.data <- array( 
    data=NA, 
    dim=c(max(n.badgers), max(n.tests)), 
    dimnames=list(badger=1:n.badgers, test=1:max(n.tests)) 
  ) 
 
  # Simulate status of all badgers 
  status <- rbinom(n=max(n.badgers), size=1, p=pi) 
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  # For each test             
  for (test in 1:max(n.tests)){   
 
    # Probability that each badger tests positive                          
    p <- status * se[test] + (1 - status) * (1 - sp[test])    
 
    # Store test results in raw.data 
    raw.data[, test] <- rbinom(max(n.badgers), 1, p)           
  } 
   
  # This will store a list of the test arrays    
  results <- list()  
 
  # For each number of tests                                           
  for (tests in n.tests){  
                                     
    # Make a test array: i.e. (000, 001, 010, 011, ..., 111) 
    test.array <- array( 
      0,  
      dim=c(2 ** tests),  
      dimnames=list(result=get.result.names(tests)) 
    ) 
 
    for (badger in 1:n.badgers){ 
      out <- paste(raw.data[badger, 1:tests], collapse="") 
      test.array[out] <- test.array[out] + 1 
    } 
 
    results[[paste(tests, "tests")]] <- test.array 
  } 
 
  return(results) 
} 
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set.model(filepath)  

Writes the BLCM definition to file, note that this is an example, actual model 

definitions vary depending on experiment design.  

Parameters: 

• file.path (string), path to write the BLCM JAGS text file to  

Returns: NULL 

 
set.model <- function(filepath) { 
 
  writeLines("model{ 
  for (i in 1:n.tests) { 
    se[i] <- mu.se[i] 
    sp[i] <- mu.sp[i] 
  } 
  pi <- mu.pi 
  for (i in 1:n.outcomes) { 
    for (j in 1:n.tests) { 
      # A = se if badger is positive, 1 - se otherwise 
      # B = 1 - sp if badger is positive, sp otherwise 
      A[i, j] <- outcomes[i, j] * se[j] + (1 - outcomes[i, j]) * (1 - se[j]) 
      B[i, j] <- outcomes[i, j] * (1 - sp[j]) + (1 - outcomes[i, j]) * sp[j] 
    } 
    p[i] <- pi * prod(A[i, 1:n.tests]) + (1 - pi) * prod(B[i, 1:n.tests]) 
  }  
  y[1:n.outcomes] ~ dmulti(p[1:n.outcomes], n)  
  for (i in 1:n.tests) { 
     mu.se[i] ~ dnorm(prior.se[i], precision) T(se.limit[1], se.limit[2]) 
     mu.sp[i] ~ dnorm(prior.sp[i], precision) T(se.limit[1], sp.limit[2]) 
  } 
  mu.pi ~ dunif(pi.limit[1], pi.limit[2]) 
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}", con=filepath) 
} 
 

run(sim, model.file) 

Writes the BLCM definition to file, note that this is an example, actual model 

definitions vary depending on experiment design.  

Parameters: 

• data (list), true P, SE, and SP values to use to in the simulation 

• model.file (string), path to JAGS BLCM text file 

Returns: NULL 
 
run <- function(model.file, data){ 
 
  # Get simulated badger test results 
  test.results <- get.test.results( 
    pi=data$pi,  
    se=data$se,  
    sp=data$sp,  
    seed=data$seed 
  ) 
 
  # Make array to store results from a single simulation 
  sim.results <- array( 
    data=NA, 
    dim=c( 
      length(prior.sd),  
      length(n.badgers),  
      length(n.tests),  
      4, 
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      2 * max(n.tests) + 1 
    ), 
    dimnames=list( 
      prior.sd=prior.sd, 
      n.badgers=n.badgers, 
      n.tests=n.tests,  
      statistic=c("true", "mean", "sd", "error"),  
      param=get.names(max(n.tests))$all 
    ) 
  ) 
   
  # Run for each prior sd, number of tests and number of badgers 
  for (p in 1:length(prior.sd)){  
    for (b in 1:length(n.badgers)){ 
      for (t in 1:length(n.tests)){ 
 
        names <- get.names(n.tests[t]) 
 
        bugs.data <- list( 
          y=test.results[[t]][b, ], 
          n=n.badgers[b], 
          n.tests=n.tests[t], 
          outcomes=get.outcome.matrix(n.tests[t]), 
          n.outcomes=2**n.tests[t], 
          se.limit=se.prior.limit, 
          sp.limit=sp.prior.limit, 
          pi.limit=pi.prior.limit, 
          precision=1 / prior.sd[p] ^ 2, 
          prior.se=values$mean[data$sim, names$se], 
          prior.sp=values$mean[data$sim, names$sp] 
        ) 
 
        output <- jags( 
          data=bugs.data, 
          inits=NULL, 
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          model.file=model.file, 
          parameters.to.save=c("pi", "se", "sp"), 
          n.adapt=na, 
          n.chains=nc,  
          n.thin=nt, 
          n.iter=ni,  
          n.burnin=nb, 
          store.data=TRUE 
        ) 
 
        # Store some of the outputs 
        sim.results[p, b, t, "true", "pi"] <- values$true[data$sim,"pi"] 
        sim.results[p, b, t, "true", names$se] <- values$true[data$sim, names$se] 
        sim.results[p, b, t, "true", names$sp] <- values$true[data$sim, names$sp] 
        sim.results[p, b, t, "mean", "pi"] <- output$mean$pi 
        sim.results[p, b, t, "mean", names$se] <- output$mean$se 
        sim.results[p, b, t, "mean", names$sp] <- output$mean$sp 
        sim.results[p, b, t, "sd", "pi"] <- output$sd$pi 
        sim.results[p, b, t, "sd", names$se] <- output$sd$se 
        sim.results[p, b, t, "sd", namessp] <- output$sd$sp 
         
        true.pi <- sim.results[p, b, t, "true", "pi"] 
        true.se <- sim.results[p, b, t, "true", names$se] 
        true.sp <- sim.results[p, b, t, "true", names$sp] 
 
        pred.pi <- sim.results[p, b, t, "mean", "pi"] 
        pred.se <- sim.results[p, b, t, "mean", names$se] 
        pred.sp <- sim.results[p, b, t, "mean", names$sp] 
      
        sim.results[p, b, t, "error", "pi"] <- true.pi - pred.pi 
        sim.results[p, b, t, "error", names$se] <- true.se - pred.se 
        sim.results[p, b, t, "error", names$sp] <- true.sp - pred.sp 
      } 
    } 
  } 
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  return (sim.results) 
} 
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Appendix 3: Directory of Linear Mixed Effects Models 

Table 10-5 to Table 10-12 summarise the LMMs used in Chapter 4, and are 

formatted as follows: 

1. SE = standard error 

2. SD = standard deviation 

3. DOF = Degrees of Freedom 

4. NEGL indicates where the percentage variance is negligible (i.e., lower 

than 0.1%). 

5. NA indicates where between-group variance is insufficient i.e., very close 

to 0. 

6. Asterisks denotes statistically significant effects in terms of p-values 

generated from a t-test using Satterthwaite’s method where * = p < 0.01, 

** = p < 0.001, and *** = p < 0.0001 

7. Within the AONVA analyses, models were fitted using maximum 

likelihood methods and the Chi-squared approximation.  

8. The variances reported are rounded to one decimal place, and therefore 

may suffer from rounding error. 
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Table 10-5: Outputs for Chapter 4 LMM’s 1 to 3. 

 LMM 1 

(errors of Phat) 

LMM 2 

(errors of Sehat)  

LMM 3 

(errors of Sphat) 

Fixed regression coefficients 

(SE) 

 Intercept 

 n.tests 

 

1.27e-01 (2.36e-02)* 

-2.05e-02 (1.69e-03)*** 

 

6.25e-02 (4.55e-03)*** 

-9.44e-03 (7.31e-

04)*** 

 

1.57e-02 (2.89e-03)*** 

1.69e-04 (6.43e-04) 

Random effects variances 

(SD)  

 pi.rel intercept 

 se.rel intercept 

 sp.rel intercept 

 Residual 

 

8.35e-13 (9.14e-07)  

3.11e-05 (5.57e-03) 

1.51e-03 (3.89e-02) 

1.00e-03 (3.17e-02)  

 

2.07e-05 (4.55e-03) 

1.51e-05 (3.89e-03) 

1.98e-07 (4.45e-03) 

1.87e-04 (1.37e-02) 

 

NA 

6.81e-06 (2.61e-03) 

3.52e-07 (5.94e-04) 

1.45e-04 (1.20e-02) 

Number of data points † 280 280 280 

† a single data point is equal to one error value 
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Table 10-6: ANOVA outputs showing the relationship between the number of diagnostic tests available and error given 

Chapter 4 LMM’s 1 to 3. Full models contain “n.tests” as a fixed parameter, and null models only have a fixed intercept.  

 Nested 

Model 

DOF 

 

AIC Log-likelihood deviance χ2 value p-value 

Pi errors Full 

Null 

6 

5 

-1112.8 

-997.2 

562.39 

503.6 

-1124.8 

-1007.2 

117.58 <0.0001 

 

Se1 errors Full 

Null 

6 

5 

-1588.9 

-1460.2 

800.46 

735.11 

-1600.9 

-1470.2 

130.69 <0.0001 

Sp1 

errors 

Full 

Null 

6 

5 

-1666.5 

-1668.5 

839.26 

839.23 

-1678.5 

-1678.5 

0.0692 0.7924 
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Table 10-7: The proportion of total variance explained by each random effect, and the residual effects, expressed as a 

percentage, for LMM’s 1 to 5.  

Random effects % variance of total random effects   

 LMM 1 

(errors of Phat) 

LMM 2 

(errors of Se1hat)  

LMM 3 

(errors of Sp1hat) 

LMM 4 

(errors of Se2hat) 

LMM 5 

(errors of Sp2hat) 

pi.rel intercept 

se.rel intercept 

sp.rel intercept 

Residual 

NEGL 

1.2 

59.3 

39.4 

9.3 

6.8 

0.1 

83.8 

NA 

4.5 

0.2 

95.3 

10.3 

12.0 

11.7 

66.1 

3.2 

NEGL 

3.5 

93.3 
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Table 10-8: Outputs for Chapter 4 LMM’s 6 to 8 which investigate the influence of prior precision on error.  

 LMM 6 

(errors of Phat) 

LMM 7 

(errors of Sehat) 

LMM 8 

(errors of Sphat) 

Fixed regression coefficients 

(SE) 

 Intercept 

 n.tests 

prior.infoprecise 

 

1.03e-01 (1.08e-02)*** 

-1.16e-02 (2.54e-03)*** 

-3.27e-02 (5.68e-03)*** 

 

4.76e-02 (6.63e-03)*** 

-3.36e-03 (1.40e-03)* 

-4.90e-03 (3.13e-03) 

 

5.52e-02 (7.49e-03)*** 

-3.18e-03 (1.41e-03)* 

-1.43e-02 (3.16e-

03)*** 

Random effects variances (SD)  

 pi intercept 

 se1 intercept 

 sp1 intercept 

 Residual 

 

1.15e-06 (1.07e-03) 

3.30e-04 (1.82e-02) 

2.26e-04 (1.50e-02) 

1.61e-03 (4.01e-02) 

 

2.39e-06 (1.54e-03) 

1.57e-04 (1.25e-02) 

2.17e-04 (1.47e-02) 

4.89e-04 (2.21e-02) 

 

8.97e-05 (9.47e-03) 

1.75e-04 (1.32e-02) 

4.04e-04 (2.01e-02) 

4.98e-04 (2.23e-02) 

Number of data points † 200 200 200 

† A single data point is equal to one simulation. 
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Table 10-9: Outputs for Chapter 4 LMM’s 9 to 11 which test the influence of constraint on error. 

 LMM 9 

(errors of Phat) 

LMM 10 

(errors of Sehat) 

LMM 11 

(errors of Sphat) 

Fixed regression coefficients (SE) 

 Intercept 

 n.tests 

con.infosp 

coninfosppi 

 

9.67e-02 (9.19e-03)*** 

-1.21e-02 (1.53e-03)*** 

7.19e-03 (1.06e-02) 

4.97e-03 (1.06e-02) 

 

3.40e-02 (5.69e-03)*** 

-2.79e-03 (7.64e-04)*** 

1.14e-02 (5.76e-03) 

1.81e-02 (5.76e-03)** 

 

4.82e-02 (5.32e-03)*** 

-1.87e-03 (7.82e-04)* 

-9.57e-03 (4.70e-03)* 

-1.65e-02 (4.70e-03)** 

Random effects variances (SD)  

 pi intercept 

 se1 intercept 

 sp1 intercept 

 Residual 

 

6.67e-05 (8.17e-03) 

2.71e-11 (5.20e-06) 

1.11e-03 (3.34e-02) 

3.75e-03 (4.18e-02) 

 

5.09e-05 (7.13e-03) 

2.16e-04 (1.47e-02) 

3.09e-04 (1.76e-02) 

4.38e-04 (2.09e-02) 

 

1.63e-04 (1.28e-02) 

2.45e-04 (1.57e-02) 

5.62e-05 (7.50e-03) 

4.58e-04 (2.14e-02) 

Number of data points † 600 600 600 

† A single data point is equal to one simulation. 
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Table 10-10: ANOVA outputs showing the relationship between error and prior information (constraint and prior precision) for 

Chapter 4 LMM’s 6 to 11. Full models contain the number of diagnostic tests available as a fixed parameter, and null models 

drop either prior precision or constraint, where indicated, as a fixed effect.  

  Nested Model DOF 

 

AIC Log-likelihood deviance χ2 value p-value 

P
ri

o
r 

p
re

c
is

io
n

 

P errors Full 

Null 

7 

6 

-674.58 

-645.81 

344.29 

328.91 

-688.58 

-657.81 

30.763 <0.0001 

Se1 errors Full 

Null 

7 

6 

-896.75 

-896.30 

455.37 

454.15 

-910.75 

-908.30 

2.4526 0.1173 

Sp1 errors Full 

Null 

7 

6 

-880.71 

-863.06 

447.35 

437.53 

-894.71 

-875.06 

19.65 <0.0001 

C
o

n
s

tr
a
in

t 

P errors Full 

Null 

8 

6 

-1981.2 

-1984.6 

998.6 

998.3 

-1997.2 

-1996.6 

0.5854   0.7462 

Se1 errors Full 

Null 

8 

6 

-2775.1 

-2767.7 

1395.5 

1389.8 

-2791.1 

-2779.7 

11.428 0.0033 
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Sp1 errors Full 

Null 

8 

6 

-2750.9 

-2743.8 

1383.5 

1377.9 

-2766.9 

-2755.8 

11.19 0.003717 
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Table 10-11: ANOVA outputs showing the relationship between error and the number of diagnostic tests available based on 

LMM’s 6 to 11. Full models contain “n.tests” as a fixed effect, and null models drop “n.tests” as a fixed effect.  

  Nested Model DOF 

 

AIC Log-likelihood deviance χ2 value p-value 

P
ri

o
r 

p
re

c
is

io
n

 

P errors Full 

Null 

6 

5 

-645.81 

-630.9 

328.91 

320.45 

-657.81 

-640.90 

16.91 <0.0001 

Se1 errors Full 

Null 

6 

5 

-896.3 

-892.65 

454.15 

451.32 

-908.3 

-902.65 

5.6497 0.01746 

Sp1 errors Full 

Null 

6 

5 

-863.06 

-860.55 

437.53 

435.27 

-875.06 

-870.55 

4.5144 0.03361 

C
o

n
s

tr
a
in

t 

P errors Full 

Null 

6 

5 

-1984.6 

-1926.9 

998.3 

968.44 

-1996.6 

-1936.9 

59.739 <0.0001 

Se1 errors Full 

Null 

6 

5 

-2767.7 

-2756.4 

1389.8 

1383.2 

-2779.7 

-2766.4 

13.219 0.0002772 

Sp1 errors Full 

Null 

6 

5 

-2743.8 

-2740.1 

1377.9 

1375.0 

-2755.8 

-2750.1 

5.6897 0.01707 
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Table 10-12: The proportion of total variance explained by each random effect and the residual effects, expressed as a 

percentage, for LMM’s 6 to 11.   

Random 

effects 

% variance of total random effects 

  Prior Precision  Constraint 

 LMM 6 

(errors of 

Phat) 

LMM 7 

(errors of 

Sehat) 

LMM 8 

(errors of 

Sphat) 

LMM 9 

(errors of 

Phat) 

LMM 10 

(errors of 

Sehat) 

LM11 

(errors of 

Sphat) 

pi intercept 

se1 intercept 

sp1 intercept 

Residual 

0.1 

15.2 

10.4 

74.3 

0.3 

18.1 

25.1 

56.6 

7.7 

15.0 

34.6 

42.7 

2.3 

NEGL 

38.0 

59.7 

5.0 

21.3 

30.5 

43.2 

17.7 

26.6 

6.1 

49.7 
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Table 10-13: A summary of the LMM’s used in Chapter 5. LMM’s 13 to 24 and 34 to 42 inclusive belong to the 15% scenario. 

LMM Response Subset Fixed 

B
ia

s
 

E
rr

o
r 

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 

N
o
rm

a
l 

P
re

c
is

e
 

U
n
if
o

rm
 

P
ri
o

r 
D

is
tr

ib
u

ti
o

n
 

S
e

1
 

S
p

1
 

P
 

P
ri
o

r 
P

re
c
is

io
n

 

C
o
n

s
tr

a
in

t 

N
u
m

b
e

r 
o

f 
s
a

m
p

le
s
 

N
u
m

b
e

r 
o

f 
te

s
ts

 

E
x
tr

e
m

e
 

E
x
tr

e
m

e
 *

 t
e

s
ts

 

P
ri
o

r 
D

is
tr

ib
u

ti
o

n
 

1 ⚫   ⚫       2e-03 -6e-03 -1e-06 5e-03 4e-02 -2e-03  

2  ⚫  ⚫       -1e-02 3e-03 -6e-06 -9e-03 -7e-03 -1e-04  

3   ⚫ ⚫       -2e-02 6e-03 -9e-06 -2e-02 5e-04 1e-05  

4 ⚫    ⚫       -9e-03 -2e-06 6e-03 4e-02 -2e-03  

5  ⚫   ⚫       5e-03 -6e-06 -1e-02 -4e-03 -9e-04  

6   ⚫  ⚫       1e-02 -1e-05 -2e-02 3e-03 -7e-04  

7 ⚫     ⚫      1e-02 -2e-07 -2e-02 -3e-02 2e-02  

8  ⚫    ⚫      2e-01 -1e-06 -2e-02 -8e-02 2e-02  

9   ⚫   ⚫      1e-01 -2e-05 -3e-02 -2e-02 5e-03  

10 ⚫      ⚫          5e-03 

11  ⚫     ⚫          1e-01 

12   ⚫    ⚫          8e-02 

13 ⚫   ⚫       -3e-02 6e-03 -4e-03 -5e-07    

14  ⚫  ⚫       -1e-02 5e-03 -5e-06 -1e-02    

15   ⚫ ⚫       --3e-02 5e-03 -9e-06 -2e-02    

16 ⚫    ⚫       -7e-03 -1e-06 -1e-02    

17  ⚫   ⚫       1e-02 -5e-06 -1e-02    

18   ⚫  ⚫       1e-02 -1e-05 -2e-02    
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19 ⚫     ⚫      -4e-03 -5e-07 -7e-03    

20  ⚫    ⚫      5e-03 -5e-06 -1e-02    

21   ⚫   ⚫      5e-03 -9e-06 -2e-02    

22 ⚫      ⚫          -2e-02 

23  ⚫     ⚫          1e-01 

24   ⚫    ⚫          9e-02 

25 ⚫       ⚫   -5e-03 2e-03 -1e-06 2e-03 7e-02 -6e-03  

26  ⚫      ⚫   -1e-02 1e-03 -6e-06 -5e-03 -1e-02 -7e-04  

27   ⚫     ⚫   -3e-02 3e-04 -1e-05 -1e-02 1e-03 -4e-04  

28 ⚫        ⚫  -1e-03 -1e-03 -1e-06 3e-03 5e-02 -4e-03  

29  ⚫       ⚫  -3e-03 6e-04 -6e-06 -3e-03 -1e-02 3e-04  

30   ⚫      ⚫  -1e-02 3e-03 -8e-06 -8e-03 2e-03 -4e-04  

31 ⚫         ⚫ 1e-02 -2e-02 -2e-06 9e-03 8e-03 2e-03  

32  ⚫        ⚫ -1e-02 7e-03 -6e-06 -2e-02 3e-03 2e-05  

33   ⚫       ⚫ -3e-02 1e-02 -1e-05 -3e-03 -2e-03 8e-04  

34 ⚫       ⚫   -1e-03 2e-04 -2e-06 -4e-03    

35  ⚫      ⚫   -2e-02 2e-03 -6e-06 -6e-03    

36   ⚫     ⚫   -4e-02 7e-04 -1e-05 -1e-02    

37 ⚫        ⚫  3e-04 5e-04 -1e-05 -1e-02    

38  ⚫       ⚫  -2e-03 1e-03 -5e-06 -2e-03    

39   ⚫      ⚫  -1e-02 3e-03 -7e-06 -7e-03    

40 ⚫         ⚫ 3e-02 -1e-02 -1e-06 -2e-02    

41  ⚫        ⚫ -2e-02 1e-02 -4e-06 -2e-02    

42   ⚫       ⚫ -4e-02 1e-02 -9e-06 -3e-02    
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Table 10-14: A summary of the LMM’s used in Chapter 6. 

LMM Response Subset Fixed 

L
o

g
it
 e

rr
o

r 
 

L
o

g
it
 a

b
s
o

lu
te

 e
rr

o
r 

G
lo

b
a

l 

S
e

1
 

S
p

1
 

P
 

N
o
rm

a
l 

N
o
rm

a
l 
a

n
d

 

Im
p
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c
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e
 

U
n
if
o

rm
 

N
o
 o

th
e

r 
s
u

b
s
e

t 

P
ri
o

r 
P

re
c
is

io
n

 

C
o
n

s
tr

a
in

t 

N
u
m

b
e

r 
o

f 
s
a

m
p

le
s
 

N
u
m

b
e

r 
o

f 
te

s
ts

 

E
x
tr

e
m

e
 

E
x
tr

e
m

e
 *

 t
e

s
ts

 

P
ri
o

r 
D

is
tr

ib
u

ti
o

n
 

1a ⚫  ⚫    ⚫    -2e-02 3e-02 9e-06 -3e-02 -2e-01 1e-02  

1b ⚫     ⚫ ⚫    -1e-01 9e-02 1e-06 -8e-02 5e-02 -2e-02  

1c ⚫   ⚫   ⚫    3e-02 -1e-02 1e-05 -5e-03 -4e-01 3e-01  

1d ⚫    ⚫  ⚫    1e-02 6e-03 1e-05 -1e-02 -3e-01 2e-02  

1e  ⚫ ⚫    ⚫    -7e-02 2e-02 -4e-05 -5e-02 -2e-02 -6e-03  

1f  ⚫    ⚫ ⚫    -9e-02 4e-02 -4e-05 -1e-01 5e-02 -7e-03  

1g  ⚫  ⚫   ⚫    -9e-02 8e-03 -4e-05 -3e-02 -3e-02 -8e-03  

1h  ⚫   ⚫  ⚫    -2e-02 4e-03 -5e-05 -2e-02 -7e-02 -2e-03  

2a ⚫  ⚫     ⚫    5e-02 1e-05 -3e-02 -2e-01 5e-03  

2b ⚫     ⚫  ⚫    2e-01 7e-06 -1e-01 1e-01 -4e-02  

2c ⚫   ⚫    ⚫    -2e-02 1e-05 6e-03 -4e-01 3e-03  

2d ⚫    ⚫   ⚫    7e-03 1e-05 -3e-03 -3e-01 2e-02  

2e  ⚫ ⚫     ⚫    3e-02 -4e-05 -6e-02 2e-02 -1e-01  

2f  ⚫    ⚫  ⚫    6e-02 -3e-05 -1e-01 7e-02 -1e-02  

2g  ⚫  ⚫    ⚫    1e-02 -5e-05 -4e-02 2e-02 -2e-02  

2h  ⚫   ⚫   ⚫    5e-03 -4e-05 -2e-02 -4e-02 -1e-02  

3a ⚫  ⚫      ⚫   -9e-02 -2e-06 8e-02 1e-01 -1e-01  

3b ⚫     ⚫   ⚫   1e+00 4e-05 -2e-02 -7e-02 3e-02  

3c ⚫   ⚫     ⚫   -8e-01 -3e-05 9e-02 1e-01 -1e-01  



 

401 

3d ⚫    ⚫    ⚫   -8e-01 -1e-05 2e-01 4e-01 -2e-01  

3e  ⚫ ⚫      ⚫   1e+00 2e-05 -6e-02 -1e-01 5e-02  

3f  ⚫    ⚫   ⚫   1e+00 2e-05 -6e-02 -1e-01 5e-02  

3g  ⚫  ⚫     ⚫   4e-01 -2e-05 9e-05 1e-01 -3e-02  

3h  ⚫   ⚫    ⚫   1e+00 2e-05 -6e-02 -1e-01 5e-02  

4a ⚫  ⚫       ⚫       -2e-02 

4b ⚫     ⚫    ⚫       7e-01 

4c ⚫   ⚫      ⚫       -4e-01 

4d ⚫    ⚫     ⚫       -4e-01 

4e  ⚫ ⚫       ⚫       7e-01 

4f  ⚫    ⚫    ⚫       7e-01 

4g  ⚫  ⚫      ⚫       7e-01 

4h  ⚫   ⚫     ⚫       8e-01 
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