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DICOVERINGS AS QUOTIENTS

LISBETH FAJSTRUP

1. Introduction.

In [5], directed coverings were introduced as a contribution to the ongoing
study of topological spaces with a preferred direction, ditopology. One approach
to ditopology, is to develop tools inspired by the tools from ordinary algebraic
topology, and covering theory is of course one such tool. This paper continues
the study of such dicoverings.

A d-space is a topological space X with a subset ~P (X) of the paths, called the
dipaths Def. 2.1. An lpo-space is a d-space, where the dipaths induce a closed
partial order locally Def. 2.1.

In [5] dicoverings and a universal dicovering were defined. The universal dicov-
ering of an lpo-spaceX is simply the set X̃x0 of dihomotopy classes of dipaths with
a common initial point, x0. The topology is defined much as in the non-directed
case, Def. 2.6. The projection map Π is the endpoint map, it is continuous and
the fibers Π−1(x) are discrete and have cardinality |~π1(X,x0, x)|. Hence, the car-
dinality of the fibers is not constant. The choice of basepoint, x0, is essential, and
changing it may give a totally different universal dicovering space. A dicovering
wrt. x0 is a map p : Y → X such that dipaths and dihomotopies initiating in x0

lift uniquely, given an initial point y0 ∈ p
−1(x0). There is a fiber preserving map

Φ : X̃x0 → Y , along which all dipaths and dihomotopies initiating in y0 lift, but
it is not necessarily continuous.

Hence, the connection between the universal dicovering space wrt. x0 and other
dicoverings wrt. x0 needs to be explored further. In the present paper, we study
quotients of the universal dicovering space under certain relations, congruences,
and we see that as sets, all dicoverings are in fact such quotients. In section 5, for
locally well behaved (5.3) dicoverings p : Y → X, a topology on Y is defined from

the topology on X and ~P (X), along the lines of the construction of a topology on

X̃x0 . With this topology, the map Φ : X̃x0 → Y is in fact the universal dicovering
of Y and p : Y → X is a dicovering.

The topology on X is in general not the quotient topology under Π : X̃x0 → X,
but the dipaths and dihomotopies in X initiating from x0 are still continuous with
the quotient topology. Similarly, considering Y with the quotient topology under
Φ, the dipaths and dihomotopies in Y initiating in y0 are still continuous in this
stronger topology. Hence, to study dihomotopy classes of dipaths initiating in x0,
we may change the topology on the dicovering Y , on X or on X̃ to the topologies
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2 LISBETH FAJSTRUP

defined in section 5 or the quotient topology and still get the same result. For
higher homotopy or homology of the dipath spaces, the results may depend more
on the topology.

Another approach to the lack of continuity is the introduction of a weaker
requirement on maps, namely that they map dipaths to dipaths and dihomotopies
to dihomotopies - an extension of the set of maps considered. This approach is
Def. 4.1.

It is a pleasure to thank Martin Raussen for suggesting the definition of a
congruence used below and for helpful discussions.

2. d-spaces which are locally ordered

We define the “directions” on a topological space by assigning directed paths,
i.e., d-spaces in the sense of Marco Grandis [4]. Moreover, we require that this
induces a closed partial order on small enough subsets.

Definition 2.1. A d-space is a topological space X with a set of paths ~P (X) ∈ XI

such that

• ~P (X) contains all constant paths.

• γ, µ ∈ ~P (X) implies γ ⋆ µ ∈ ~P (X), where ⋆ is concatenation.

• If φ : I → I is monotone, t ≤ s ⇒ φ(t) ≤ φ(s), and γ ∈ ~P (X), then

γ ◦ φ ∈ ~P (X)

The d-space is saturated if whenever φ : I → I a monotone surjection and γ ◦φ ∈
~P (X) then γ ∈ ~P (X).

A d-map or dimap f : X → Y is a continuous map, such that if α ∈ ~P (X)

then f ◦ α ∈ ~P (Y ).

The set of distinguished paths, ~P (X) are called the dipaths. They are d-maps

from the ordered interval ~I to X.
For a subset V ⊂ X, ~P (V, x, y) denotes the dipaths in V from x to y. For

subsets W, U ⊂ X, let ~P (X,W,U) be the set of dipaths with initial point in W
and final point in U .

Definition 2.2. Let X be a d-space. On a subset V ⊂ X, we get a relation
x ≤V y if ~P (V, x, y) 6= ∅

The future of x in V is ↑V x = {y ∈ V |x ≤V y}
The d-space X is locally ordered, if there is a cover U of X, which is a basis

for the topology and if on each U ∈ U , the relation ≤U is a partial order.

Remark 2.3. A locally ordered d-space is an lpo-space if there is a cover as above,
such that (U,≤U) is closed for all U ∈ U . See [2]

Definition 2.4. Let x ∈ X and U ⊂ X and let γ1, γ2 ∈ ~P (X,x, U). Then

γ1 ∼U γ2, if there is a dimap, H : I× ~I → X s.t. H(0, t) = γ1(t), H(1, t) = γ2(t),
H(s, 0) = x and H(s, 1) ∈ U . If U = {y}, a single point, then γ1 ∼U γ2 is written
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γ1 ∼ γ2. Given two basepoints, we define ~π1(X,x, y) = ~P (X,x, y)/∼, and we let
[γ] denote the equivalence class of a dipath γ.

Definition 2.5. A locally ordered d-space (X, ~P (X),U) is locally relatively di-
connected wrt. x0 ∈ X if

• For all U ∈ U and all x, y ∈ U , |~π1(U, x, y)| ≤ 1

• For all x ∈ X, there is a U ∈ U s.t. for γi ∈ ~P (X,x0, x), γ1 ∼U γ2 if and
only if [γ1] = [γ2].

We define a universal dicovering space as in [5]

Definition 2.6. For a locally ordered d-space (X, ~P (X),U), locally relatively con-
nected wrt. x0 ∈ X, we define the universal dicovering wrt. x0.

X̃x0 = {[γ] ∈ ~π1(X,x0,−)}

with topology U[γ] generated by the sets

U[γ] = {[µ]|µ ∈ ~P (X,x0, U), µ ∼U γ}

for U ∈ U and γ ∈ ~P (X,x0, U).

The d-structure is ~P (X̃, [γ],−) = {η(t) = [γ⋆µ( t+1
2

)], where µ ∈ ~P (X, γ(1),−)}.

Remark 2.7. The strange choice of parameter value η(t) = [γ ⋆ µ( t+1
2

)] makes the
dipath run from [γ] to [γ ⋆ µ] by definition of concatenation of paths. This does
define a d-structure. It is not hard to see that the dipaths are continuous and
the other properties are inherited from ~P (X). For a proof of continuity see [5]

The universal dicovering space has the following properties

Proposition 2.8. Let Π : X̃x0 → X be the universal dicovering of a locally
ordered d-space, then

(1) X̃x0 is a locally ordered d-space and Π is a d-map.
(2) Dipaths and dihomotopies initiating in y ∈↑ x0 lift uniquely given an

initial point in Π−1(y)
(3) Π has discrete fibers
(4) Π :↑U[η]

[γ] →↑U γ(1) is a bijection.

(5) X̃x0 ,U[γ] is locally relatively diconnected with respect to [x0].

Proof. For the proof of 1, see [5, Prop. 3.8], for 2, 3, and 4, see [5, Prop. 3.11].
For 5, see [5, Cor. 3.13] �

We let [γ(t)] denote the unique lift η(t) = [γ|[0,t]] of the dipath γ initiating in

x0 to the universal dicovering. In particular, all dipaths µ in X̃ initiating in x0

can be written [Π ◦ µ(t)], so they are all of the form [γ(t)] for some γ.

Definition 2.9. A dimap p : Y → X is a dicovering wrt. x0 ∈ X if ↑X x0 = X,
↑Y p−1(x0) = Y , p is surjective and dipaths and dihomotopies initiating in x0 lift
uniquely given an initial point in p−1(x0).
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In [5] we prove that lifting of dipaths and dihomotopies initiating at other
points follow:

Lemma 2.10. Let p : Y → X be a dicovering with respect to x0. Let γ : ~I → X
and let y ∈ p−1(γ(0)). Then there is a unique lift γ̂ of γ with γ̂(0) = y

Proof. See [5] Lem. 4.3. �

Corollary 2.11. Let p : Y → X be a dicovering with respect to x0. Let H :
I × ~I → X have a fixed initial point H(s, 0) = x and let p(y) = x. Then there is

a unique lift Ĥ of H initiating in y.

Proof. See [5] Cor. 4.4. �

Definition 2.12. Let p : Y → X be a dicovering wrt. x0. Then p : Y → X is a
simple dicovering if p−1(x0) = {y0}

Remark 2.13. The universal dicovering wrt. x0 is simple if and only if there is no
loop at x0 so that Π−1(x0) is just the constant path [x0]. This may be obtained
by attaching an edge leading into x0, and then take the cover with respect to the
initial point of that edge.

We will often leave out the subscript x0 in the following and assume that all
dicoverings are simple.

Proposition 2.14. Let p : Y → X be a simple dicovering wrt. x0 ∈ X and
suppose X has a universal dicovering construction. Then there is an induced
map Φ : X̃ → Y given by Φ([γ]) = γ̂(1), where γ̂ is the lift of γ to Y with initial
point y0.

The map Φ may not be continuous, since the topology on Y is not revealed
through the lifting properties - there may be open sets in Y , which do not interfere
with the lifting of dipaths and dihomotopies. For an example, see [5].

3. Congruences induce dicoverings.

The classical covering theory describes all coverings as quotients of the univer-
sal covering space under deck transformations, which are fiberpreserving group
actions. In the directed setting, deck transformations are replaced by congru-
ences. A congruence is a special kind of equivalence relation on X̃, but it is not
given via a group action. In this section we see that the quotient of a universal di-
covering under a congruence relation is a dicovering, if the topology is sufficiently
well behaved. In the next section, we give the reverse, namely a dicovering Y
defines a congruence ≈ on X̃ such that Y is the quotient X̃/≈ - again provided
the topology fits.

Definition 3.1. An equivalence relation on X̃x0 is a congruence if [γ1] ≈ [γ2]
implies γ1(1) = γ2(1) and [γ1 ⋆ µ] ≈ [γ2 ⋆ µ] for all dipaths µ initiating in γi(1).
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Figure 1. The universal dicovering and a quotient

Example 3.2. The relation [γ1] ≈ [γ2] if γ1(1) = γ2(1) is a congruence, and
X̃x0/≈ is the original space X, at least as a set.

Example 3.3. Let f : X → Y be an injective d-map, then the relation [γ] ≈f [η]
if [f ◦γ] = [f ◦η] is a congruence, since f ◦(γ⋆µ) = f ◦γ⋆f ◦µ and [f ◦γ] = [f ◦η]
implies f ◦ γ(1) = f ◦ η(1), so γ(1) = η(1), as f is injective.

The d-structure on the image of a surjection is defined as in [4], except that
we take closure under reparametrization, which [4] does not. For a thorough
discussion of reparametrization, see [1]

Definition 3.4. Let Z be a d-space and let f : Z → Y be a surjection. The
quotient d-structure, ~P (Y ) on Y is the closure of the set of dipaths {f ◦ γ|γ ∈
~P (Z)} under finite concatenation and reparametrization. If f is continuous, then
this provides a subset of Y I , and it is a d-structure.

Proposition 3.5. Let Π : X̃x0 → X be the universal dicovering of a locally
relatively diconnected d-space. Let ≈ be a congruence on X̃x0, and let Y = X̃x0/≈
with the quotient d-structure. Let p : Y → X be the map p([[γ]]) = γ(1) and
suppose the topology on Y is such that p and the quotient map Φ : X̃x0 → Y are

continuous. Then p and Φ are dicoverings and ~P (Y ) = Φ(~P (X̃x0)).

Proof. Since ~P (Y ) is the quotient d-structure and Π is a dimap, clearly a dipath
in Y maps to a dipath in X, so p is a dimap.

Let α : ~I → X, α(0) = x0. Then α lifts along p to the dipath α̂(t) = [[α(t)]].
Hence the only problem may be uniqueness. Moreover, if there is a dipath β :
~I → Y which does not lift, then in particular, the dipath [p ◦ β(t)] in X̃x0 is not
a lift of β. So p ◦ β is a dipath in X with more than one lift to Y , namely β and
Φ ◦ [p ◦ β(t)]. Consequently, existence of lifts along Φ is equivalent to uniqueness

of lifts along p. Hence it suffices to see that ~P (Y ) = Φ(~P (X̃x0)).

Clearly ~P (Y ) ⊇ Φ(~P (X̃x0)). The only problem may be the closure under

concatenation. Suppose µ = Φ ◦ γ1 ⋆ Φ ◦ γ2, where γi ∈ ~P (X̃). We want to see,

that µ ∈ Φ(~P (X̃x0)).
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Since Φ◦γ1 can be concatenated with Φ◦γ2, we have Φ(γ1(1)) = Φ(γ2(0)), i.e.
γ1(1) ≈ γ2(0).

Let γ̄2 be the unique lift to X̃ of Π ◦ γ2 with initial point γ1(1). The relation
is a congruence, so γ2(0) ≈ γ1(1) = γ̄2(0) implies γ2(t) ≈ γ̄2(t) for all t. Hence
Φ ◦ γ2(t) = Φ ◦ γ̄2(t) and consequently µ = Φ ◦ γ1 ⋆ Φ ◦ γ2 = Φ ◦ (γ1 ⋆ γ̄2), which

is in Φ(~P (X̃x0)).

Let H : I × ~I → Y . Then all the dipaths lift to give a map H̃ : I × ~I → X̃x0 ,
which is a lift of H. This is also the unique lift of p ◦H, which we already know
is continuous. �

If the topology on Y is the quotient topology, then p is also continuous, and
the theorem certainly holds.

But we did not need the full quotient topology on Y - just continuity of p and Φ
and that ~P (Y ) is the quotient d-structure: concatenation and reparametrization
of dipaths Φ ◦ γ.

Corollary 3.6. With notation and conditions as above, we have

~P (Φ([x0]), [[γ]]) = Φ(~P ([x0],Φ
−1([[γ]])))

We would of course like X̃ to be the universal dicovering of Y , but in general
this may not be the case. The problem is the topology, not the lifting properties.
For instance, we need the local structure on Y to be sufficiently well behaved
to even have a universal dicovering of Y . In section 5 we will give sufficient
conditions on ≈ for this to work. First notice, that as a set, X̃ corresponds to
the dihomotopy classes of dipaths in X̃/≈ and the map Φ is the endpoint map.

Lemma 3.7. Let ≈ be a congruence on X̃ = X̃x0. Suppose Φ : X̃ → X̃/≈ is
continuous, p : X̃/≈ → X is continuous and X̃/≈ has the quotient d-structure.
Then there is a bijection F : ~π1(X̃/≈, [[x0]],−) → X̃ such that Φ(F ([µ])) = µ(1).

Proof. Let µ : ~I → X̃/≈ and assume µ(0) = [[x0]]. Then, by Cor. 3.6, µ = Φ ◦ µ̃
where µ̃(t) = [p ◦ µ(t)] is the lift to X̃, so µ(t) = Φ([p ◦ µ(t)]) = [[p ◦ µ(t)]]. Let
F ([µ]) = [p ◦ µ] ∈ X̃. The map F is

• well defined µ1 ∼ µ2 implies p ◦ µ1 ∼ p ◦ µ2 and hence [p ◦ µ1] = [p ◦ µ2]
• injective [p ◦ µ1] = [p ◦ µ2] if and only if p ◦ µ1 ∼ p ◦ µ2 and paths and

dihomotopies lift uniquely along p, so [µ1] = [µ2].

• surjective Let [γ] ∈ X̃. Then γ lifts uniquely to γ̂ : ~I → X̃/≈. Now
F ([γ̂]) = [p ◦ γ̂] = [γ]

Now Φ(F ([µ])) = Φ([p ◦ µ]), and since Π([p ◦ µ]) = p ◦ µ(1) = p(Φ([p ◦ µ])) and
µ(t) is the unique lift of p ◦ µ(t), we have Φ([p ◦ µ]) = µ(1) �

4. Dicoverings induce congruences.

Given a dicovering p : Y → X wrt. x0, there is a congruence ≈ on X̃x0 and
a bijection ψ : X̃x0/ ≈→ Y such that dipaths and dihomotopies initiating in
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[[x0]] resp. y0 lift along ψ−1 resp. ψ. Hence, provided all maps involved are
continuous, the dicoverings wrt. x0 are precisely the quotients of X̃x0 under
congruences. In the last sections, we will consider what topology we may put on
Y and the quotient. The following definition is certainly satisfied by dimaps, but
it is a much weaker condition

Definition 4.1. Let f : Z → W be a map of d-spaces and let z0 ∈ Z. Then f
is a z0 point of view or z0-pov-map if whenever γ ∈ ~P (Z, x0,−), then f∗(γ) =

f ◦γ ∈ ~P (W, f(x0),−) and for any dihomotopy H : I× ~I → Z with H(s, 0) = x0,
f ◦H is a dihomotopy.

Proposition 4.2. Let p : Y → X be a simple dicovering wrt. x0 ∈ X, and
suppose that X is locally relatively diconnected wrt. x0, with universal dicovering
π : X̃x0 → X. Then there is a congruence ≈ on X̃x0 and a bijective map ψ :
X̃x0/≈→ Y .

Proof. Let Φ : X̃x0 → Y be the induced map. Then define the congruence
by [γ] ≈ [η] if Φ([γ]) = Φ([η]). We have to see, that this is a congruence:
Φ([γ]) = Φ([η]) implies γ(1) = η(1), since Φ preserves fibers over X. Let µ be a
dipath with µ(0) = γ(1). Then Φ([γ ⋆ µ]) is the endpoint of the lift γ̂ ⋆ µ of γ ⋆ µ
along p. Since Φ([γ]) = Φ([η]), the endpoints of γ̂ and of η̂ are identical. Let µ̂ be
the unique lift of µ with initial point γ̂(1). Then γ̂ ⋆ µ(1) = γ̂ ⋆ µ̂(1) = η̂ ⋆ µ̂(1).

Since Φ : X̃x0 → Y is surjective, clearly Y ≃ X̃x0/≈ via the map ψ : X̃x0/≈→
Y given by ψ([[γ]]) = Φ(γ). �

Remark 4.3. In [5], we give an example, where Φ is not continuous. Hence we
cannot in general expect Y to have the quotient topology. However, Y and X̃x0/≈
with the quotient topology and quotient d-structure have the same dipaths and
dihomotopies:

Proposition 4.4. With notation as above and with the quotient topology and
quotient d-structure on X̃x0/≈, γ : ~I → X̃x0/≈ is a dipath if and only if, ψ ◦ γ
is a dipath on Y . Similarly for dihomotopies with fixed initial point. Hence ψ is
an [[x0]]-pov.-map and ψ−1 is a y0-pov. map.

Proof. Use the fact that dipaths and dihomotopies lift uniquely to X̃ and that
the image of a dipath γ in X̃ is a dipath in Y even when Φ is not continuous.
Since it is the lift along p of Π ◦ γ. �

Corollary 4.5. With notation as above, Y has the quotient d-stucture under Φ,
and Φ is an [x0]-pov map.

This holds even if Φ is not continuous - it is in fact just another way of stating
the lifting properties of dipaths and dihomotopies along Φ. Notice that lifting is
not enough, we actually use that the lifts are unique.
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5. Topology on the quotient - not the quotient topology

In Ex. 5.1, we give an example, where the congruence [γ] ≈ [µ] if γ(1) = µ(1),
which gives X̃x0/≈ equal toX via pov.maps, but the quotient topology on X̃x0/≈
is not the original topology on X. The reason morally is, that the topology on X̃
is constructed from properties of dipaths up to variation, and hence the quotient
topology will give X a topology where a set V is open if H−1(V ) is open for all
dihomotopies and γ−1(V ) is open for all dipaths - initiating in x0. But there may
very well be less open sets in X than specified by this requirement.

To define the topology on X̃ we use a basis for the topology on X and combine
this information with information about the dipaths and dihomotopies initiating
in the basepoint. With this topology, the projection X̃ → X is continuous, but
the topology on X may not be the quotient topology under Π (as it is in the
non-directed case), see Ex.5.1. In this section, a topology on quotients X̃/≈ is
defined in a similar way from the topology on X and the congruence relation.
We restrict the allowed congruences such that both Φ and p become dicoverings
and X̃ is the universal dicovering of X̃/≈ with the constructed topology.

Example 5.1. This example is [5, Ex.3.17], but used for a different purpose. Let
X = I×I with topology generated by the standard topology on IR2 and the subsets

Ia = {(x, ax)|0 < x < a}

for a > 0. Let ~P (X) be the set of segments of lines parametrized with in-
creasing coordinates; γ(t) = (γ1(t), kγ1(t)), k ≥ 0 and γ1(t) increasing. Or
γ(t) = (0, γ2(t)) and γ2(t) increasing. This is certainly locally relatively dicon-

nected wrt. (0, 0). A dihomotopy H : I × ~I → X with H(s, 0) = (0, 0) has
image contained in a line through (0, 0), since it has to be continuous, so it either
reparametrizes a dipath, or stretches/shrinks it along the line. Hence X̃(0,0) is a
wedge of the line segments (0, 0) to (1, a), and (0, 0) to (a, 1), where 0 ≤ a ≤ 1.
The topology on X is not the quotient topology: Let V = {(x, x)|1/4 < x < 1/2.
The Π−1(V ) is open in X̃(0,0), but V is not open in X.

Remark 5.2. If we take Grandis’ definition of dihomotopies, whereH : ~I×~I → X,
i.e., all H(s0, t) and H(s, t0) have to be dipaths. Then in the above example, with
the same d-structure, and even with the standard topology on IRn, the universal
dicovering space is again a wedge of lines, and again X does not have the quotient
topology.

Definition 5.3. Let X be a d-space and suppose U is a cover of X with open sets
satisfying properties 2.5 wrt. x0 ∈ X and suppose Π : X̃ → X is a surjection.

A congruence ≈ is locally controlled, if for any x ∈ X and open neighborhood
V of x, there is a U ∈ U such that

(1) x ∈ U ⊂ V
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(2) for any γ ∈ ~P (X,x0, x), and µ ∼U γ, if [µ] ≈ [µ̃], then there is a γ̃ ∈
~P (X,x0, x) such that µ̃ ∼U γ̃ and [γ̃] ≈ [γ], i.e., the diagram below can be
completed.

[µ] ∼U [γ]
≈ ≈
[µ̃] ∼U ∃[γ̃]

(3) For y ∈ U and α ∈ ~P (X,x0, y) there is γ ∈ ~P (X,x0, x) such that γ ∼U α

The neighborhood U is then controlled by x.

The following example provides a violation to condition 2) above:

Example 5.4. Let X be constructed as follows: Take a directed circle ~S1; choose
a point q ∈ ~S1; glue a directed interval ~I to q at the point 1 ∈ ~I; take a directed
square ~I × ~I and glue that to q at the point (0, 0).

The universal dicover wrt. 0 ∈ ~I is the dihomotopy classes represented by the
set of dipaths ~I ⋆ Lk ⋆ γ, where ~I is a dipath from 0 to 1 in ~I, Lk is k turns of the
circle and γx is a directed path from (0, 0) in the square to x ∈ ~I × ~I.

Now let µn be a line in ~I × ~I from (0, 0) to (1/2− 1/n, 1/2 + 1/n) for n ≥ 1.
Define a congruence relation:
~I ⋆ Ln ⋆ µn ≈ ~I ⋆ Ln+1 ⋆ µn generates equivalences by concatenation. The

result is a congruence relation, which is not locally controlled at (1/2, 1/2). In

any neighborhood U with (1/2, 1/2) ∈ U ∈ ~I × ~I, there will be some point (1/2−

1/n, 1/2+1/n) and thus a relation, ~I ⋆Ln⋆µn ≈ ~I ⋆Ln+1⋆µn. If ~I ⋆Ln⋆µn ∼U γ,

where γ(1) = (1/2, 1/2), then ~I⋆Ln+1⋆µn 6∼U γ, since they differ by the number of
turns of the loop. Since the congruence at (1/2, 1/2) is trivial, we cannot satisfy
condition 2).

Lemma 5.5. The [γ̃] provided in 2) is unique.

Proof. If ˜̃γ satisfies 2), then ˜̃γ ∼U µ̃ ∼U γ̃, and hence [˜̃γ] = [γ̃], since U ∈ U �

If a congruence is locally controlled, then the sets U ∈ U which are controlled
by a point still provide a basis, and we will tacitly replace U with this subset.

Remark 5.6. For the trivial relation, [γ] ≈ [µ] if γ(1) = µ(1), the only restriction
on U is the last condition: If U is controlled by x, then Π(⊔[γ]∈~π1(X,x0,x)U[γ]) = U ,
i.e., that all points in U are reachable by a dipath which is equivalent, ∼U , to a
dipath to x. In Ex. 5.1, that is not satisfied. This property is what will make
p : X̃/≈ → X continuous; when ≈ is the trivial relation this says, that X has the
quotient topology.
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Definition 5.7. Let ≈ be a locally controlled congruence on X̃. For U ∈ X
controlled by x and γ ∈ ~P (X,x0, x), let

U[[γ]] =
⋃

[γi]∈[[γ]]

Φ(U[γi]) = Φ(
⋃

[γi]∈[[γ]]

(U[γi]))

and let U[[]] be the set of all such sets.

Lemma 5.8. If ≈ is locally controlled, then U[[]] is a basis for a topology on

X̃/≈. If ≈ is locally controlled by both U1 and U2, and they are bases for the
same topology on X, then the bases U1

[[]] and U2
[[]] define the same topology on

X̃/≈.

Proof. U[[]] is a basis for a topology: Let [[α]] ∈ U 1
[[γ]]∩U

2
[[µ]]. Choose W ⊆ U 1∩U 2

locally controlled by α(1) ∈ W . Then we claim W[[α]] ⊂ U 1
[[γ]] ∩ U 2

[[µ]]. Let

[[β]] ∈ W[[α]], i.e., there is [αm] ∈ [[α]] and [βm] ∈ [[β]] with [αm] ∼W [βm].
Moreover, since U 1 is controlled by γ(1), by condition 3) there is a [γjm

] with
endpoint γ(1) s.t., [γjm

] ∼U [αm]. But then, since [αm] ∈ [[α]], by 2) there is
some γ̂ with γ̂ ∼U α and [γ̂] ≈ [γjm

]. On the other hand, [[α]] ∈ U 1
[[γ]], so there

is some γ̃ with γ̃ ∼U α and [γ̃] ∈ [[γ]]. By uniqueness, [γ̃] = [γ̂] and hence
[γjm

] ∈ [[γ]]. As W ⊂ U 1, we conclude [βm] ∼U1 [γjm
], so [[β]] ∈ U 1

[[γ]] and

similarly [[β]] ∈ U 2
[[µ]].

Suppose now U 1 ∈ U1 and [[α]] ∈ U 1
[[γ]], where γ(1) controls U 1. Choose

W ∈ U2 such that W ⊂ U 1 and W is controlled by α(1). Imitate the argument
above to obtain W[[α]] ⊆ U 1

[[γ]]. Hence the topologies U i
[[]] are the same.

�

Corollary 5.9. Suppose (X,U1) and (X,U2) are locally relatively diconnected
wrt. x0 and that U1 and U2 are both controlled by the trivial relation and induce
the same topology on X. Then they induce the same topology on X̃.

Lemma 5.10. With conditions as above, the neighborhoods U[[γ]] satisfy 2.5, i.e.,

with the basis U[[]], X̃/≈ is locally relatively diconnected wrt. [[x0]].

Proof. Suppose [[γ(t)]], [[µ(t)]] are dipaths in U[[η]] ⊂ X̃/≈ from [[γ(0)]] = [[µ(0)]]
to [[γ(1)]] = [[µ(1)]]. Then γ and µ are dipaths in U ⊂ X from γ(0) to γ(1).
These are dihomotopic. The dihomotopy lifts to X̃ and gives a dihomotopy H̃
with initial point H̃(s, 0) = [γ(0)] and H̃(0, t) = [γ(t), H̃(1, t) is the lift of µ with
initial point [γ(0)], and since [γ(0)] ≈ [µ(0)], we have H̃(1, t) ≈ [µ(t)]. Clearly
Φ◦ H̃ is a dihomotopy from [[γ(t)]] to [[µ(t)]] which has values in U[[η]], since each

point in H̃ can be written [γ ⋆ Hs(t)] where Hs is a dipath in U and [γ] ∼U [ηk]
for some ηk ∈ [[η]]. So [γ ⋆ Hs(t)] ∈ U[ηk].

Now by 3.6, all dipaths in X̃/≈ have the above form. �



DICOVERINGS AS QUOTIENTS 11

Lemma 5.11. If the cover U satisfies the conditions above and if furthermore,
(U,≤U) is a po-space, then all U[[γ]] are po-spaces as well.

Proof. Let [[α]], [[β]] ∈ U[[γ]] Suppose [[α]] 6≤ [[β]]. If α(1) 6= β(1), choose U 1

and U 2 disjoint with α(1) ∈ U 1 and β(1) ∈ U 2 and U i ⊂ U . Then clearly
U 1

[[α]] ∩ U
2
[[β]] = ∅.

If α(1) = β(1), we have [[α]] 6= [[β]]. Let [γi] ∈ [[γ]] with γ1 ∼U α and γ2 ∼U β.
Let Ū ⊂ U be dominated by α(1) = β(1). Suppose [[µ]] ∈ Ū[[α]] ∩ Ū[[β]]. Then
there is [αj] ∈ [[α]] with µ ∼U αj and βj ∈ [[β]] with µ ∼U βj. Hence αj ∼U βj,
a contradiction. So Ū[[α]] ∩ Ū[[β]] = ∅. �

Corollary 5.12. If (X,U) is an lpo-space and ≈ is locally controlled by U , then
X̃/≈ is an lpo-space.

Lemma 5.13. Let ≈ be locally controlled in U . Let U[[]] define the topology on

X̃/≈. Then, Φ : X̃ → X̃/≈ is continuous, so the quotient d-structure gives
continuous paths. With this topology and d-structure, Φ : X̃ → X̃/≈ is a dimap
and p is a dimap.

Proof. Φ−1(U[[γ]]) is open: Let [µ] ∈ Φ−1(U[[γ]]). Then there is a [γi] ≈ [γ] and
[η] ∈ U[γi] such that Φ([µ]) = Φ([η]), i.e., [[µ]] = [[η]]. Since U is controlled
by x, by cond. 2) there is a γj s.t., [γj ] ≈ [γi](≈ [γ]) and [µ] ∼U [γj]. Hence
[µ] ∈ U[γj ], so Φ−1(U[[γ]]) =

⋃
[γi]∈[[γ]](U[γi]). Hence Φ is continuous, so the quotient

construction of dipaths still gives a d-structure.
Let U ∈ U be controlled by x. Then

p−1(U) =
⋃

[γ]∈~π1(X,x0,x)

Φ(U[γ]) =
⋃

[[γ]]∈~π1(X,x0,x)

U[[γ]]

so p is continuous and the dipaths are as in the quotient construction, so it is a
d-map.

�

Corollary 5.14. If ≈ is a locally controlled congruence and X̃/≈ is topologized
as above, then Φ : X̃x0 → X̃/≈ and p : X̃/≈ → X are dicoverings.

Proof. This follows from Prop. 3.5 �

Corollary 5.15. If ≈ is a locally controlled congruence and Y = X̃/≈ is topolo-
gized as above, then Φ : X̃x0 → Y is the universal dicovering of Y wrt. y0 = [[x0]]
and the basis U[[]]

Proof. We only have to see, that the topology is right. Since a dipath initiating in
y0 projects to a dipath in X, which then again lifts uniquely to Y , all dipaths in Y
have the form [[α(t)]] for some dipath α in X. Now suppose [[β(t)]] ∼U[[γ]]

[[α(t)]].

Then in particular, α(1), β(1) ∈ U . Now there is [γi], [γj ] ∈ [[γ]] s.t. [α] ∼U [γj ]
and [β] ∼U [γi].
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Let H : I × ~I → Y realize the equivalence [[β(t)]] ∼U[[γ]]
[[α(t)]]. Then p ◦H is

a dihomotopy from α to β with endpoints in U , so [α] ∼U [β]. Hence [γi] ∼U [γj ],
which implies [γi] = [γj] and thus [α], [β] ∈ U[γi]. This arguments holds for all
dipaths Hs(t), so in fact Hs(1) ∈ Φ(U[γi]). We conclude that (U[[γ]])[[β]] = U[γi] =
U[β]. �

6. The quotient topology.

Ex. 5.1 shows that the topology τ on X may not be the quotient topology
under Π : X̃x0. But if we take the quotient topology τ ′ on X, then the identity
map (X, τ) → (X, τ ′) is an x0-pov bijection, and hence an x-pov bijection for all
x ∈ X.

Proposition 6.1. Let Π : X̃x0 → X be the universal dicovering of X and suppose

that Π is surjective. Let (X, τ, ~P (X)) be X with the original d-structure and

let (X, τ ′, ~P ′(X)) be X with the quotient d-structure. Then ~P (X) = ~P ′(X).

Moreover, H : I×~I → X with H(s, 0) constant, is a dihomotopy in (X, τ ′, ~P ′(X))

if and only if, it is a dihomotopy in (X, τ, ~P (X)).

Proof. Let γ ∈ ~P (X). Then, by Lem. 2.10, γ lifts uniquely to the dipath [γ(t)] ∈
~P (X̃). Now Π ◦ [γ(t)] is in ~P ′(X) and Π ◦ [γ(t)] = γ(t), so ~P (X) ⊂ ~P ′(X).

Now let µ ∈ ~P ′(X) and suppose µ = Π ◦ η1 ⋆ Π ◦ η2, where ηi ∈ ~P (X̃). Use

the lifting property to get ηi(t) = [µi(t)], where µi = Π ◦ ηi ∈ ~P (X). Hence
µ = Π ◦ [µ1(t)] ⋆ Π ◦ [µ2(t)]. Then µ1(1) = µ2(0) and by uniqueness of lifts,

µ = Π ◦ [µ1 ⋆ µ2] = µ1 ⋆ µ2 ∈ ~P (X). Similarly reparametrization does not give

any new dipaths in ~P ′(X), so ~P ′(X) = ~P (X).

Let H : I × ~I → X, Hs(0) constant; then by the above reasoning, all dipaths

Hs(t) are in ~P ′(X) if and only if they are in ~P (X). Moreover, if H is continuous

in τ , it lifts uniquely to H̃ : I × ~I → X̃, and H = Π ◦ H̃ is continuous in τ ′.
If H is continuous in τ ′, it is certainly continuous in τ , since τ ′ is the quotient
topology and Π is continuous as a map to (X, τ), so the quotient topology is finer
than τ . �

Corollary 6.2. Let Id : (X, τ) → (X, τ ′) be the identity map. Then I is an
x0-pov bijection.

Hence, for studying ~π1 taking the (perhaps finer) quotient topology on X is no
restriction.

7. Final remarks

Up to choice of topology, dicoverings p : Y → X are quotients of the universal
dicovering. But, since the topology on the universal dicovering is defined via
dipaths and dihomotopies of such, the base space X may not have the quotient
topology under Π : X̃x0 → X, so the quotient topology is not the right choice
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for Y = X̃/ ≈ either. If the congruence relation ≈ is locally controlled, we can
construct a topology on Y = X̃/≈ such that Y is locally relatively diconnected
with universal dicovering space X̃.

The other candidates for topologies - the quotient topology and the original
topology on Y support the same dipaths and dihomotopies of dipaths as the ones
constructed here, so they all give commutative diagrams

~P (X̃[x0], [[x0]], [γ])

Φ

))SSSSSSSSSSSSSSS

Π

��

~P (X̃/≈, [[x0]], [[γ]])

p
uukkkkkkkkkkkkkkk

~P (X,x0, γ(1))

~π1(X̃[x0], [[x0]], [γ])

Φ

))TTTTTTTTTTTTTTT

Π

��

~π1(X̃/≈, [[x0]], [[γ]])

p
ttjjjjjjjjjjjjjjj

~π1(X,x0, γ(1))

All the maps are surjections. By uniqueness of lifts, we have similar diagrams
with [x0], [[x0]], x0 replaced by [µ], [[µ]], µ(1).

If the space X is the geometric realization of a locally final 2-set, and we only
consider dicoverings Y → X induced by 2-maps, then the choice of topology on
Y and X̃ is given, X has the quotient topology and the topology constructed on
Y is also the quotient topology. We will study this special case in a subsequent
paper.

One may argue, that with this paper, we have provided an example, where
generalization from geometric realizations of 2 complexes and 2-maps to topo-
logical spaces with direction does not pay off. However, even in classical topology,
covering theory requires locally “nice” spaces, so it is to be expected that we find
this here as well.

In relativity theory, the problem of finding the right topology for a space time
has similarities to our problems her: Is the manifold topology the right one, if
the objects of study are the increasing broken geodesics, the worldlines. See for
instance [6, 3]. There is a metric involved and hence, ditopology cannot use the
results verbatim, but similarities should definitely be explored. The common
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point is, that the topology (and d-structure) on a space defines the (di)paths,
(and for our purposes, the dihomotopies) but not necessarily vice versa.
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