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ON ANISOTROPIC TRIEBEL-LIZORKIN TYPE SPACES, WITH

APPLICATIONS TO THE STUDY OF PSEUDO-DIFFERENTIAL

OPERATORS

LASSE BORUP AND MORTEN NIELSEN

Abstract. A construction of Triebel-Lizorkin type spaces associated with flexible de-
compositions of the frequency space Rd is considered. The class of admissible frequency
decompositions is generated by a one parameter group of (anisotropic) dilations on R

d

and a suitable decomposition function. The decomposition function governs the struc-
ture of the decomposition of the frequency space, and for a very particular choice of
decomposition function the spaces are reduced to classical (anisotropic) Triebel-Lizorkin
spaces. An explicit atomic decomposition of the Triebel-Lizorkin type spaces is provided,
and their interpolation properties are studied. As the main application, we consider
Hörmander type classes of pseudo-differential operators adapted to the anisotropy and
boundedness of such operators between corresponding Triebel-Lizorkin type spaces is
proved.

1. Introduction

Besov and Triebel-Lizorkin spaces are two closely related families of smoothness spaces
on Rd with important applications in approximation theory and harmonic analysis. The
spaces are built from a resolution of unity in frequency space localized on dyadic annuli
{2j−1 < |ξ| < 2j+1}. It follows from the definition that the spaces are isotropic and
consequently well suited for the study of boundedness properties of “isotropic” differential
operators such as powers of the Laplacian. However, there are many interesting differential
operators that are not isotropic in nature. For example, consider the heat operator L given
by

L(u) :=
∂u

∂t
−

d∑

j=1

∂2u

∂x2
j

,

where we differentiate once along the t-direction but twice along all other axes. For the
study of such operators, anisotropic versions of Besov and Triebel-Lizorkin spaces are
often more suitable. Anisotropic version of these spaces can be obtained by considering
a resolution of unity supported on “anisotropic” dyadic annuli given by some anisotropic
quasi-distance. Anisotropic Besov spaces were introduced in [2] and anisotropic Triebel-
Lizorkin spaces were considered in [37].

The purpose of this paper is to introduce a general construction of anisotropic smooth-
ness spaces of Triebel-Lizorkin type (henceforth abbr. as T-L type) defined on R

d and
study boundedness properties of associated classes of pseudo-differential operators. The
spaces correspond to flexible but structured decompositions of the frequency space R

d.
The decompositions are generated by a one-parameter group of dilations on Rd and a
suitable decomposition function. The group of dilations incorporates the anisotropy of
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the construction while the decomposition function governs the general splitting of the
frequency space. Classical isotropic and anisotropic T-L spaces are recovered by a par-
ticular choice of decomposition function. As the main application of the new spaces, we
consider mapping properties of pseudo-differential operators on the T-L type spaces. We
show that certain anisotropic Hörmander classes of symbols induce pseudo-differential
operators that are bounded on the T-L type spaces. Tight frames for L2(R

d) that gives a
stable decomposition of the T-L type spaces are also considered. It is possible to use the
frame to obtain sparse discrete representations of pseudo-differential operators.

Several authors have built function spaces by considering a resolution of unity in fre-
quency space. Feichtinger introduced the family of modulation spaces [14] which cor-
respond to a uniform decomposition of frequency space. Modulation and Besov spaces
are special cases of a very general construction of decomposition spaces introduced by
Feichtinger and Gröbner [15] and Feichtinger [12]. Gröbner [22] used the decomposition
space methods in [15] to define the so-called α-modulation spaces as a family of inter-
mediate spaces between modulation and Besov spaces. Group theoretical constructions
of function spaces, including smoothness spaces, have been studied by Feichtinger and
Gröchenig [13, 16, 17, 18, 23]. Frazier and Jawerth constructed frames (their so-called
ϕ-transform) for Besov and T-L spaces in [20, 19]. Their results were generalized recently
by Bownik and Ho to the anisotropic case [8, 7].

One important application of Besov and T-L spaces is to the study of partial differential
equation and to differential operators. Pseudo-differential operators (PDOs) on Besov
and T-L spaces have been studied by many authors. For example, the Besov case was
considered by Gibbons [21] and Bourdaud [6], while the T-L case was studied by Päivärinta
[27] and Bui [30]. The anisotropic case was considered by Yamazaki [39, 38]. PDOs have
also been studied on spaces of Besov type based on non-dyadic frequency splittings. In
particular, boundedness of such operators on modulation spaces has been considered by
many authors, see e.g. [10, 11, 24, 26, 29, 33, 34] and references herein. The authors
studied PDOs on α-modulation spaces in [3, 4].

The outline of the paper is as follows. In section 2 we consider a homogeneous type
structure on R

d with a quasi-distance induced by a one-parameter family of dilations.
The infinitesimal generator A of this group defines the anisotropic nature of the quasi-
distance. The balls associated with the quasi-distance from Section 2 are not (in general)
Euclidean balls and in Section 3 we introduce maximal functions compatible with the
quasi-distance. The most important tools to study T-L type spaces are vector-valued
estimates for the Hardy-Littlewood maximal function and for certain derived maximal
functions. We develop versions of the maximal functions compatible with the anisotropic
dilation and flexible splitting of the frequency space in Section 3. In Section 4 we introduce
a family of structured splittings of the frequency spaces obtained by applying a countable
family of affine transformations to a fixed compact set. We define a resolution of unity
compatible to the splitting and use it to define a family of T-L type spaces relative to
a suitable decomposition function in Section 5. It is proved that the spaces defined are
independent of the particular resolution of identity. In Section 6 we introduce a tight frame
for L2(R

d) compatible with the frequency cover considered in Section 4. The frame gives
an atomic decomposition of the T-L type spaces. Section 7 contains an application to the
study of pseudo-differential operators. It is shown that for (anisotropic) Hörmander classes
of symbols, the corresponding operators extend to bounded operators on suitable T-L type
spaces. We conclude the paper in Section 8 by considering several concrete examples of
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T-L type spaces and some pseudo-differential operators on such spaces. Appendix A
contains some of the more technical proofs.

Let us summarize some of the notation used throughout this paper. We let F(f)(ξ) :=
(2π)−d/2

∫
Rd f(x)e−ix·ξ dx, f ∈ L1(R

d), denote the Fourier transform. By F � G we
mean that there exist two constants 0 < C1 ≤ C2 < ∞, depending only on “allowable”
parameters, such that C1F ≤ G ≤ C2F . For two quasi-normed spaces A and B, A ↪→ B
means that A ⊂ B and there exists a constant C such that ‖f‖B ≤ C‖f‖A for all f ∈ A.

For α ∈ Nd
0 we let |α| = α1 + · · ·αd and define ∂α = ∂|α|

∂
α1
ξ1

···∂
αd
ξd

. For 0 < p, q ≤ ∞, and a

sequence f = {fj}j∈N of Lp(R
d) functions, we define the norm

‖f‖Lp(`q) :=
∥∥( ∑

j∈N

|fj|
q
)1/q∥∥

Lp(Rd)
.

Where there is no risk of ambiguity we will abuse notation and write ‖fk‖Lp(`q) instead of
‖{fk}k‖Lp(`q). Similarly, for f = {fj}j∈N, we define

‖f‖`q(Lp) :=
( ∑

j∈N

‖fj‖
q
Lp

)1/q
.

Finally, for ϕ ∈ S ′(Rd) and f ∈ S(Rd) we let

ϕ(D)f := F−1(ϕFf).

2. A homogeneous type structure on Rd

In this section we define a homogeneous type space on Rd associated with a quasi-
distance induced by a one-parameter group of dilations. We will use the quasi-distance
in Section 4 to generate compatible coverings of the frequency space Rd.

Let | · | denote the Euclidean norm on R
d induced by the inner product (·, ·). Suppose

A is a real d × d matrix with eigenvalues having positive real parts. For t > 0 define
the group of dilations δt : Rd → Rd by δt = exp(A ln t). The matrix A will be kept fixed
throughout the paper. Let ν = trace(A). The following properties are well-known (see
[32])

• δts = δtδs, for s, t > 0
• δ1 = Id (identity on Rd)
• δtξ is jointly continuous in t and ξ, and δtξ → 0 as t→ 0+

• |δt| := det(δt) = tν

• There exist positive constants c1, c2, α1 and α2 such that for ξ ∈ R
d,

(2.1) c1 min{tα1, tα2}|ξ| ≤ |δtξ| ≤ c2 max{tα1, tα2}|ξ|.

Let σ(A) denote the spectrum of A. Then we can choose α1 and α2 in (2.1) as any positive
numbers satisfying

(2.2) α1 < min
λ∈σ(A)

Re(λ) ≤ max
λ∈σ(A)

Re(λ) < α2,

which can be seen by putting A in Jordan canonical form. In the special case where A is
normal (and A can be diagonalized over C), (2.2) can be relaxed allowing equality. When
we use the symbols ν, α1, and α2 in the sequel, we refer to the constants above.

According to [32, Proposition 1.7] there exists a strictly positive symmetric matrix P
such that for all ξ ∈ Rd,

[δtξ]P := (Pδtξ, δtξ)
1/2

is a strictly increasing function of t.
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Definition 2.1. We define the function | · |A : Rd → [0,∞) by letting |0|A := 0, and for
ξ ∈ Rd\{0} we define |ξ|A to be the unique solution t to the equation [δ1/tξ]P = 1.

It is known that (see [32])

(1) | · |A ∈ C
∞(Rd\{0})

(2) There exists a constant c such that

|ξ + ζ|A ≤ c(|ξ|A + |ζ|A), ∀ξ, ζ ∈ R
d

(3) |δtξ|A = t|ξ|A, t > 0.
(4) We have for ξ ∈ Rd,

(2.3) c1 min{|ξ|α1
A , |ξ|

α2
A } ≤ |ξ| ≤ c2 max{|ξ|α1

A , |ξ|
α2
A }.

(5) We can coordinatize Rd by ρ and ω where ρ = |ξ|A and ω = δ−1
ρ ξ. Then the

volume element in Rd is
dξ = ρν−1dωdρ,

where dω is the induced C∞ measure on the ellipsoid S := {ω ∈ R
d : [ω]P = 1}.

Example 2.2. For A = diag(β1, β2, . . . , βd), βi > 0, we have δt = diag(tβ1 , tβ2 , . . . , tβd).
In this case, one can check that

|ξ|A �
d∑

j=1

|ξj |
1/βj , ξ ∈ R

d.

The special choice, Aiso = diag(1, 1, . . . , 1) corresponds to the usual isotropic dilation and
the corresponding distance | · |Aiso

is the Euclidean norm.

We need an extension of the quantity 〈ξ〉 := (1 + |ξ|2)1/2 to the non-isotropic setting.
Let Ã be the (d+ 1)× (d+ 1) matrix given by

[
1 0

0 A

]
,

and define Dt = exp(Ã ln t). For (ζ, ξ) ∈ R × Rd, we have Dt(ζ, ξ) = (tζ, δtξ). We let
|(ζ, ξ)|Ã be the unique solution t to [[D1/t(ζ, ξ)]]P = 1, where [[(ζ, ξ)]]P := (ζ2 + [ξ]2P )1/2.
Notice that |(1, 0)|Ã = 1 and |(0, ξ)|Ã = |ξ|A. For ξ ∈ Rd, we define the bracket 〈ξ〉A :=
|(1, ξ)|Ã. The following lemma lists some properties of 〈·〉A.

Lemma 2.3. There exist constants c, c′ such that for ξ, ζ ∈ R
d

a) 〈ξ〉A ≥ 1, 〈ξ〉A � (1 + |ξ|A),
b) 〈ξ + ζ〉A ≤ c(〈ξ〉A + 〈ζ〉A),
c) 〈δtξ〉A ≤ t〈ξ〉A, if t ≥ 1, and 〈δtξ〉A ≤ 2c t

a
〈ξ〉A, if 1 > t ≥ a > 0,

d) 〈ξ + ζ〉A ≤ c′〈ξ〉A〈ζ〉A,

e) |∂β〈ξ〉sA| ≤ Cβ〈ξ〉
s−α1|β|
A , for all β ∈ Nd

0.

Proof. We have 〈ξ〉A = |(1, ξ)|Ã ≥ |(1, 0)|Ã = 1. Moreover,

〈ξ〉A = |(1, ξ)|Ã ≤ c(|(1, 0)|Ã + |(0, ξ)|Ã) = c(1 + |ξ|A).

Clearly, |ξ|A ≤ 〈ξ〉A and 〈ξ〉A ≥ 1 so 2〈ξ〉A ≥ (1 + |ξ|A). For b) we have

〈ξ + ζ〉A := |(1, ξ + ζ)|Ã ≤ c(|(1, ξ)|Ã + |(0, ζ)|Ã) = c(〈ξ〉A + |ζ|A) ≤ c(〈ξ〉A + 〈ζ〉A),

for the constant c associated with the quasi-distance | · |Ã. Claim c), in the case a ≥ 1,
follows from

〈δtξ〉A = |(1, δtξ)|Ã ≤ |(t, δtξ)|Ã = |Dt(1, ξ)|Ã = t〈ξ〉A.
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For 0 < a < 1 we have

〈δtξ〉A ≤ c(1 + |δtξ|A) = ct(1/t+ |ξ|A) ≤ c
t

a
(1 + |ξ|A) ≤ 2c

t

a
〈ξ〉A.

To prove d) suppose u = 〈ξ〉A and v = 〈ζ〉A. Let c′ ≥ 1 be a constant such that
[[D1/c′η]]P ≤ 1/2 whenever [[η]]P = 1, η ∈ Rd+1 (the existence of c′ follows from (2.3)).
We have u, v ≥ 1 so

[[D1/(c′uv)(1, ξ + ζ)]]P ≤ [[D1/c′D1/u(1, ξ)]]P + [[D1/c′D1/v(0, ζ)]]P

≤ [[D1/c′D1/u(1, ξ)]]P + [[D1/c′D1/v(1, ζ)]]P ≤ 1.

It follows that |(1, ξ + ζ)|Ã ≤ c′uv so we obtain 〈ξ + ζ〉A ≤ c′〈ξ〉A〈ζ〉A. Finally, e) follows
from homogeneity of | · |Ã. �

Remark 2.4. Notice that Lemma 2.3 has the following implications for a function η on
R

d.

• |η(ξ)| ≤ C〈ξ〉−M
A =⇒ |η(ξ)| ≤ C ′(1 + |ξ|)−Mα1

• |η(ξ)| ≤ C(1 + |ξ|)−N =⇒ |η(ξ)| ≤ C ′〈ξ〉
−N/α2

A .
• Suppose |η(ξ)| ≤ C〈ξ〉−ν−ε

A for ξ ∈ Rd for some ε > 0. Then
∫

Rd

|η(ξ)|dξ ≤

∫ ∞

0

ρν−1

∫

S

〈δρω〉
−ν−ε
A dωdρ ≤ C

∫ ∞

0

ρν−1ρ−ν−εdρ <∞.

Finally, we define the balls BA(ξ, r) := {ζ ∈ Rd : |ξ − ζ|A < r}. It is easy to check that
|BA(ξ, r)| = rνωA

d , with ωA
d := |BA(0, 1)|, so (Rd, | · |A, dξ) is a space of homogeneous type

with homogeneous dimension ν.
The ball BA(ξ, r) = δrBA(0, 1) + ξ is convex. To see this, it suffices to verify that

BA(0, 1) is convex. Let ζ, η ∈ BA(0, 1) and put u = max{|ζ|A, |η|A}. For 0 ≤ θ ≤ 1, we
have

[δ1/u(θζ + (1− θ)η)]P ≤ θ[δ1/uζ]P + (1− θ)[δ1/uη]P ≤ θ + (1− θ),

so |θζ + (1− θ)η|A ≤ u < 1.
In the sequel, we let B := A> denote the transpose of A wrt. the standard inner product

on R
d. Since the eigenvalues of B have positive real parts (σ(B) = σ(A)) we can repeat

the above construction for the group δ>t = exp(B ln t), t > 0. We let | · |B and 〈·〉B denote
the quasi-distance and bracket corresponding to the group δ>t . Clearly, | · |B and 〈·〉B
satisfy the same type of estimates as | · |A and 〈·〉A. The balls associated with | · |B are
denoted BB(x, r). We use the convention that δt acts on the frequency space while δ>t
acts in direct space.

3. Some parabolic maximal function estimates

The most useful tools to study T-L spaces on Rd are different types of maximal func-
tions. In this section we state and prove some results on parabolic maximal functions
adapted to the non-isotropic distances | · |A and | · |B. Parabolic maximal functions are
special cases of the general theory for maximal functions developed in [31, Chapters I&II],
see also [9].

For 0 < r <∞, the parabolic maximal function of Hardy-Littlewood type is defined by

MB
r u(x) := sup

t>0

(
1

ωB
d · tν

∫

BB(x,t)

|u(y)|rdy

)1/r

, u ∈ Lr,loc(R
d),

with ωB
d := |BB(0, 1)|. We use the notation MBu(x) := MB

1 u(x) in the sequel.
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It is known (see [31, Chapters I&II]) that the following extremely useful vector-valued
Fefferman-Stein maximal inequality holds

(3.1) ‖{MB
r fj}‖Lp(`q) ≤ CB‖{fj}‖Lp(`q)

in this setting for r < q ≤ ∞ and r < p <∞, CB := CB(r, p, q).
The following lemma gives us a pointwise estimate by maximal functions for convo-

lutions with an approximation to the identity. For ϕ ∈ L1(R
d), we define ϕε(x) :=

|δε|
−1ϕ(δ>1/εx) = ε−νϕ(δ>1/εx) for ε > 0. Notice that ϕ̂ε(ξ) = ϕ̂(δεξ).

Lemma 3.1. Let k : [0,∞) → [0,∞) be a decreasing function, with K(x) = k(|x|B) an
integrable function. Suppose ϕ ∈ L1(R

d) satisfies |ϕ(x)| ≤ K(x). Then for f ∈ Lp(R
d),

1 ≤ p ≤ ∞,

(3.2) |f ∗ ϕε(x)| ≤ ‖K‖L1(Rd)M
Bf(x), ∀x ∈ R

d, ε > 0.

Proof. Let us first simplify the problem. Let τh be translation by h ∈ Rd. Notice that
τh(f ∗ ϕε) = (τhf) ∗ ϕε, and τhM

Bf = MB(τhf) so it suffices to verify (3.2) at x = 0.
Also, the problem is dilation invariant with respect to ϕ so we may take ε = 1. Hence, we
only need to estimate |f ∗ϕ(0)| ≤ (|f | ∗K)(0). Let us estimate (|f | ∗K)(0) in the simple

case where K is of the form
∑N

j=1 ajχBB(0,rj), with each aj a positive constant. Then since∑
aj|χBB(0,rj)| = ‖K‖L1 and (|f | ∗ χBB(0,rj))(0) ≤ |χBB(0,rj)|M

Bf(0), (3.2) follows in this
special case. For the general case, we notice that any non-negative, | · |B-symmetric and
| · |B-decreasing integrable function K can be approximated from below by such finite
sums. �

The following easy corollary will be used later to study multipliers on Lp(`q).

Corollary 3.2. Let kn : [0,∞) → [0,∞), n ∈ N, be a sequence of decreasing continuous
functions and suppose Kn(x) = kn(|x|B), x ∈ R

d, is a bounded sequence in L1(R
d).

Assume {ψn}n∈N is a sequence of L1(R
d)-functions with |ψn(x)| ≤ Kn(x). Then there

exists a constant C <∞ such that for {fn}n ∈ Lp(`q), 1 < p <∞, 1 < q ≤ ∞,

‖{ψn ∗ fn}‖Lp(`q) ≤ C sup
m
‖Km‖L1 · ‖{fn}‖Lp(`q).

Proof. We have the uniform pointwise estimate |ψn ∗ fn(x)| ≤ supm ‖Km‖L1M
Bfn(x).

Hence, by the Fefferman-Stein inequality,

‖{ψn ∗ fn}‖Lp(`q) ≤ sup
m
‖Km‖L1‖{M

Bfn}‖Lp(`q) ≤ C sup
m
‖Km‖L1 · ‖{fn}‖Lp(`q).

�

We introduce the following type of maximal function of Fefferman-Stein type as a tool
to prove Theorem 3.5 below. Let u(x) be a continuous function on R

d. We define

u∗(a,R;x) := sup
y∈Rd

〈y〉−a
B |u(x− δ−>R y)|,

with the compact notation δ−>R := (δ−1
R )>.

It is clear that u∗(a,R;x) is finite whenever u is bounded. However, for band-limited
functions we can obtain a much more interesting estimate of u∗(a,R;x) in terms of the
parabolic maximal function. The following result adapted to our setup from the isotropic
setting in [35, Theorem 1.3.1]. A detailed proof can be found in Appendix A.
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Proposition 3.3. Suppose r, R > 0. Then there exist a constant C := C(R, r) such that
for any function u(x) on Rd with supp(û) ⊂ BA(0, R), we have

(3.3) u∗(ν/r,R;x) ≤ CMB
r u(x), ∀x ∈ R

d.

Proposition 3.3 is even more useful when it is combined with the Fefferman-Stein max-
imal inequality. We have the following corollary, where for Ω = {Ωn} a sequence of
compact subsets of R

d, we let

LΩ
p (`q) := {{fn}n∈N ∈ Lp(`q) | supp(f̂n) ⊆ Ωn, ∀n}.

Corollary 3.4. Suppose 0 < p <∞ and 0 < q ≤ ∞, and let Ω = {TkC}k∈N be a sequence
of compact subsets of Rd generated by a family {Tk = δtk · +ξk}k∈N of invertible affine
transformations on R

d, with C a fixed compact subset of R
d. If 0 < r < min(p, q), then

there exists a constant K such that

(3.4)

∥∥∥∥
{

sup
z∈Rd

〈δ>tkz〉
−ν/r
B |fk(· − z)|

}∥∥∥∥
Lp(`q)

≤ K‖{fk}‖Lp(`q),

for all f ∈ LΩ
p (`q), where f = {fk}k∈N.

Proof. Replacing fk(x) by e−ix·ξkfk(x), we may assume that

supp(f̂k) ⊆ δtkC ⊆ δtkBA(0, R) = BA(0, tkR)

for some fixed R <∞. By Proposition 3.3,

sup
z∈Rd

〈δ>Rtk
z〉

−ν/r
A |fk(· − z)| ≤ CMB

r (fk),

and since 〈δ>Rtk
z〉B ≤ CR〈δtkz〉B for all z ∈ Rd and R > 0,

sup
z∈Rd

〈δ>tkz〉
−ν/r
B |fk(· − z)| ≤ CRν/rMB

r (fk).

Hence,
∥∥∥∥
{

sup
z∈Rd

〈δ>tkz〉
−ν/r
B |fk(· − z)|

}∥∥∥∥
Lp(`q)

≤ C ′‖{MB
r fk}‖Lp(`q).

We conclude using the Fefferman-Stein maximal inequality,
∥∥∥∥
{

sup
z∈Rd

〈δ>tkz〉
−ν/r
B |fk(· − z)|

}∥∥∥∥
Lp(`q)

≤ C ′‖MB
r fk‖Lp(`q) ≤ K‖{fk}‖Lp(`q).

�

We conclude this section by the following theorem on multipliers for vector-valued
band-limited functions. The result is inspired by [35, Theorem 1.6.3], and we will use it
in Section 5 to define T-L type spaces. For s ∈ R we let

‖f‖Hs
2

:=

(∫
|F−1f(x)|2〈x〉2s

B dx

)1/2

denote the (anisotropic) Sobolev space norm. Notice that for f ∈ H s
2 , 0 < ε0 ≤ t < ∞,

and ξk ∈ Rd, we have ‖f(δt ·+ξk)‖Hs
2
≤ Cts−ν/2‖f‖Hs

2
<∞ with C depending only on ε0.



ON ANISOTROPIC TRIEBEL-LIZORKIN TYPE SPACES 8

Theorem 3.5. Suppose 0 < p < ∞ and 0 < q ≤ ∞. Let Ω = {TkC}k∈N be a sequence
of compact subsets of Rd generated by a family {Tk = δtk · +ξk}k∈N of invertible affine
transformations, with C a fixed compact subset of Rd. Assume {ψj}j∈N is a sequence of
functions satisfying ψj ∈ Hs

2 for some s > ν
2

+ ν
min(p,q)

. Then there exists a constant

C <∞ such that

‖{ψk(D)fk}‖Lp(`q) ≤ C sup
j
‖ψj(Tj ·)‖Hs

2
· ‖{fk}‖Lp(`q)

for all {fk}k∈N ∈ L
Ω
p (`q).

Proof of Theorem 3.5. The proof relies on Corollary 3.4. In fact, since

|ψk(D)fk(x)| ≤ sup
z∈Rd

|ψk(D)fk(x− z)|

〈δ>tkz〉
ν
r

B

pointwise a.e., the theorem follows by Corollary 3.4 if we can show that

(3.5) sup
z∈Rd

|ψk(D)fk(x− z)|

〈δ>tkz〉
ν
r

B

≤ C sup
z∈Rd

|fk(x− z)|

〈δ>tkz〉
ν
r

B

· ‖ψk(Tk·)‖Hs
2

is valid a.e., when s > ν
2

+ ν
r
.

It can be verified that ψ̌k ∈ L1, with ψ̌k the inverse Fourier transform of ψk. Thus
ψk(D)fk can be rewritten as a convolution ψ̌k ∗ fk (up to a constant). In particular,

|ψk(D)fk(x− z)| ≤ C

∫

Rd

|ψ̌k(x− z − y)| · |fk(y)| dy

≤ C sup
u∈Rd

|fk(u)|

〈δ>tk(x− u)〉
ν
r

B

∫

Rd

|ψ̌k(x− z − y)|〈δ>tk(x− y)〉
ν
r

B dy.(3.6)

Recall that 〈δ>tk(x − y)〉B ≤ c′〈δ>tk(x − z − y)〉B · 〈δ>tkz〉B (see Lemma 2.3). Using this in

(3.6) and dividing by 〈δ>tkz〉
ν
r

B gives

sup
z∈Rd

|ψk(D)fk(x− z)|

〈δ>tkz〉
ν
r

B

≤ C sup
z∈Rd

|fk(x− z)|

〈δ>tkz〉
ν
r

B

∫

Rd

|ψ̌k(y)|〈δ
>
tk
y〉

ν
r

B dy.

Finally, using |ψ̌k(y)| = |δtk ||(F
−1ψk(Tk·))(δ

>
tk
y)| and that s > ν

r
+ ν

2
we obtain

∫

Rd

|ψ̌k(y)|〈δ
>
tk
y〉

ν
r

B dy =

∫

Rd

|(F−1ψk(Tk·))(y)|〈y〉
ν
r

B dy

≤ C

[∫

Rd

|(F−1ψk(Tk·))(y)|
2〈y〉2s

B dy

] 1
2

= C‖ψk(Tk·)‖Hs
2
.

Thus, the inequality (3.5) holds true and the theorem follows by Corollary 3.4. �

4. Structured admissible coverings

The purpose of this section is to provide smooth resolutions of the identity on Rd which
will be used later in Section 5 to define T-L type smoothness spaces. By a resolution
of the identity we mean a countable collection of non-negative smooth functions {ϕk}k

on R
d with

∑
k ϕk = 1. Additionally, we also require some uniform control on each ϕk

that will be spelled out in Definition 4.8 below. The resolution of identity will induce
a certain splitting of the frequency space R

d that again will determine the properties
of the associated T-L type spaces. We therefore stride to construct the most flexible
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decompositions possible while retaining the uniform control. We begin by considering
structured coverings of Rd.

4.1. Admissible coverings and BAPUs. Here we study admissible coverings of Rd,
which we will consider as the frequency domain. The coverings will be used to introduce
suitable partitions of unity on Rd.

Definition 4.1. A setQ := {Qi}i∈N of measurable subsetsQi ⊂ Rd is called an admissible
covering if Rd = ∪i∈NQi and there exists n0 <∞ such that #{j ∈ N : Qi ∩Qj 6= ∅} ≤ n0

for all i ∈ N.

Let us introduce some notation needed to study properties of admissible coverings.
Given an admissible covering {Qi}i∈N of Rd and a subset J ⊂ N, we define

J̃ := {i ∈ N : ∃j ∈ J s.t. Qi ∩Qj 6= ∅}.

Furthermore, let J̃ (0) := J , and define inductively J̃ (k+1) := ˜̃J (k), k ≥ 0. We write

ĩ(k) := {̃i}
(k)

and ĩ := {̃i} for a singleton set. Notice that ĩ := {j ∈ N : Qi ∩ Qj 6= ∅}.
Finally, we denote

Q̃i

(k)
:=

⋃

j∈ĩ(k)

Qj.

Definition 4.2. Let Q = {Qi}i∈N and P = {Pj}j∈N be two admissible coverings of R
d.

Q is called subordinate to P if for every i ∈ N there exists j ∈ N such that Qi ⊆ Pj. Q
is called almost subordinate to P (written Q ≤ P) if there exists k ∈ N such that Q is

subordinate to {P̃j

(k)
}j∈N. If Q ≤ P and P ≤ Q the two coverings are called equivalent

and we write Q ∼ P.

In the generality we will consider below, there is a simplified definition of equivalence
for admissible coverings proved in [15].

Theorem 4.3 ([15]). Let Q = {Qi}i∈N and P = {Pj}j∈N be two admissible coverings
of Rd both consisting of open arcwise connected subsets. Then Q ∼ P if and only if
supi∈N

#J(i) <∞ and supj∈N
#I(j) <∞, where

J(i) := {j ∈ N |Qi ∩ Pj 6= ∅}, I(j) := {i ∈ N |Pj ∩Qi 6= ∅}.

We now turn to the construction of the admissible coverings of R
d. To keep the con-

struction geometrically simple and thus useful, we follow [15] and use a suitable collection
of | · |A-balls to cover R

d. Another simplification is that we choose the radius of a given
ball in the cover as a suitable function of its center. The following class of regulation
functions will be useful for that purpose.

Definition 4.4. A function h : Rd → [ε0,∞) for ε0 > 0 is called moderate if there exist
constants ρ0, R0 such that |ξ − ζ|A ≤ ρ0h(ξ) implies R−1

0 ≤ h(ζ)/h(ξ) ≤ R0.

The following lemma proved in [12] provides an abundance of moderate functions.

Lemma 4.5. Let h : R
d → [1,∞) be a weakly subadditive function, i.e., there exist a

constant C1 such that h(ξ + ζ) ≤ C1(h(ξ) + h(ζ)), for all ξ, ζ ∈ Rd. Assume furthermore
that h satisfies the growth condition

(4.1) h(ξ) ≤ C〈ξ〉A, for all ξ ∈ R
d.
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Then there exists ρ0, R0 > 0 such that h is moderate. In particular, suppose s : [0,∞) →
[1,∞) is a non-decreasing function satisfying s(2t) ≤ Kss(t) and s(t) ≤ Cs(1 + t) for all
t ≥ 0, then h(ξ) := s(|ξ|A) is weakly subadditive (and thus moderate).

The following is a typical example of a moderate function which we will return to several
times in the sequel.

Example 4.6. Let 0 ≤ α ≤ 1. Then s(t) = (1 + t)α is subadditive and consequently,

h(ξ) := (1 + |ξ|A)α � 〈ξ〉αA,

is moderate.

Given a moderate function h, it is possible to construct a nice admissible covering by
balls. The details are laid out in the following lemma.

Lemma 4.7. Given a moderate function h with constants R, ρ0 > 0, then

a) there exists a countable admissible covering C = {BA(ξj, ρh(ξj))}j∈N for ρ < ρ0/2,
and there exists a constant 0 < ρ′ < ρ such that the members of {BA

(
ξj, ρ

′h(ξj)
)
}j∈N

are pairwise disjoint.
b) Any two admissible coverings of the type considered in a) are equivalent in the

sense of Definition 4.2.

Proof. We only give an outline of the proof. The covering can be constructed as follows.

• Put ρ′ = ρ/(1 + 2cR2), with c the constant from the quasi-triangle inequality for
| · |A and R the constant associated with h. Pick a maximal pairwise disjoint
collection {BA

(
ξj, ρ

′h(ξj)
)
}j∈N.

• Using the quasi-triangle inequality, h is moderate, and the fact that

|BA

(
ξj , ρ

′h(ξj)
)
| � h(ξj)

ν

we can verify that C = {BA(ξj, ρh(ξj))}j∈N is an admissible covering of open convex
subsets of R

d.

That any two such coverings are equivalent can be verified by calling on Theorem 4.3.
Let {BA

(
ξj , ρ1h(ξj)

)
}j∈N and {BA

(
ζi, ρ2h(ζi)

)
}i∈N be two such coverings. Suppose

BA

(
ξj0, ρ1h(ξj0)

)
∩ BA

(
ζi0 , ρ2h(ζi0)) 6= ∅.

Using the moderation of h one verifies that h(ξj0) ≤ R2h(ζi0) and that

BA

(
ξj0 , ρ1h(ξj0)

)
⊆ BA

(
ζi0 , (1 + cR2)ρ2h(ζi0)).

Using that the balls in {BA

(
ξj, ρ

′h(ξj)
)
}j∈N are pairwise disjoint together with the estimate

|BA

(
ξj0, ρ

′h(ξj0)
)
| � h(ξj0)

ν � h(ζi0)
ν

one easily verifies that the “finite overlap” conditions of Theorem 4.3 are satisfied. �

Notice that the covering C from Lemma 4.7 is generated by a family of invertible affine
transformations applied to BA(0, ρ) in the sense that

BA(ξj, ρh(ξj)) = TjBA(0, ρ), Tj := δh(ξj) ·+ξj.

One can verify that {TkBA(0, 2ρ)}k is an admissible covering using that the balls in
{BA

(
ξj, ρ

′h(ξj)
)
}j∈N are pairwise disjoint. We call such a covering a structured admis-

sible covering. An important property of the covering we will need is that whenever
BA

(
ξj , 2ρh(ξj)

)
∩ BA

(
ξk, 2ρh(ξk)

)
6= ∅ then h(ξj) � h(ξk) uniformly in j and k which
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follows from the fact that h is moderate and 2ρ < ρ0. We deduce that there exists a
uniform constant K such that

(4.2) ‖δ−1
h(ξk)δh(ξj)‖`2(Rd2

) ≤ K whenever BA

(
ξj, 2ρh(ξj)

)
∩ BA

(
ξk, 2ρh(ξk)

)
6= ∅.

We are not really interested in the admissible covering C itself, but we will use it as a
tool to generate partitions of unity that can be used to define T-L type spaces compatible
with the covering C. For technical reasons we require the partition of unity to satisfy the
following.

Definition 4.8. Given an admissible covering C := {TkBA(0, ρ)}k∈N of Rd from Lemma
4.7. A corresponding bounded admissible partition of unity (BAPU) is a family of func-
tions {ϕk}k∈N satisfying

(a) supp(ϕk) ⊂ TkBA(0, 2ρ), k ∈ N,
(b)

∑
k∈N

ϕk(ξ) = 1, ∀ξ ∈ Rd,
(c) supk∈N

‖ϕk(Tk·)‖Hs
2
<∞, ∀s > 0.

A BAPU can easily be constructed for C. Pick Φ ∈ C∞(Rd) nonnegative with supp(Φ) ⊂
BA(0, 2ρ) and Φ(ξ) = 1 for ξ ∈ BA(0, ρ). Then we claim that

(4.3) ϕj(ξ) :=
Φ(T−1

j ξ)∑
k∈N

Φ(T−1
k ξ)

defines an associated BAPU. Only property (c) in Definition 4.8 is not obvious. There
exists a constant K < ∞ such that 1 ≤

∑
k Φ(T−1

k ξ) ≤ K since C is a covering and
{TkBA(0, 2ρ)}k is admissible. In fact,

∑
k Φ(T−1

k ξ) =
∑

k∈Fξ
Φ(T−1

k ξ) with Fξ := {k ∈

N : ξ ∈ TkBA(0, 2ρ)}, where the cardinality if Fξ is uniformly bounded in ξ. Let µj(ξ) =
ϕj(Tjξ), and put tj := h(ξj). We have

µj(ξ) =
Φ(ξ)∑

k Φ(T−1
k Tjξ)

=
Φ(ξ)∑

k Φ(δt−1
k
δtjξ + δt−1

k
ξj − δt−1

k
ξk)

.

We consider ∂αµk. For f(ξ) := Φ(δt−1
k
δtjξ + δt−1

k
ξj − δt−1

k
ξk), the chain rule shows that

∂ηf =
∑

β:|β|=|η| pβ∂
βΦ, where pβ are monomials of degree |η| in the entries of δt−1

k
δtj . It

follows from the estimate (4.2) that

(4.4) |∂βµj(ξ)| ≤ CβK
|β|χBA(0,2ρ)(ξ), β ∈ N

d
0,

with Cβ a constant that does not depend on j. Thus, we have for any N ∈ N,

|F−1µk(x)| ≤ C(1 + |x|)−N

∣∣∣∣
∑

|β|≤N

xβF−1µk(x)

∣∣∣∣ ≤ C(1 + |x|)−N
∑

|β|≤N

‖∂β
ξ µk‖L1

≤ CN(1 + |x|)−N ≤ C ′
N〈x〉

−Nα1
B ,(4.5)

and (c) follows at once from this estimate.
In a similar fashion,

(4.6) ψj(ξ) :=
Φ(T−1

j ξ)√∑
k∈N

Φ(T−1
k ξ)2

defines a “squareroot” of the BAPU, where {ψj} satisfies (c) of Definition 4.8.
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For a BAPU {ϕk}k∈N associated with the admissible covering {TkBA(0, 2ρ)}k∈N we
define

ϕ∗k :=
∑

j∈k̃

ϕj and ϕK∗
k :=

∑

j∈k̃(K)

ϕj.

We will use extensively that ϕkϕ
∗
k = ϕk.

Now we have a partition of unity associated with fairly general decompositions of Rd

and suitable for the definition of T-L spaces. Before we consider the definition of the
spaces, we need a class of weight functions.

Definition 4.9. LetQ = {Qk}k∈N be an admissible covering. A function w : R
d → (0,∞)

is called Q-moderate if there exists C > 0 such that w(ξ) ≤ Cw(ζ) for all ξ, ζ ∈ Qk and all
k ∈ N. A strictly positive Q-moderate weight (derived from w) is a sequence vk = w(ξk),
k ∈ N, with ξk ∈ Qk, and w a Q-moderate function.

Example 4.10. For a covering Q generated by a moderate function h, w = hs, s ∈ R
d,

is a Q-moderate function.

Remark 4.11. For any two coverings Q and P of the type considered in Lemma 4.7, it
is easy to check that a function w is Q-moderate if and only if it is P-moderate. In the
context of such coverings, we will just use the term moderate function/weight.

5. Triebel-Lizorkin type spaces

We can now define our class of T-L type spaces. The spaces will be defined in terms of
a moderate function h and a moderate weight w. The multiplier results of Section 3 will
be called on to show that the spaces are well-defined and independent of the particular
partition of unity. For the sake of comparison, we also introduce associated modulation
spaces.

Definition 5.1. Given a moderate function h, let Q be an admissible covering generated
by h of the type considered in Lemma 4.7, and suppose T = {Tk}k∈N, Tk = δh(ξk) ·+ξk, is
the induced family of invertible affine transformations. Let {ϕk}k∈N be a corresponding
BAPU, and assume w is a moderate function.

• For s ∈ R, 0 < p <∞, and 0 < q ≤ ∞ we let F s
p,q(h,w) denote the set of functions

f ∈ S ′(Rd) satisfying

‖f‖F s
p,q(h,w) := ‖w(ξk)

sϕk(D)f‖Lp(`q) <∞.

• For s ∈ R, and 0 < p, q ≤ ∞ we let M s
p,q(h,w) denote the set of functions

f ∈ S ′(Rd) satisfying

‖f‖Ms
p,q(h,w) := ‖w(ξk)

sϕk(D)f‖`p(Lp) <∞.

Remark 5.2. It is easy to see that ‖ · ‖F s
p,q(h,w) is a quasi-norm (a norm if p, q ≥ 1).

Furthermore, using similar arguments as in the proof of Theorem 2.3.3 in [35] one can
show that the Schwartz space S(Rd) is dense in F s

p,q(h,w), provided q < ∞. The same
holds true for M s

p,q(h,w), provided p, q <∞.

Several specific examples of T-L type space will be considered in Section 8. We now
focus on the properties of F s

p,q(h,w). Notice that since T is constructed from a moderate
function h, we have

(5.1) ‖f‖F s
p,q(h,w) � ‖{w(ξk)

sϕ∗nk (D)f}k‖Lp(`q)
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for any n ∈ N with equivalence depending only on h and n.
To make sure that F s

p,q(h,w) is well defined we need to check that the definition is
independent of BAPU.

Proposition 5.3. The space F s
p,q(h,w) from Definition 5.1 depends only on h and w up

to equivalence of norms.

Proof. Let {ϕk}k and {ψk}k be two BAPU’s associated with two admissible coverings Q
and P of the type considered in Lemma 4.7. Suppose Q and P are generated by the affine
transformations {Tk = δh(ξk) · +ξk}k and {Uk = δh(ζj) · +ζj}j, respectively. Since Q and
P are equivalent, there exists a function I : N → N and constants K,m0 ∈ N such that
#I−1(j) ≤ m0 for all j ∈ N and ψk = ψkϕ

∗K
I(k), for k ∈ N. This nontrivial claim can be

deduced from Lemma 2.9 in [15]. The weight w is moderate so we have w(ζk) � w(ξI(k))
uniformly in k. Thus, using Theorem 3.5 and (5.1) we get

‖w(ζk)
sψk(D)f‖Lp(`q) = ‖w(ζk)

sψk(D)ϕK∗
I(k)(D)f‖Lp(`q)

≤ C‖w(ξI(k))
sϕK∗

I(k)(D)f‖Lp(`q)

≤ C‖w(ξI(k))
sϕK∗

I(k)(D)f‖Lp(`q)

≤ C ′‖w(ξk)
sϕk(D)f‖Lp(`q),

where C ′ depends on the value of m0. The converse estimate is obtained by the same
arguments, interchanging the role of {ϕk}k and {ψk}k. �

5.1. Some Properties of F s
p,q(h,w). Here we present some additional results about the

T-L type spaces, which are of some interest in their own right.

5.1.1. An equivalent representation and dual spaces. The following proposition gives a
useful equivalent definition of F s

p,q(h,w) whenever 1 < p, q < ∞. We will use the repre-
sentation below to characterize the dual space of F s

p,q(h,w) in certain cases.

Proposition 5.4. Suppose {ϕk}k∈N is a BAPU corresponding to T , with a sequence of
L1-majorants {Kk}k∈N as given in Corollary 3.2, satisfying supk ‖Kk‖L1 <∞. Fix s ∈ R

and 1 < p, q <∞. For f ∈ S ′(Rd) let

E(f) =

{
{fk}k ⊂ Lp : f =

∑

k

ϕk(D)fk in S ′(Rd)

}
.

Then

(5.2) F s
p,q(h,w) = {f ∈ S ′(Rd) : ∃{fk} ∈ E(f) s.t. ‖w(ξk)

sfk‖Lp(`q) <∞}.

Moreover,

(5.3) ‖f‖F s
p,q(h,w) � inf

{fk}∈E(f)
‖w(ξk)

sfk‖Lp(`q),

with the convention inf∅ = ∞.

Proof. If f ∈ F s
p,q(h,w), then f belongs to the class on the RHS of (5.2), with fk =

ϕ∗k(D)f , and the lower bound in (5.3) holds.
Conversely, suppose f =

∑
k ϕk(D)fk is in the class given by the RHS of (5.2). Then

two applications of Corollary 3.2 yields

‖f‖F s
p,q(h,w) = ‖w(ξk)

sϕk(D)
∑

k′∈k∗

ϕk′(D)fk‖Lp(`q) ≤ c‖w(ξk)
sfk‖Lp(`q),

where k∗ = {k′ ∈ N : supp(ϕk) ∩ supp(ϕk′) 6= ∅}. �
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Remark 5.5. Notice that if the BAPU satisfies |∂β(ϕk(Tkξ))| ≤ CβχQ(ξ) for some fixed
compact set Q and for all |β| ≤ d + 1, then the majorant condition in Proposition 5.4 is
satisfied. In particular, the BAPU defined by (4.3) is admissible.

The characterization of F s
p,q(h,w) in Proposition 5.4 can be used to obtain a description

of its (topological) dual space.

Proposition 5.6. If s ∈ R and 1 < p, q <∞, we have

(F s
p,q(h,w))′ = F−s

p′,q′(h,w),

where 1 = 1/p+ 1/p′ and 1 = 1/q + 1/q′.

We omit the proof of this result, since it is exactly the same as for the classical T-L
spaces (see e.g. [35, §2.11.2]).

5.1.2. Embedding results. As for classical T-L spaces, we can state some embedding results
for the spaces F s

p,q(h,w).

Proposition 5.7. Let 0 < p <∞, s ∈ R. Then

(i)

F s
p,q0

(h,w) ↪→ F s
p,q1

(h,w) for 0 < q0 ≤ q1 ≤ ∞.

(ii)

M s
p,min{p,q}(h,w) ↪→ F s

p,q(h,w) ↪→M s
p,max{p,q}(h,w) for 0 < q ≤ ∞.

(iii) Suppose the admissible covering used to define F s
p,q0

(h,w) is generated by T =
{Tk = δh(ξk) · +ξk}k. Let 0 < q1 ≤ ∞ and suppose s0 is a constant such that
{w(ξk)

−s0}k ∈ `q1. Then

F s+s0
p,q0

(h,w) ↪→ F s
p,q1

(h,w)

for all 0 < q0 ≤ ∞.

Proof. The first embedding (i) is a simple consequence of the monotonicity of the `q-spaces.
The estimate (ii) follows directly from the general estimates (see, e.g., [35, §2.3.2])

‖gk‖`p(Lp) ≤ ‖gk‖Lp(`q) ≤ ‖gk‖`q(Lp), 0 < q ≤ p <∞,

and

‖gk‖`q(Lp) ≤ ‖gk‖Lp(`q) ≤ ‖gk‖`p(Lp), 0 < p < q ≤ ∞.

The final embedding follows from (i) and the elementary estimate
(∑

k

w(ξk)
q1s|bk|

q1

)1/q1

≤
[
sup
m
w(ξm)s+s0 |bm|

](∑

k

w(ξk)
−s0q1

)1/q1

.

�

Remark 5.8. We notice that a set of affine transformations T = {Tk = δh(ξk) · +ξk}k

generated by a moderate function h using Lemma 4.7 satisfies

0 < inf
m6=n

|ξm − ξn|A ≤ C inf
m6=n

|ξm − ξn|.

It follows that for weights w satisfying w(ξ) ≥ C〈ξ〉κA for some κ > 0, ξ ∈ Rd, there exists
a constant β := β(T ) such that {w(ξk)

−β}k ∈ `1.
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5.1.3. Interpolation. We conclude this section by describing one result about complex
interpolation of the family F s

p,q(h,w). We note that the interpolation results are conse-
quences of the general theory developed by Triebel in [37].

Proposition 5.9. Suppose −∞ < s0, s1 <∞, 1 < p1, p1, q0, q1 <∞, 0 < θ < 1. Then

(5.4)
[
F s0

p0,q0
(h,w), F s1

p1,q1
(h,w)

]
θ

= F s
p,q(h,w),

where s = (1− θ)s1 + θs1, 1/p = (1− θ)/p0 + θ/p1, and 1/q = (1− θ)/q0 + θ/q1.

Proof. Let {ϕk}k∈N be the resolution of the identity given by (4.3). Let `q,w denote the
weighted sequence space consisting of sequences {ck}k∈N satisfying

∑
k∈N

(w(ξk)ck)
q <∞.

We define the bounded mapping S : F s
p,q(h,w) → Lp(`q,ws) by

S(f) = {f ∗ (F−1ϕk)}k∈N,

and a corresponding (retract) mapping R : Lp(`q,ws) → F s
p,q(h,w) by

R({fk}) =
∑

k∈N

(F−1ϕ∗k) ∗ fk, [in S ′(Rd)].

The boundedness of R follows from Corollary 3.2. It is now straightforward to verify that
RS = IdF s

p,q(h,w). We now interpolate S and R on the couples {F s0
p0,q0

(h,w), F s1
p0,q0

(h,w)}
and {Lp0(`q0,ws0 ), Lp1(`q1,ws1 )}. We have,

[`q0,ws0 , `q1,ws1 ]θ = `q,ws,

which can be deduced from [37, Theorem 1.18.1]. Using this result we apply [37, Theo-
rem 1.18.4] to obtain

[Lp0(`q0,ws0 ), Lp1(`q1,ws1 )]θ = Lp(`q,ws).

The boundedness of R and S shows that
[
F s0

p0,q0
(h,w), F s1

p0,q0
(h,w)

]
θ

is isomorphic to the
closed subspace F s

p,q(h,w) of Lp(`q,ws). �

6. Characterization by Tight Frames

Here we present an easy construction of a tight frame for L2(R
d) that gives a stable

discrete representation and characterization of the T-L type spaces. It is useful to have
discrete expansions of the T-L type spaces for several reasons. We obtain an explicit
method to estimate the T-L type norm of a function f simply by calculating the frame
coefficients of f . The characterization also provides a one to one correspondence between
smoothness of a function and sparseness of its frame coefficients, something that is very
useful for approximation purposes. Another important application of discrete decomposi-
tions is to simplify the analysis of operators acting on it. For example, we can discretize
the pseudo-differential operators studied in Section 7 below using the tight frame.

Let us now define the tight frame. Consider the modified BAPU {ψk}k∈N given by
(4.6) associated with the admissible covering C = {TkBA(0, ρ)}k∈N generated by {Tk =
δh(ξk) · +ξk}k∈N. Suppose Ka is a cube in Rd (aligned with the coordinate axes) with
side-length 2a satisfying BA(0, 2ρ) ⊆ Ka. Put tk = h(ξk). Then we define

ek,n(ξ) := (2a)−
d
2 t

−ν/2
k χKa

(T−1
k ξ)ei π

a
n·T−1

k
ξ, n ∈ Z

d, k ∈ N.

and

(6.1) η̂k,n := ψkek,n n ∈ Z
d, k ∈ N.
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It is straightforward to verify that {ηk,n}k,n is a tight frame for L2(R
d). We just have

to notice that {ek,n}n∈Zd is an orthonormal basis for L2(Tk(Ka)) and supp(ψk) ⊂ Tk(Ka)
which yields ∑

n∈Zd

|〈f, ηk,n〉|
2 =

∑

n∈Zd

|〈ψkf̂ , ek,n〉|
2 = ‖ψkf̂‖

2
L2
.

Moreover, since {ψ2
k}k∈N is a partition of unity,

∑

n∈Zd,k∈N

|〈f, ηk,n〉|
2 =

∑

k∈N

‖ψkf̂‖
2
L2

=

∫

Rd

∑

k∈N

ψ2
k(ξ)|f̂(ξ)|2 dξ = ‖f‖2

L2
.

We can also obtain an explicit representation of ηk,n in direct space. Put µ̂k(ξ) :=
ψk(Tkξ). Then

(6.2) ηk,n(x) = (2a)−
d
2 t

ν/2
k µT (π

a
n+ δ>tkx)e

ix·ξk .

By similar estimates as for the inequality (4.5), it can be verified that

|µk(x)| ≤ CN〈x〉
−N
B ,

for any N ∈ N, with CN independent of x ∈ Rd and k ∈ N.
We notice that ηk,n is obtained by translating, dilating, and modulating a unit-scale

element µk. More precisely, we translate by π
a
n, modulate by eix·ξk , and then dilate

by δ>tk . So, in some sense, ηk,n is a mix between a Gabor and a wavelet system. The
dilation and translation structure is a feature also found in a generic wavelet system
{|M |1/2ψ(M jx − k)}j,k associated with a dilation matrix M . Modulation is an integral
part of generic Gabor systems, {g(x−na)eibm·x}m,n and in (6.2) the features are combined
with dilation to form “mixed” atom.

Our next goal is to show that the frame expansion gives an atomic decomposition of the
spaces F s

p,q(h,w). By an atomic decomposition, we mean that the canonical coefficient
operator is bounded on F s

p,q(h,w) into a suitable coefficient space on which there is a
bounded reconstruction operator. To introduce a suitable sequence space, we first define
the point sets

(6.3) Q(k, n) = {y ∈ R
d : δ>tky +

π

a
n ∈ BB(0, 1)}.

It is easy to verify there exists L <∞ so that uniformly in x and k,
∑

n χQ(k,n)(x) ≤ L.
We can now prove that the canonical coefficient operator is bounded on F s

p,q(h,w).

Lemma 6.1. Let {Tk = δh(ξk) · +ξk}k∈N be a family of invertible affine transformations
based on a moderate function h. Suppose s ∈ R, 0 < p <∞, and 0 < q ≤ ∞. Then

‖Ss
q(f)‖Lp

≤ C‖f‖F s
p,q(h,w), f ∈ F s

p,q(h,w),

where

Ss
q(f) :=

(∑

k

∑

n∈Zd

(w(ξk)
s|〈f, ηk,n〉A||Tk|

1/2χQ(k,n))
q

)1/p

,

with Q(k, n) given in (6.3).

Proof. Take f ∈ F s
p,q(h,w). Notice that (see Equation (6.1))

|Tk|
1/2|〈f, ηk,n〉| = (2a)−d/2

∣∣(ψ̌k ∗ f)(
π

a
δ−>tk

n)
∣∣,
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where we let tk = h(ξk). Moreover, if Q(k, n)∩Q(k, n′) 6= ∅ and u ∈ Q(k, n), v ∈ Q(k, n′)
then |u− v|B ≤ Kt−1

k for some uniform constant K. Hence,

∑

n∈Zd

(|〈f, ηk,n〉||Tk|
1/2χQ(k,n)(x))

q ≤ C
∑

n∈Zd

( sup
y∈Q(k,n)

|(ψk(D)f)(y)|χQ(k,n)(x))
q

≤ C ′ sup
z∈BB(0,Kt−1

k
)

(
〈δ>tkz〉

−ν/r
B |(ψk(D)f)(x− z)|

)q
· 〈δ>tkz〉

νq/r
B

≤ C ′′
(

sup
z∈Rd

〈δ>tkz〉
−ν/r
B |(ψk(D)f)(x− z)|

)q
.

Recall that supp(ψk) ⊂ TkC, so by Corollary 3.4, Theorem 3.5, and the estimate above,

‖Ss
q(f)‖Lp

≤ C‖w(ξk)
sψk(D)f‖Lp(`q)

= C‖w(ξk)
sψk(D)ϕ∗k(D)f‖Lp(`q)

≤ C ′‖w(ξk)
sϕ∗k(D)f‖Lp(`q)

≤ C ′′‖f‖F s
p,q(h,w).

�

Remark 6.2. For 1 < p, q <∞ , the converse inequality ‖f‖F s
p,q(h,w) ≤ C‖Ss

q(f)‖Lp
can be

obtained by a standard duality argument,

‖f‖F s
p,q(h,w) = sup

g∈S(Rd):‖g‖
F
−s

p′,q′
(h,w)

≤1

|〈f, g〉| ≤ c′‖Ss
q(f)‖Lp

‖S−s
q′ (g)‖Lp′

, f ∈ S(Rd),

with 1/p+ 1/p′ = 1 and 1/q+ 1/q′ = 1, using the characterization of the dual space from
Proposition 5.6.

Inspired by Lemma 6.1, we define the sequence space f s
p,q := f s

p,q(h,w) for s ∈ R,
0 < p <∞, and 0 < q ≤ ∞ , as the set of sequences {sk,n}k∈N,n∈Zd ⊂ C satisfying

‖{sk,n}‖fs
p,q

:=

∥∥∥∥
{
w(ξk)

s|Tk|
1/2

(∑

n∈Zd

|sk,n|
qχQ(k,n)

)1/q
}

k

∥∥∥∥
Lp(`q)

<∞.

Lemma 6.1 provides us with a bounded coefficient operator C : F s
p,q(h,w) → f s

p,q given by

(6.4) Cf = {〈f, ηk,n〉}k∈N,n∈Zd.

Moreover, the fact that {ηk,n} is a tight frame shows that the most reasonable definition
of a reconstruction is given by

(6.5) R : {sk,n}k,n →
∑

k,n

sk,nηk,n.

Using Lemma A.1 we now verify that R : f s
p,q → F s

p,q(h,w) is also a bounded operator.

Lemma 6.3. Suppose s ∈ R, 0 < p <∞, and 0 < q ≤ ∞. Then for any finite sequence
{sk,n}k,n, we have ∥∥∥

∑

k,n

sk,nηk,n

∥∥∥
F s

p,q(h,w)
≤ C‖{sk,n}‖fs

p,q
.
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Proof. Let {ϕk}k∈N be a BAPU associated with F s
p,q(h,w). By (6.1) and Theorem 3.5 we

get
∥∥∥
∑

k,n

sk,nηk,n

∥∥∥
F s

p,q

=
∥∥∥
{
w(ξk)

sϕk(D)
(∑

`,n

s`,nη`,n

)}
k

∥∥∥
Lp(`q)

≤ C
∥∥∥
{
w(ξk)

s
∑

`∈N(k)

∑

n

s`,nη`,n

}
k

∥∥∥
Lp(`q)

,

where N(k) = {` ∈ N : supp(ϕk)∩ supp(ψ`) 6= ∅}. Since #N(k) is uniformly bounded by
Theorem 4.3, and w is a moderate weight, we obtain

∥∥∥
{
w(ξk)

s
∑

`∈N(k)

∑

n

s`,nη`,n

}
k

∥∥∥
Lp(`q)

≤ C

∥∥∥∥
(∑

`

(
w(ξ`)

s
∑

n

|s`,n||η`,n|
)q

)1/q∥∥∥∥
Lp

.

Fix 0 < r < min(1, p, q). Then Lemma A.1 and the Fefferman-Stein maximal inequality
(3.1) yields

∥∥∥
{
w(ξk)

s
∑

n

|sk,n||ηk,n|
}

k

∥∥∥
Lp(`q)

≤ C
∥∥∥
{
w(ξk)

s|Tk|
1/2MB

r

(∑

n

|sk,n|χQ(k,n)

)}
k

∥∥∥
Lp(`q)

≤ C ′
∥∥∥
{
w(ξk)

s|Tk|
1/2

∑

n

|sk,n|χQ(k,n)

}
k

∥∥∥
Lp(`q)

.

The result now follows since the sum over n is locally finite with a uniform bound on the
number of non-zero terms, which implies that

(∑

n

|sk,n|χQ(k,n)

)q

�
∑

n

|sk,n|
qχQ(k,n),

uniformly in k. �

Combining Lemma 6.1 and Lemma 6.3 we obtain that {ηk,n} forms an atomic decom-
position for the spaces F s

p,q(h,w).

Theorem 6.4. Given s ∈ R, 0 < p, q < ∞. Then the coefficient operator C given by
(6.4) and reconstruction operator R given by (6.5) are both bounded and makes F s

p,q(h,w)
a retract of f s

p,q, i.e., RC = IdF s
p,q(h,w). In particular, if 1 ≤ p, q <∞, {ηk,n} is an atomic

decomposition of the Banach space F s
p,q(h,w).

The retract result in Theorem 6.4 can be illustrated by the following commuting dia-
gram.

F s
p,q(h,w)

C

F s
p,q(h,w)

R

f s
p,q

IdF s
p,q(h,w)

Remark 6.5. Lemma 6.1 and Lemma 6.3 provides the following norm characterization

(6.6) ‖f‖F s
p,q(h,w) � ‖{〈f, ηk,n〉}k,n‖fs

p,q
, f ∈ F s

p,q(h,w),

for s ∈ R, 0 < p <∞, and 0 < q ≤ ∞.



ON ANISOTROPIC TRIEBEL-LIZORKIN TYPE SPACES 19

7. Pseudo-differential operators on F s
p,q(h,w)

This section contains our main application of the T-L type spaces defined in Section 5.
We study boundedness properties of pseudo-differential operators on the T-L type spaces.
For convenience, we assume that the matrix A has been scaled such that α1 = 1 ≤ α2.
Notice that in particular, | · |A ≤ | · |.

We say that a smooth function w on Rd is an admissible weight function if

• 1 ≤ w(ξ) ≤ C〈ξ〉 for ξ ∈ Rd

• |∂βw(ξ)| ≤ Cβw(ξ)1−|β| for β ∈ Nd
0.

Example 7.1. The weight w(ξ) := 〈ξ〉A is admissible (since α1 = 1, see part (e) of
Lemma 2.3).

It was noticed in [25] that for an admissible weight w, there exist K,R > 0 such that

(7.1) R−1 ≤
w(ζ)

w(ξ)
≤ R for |ξ − ζ| ≤ Kw(ξ).

In particular, since |ξ − ζ|A ≤ |ξ − ζ|, (7.1) implies that w is a moderate function.

Definition 7.2. For b ∈ R and 0 < ρ ≤ 1 we define the Hörmander class Sb
w;ρ(R

d × Rd)

as the family of functions σ ∈ C∞(Rd × Rd) satisfying

(7.2) |σ|(b)N,M := max
|α|≤N,|β|≤M

sup
x,ξ∈Rd

w(ξ)ρ|α|−b|∂α
ξ ∂

β
xσ(x, ξ)| <∞,

for M,N ∈ N.

The class Sb
w;ρ(R

d×Rd) has been considered earlier by several authors, see e.g. [25]. We
remark that the class is completely independent of the spaces defined in Section 5, and
our claim is that the T-L type space can be adapted to study the boundedness properties
of the pseudo-differential operators induced by Sb

w;ρ(R
d × R

d).

Remark 7.3. For the particular choice w = 〈·〉, Sb
〈·〉;ρ(R

d ×Rd) is the classical Hörmander

class Sb
ρ,0(R

d × Rd). For a general weight w and b ≤ 0, we notice that Sb
〈·〉;ρ(R

d × Rd) ⊂

Sb
w;ρ(R

d×R
d) since w ≤ 〈·〉. Therefore, Sb

w;ρ(R
d×R

d) often contains symbols not included
in the standard class.

Given σ ∈ Sb
w;ρ(R

d×Rd), we define the operator σ(x,D) in terms of the symbol σ(x, ξ)
by

σ(x,D)f(x) :=
1

(2π)d/2

∫

Rd

σ(x, ξ)f̂(ξ)eix·ξ dξ, f ∈ S(Rd).

The family of all operators induced by Sb
w;ρ(R

d×Rd) is denoted OpSb
w;ρ. For σ ∈ Sb

w;ρ(R
d×

Rd), we notice that σ(x,D) : S(Rd) → S(Rd) which follows by standard arguments since
w(ξ) ≤ C〈x〉 for all ξ ∈ R

d. Our goal is now to find sufficient conditions on a moderate
weight h to ensure that

σ(x,D) : F s
p,q(h,w) → F s−b

p,q (h,w).

Let us state the main result. The proof will be given at the end of the section.

Theorem 7.4. Given σ ∈ Sb
w;ρ(R

d×Rd), 0 < ρ ≤ 1, b ∈ R. Suppose the moderate weight
h satisfies

(7.3) C1〈ξ〉
κ
A ≤ h(ξ) ≤ C2w(ξ)ρ/α2 ∀ξ ∈ R

d,
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for some κ > 0. Then σ(x,D) extends to a bounded operator

σ(x,D) : F s+b
p,q (h,w) → F s

p,q(h,w).

for any s ∈ R, and p, q ∈ [1,∞).

Remark 7.5. We need to be concerned that spaces F s
p,q(h,w) used in Theorem 7.4 are

well-defined in order for the statement of the theorem to make sense. Let us elaborate
on this point. We have h(ξ) ≤ C2w(ξ) by (7.3) since ρ/α2 ≤ 1 and w ≥ 1. Hence, (7.1)
shows that there are constants K,R > 0 such that

R−1 ≤
w(ζ)

w(ξ)
≤ R for |ξ − ζ|A ≤

K

C2

h(ξ), ξ, ζ ∈ R
d.

That is, w is a Q-moderate weight for any covering Q generated by h if we choose the
moderation constant ρ for h sufficiently small. For such a choice, the spaces F s

p,q(h,w)
are well defined.

We follow the same strategy as in [36, §6.2.2] for the proof of Theorem 7.4 (see also
[27]). The plan of attack is to reduce the proof to the case b = 0 and s large. We begin
this process by studying the Fourier multiplier case. We have the following result.

Proposition 7.6. Let w be a moderate weight, and suppose σ is a smooth function for
which there exists b ∈ R and 0 < ρ ≤ 1 such that

(7.4) |∂βσ(ξ)| ≤ Cβw(ξ)b−|β|ρ

for all β ∈ Nd. Then for any moderate weight h satisfying (7.3), σ(D) extends to a
bounded operator

σ(D) : F s
p,q(h,w) → F s−b

p,q (h,w),

for any s ∈ R, and p, q ∈ [1,∞).

Proof. For Tk = δh(ξk) · +ξk ∈ T let σk(ξ) = w(ξk)
−bσ(ξ)ϕ∗k(ξ), and µk(ξ) = σk(Tkξ).

Notice that for any α ∈ Nd we have

∂α(σ(Tkξ)) =
∑

|β|=|α|

bβ∂
βσ(Tkξ),

where bβ are monomials of degree |β| in the entries of δh(ξk). Since h(ξ) ≥ ε0 > 0, each
entry is bounded by h(ξk)

α2 (up to a constant). Thus

|∂α(σ(Tkξ))| ≤ Cαh(ξk)
α2|α|

∑

|β|=|α|

|∂βσ(Tkξ)| ≤ C ′
αh(ξk)

α2|α|w(Tkξ)
b−ρ|α|,

where we have used the bound (7.4). Now, using (7.3) and that w is a moderate weight,
it is straight forward to show that

|∂βµk(ξ)| ≤ CβχQ(ξ),

for Q a fixed compact set and for some constant Cβ independent of k. Let r be a constant
satisfying r > ν

2
+ ν

min(p,q)
. Then by Theorem 3.5 we have

‖σ(D)f‖F s
p,q(h,w) = ‖σk(D)(w(ξk)

s+bϕk(D)f)‖Lp(`q)

≤ C sup
k
‖σk(Tk·)‖Hr

2
· ‖f‖F s+b

p,q (h,w) ≤ C ′‖f‖F s+b
p,q (h,w)

for all f ∈ F s+b
p,q (h,w). �

The next example will be needed for the proof of Theorem 7.4.
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Example 7.7. It is easy to verify that w(ξ)b ∈ Sb
w;1 for b ∈ R. Let J s = ws(D). With h

as in Proposition 7.6, J b : F s+b
p,q (h,w) → F s

p,q(h,w) and we have

(7.5) ‖J bf‖F s
p,q(h,w) � ‖f‖F s+b

p,q (h,w), ∀f ∈ F s+b
p,q (h,w),

for any s ∈ R, and p, q ∈ [1,∞).

We can use Example 7.7 in conjunction with Theorem 7.8 below to reduce the proof of
Theorem 7.4 to the case b = 0 and s large. See [1, 25] for a proof of Theorem 7.8.

Theorem 7.8. Let a and b be symbols belonging to Sm1
w;ρ and Sm2

w;ρ, respectively, for some
m1,m2 ∈ R and ρ ∈ (0, 1]. Then there is a symbol σ ∈ Sm1+m2

w;ρ so that σ(x,D) =
a(x,D)b(x,D). Moreover,

(7.6) σ −
∑

|α|<N

1

i|α|α!
∂α

ξ a · ∂
α
x b ∈ S

m1+m2−ρN
w;ρ

for all N ∈ N.

We can now state and prove the final technical lemma before we turn to the proof of
Theorem 7.4. We let f̌ denote the inverse Fourier transform of f .

Lemma 7.9. Given σ ∈ S0
w;ρ, 0 < ρ. Suppose the moderate weight h satisfies (7.3),

and let {ϕk} be the BAPU defined in (4.3) associated with h generated by the affine
transformations {δh(ξk) ·+ξk}k. Then

(a) For |γ|, |α| ≤ K and J ∈ N there exists a constant C := C(K, J) such that

F (x) := sup
z∈Rd

∣∣(∂γ
xσ(z, ·)∂α

ξ ϕk)
∨(x)

∣∣ ≤ C|σ|
(0)
M,K |δ

>
h(ξk)|〈δ

>
h(ξk)x〉

−J
B , x ∈ R

d, k ∈ N,

for any M > J .
(b) For |γ|, |α| ≤ K and m ≥ 0 there exists a constant C ′ := C ′(K,m), such that

I :=

∫

Rd

sup
z∈Rd

∣∣(∂γ
xσ(z, ·)∂α

ξ ϕk)
∨(x)

∣∣〈x〉mB dx ≤ C ′|σ|
(0)
M,K , k ∈ N,

for any M ∈ N satisfying M > m+ ν.

Proof. First we prove (a). Let σγ
η (x, ξ) := ∂γ

x∂
η
ξσ(x, ξ). We have the equality

F (x) = sup
z∈Rd

∣∣∣∣
∫

Rd

eix·ξσγ(z, ξ)∂α
ξ ϕk(ξ) dξ

∣∣∣∣.

Let Tk = δh(ξk) ·+ξk. Then a substitution yields

F (x) = |δ>h(ξk)| sup
z∈Rd

∣∣∣∣
∫

Rd

e
iδ>

h(ξk)
x·ξ
σγ(z, Tkξ)∂

α
ξ ϕk(Tkξ) dξ

∣∣∣∣.(7.7)

Fix M > J . Notice that 〈x〉B ≤ 〈x〉, so we have the standard estimate 〈x〉MB |ĝ(x)| ≤
CM

∑
|β|≤K ‖∂

βg‖L1 , for some finite constant CM . We apply this estimate to (7.7) to
obtain

F (δ−>h(ξk)x) ≤ CM |δ
>
h(ξk)| sup

z∈Rd

∑

|β|≤M

∫

Rd

∣∣∣∂β
ξ

[
σγ(z, Tkξ)∂

α
ξ ϕk(Tkξ)

]∣∣∣ dξ〈x〉−J
B ,
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which by Leibniz’s rule provides the bound

F (δ−>h(ξk)x) ≤ C ′|δ>h(ξk)|
∑

|β|≤M

0≤η≤β

sup
z∈Rd

∫

Rd

|∂η
ξ (σγ(z, Tkξ))||∂

β−η
ξ (∂α

ξ ϕk(Tkξ))| dξ〈x〉
−J
B .(7.8)

Let us take a closer look at |∂β−η
ξ (∂α

ξ ϕk(Tkξ))|. Put µk(ξ) = ϕk(Tkξ). It is easy to verify

that |∂β
ξ µk(ξ)| ≤ CβχQ(ξ) where Q ⊂ Rd is a fixed compact set independent of k, see

Equation (4.4). Notice that the chain rule yields

∂α
ξ ϕk(Tkξ) =

∑

|β|=|α|

bβ∂
β
ξ µk(ξ),

where bβ are monomials of degree |β| in the entries of δh(ξk)−1. Now, since h(ξ) ≥ ε0 > 0,
each entry is uniformly bounded, and we obtain

(7.9) |∂β−η
ξ (∂α

ξ ϕk(Tkξ))| ≤ CχQ(ξ).

Next, an estimate similar to the one in the proof of Proposition 7.6 (using (7.2) instead
of (7.4)), gives that

|∂η
ξ (σγ(z, Tkξ))| ≤ Cη|σ|

(0)
|η|,Kh(ξk)

α2|η|w(Tkξ)
−ρ|η|.

Since h(ξ)α2 ≤ w(ξ)ρ, and w is a moderate function, we obtain

(7.10) |∂η
ξ (σγ(z, Tkξ))| ≤ Cη|σ|

(0)
|η|,K for all ξ ∈ Q.

Finally, using the estimates (7.9) and (7.10) in (7.8) yields

F (δ−>h(ξk)x) ≤ C ′′|δ>h(ξk)|
∑

|β|≤L

0≤η≤β

|σ|
(0)
M,K

∫

Rd

χQ(ξ) dξ〈x〉−J
B ≤ C ′′′|δ>h(ξk)| · |σ|

(0)
M,K〈x〉

−J
B ,

which proves (a).
Let us turn to (b). Pick J > m+ ν in (a). Then we have

I =

∫

Rd

F (x)〈x〉mB dx

≤ C ′|σ|
(0)
M,K |δ

>
h(ξk)|

∫

Rd

〈δ>h(ξk)x〉
−J
B 〈x〉mB dx

= C ′|σ|
(0)
M,K

∫

Rd

〈x〉−J
B 〈δ−>h(ξk)x〉

m
B dx.

However, 〈δ−>h(ξk)x〉B ≤ C〈x〉B since h(ξk) ≥ ε0 > 0 so we obtain

I ≤ C ′|σ|(0)
M,K

∫

Rd

〈x〉−J+m
B dx ≤ C̃|σ|(0)

M,K ,

since J > ν +m. This concludes the proof. �

We now turn to the proof of Theorem 7.4. For convenience, we use the notation

ρ(z,D)f(x) :=
1

(2π)d/2

∫

Rd

ρ(z, ξ)f̂(ξ)eix·ξ dξ, x, z ∈ R
d,

in the proof.
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Proof of Theorem 7.4. Let {ϕk}k∈N be the BAPU defined in (4.3) associated with the
family {δh(ξk) · +ξk} of affine transformations generated by h. From the facts that
J −aF s

p,q(h,w) = F s+a
p,q (h,w), σ(x,D)J a ∈ OpSb+a

w;ρ and J aσ(x,D) ∈ OpSb+a
w;ρ when

σ ∈ Sb
w;ρ, see Theorem 7.8, we deduce that it suffices to consider the case b = 0 and

s > s0, where s0 is chosen sufficiently large to ensure that {w(ξk)
−(s0−2ρν/α2)} ∈ `1 (notice

that the lower bound in (7.3) guarantees the existence of s0, see also Remark 5.8). It also
suffices to prove that ‖σ(x,D)f‖F s

p,q(h) ≤ C‖f‖F s
p,q(h) for f ∈ S(Rd) since S(Rd) is dense

in F s
p,q(h,w).

Now suppose σ ∈ S0
w;ρ and s > s0. Notice that for g ∈ S(Rd),

[ϕk(D)g](x) = (2π)−d/2

∫

Rd

eix·ξϕk(ξ)ĝ(ξ) dξ = (2π)−d/2

∫

Rd

ϕ̂k(y)g(x+ y) dy.(7.11)

Let σγ
η (x, ξ) := ∂γ

x∂
η
ξσ(x, ξ). We obtain for any K ∈ N

σ(x+ y,D)f(x+ y)

= (2π)−d/2

∫

Rd

ei(x+y)·ξσ(x+ y, ξ)f̂(ξ) dξ

= (2π)−d/2
∑

|γ|≤K−1

yγ

γ!

∫

Rd

ei(x+y)·ξσγ(x, ξ)f̂(ξ) dξ

+ (2π)−d/2
∑

|γ|=K

yγ

γ!

∫

Rd

ei(x+y)·ξ

∫ 1

0

(1− τ)K−1σγ(x+ τy, ξ)f̂(ξ) dτ dξ

:= T (x, y) +R(x, y),(7.12)

where we have expanded σ(x + y, ξ) in a Taylor series around x. Using (7.12) in (7.11),
we obtain

(7.13) ϕk(D)σ(x,D)f(x) = (2π)−d/2

∫

Rd

ϕ̂k(y)T (x, y) dy + (2π)−d/2

∫

Rd

ϕ̂k(y)R(x, y) dy.

We estimate each of the two terms separately. First we consider the term with T (x, y).
We have,∫

Rd

ϕ̂k(y)T (x, y) dy = (2π)−d/2

∫

Rd

ϕ̂k(y)
∑

|γ|≤K−1

yγ

γ!

∫

Rd

ei(x+y)·ξσγ(x, ξ)f̂(ξ) dξ dy

= (2π)−d/2
∑

|γ|≤K−1

1

γ!

∫

Rd

eix·ξσγ(x, ξ)f̂(ξ)

∫

Rd

eiy·ξϕ̂k(y)y
γ dy dξ

=
∑

|γ|≤K−1

Cγ

γ!

∫

Rd

eix·ξσγ(x, ξ)∂γ
ξϕk(ξ)f̂(ξ) dξ.(7.14)

Using the fact that ϕ∗
k(ξ) = 1 on supp(ϕk), and the relation (f̂ ĝ)∨ = f ∗ g, we get

∣∣∣∣
∫

Rd

eix·ξσγ(x, ξ)∂γ
ξϕk(ξ)f̂(ξ) dξ

∣∣∣∣ =

∣∣∣∣
∫

Rd

eix·ξ
(
σγ(x, ξ)∂γ

ξϕk(ξ)
)(
ϕ∗k(ξ)f̂(ξ)

)
dξ

∣∣∣∣

≤

∫

Rd

∣∣(σγ(x, ·)∂γ
ξϕk)

∨(y)
∣∣|ϕ∗k(D)f(x− y)| dy

≤

∫

Rd

sup
z∈Rd

∣∣(σγ(z, ·)∂γ
ξϕk)

∨(y)
∣∣|ϕ∗k(D)f(x− y)| dy.
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Using the estimates (a) and (b) from Lemma 7.9 we may apply Lemma 3.1 to conclude
that

(7.15)

∣∣∣∣
∫

Rd

eix·ξσγ(x, ξ)∂γ
ξϕk(ξ)f̂(ξ) dξ

∣∣∣∣ ≤ C|σ|
(0)
L,KM

B(ϕ∗k(D)f)(x),

with C <∞ independent of k and f , and where L > (m+ ν). Finally, combining (7.14)
and (7.15), the Fefferman-Stein inequality implies

∥∥∥∥
{
w(ξk)

s

∫

Rd

ϕ̂k(y)T (·, y) dy

}

k

∥∥∥∥
Lp(`q)

≤ C|σ|
(0)
L,K‖f‖F s

p,q(h).

Now we turn to the second term in (7.13). We let Θk(ξ) = ϕk(Tkξ), where Tk =

δh(ξk) ·+ξk. Put tk = h(ξk), and notice that Θ̂k(y) = |δtk |
−1ϕ̂k(δ

−>
tk
y)e−iy·δ−1

tk
ξk from which

we obtain ∫

Rd

ϕ̂k(y)R(x, y) dy =

∫

Rd

Θ̂k(y)R(x, δ−>tk
y)e−iξk·y dy.

We have the estimate |(δ−>tk
y)γ| ≤ c|δ−>tk

y||γ| ≤ c′t
−|γ|
k 〈y〉

α2|γ|
B , ∀y ∈ Rd (since α1 = 1).

Hence,

∣∣∣∣
∫

Rd

ϕ̂k(y)R(x, y) dy

∣∣∣∣

≤

∣∣∣∣
∑

|γ|=K

1

γ!

∫

Rd

(δ−>tk
y)γΘ̂k(y)

∫

Rd

ei(x+δ−>tk
y)·ξ

×

∫ 1

0

(1− τ)K−1σγ(x+ τδ−>tk
y, ξ)f̂(ξ) dτ dξ e−iy·ξkdy

∣∣∣∣

≤ Ct−K
k

∑

|γ|=K

∫

Rd

〈y〉Kα2
B

∣∣Θ̂k(y)
∣∣
∣∣∣∣
∫ 1

0

(1− τ)K−1

×

∫

Rd

ei(x+δ−>tk
y)·ξσγ(x+ τδ−>tk

y, ξ)f̂(ξ) dξ dτ

∣∣∣∣ dy.

Fix θ ∈ (1, 2). We use the estimate |Θ̂k(y)| ≤ C〈y〉−Kα2−ν−1−θν
B given by (4.5) to obtain

C ′t−K
k

∑

|γ|=K

∫

Rd

〈y〉−ν−1
B

〈y〉θν
B

sup
z∈Rd

∣∣[σγ(z,D)f ](x+ δ−>tk
y)| dy

= C ′t−K
k

∑

|γ|=K

∫

Rd

〈y〉−ν−1
B sup

z∈Rd

∣∣[σγ(z,D)f ](x+ δ−>tk
y)|

〈y〉θν
B

dy

≤ C ′t−K
k

∑

|γ|=K

∫

Rd

〈y〉−ν−1
B sup

z,v∈Rd

∣∣[σγ(z,D)f ](x+ v)|

〈δ>tkv〉
θν
B

dy

≤ C ′′t−K
k

∑

|γ|=K

sup
z,v∈Rd

∣∣[σγ(z,D)f ](x+ v)|

〈v〉θν
B

,
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since 〈δ>tkv〉B ≥ c′〈v〉B due to the assumption that tk ≥ ε0 > 0. We have,

S(x) :=

(∑

k

(
w(ξk)

s

∫

Rd

ϕ̂k(y)R(x, y) dy

)q)1/q

≤ C

(∑

k

(
w(ξk)

st−K
k

∑

|γ|=K

sup
z,v∈Rd

∣∣[σγ(z,D)f ](x+ v)|

〈v〉θν
B

)q)1/q

≤ C
∑

|γ|=K

sup
z,v∈Rd

∣∣[σγ(z,D)f ](x+ v)|

〈v〉θν
B

(∑

k

(
t
sα2/κ
k t−K

k

)q
)1/q

≤ C ′′
∑

|γ|=K

∑

m

sup
z,v∈Rd

∣∣[σγ(z,D)ϕm(D)f ](x+ v)|

〈v〉θν
B

,

where we used the fact that w(ξ) ≤ 〈ξ〉 ≤ 〈ξ〉α2
A ≤ h(ξ)α2/κ, and that

∑
k t

(sα2/κ−K)q
k <∞

provided K is sufficiently large. We estimate the term Am(z, x) :=
∣∣[σγ(z,D)ϕm(D)f ](x)|.

Let fm(x) := [ϕ∗m(D)f ](x). We have

Am(z, x+ v) =

∣∣∣∣
∫

Rd

(σγ(z, ·)ϕm(·))∨(x+ v − y)fm(y) dy

∣∣∣∣

≤

∫

Rd

|(σγ(z, ·)ϕm(·))∨(x+ v − y)||fm(y)| dy

≤ sup
u∈Rd

|fm(u)|

〈x− u〉θν
B

∫

Rd

|(σγ(z, ·)ϕm(·))∨(x+ v − y)|〈x− y〉θν
B dy.

Now, by Lemma 2.3, 〈x− y〉θν
B ≤ (c′)θν〈x− y + v〉θν

B 〈v〉
θν
B , so

sup
z,v∈Rd

Am(z, x+ v)

〈v〉θν
B

≤ C sup
v∈Rd

|fm(x− v)|

〈v〉θν
B

sup
z∈Rd

∫

Rd

|(σγ(z, ·)ϕm(·))∨(u)|〈u〉θν
B du

≤ C ′ sup
v∈Rd

|fm(x− v)|

〈v〉θν
B

|σ|
(0)
L,K ,

where we used Lemma 7.9 in the last step. Using the estimate 〈δ>tmv〉B ≤ Ctm〈v〉B we
finally obtain

S(x) ≤ C|σ|
(0)
L,K

∑

m

tθν
m

tθν
m

sup
v∈Rd

|fm(x− v)|

〈v〉θν
B

≤ C|σ|
(0)
L,K

∑

m

tθν
m sup

v∈Rd

|fm(x− v)|

〈δ>tmv〉
θν
B

,

and by Proposition 3.4,

‖S(x)‖Lp
≤ C|σ|

(0)
L,K‖{t

θν
m fm}‖Lp(`1) = C|σ|

(0)
L,K‖f‖F s̃

p,1(h,w),

where s̃ = ρθν
α2

. Since {w(ξk)
−(s−s̃)} ∈ `1 we deduce from Proposition 5.7 that

‖f‖F s̃
p,1(h,w) ≤ C‖f‖F s

p,q(h,w),

which concludes the proof. �
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7.1. Some remarks. The proof of Theorem 7.4 can be modified (and simplified) in a
straightforward way to prove the corresponding result for modulation spaces. We leave
the details for the reader.

Theorem 7.10. Given σ ∈ Sb
w;ρ(R

d×Rd), b ∈ R, ρ ∈ (0, 1]. Suppose the moderate weight
h satisfies

C1〈ξ〉
κ
A ≤ h(ξ) ≤ C2w(ξ)ρ/α2 ∀ξ ∈ R

d,

for some κ > 0. Then σ(x,D) extends to a bounded operator

σ(x,D) : M s+b
p,q (h,w) →M s

p,q(h,w).

for any s ∈ R, and p, q ∈ [1,∞).

For homogeneous symbols σ ∈ Sb
w;ρ one can improve Theorems 7.4 and 7.10. Suppose

σ ∈ C∞(Rd × Rd) and there exists a constant b ∈ R such that σ(x, δtξ) = tbσ(x, ξ) for
all t ≥ 1 and ξ ∈ R

d. One can verify that σ ∈ Sb
w;ρ using the homogeneity. Similar

arguments as in the proof of Theorem 7.4, and a modification of Lemma 7.9, show that
σ(x,D) extends to a bounded operator

σ(x,D) : F s
p,q(h,w) → F s−b

p,q (h,w),

provided C1〈ξ〉
κ
A ≤ h(ξ) ≤ C2w(ξ)ρ for some κ > 0. An analogous result holds in the

modulation case. Hence, we obtain a boundedness result for a much larger class of spaces
F s

p,q(h,w) [M s
p,q(h,w)]. We leave the details for the reader.

Another way to strengthen Theorem 7.4 is to restrict the analysis to diagonal matrices
A. Suppose A = diag(a1, . . . , ad), and put a = (a1, . . . , ad). For b ∈ R and ρ > 0 define
the Hörmander class Sa,b

w;ρ(R
d×Rd) as the family of functions σ ∈ C∞(Rd×Rd) satisfying

|σ|
(b)
N,M := max

|α|≤N,|β|≤M
sup

x,ξ∈Rd

w(ξ)ρa·α−b|∂α
ξ ∂

β
xσ(x, ξ)| <∞,

for M,N ∈ N. Then, using similar arguments as in the proof of Theorem 7.4, it can be
verified that any σ ∈ Sa,b

w;ρ extends to a bounded operator σ(x,D) : F s
p,q(h,w) → F s−b

p,q (h,w)
provided C1〈ξ〉

κ
A ≤ h(ξ) ≤ C2w(ξ)ρ for some κ > 0.

7.2. Elliptic operators. We conclude this section with a brief discussion of elliptic sym-
bols. We have the following definition.

Definition 7.11. A symbol σ ∈ Sb
w;ρ is called w-elliptic if there exist C,M > 0 such that

|σ(x, ξ)| ≥ Cw(ξ)b for 〈ξ〉 ≥M .

We let S−∞
w;ρ := ∩m∈RS

m
w;ρ. The following result on elliptic symbols is well-known and

the proof can be found in, e.g., [25].

Theorem 7.12. Suppose σ ∈ Sb
w;ρ is w-elliptic and there exist C, κ > 0 such that w(ξ) ≥

C〈ξ〉κ for ξ ∈ R
d. Then there exists τ ∈ S−b

w;ρ such that I − σ(x,D)τ(x,D) and I −
τ(x,D)σ(x,D) are both in Op(S−∞

w;ρ ).

Now we put F−∞
p,q (h,w) = ∪s∈RF

s
p,q(h,w). Using Theorem 7.12 and the previous results

we have

Proposition 7.13. Suppose σ ∈ Sb
w;ρ is w-elliptic and assume that the moderate weight

h satisfies (7.3). If f ∈ F−∞
p,q (h,w) and σ(·, D)f ∈ F s

p,q(h,w) for some s ∈ R, then

f ∈ F s+b0
p,q (h,w).
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Proof. Let S = σ(·, D), and let T = τ(·, D) be as in Theorem 7.12. Notice that f =
T (Sf)+(I−TS)f . By Theorem 7.4, T maps F s

p,q(h,w) to F s+b
p,q (h,w) and (I−TS) maps

F−∞
p,q (h,w) to F s+b

p,q (h,w). �

8. Examples

This final section is devoted to a number of examples of T-L type spaces. For simplicity
we will consider the moderate weight function defined in Example 4.6.

8.1. Isotropic spaces. Let us consider the isotropic case. We put A = diag(1, 1, . . . , 1),
and | · |A is the Euclidean norm with 〈·〉 the standard bracket on R

d. We define the
moderate function hα(ξ) = 〈ξ〉α, where α ∈ [0, 1] is fixed. Observe that any covering ball
B in R

d associated with hα satisfies the following simple geometric rule:

(8.1) ξ ∈ B ⇒ 〈ξ〉αd � |B|.

For the weight hα, F β
p,q(hα, 〈·〉) and Mβ

p,q(hα, 〈·〉) are well-defined spaces. It turns out that

the spaces Mβ
p,q(hα, 〈·〉) are the so-called α-modulation spaces M β,α

p,q (Rd) introduced by

Gröbner [22], while F β
p,q(hα, 〈·〉) is a new family of spaces (for α < 1). Let us consider the

spaces in more detail.

8.1.1. The case α = 1. First we consider the case α = 1, where (8.1) corresponds to a
“dyadic” cover which gives us a classical T-L space. Let E2 = {±1,±2}, E1 := {±1},
and E := Ed

2 \E
d
1 . For each k ∈ E, and j ∈ N define bj,k := 2j(v(k1), . . . , v(kd)), where

v(k) = sgn(k) ·

{
1/2 for k = 1

3/2 for k = 2.

Suppose T = {4I, Tj,k}j∈N,k∈E is given by Tj,kξ = 2jξ+bj,k and let Q ⊂ Rd be an open cube
with center 0 and side length r > 1/2. Then {Tj,kQ}j∈N,k∈E is a structured admissible
covering of Rd of the type used in Section 5. Figure 1 illustrate this covering for d = 2.
Using T it can be verified that F β

p,q(h1, 〈·〉) is a T-L space. In fact F β
p,q(h1, 〈·〉) = F β

p,q(R
d),

T3,(2,1)Q

Figure 1. A decomposition of the frequency plane using the structured
family T from Section 8.1.1 on a fixed cube Q.

see e.g. [35] for details. In this case, one can also verify that M β
p,q(h1, 〈·〉) = Bβ

p,q(R
d) is a

classical Besov space.
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8.1.2. The case 0 ≤ α < 1. This case is more interesting as we obtain new families of
spaces. Define bk = k|k|α/(1−α), k ∈ Zd \ {0}, and let T = {Tk}k∈Zd\{0} be given by Tkξ =

|k|α/(1−α)ξ + bk. This type of “polynomial” covering was first considered by Päivärinta
and Somersalo in [28] to study pseudodifferential operators, and Gröbner [22] used such
coverings to define α-modulation spaces. It is not difficult to verify that M β

p,q(hα, 〈·〉) =

Mβ,α
p,q (Rd), and consequently F β

p,q(hα, 〈·〉) can be considered the T-L equivalent of the α-
modulation spaces. In [5], the authors introduced so-called α-Triebel-Lizorkin space in
the one dimensional case. One can verify that the α-Triebel-Lizorkin scale equals the
T-L type space F β

p,q(hα, 〈·〉). However, the authors were not able to prove in [5] that
these spaces are independent of BAPU. This important property now follows directly
from Proposition 5.3.

In this case we have an explicitly given covering, so we can also write out the norm
equivalence given by (6.6). Let {ηk,n} be the tight frame for F β

p,q(hα, 〈·〉) given in Section
6. We have

‖f‖F β
p,q(hα,〈·〉) �

∥∥∥∥
{
〈k〉

s
1−α

+ 1
2

αd
1−α

(∑

n∈Zd

|〈f, ηk,n〉|
qχQ(k,n)

)1/q
}

k

∥∥∥∥
Lp(`q)

,

where Q(k, n) is given by (6.3) with Tk = |k|α/(1−α) ·+bk.

8.1.3. Pseudo-differential operators on isotropic spaces. For A = diag(1, 1, . . . , 1) we may
take α2 = α1 = 1. Then Theorem 7.4 says that any pseudo-differential operator σ ∈ Sb

〈·〉;ρ

extends to a bounded operator

σ(x,D) : F β
p,q(hα, 〈·〉) → F β−b

p,q (hα, 〈·〉)

provided 0 < α ≤ ρ. For α = 1 this simplifies to a well-known boundedness result for
T-L spaces [27, 30], and for 0 ≤ α < 1, it extends the authors result [4] for α-modulation
spaces to T-L type spaces. We also notice that with this particular choice of dilation and
weights, Theorem 7.10 reproduces the main result in [4],

σ(x,D) : Mβ
p,q(hα, 〈·〉) →Mβ−b

p,q (hα, 〈·〉),

where σ ∈ Sb
〈·〉;ρ and 0 < α ≤ ρ.

8.2. Anisotropic spaces. Now we consider the same construction as above but adapted
to the anisotropic setting. For a real matrix A with eigenvalues with positive real parts, we
consider the anisotropic distance |·|A. Define hα(ξ) = 〈ξ〉αA, which is moderate according to
Lemma 4.5. We can use Proposition 5.3 to conclude that hα determines a decomposition
space (up to equivalent norms) for each choice of moderate weight w. In particular, the
space F β

p,q(hα, 〈·〉A) is well-defined. Also notice that for A = diag(1, 1, . . . , 1), hα is the
regulation function considered in the isotropic case. In this particular case, we obtain the
same isotropic spaces as in Section 8.1. In general, we obtain anisotropic versions of the
spaces considered in Section 8.1.

8.2.1. The case α = 1. This case corresponds to anisotropic T-L spaces. In the re-
stricted case where A is a diagonal matrix A = diag(a1, . . . , ad) it can can be verified that
F β

p,q(h1, 〈·〉A) is an anisotropic T-L space of the type considered in e.g. [38, 12]. In fact

F β
p,q(h1, 〈·〉A) = F a,β

p,q (Rd), where a = (a1, . . . , ad).
Suppose T = {δ〈ξk〉A · +ξk}k∈N is one of the equivalent structured covering given by

Lemma 4.7. The tight frame {ηk,n} of Section 6 yields an atomic decomposition of
F β

p,q(h1, 〈·〉A), and (6.6) gives a characterization of the (quasi-)norm on F β
p,q(h1, 〈·〉A).
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8.2.2. The case 0 ≤ α < 1. Next we consider the case 0 ≤ α < 1, which corresponds to a
family of spaces which we will call anisotropic α-T-L spaces. According to Proposition 5.3,
F β

p,q(hα, 〈·〉A) is well-defined. Lemma 4.7 tells us that there exists a structured covering
associated with hα, but unlike the isotropic case, we do not (in general) know of any
explicitly given structured covering. However, if T = {δhα(ξk) · +ξk}k∈N is one of the
equivalent structured covering given by Lemma 4.7, then the tight frame {ηk,n} of Section 6
yields an atomic decomposition of F β

p,q(hα, 〈·〉A), and (6.6) gives a discrete characterization

of the (quasi-)norm on F β
p,q(hα, 〈·〉A).

8.2.3. Pseudo-differential operators on anisotropic spaces. For a real d× d matrix A with
eigenvalues with real parts in the interval (1, α2) and α ∈ [0, 1], we consider the anisotropic
space F β

p,q(hα, 〈·〉A) from Section 8.2.2. In this case, Theorem 7.4 states that a pseudo-

differential operator σ ∈ Sb
〈·〉A;ρ extends to a bounded operator

(8.2) σ(x,D) : F β
p,q(hα, 〈·〉A) → F β−b

p,q (hα, 〈·〉A)

provided 0 < α ≤ ρ/α2. We also mention that Theorem 7.10 gives

σ(x,D) : Mβ
p,q(hα, 〈·〉A) →Mβ−b

p,q (hα, 〈·〉A)

for 0 < α ≤ ρ/α2. As noticed in Section 7.1 there is a stronger result when A is diagonal.

More precisely, if σ ∈ Sa,b
〈·〉A;ρ, A = diag(a1, . . . , ad), then (8.2) holds true provided 0 <

α ≤ ρ.

8.2.4. The heat operator. We conclude by considering the heat operator L on R
2 with

symbol σ(t, x) = it + x2. Put A = diag(2, 1), and let w(t, x) := 〈(t, x)〉A. One verifies
that w(t, x) � 1 + |t|1/2 + |x| and σ ∈ S2

〈·〉A,1(R
2 × R2). We obtain

L : F β
p,q(hα, 〈·〉A) → F β−2

p,q (hα, 〈·〉A)

provided 0 < α ≤ 1/2. Notice that L is 〈·〉A-elliptic and we can construct an approximate
inverse for L by letting a(u, t, x) = η(t, x)(it + x2)−1, u ∈ R2, t, x ∈ R, where η is a
smooth cut-off function that vanishes at the origin and equals 1 away from the origin.
One can check directly that a ∈ S−2

〈·〉A,1(R
2 ×R2). Here we notice that a is only contained

in S−1
〈·〉,1/2(R

2 × R2) due to the slow decay of a as t → ∞. Of course, a is not 〈·〉-elliptic,

only hypoelliptic.

Appendix A. Some Technical Proofs

Proof of Proposition 3.3. Put v(x) = |δ−1
R |u(δ−>R x) and let a = ν/r. Then v̂(ξ) = û(δRξ)

so supp(v̂) ⊂ BA(0, 1). Moreover, v∗(a, 1;x) = |δ−1
R |u∗(a,R; δ−>R x) and MB

r v(x) =
|δ−1

R |MB
r u(δ

−>
R x) so we may assume that R = 1.

We take ϕ ∈ S(Rd) with ϕ̂ = 1 on BA(0, 1), and write u(x− z) = C
∫

Rd u(y)ϕ(x− z −
y)dy. Hence

(A.1)

∣∣∣∣
∂u

∂xj

(x− z)

∣∣∣∣ = C

∣∣∣∣
∫

Rd

u(y)
∂ϕ

∂xj

(x− z − y)dy

∣∣∣∣ ≤ C

∫

Rd

|u(y)|〈x− y − z〉−λ
B dy,

for any γ > 0. We divide (A.1) by 〈z〉aB and use the estimate 〈x−y〉aB/〈z〉
a
B ≤ ca〈x−y−z〉aB

from Lemma 2.3 to deduce that

sup
z∈Rd

〈z〉−a
B

∣∣∇u(x− z)
∣∣ ≤ C ′ sup

z∈Rd

〈z〉−a
B |u(x− z)|.
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Fix 0 < η ≤ 1. Let x, z ∈ Rd and suppose y ∈ BB(x− z, η). We have

|u(x− z)|r ≤ Cr(|u(x− z)− u(y)|r + |u(y)|r).

By the mean value theorem, with α2 and c2 given by (2.3),

|u(x− z)− u(y)|r ≤ |∇u(p0)|
r|x− z − y|r ≤ c

−r/α2

2 Cr|∇u(p0)|
rηr/α2,

with p0 ∈ L(x − z, y). We have |x − z − p0|B ≤ η ≤ 1 since BB(x − z, η) is convex, and
consequently,

(ωB
d )−1η−ν

∫

BB(x−z,η)

|u(x− z)|r dy

≤ Crη
r/α2 sup

w∈BB(x−z,1)

|∇u(w)|r + Cr(ω
B
d )−1η−ν

∫

BB(x−z,η)

|u(y)|rdy.

Thus,

|u(x− z)| ≤ C̃η1/α2 sup
w∈BB(x−z,1)

|∇u(w)| + C̃η−a

(∫

BB(x−z,η)

|u(y)|rdy

)1/r

.

By the quasi-triangle inequality, we obtain
∫

BB(x−z,η)

|u(y)|rdy ≤

∫

BB(x,c(1+|z|B))

|u(y)|rdy

≤ c′ωB
d (1 + |z|B)ν(MB

r u(x))
r

≤ c′′ωB
d 〈z〉

ν
B(MB

r u(x))
r.

Also, if w ∈ BB(x− z, 1),

c〈z〉B ≥ 〈x− w〉B − c〈x− w − z〉B ≥ 〈x− w〉B − c2(1 + |x− w − z|B) ≥ 〈x− w〉B − 2c2,

and since 〈z〉B ≥ 1, we obtain 〈z〉B ≥ 1
c+2c2

〈x− w〉B . Finally,

〈z〉−a
B |u(x− z)| ≤ Cη1/α2 sup

w∈BB(x−z,1)

〈x− w〉−a
B |∇u(w)| + Cη−aMB

r u(x)

≤ Cη1/α2 sup
w∈Rd

〈w〉−a
B

∣∣∇u(x− w)
∣∣ + Cη−aMB

r u(x)

≤ C ′Cη1/α2u∗(a, 1;x) + Cη−aMB
r u(x).

The result now follows by choosing η < min{1, (2CC ′)−α2}. �

The following technical lemma is used to prove Theorem 6.4. We use the same notation
as in Section 6.

Lemma A.1. Let 0 < r ≤ 1. There exists a constant C such that for any sequence
{sk,n}k,n we have

∑

n

|sk,n||ηk,n| ≤ C|Tk|
1/2MB

r

(∑

n

|sk,n|χQ(k,n)

)
.

Proof. From (4.5) we have that |ηk,n(x)| ≤ CN |Tk|
1/2(1 + |π

a
n+ δ>tkx|B)−N for any N > 0.

Fix N > ν/r. We can, without loss of generality, suppose x ∈ Q(k, 0). Let A0 = {n ∈
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Zd : |π
a
n|B ≤ 1}, and for j ∈ N, let Aj = {n ∈ Zd : 2j−1 < |π

a
n|B ≤ 2j}. Notice that

∪n∈Aj
Q(k, n) is a bounded set contained in the ball BB(0, c2j+1t−1

k ). Now,

∑

n∈Aj

|sk,n|(1+|π
a
n+ δ>tkx|B)−N ≤ C2−jN

∑

n∈Aj

|sk,n| ≤ C2−jN
(∑

n∈Aj

|sk,n|
r
)1/r

≤ C2−jN t
ν/r
k

(∫ ∑

n∈Aj

|sk,n|
rχQ(k,n)(y) dy

)1/r

≤ CL1−r2−jN t
ν/r
k

(∫

BB(0,c2j+1t−1
k

)

(∑

n∈Aj

|sk,n|χQ(k,n)(y)
)r

dy

)1/r

≤ C ′2−j(N−ν/r)MB
r

(∑

n∈Zd

|sk,n|χQ(k,n)

)
(x).

The result now follows by summing over j ∈ N0. �
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