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Abstract

We consider statistical and computational aspects of simulation-based Bayesian inference
for a multivariate point process which is only observed at sparsely distributed times. For
specificity we consider a particular data set which has earlier been analyzed by a discrete
time model involving unknown normalizing constants. We discuss the advantages and
disadvantages of using continuous time processes compared to discrete time processes in
the setting of the present paper as well as other spatial-temporal situations.
Keywords: Bark beetle, conditional intensity, forest entomology, Markov chain Monte
Carlo, missing data, prediction, spatial-temporal process.

1 Introduction

This paper concerns statistical inference of spatial-temporal processes that are observed
on a spatial lattice but only at sparsely distributed time points. Zhu et al. (2006) analyzed
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such a data set using a spatial-temporal autoregressive type of model, which assumes
that time is discrete and coincides with the observation times. Here we propose an
alternative continuous time model, based on multivariate point processes (Daley and
Vere-Jones, 2003), and develop Bayesian inference for estimating the model parameters
and the times of events. The proposed methodology is illustrated by a subset of the
data set featured in Zhu et al. (2006), but we do not attempt to address all the scientific
questions in that paper. Instead the focus is on the methodology and our conclusion
is that a multivariate point process model may have several advantages compared to a
spatial-temporal autoregressive type of model.

The data set in Zhu et al. (2006) is from a study of a plantation of red pines located
near Spring Green, Wisconsin, USA. Each tree was examined annually, and three types
of data were recorded. The tree’s condition (alive or dead) was recorded from 1986 to
1992. The number of Dendroctonus valens (LeConte), a bark beetle hereafter called
“turpentine beetle” that attacks the base of the tree, was recorded from 1987 to 1992.
The presence or absence of Ips spp. (predominantly Ips pini (Say) and to a lesser extent
Ips grandicollis (Eichhoff)), another bark beetle that mass attacks the main stem, was
also recorded from 1987 to 1992. The turpentine beetle has one generation per year,
with new attacks occurring from late April through June, and each beetle attacking only
one tree (Furniss and Carolin, 1980). Ips spp. have two to three generations per year,
depending on temperature. They become active in early May and dormant in September.
Again, each beetle attacks only one tree. The primary objectives in Zhu et al. (2006)
were quantifying the relations between the two types of beetles and the condition of the
trees, as well as capturing the spatial and temporal structure of colonization by the two
beetle types and the condition of the trees. Of special interest was the fact that a large
gap of dead trees appeared.

In the present paper, we model Ips spp., using the turpentine beetles as a covariate.
Furthermore, we only consider the area immediately around the gap, where Figure 1
shows the Ips spp. data. Focusing on a subset of the trees leads of course to loss of
important biological information, but since we want to illustrate the methodological
aspects, we do not aim at an overly complex model. We specify a multivariate point
process model for Ips spp., using a Bayesian setting where we regard what happens
between the observation times as missing data. For short we refer to the multivariate
point process model as a continuous time model and the spatial-temporal autoregressive
type of model in Zhu et al. (2006) as a discrete time model.

The paper is organized as follows. Section 2 introduces the needed notation. Section 3
specifies the multivariate point process model and prior assumptions, and Section 4
discusses simulation based Bayesian inference. Section 5 concludes with a comparison
between continuous time and discrete time models for the specific models considered in
Zhu et al. (2006) and the present paper as well as for more general models.
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Figure 1: White squares are locations without trees or trees that were already dead in
1986, and gray squares are trees that were alive in 1986. The numbers indicate which
year a tree has been attacked by Ips spp.; trees without numbers have not been attacked
during the period of observation.
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2 Notation

The data were collected during autumn, when Ips spp. were dormant until the beginning
of the next attack period the following spring. For convenience we can therefore assume
that the data were observed at the times k = 0, 1, . . . , 5 which correspond to the end
of the years 1987, 1988, . . . , 1992. Further, we let k = −1 correspond to the end of year
1986, and we say that time t is in year k if k − 1 < t ≤ k.

We let i = 1, . . . , 807 index the sites, i.e. the locations with living trees at time −1.
Let yt,i = 0 if site i has not been previously attacked by Ips spp. at time t, yt,i = 1 if
it has been attacked earlier in the same year, and yt,i = 2 if it has been attacked in a
previous year. By an “event” at the tree i we mean a transition of the zero-one process
vt,i = 1[yt,i ≥ 1], where 1[·] denotes the indicator function. We denote the time of this
transition ti. We do not consider a transition 1 → 2 for yt,i as an event, since it is certain
that this transition happens at the end of the year at which the event took place. Note
that there is a one-to-one correspondence between the process vs,i for s < t (or s ≤ t)
and the process ys,i for s < t (or s ≤ t).

The process vs = (vs,1, . . . , vs,807) is a particular kind of multivariate point process (or
counting process), where each vt,i is restricted to be either zero or one. Such a process
is specified by the conditional intensity function (Daley and Vere-Jones, 2003): For each
tree i, given the history of the process vs for times s < t, let

λt,i = E [dvt,i| (vs)s<t] /dt

denote the conditional intensity of the tree being attacked by Ips spp. In the next section
we specify models for the conditional intensity, allowing λt,i to depend on covariate
information (xs,i)s<t, where xt,i denotes the number of turpentine beetles at time t and
site i. It will also depend on external information related to Ips spp. activity and on
“neighboring information”. For a site i, consider its first-, second-,... order neighbors,
which are the (up to) four nearest, four second nearest,... sites to i, and let Ni denote
the set of first to fifth order neighbors of i. Finally, let ut,i = 1[yt,i = 1] and let nt,i =
∑

j∈Ni
ut,j be the number of neighbors of i that are infested with Ips spp. by time t in

the same year.

3 Model

As usual, t− means the time just before time t. Assume that for t in year k,

λt,i = 1[vt−,i = 0]ρ(t)
{

ψ0 + ψ1n
α1

t−,i + ψ2n
α2

(k−1)−,i
+ ψ3xk−,i

}

(1)

where ρ is a non-negative function, ψ0, ψ1, ψ2, ψ3 are non-negative parameters, and α1 =
α2 = 2 (this choice and alternative models are discussed at the end of this section). The
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term 1[vt−,i = 0] is included, since Ips spp. do not attack the same tree twice. The
meaning of the other terms in (1) is given below.

The function ρ incorporates external information about Ips spp. activity due to sea-
sonal variation. Figure 2 shows ρ and reflects the fact that Ips spp. has a window of
activity about four-five months and normally peak around July. Specifically, for t in
year k, ρ(t) = ϕ((t − µk)/σk) where ϕ is the standard normal density function and the
parameters µk and σk are determined as follows. Aukema et al. (2005) modeled Ips spp.
activity as the number of Ips spp. caught in traps every week during the flight period in
2001–2002, using a linear regression model with various explanatory variables, but only
the temperature is available in our study. Therefore we refit the model with temperature
as the only explanatory variable, and estimate µk and σk by the empirical mean and
standard deviation obtained from predicting the number of Ips spp. that would have
been caught during each week of the kth year. Since µk−k and σk do not depend greatly
on k, the five normal densities in Figure 2 look rather similar relative to the years.

0 1 2 3 4 5

0
2

4

Figure 2: The function ρ.

The function ρ is the same for all sites, and is a rough description of Ips spp. activity
depending only on the temperature. The term {· · ·} in (1) adjusts for this. The individual
terms in {· · ·} play the following roles. The term ψ0 is included since the other terms
can be zero and we need then to scale the function ρ. The term ψ1n

α1

t−,i appears, since
Ips spp. may emerge from a tree attacked earlier in the year to attack nearby trees. The
term ψ2n

α2

(k−1)−,i
appears, since Ips spp. overwinter in the ground close to a previously

attacked tree and emerge to attack nearby trees in the following year. The term ψ3xk−,i

reflects that Ips spp. tend to attack trees that previously have been attacked by turpentine
beetles. Since we have only observed which trees the turpentine beetles have attacked at
the end of the year, we should ideally also model the turpentine beetles as a continuous
time process. However, to keep the model simple we refrain from doing that, and instead
assume that the turpentine beetles contribute to the conditional intensity throughout the
year. Since turpentine beetles usually attack earlier in the year than Ips spp. and ρ(t) is
close to being zero early in the year, this is probably not so unrealistic.
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For each year k, the processes (vt)t<k and (vt)t>k are conditionally independent given
vk (however, vt is not a continuous time Markov process). We therefore condition on
v0 and consider the likelihood function based on the remaining data d = (vt)0<t≤5 (i.e.
including the missing data on the time interval [0, 5]). Letting ψ = (ψ0, ψ1, ψ2, ψ3), the
likelihood is

L(ψ; d|v0) =
5
∏

k=1

[

∏

i: k−1<ti≤k

λti,i

]

exp

(

−

∫ k

k−1

∑

i

λt,i dt

)

. (2)

Furthermore, we specify an improper uniform prior for ψ on [0,∞)4. Thus the con-
ditional density of ψ given d (and v0) is proportional to the likelihood (2). A rigorous
proof that this conditional distribution of ψ is proper seems difficult, but from a practical
point of view we would expect the MCMC runs described in Section 4.1 to diverge if the
distribution was improper. This is not the case, and alternatively we could replace the
range of ψ by a very large but bounded region.

Actually, before considering the model (1), we analyzed the model with

λt,i = ρ(t) exp
(

ψ0 + ψ1nt−,i + ψ2n(k−1)−,i + ψ3xk−,i

)

,

where ψ0, ψ1, ψ2, ψ3 are real parameters. This model is of a somewhat similar form as the
model in Zhu et al. (2006), but a model check along similar lines as in Section 4.2 showed
that the model did not fit the data well. Partly inspired by the form of the Hawkes
process (Hawkes, 1971; Daley and Vere-Jones, 2003), we then turned to the model (1)
but with α1 = α2 = 1. We observed a misfit and considered therefore alternative values
α1, α2 ∈ {0, 1, 2}. We finally concluded that the model (1) with α1 = α2 = 2 fit best.

4 Inference

4.1 Posterior simulation and estimation

The posterior distribution is the conditional joint distribution of ψ and the missing data
on [0, 5] given the observations y0, y1, . . . , y5. We use a Metropolis-within-Gibbs algorithm
to simulate from the posterior distribution — we assume that the reader is familiar with
Markov chain Monte Carlo (MCMC) methods; see e.g. Robert and Casella (2004).

Specifically, we propose to update each of the four parameters ψ0, ψ1, ψ2, ψ3 one at
a time using Metropolis random walk steps with normal proposal distributions, where
the proposal variances are chosen to reach an average acceptance ratio of approximately
0.25 (Roberts et al., 1997). Moreover, within a given year k at a site i either one event
ti ∈ (k − 1, k] has happened, where we do not know the exact value of ti, or nothing has
happened. If an event has happened at site i, we need to simulate the unknown ti from
its conditional distribution given “everything else”, i.e. from the density proportional
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to λt,i, with t ∈ (k − 1, k]. We do this by visiting all the sites with events in some
pre-determined order, updating ti by an independent Metropolis sampler with proposal
density ρ(t), t ∈ (k − 1, k].

Figure 3 shows plots of the posterior distributions of ψ0, ψ1, ψ2, ψ3 based on an MCMC
run length of 100,000 with a burn-in length of 1,000. Note that all of the parameters
are clearly bounded away from zero. Obviously, since ψ1 respective ψ2 is significant,
the probability that a tree is going to be attacked increases when more trees in the
neighborhood have been attacked earlier in the year respective in the previous year.
This leads to several potential biological mechanisms. One is that once a beetle enters
a tree and emits aggregation pheromones (Wood, 1982), large numbers of beetles from
previously attacked neighboring trees are available to respond and hence rapidly exhaust
the tree’s defenses (Raffa and Berryman, 1983). Second, factors that predispose trees
to being susceptible to attack may be distributed in a highly clustered fashion, and the
resident population of beetles again respond to the first entries thereby generating the
observed pattern (Erbilgin and Raffa, 2003). Obviously these are not mutually exclusive.
Finally, the significance of ψ3 in (1) implies that trees are more susceptible to being
attacked by Ips spp. if they have been attacked by turpentine beetles previously.

0.005 0.015

0
50

15
0

0.04 0.08 0.12

0
10

20
30

0.010 0.020

0
50

15
0

0.02 0.06 0.10
0

10
20

30

Figure 3: Posterior distributions of ψ0, ψ1, ψ2, ψ3.

Figure 4 shows estimated results for the missing event times ti. The results are based
on an MCMC run length of 100,000 with a burn-in length of 1,000 and sampling every
25th missing data set. The first row in the figure shows for each year 1–5 the estimated
mean value of the ti, using a gray scale where white means that no event happened at
the site and darker values correspond to early events. During the five years the missing
data are located further and further away from the initial gap of dead trees, and within
each year the mean values tend to be larger at locations further away from this gap. The
second row in Figure 4 shows the standard deviations of the event times, where dark
values correspond to small standard deviations. For each year, the standard deviations
are about twice as large for isolated attacks than for those occurring in clumps. Since
the degree of clumping varies from year to year, the standard deviations in e.g. year 3 are

7



higher than in the other years. The histograms in the last row in Figure 4 show for each
year 1–5 the empirical distribution of all times of events during the year. The histograms
are rather similar except for the difference in years, and they look much like the normal
densities given by ρ(t) except for a shift about half a month to the right.
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Figure 4: Columns: years 1, 2, 3, 4, 5. First row: gray scale plots of estimated mean event
times. Second row: gray scale plots of estimated standard deviations of event times. Last
row: histograms of all event times and ρ(t) within each year.

4.2 Model checking

Following the idea of posterior predictive model checking (Gelman et al., 1996), we con-
sider posterior predictions: for each l = 1, 2, . . ., we simulate a realization from the
posterior distribution and use this when simulating “new data” u

(l)
t,i and v

(l)
t,i from the

observation model; see Appendix A. For convenience, let u
(0)
t,i = ut,i and v

(0)
t,i = vt,i denote

the data.
To check how well the model fits the data, we first consider the number of attacks in

each year,

w
(l)
1 (t) =

∑

i

u
(l)
t,i ,
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where t = 1, . . . , 5. The left plot in Figure 5 shows the 2.5, 50, 97.5 percentiles estimated
from w

(l)
1 (t) for l = 0, . . . , 199. The values of w

(0)
1 (t) is also shown in the figure. In all

years except year 3 where the number of Ips spp. attacks was particularly low, w
(0)
1 (t) is

located in the central interval.
Second, let d(i, j) denote Euclidean distance between site i and j. For δ ≥ 1,

w
(l)
2 (δ) =

∑

i<j: d(i,j)∈(δ−1,δ]

v
(l)
5,iv

(l)
5,j,

is the number of pairs of sites between δ − 1 and δ apart and attacked at some time
during the observation period. Thus w

(l)
2 (δ) quantifies the degree of spatial clustering.

The center plot in Figure 5 shows w
(l)
2 (δ) for δ = 1, . . . , 5 in the same way as in the first

plot. Again there are no discrepancies between the model and the data.
Third, in order to combine temporal and spatial information, consider the number of

neighboring sites that are attacked in years time t apart,

w
(l)
3 (t) =

∑

i,j,k: j∈Ni,k=t,...,5

u
(l)
k,iu

(l)
k−t,j

for t = 1, . . . , 4, while

w
(l)
3 (0) =

∑

i,j,k: j∈Ni,k=0,...,5

u
(l)
k,iu

(l)
k,j/2

where we divide by 2 to avoid counting all the pairs twice. The right plot in Figure 5
shows w

(l)
3 (t) for t = 0, . . . , 4 in the same way as the plot for w

(l)
1 (t), except that we have

taken the logarithm of w
(l)
3 (t) to be able to see what happens at times t = 3, 4. For

t = 0, . . . , 2, w
(0)
3 (t) is located in the 95% central interval, but for t = 3, 4 the model

underestimates the number of pairs.
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Figure 5: Plots of w1(t), w2(δ), and log(w3(t)). The crosses indicate the data and the
bars indicate the 95% central interval and the median.
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Finally, the upper row in Figure 6 shows plots of the data for each year t = 1, . . . , 5
where a site i at time t has been colored black if v

(0)
t,i = 1 and gray otherwise. Simulating

1000 posterior predictions, we let ṽt,i = 1 if v
(l)
t,i = 1 in more than 50% of the simulations

and ṽt,i = 0 otherwise. The lower row in Figure 6 shows plots of ṽt,i. Comparing the two
rows in the figure, we see that both the data and the posterior predictive simulations
show a clear formation of a large cluster of infested trees in the middle. Furthermore,
the clusters seem to be roughly of the same size in the data and the simulations. On the
other hand, there are some discrepancies between the shape of the cluster in the data
and in the simulations: the shape of the cluster is more circular in the data than in the
simulations. However, in spite of this deviation, the general behavior still seems to have
been captured adequately well by the model.

Figure 6: Upper row: A site is colored black if vt,i = 1 and gray if vt,i = 0 for times
t = 1, . . . , 5 (left to right). Lower row: same as upper row, but for ṽt,i.

5 Comparison between continuous and discrete time

models

We have illustrated how discrete time observations of a multivariate point process can
be analyzed using a Bayesian missing data approach. We conclude with a discussion
of the advantages and disadvantages of using continuous time processes compared to
discrete time processes in the setting of the present paper as well as other spatial-temporal
situations.

Computation: The most important advantage is the ease of computation. The likeli-
hood function for a spatial-temporal process with discrete time often involves one or more
unknown normalizing constants which need to be estimated using MCMC methods, see
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e.g. the Markov random field models in Besag and Tantrum (2003) and Zhu et al. (2006).
In contrast the likelihood function for a multivariate point process is completely specified
by modeling the conditional intensity, cf. equation (2). In Zhu et al. (2006), we modeled
the data set consisting of the three types of data given by turpentine beetles, Ips spp. and
tree conditions. The likelihood function for this model factorized into three terms, one
for each type of data, where we can compare the term corresponding to Ips spp. and the
model used in the present paper, when we include the Ips spp. at all sites (rather than
restricting the data to the subset of sites considered so far in the present paper). For
this particular comparison, the computation time of the MCMC algorithm for posterior
distributions for the discrete time model is roughly two hundred times longer than the
corresponding computation time for the continuous time model. This improvement in
speed means that we have been able to investigate several variations of the model (1)
(see the end of Section 3), something we could not do within practical time limits in the
case of the discrete time process for Ips spp. in Zhu et al. (2006). On the other hand,
in Zhu et al. (2006) the likelihood terms corresponding turpentine beetle colonization
and tree conditions were easy to specify, and calculations for these terms were very fast.
Extending the continuous time model to include turpentine beetles and tree conditions
may be much more involved, and a comparison between such a model and the full model
in Zhu et al. (2006) may well turn out differently.

External information: For a discrete time process as compared to a continuous time
process, it may be difficult to incorporate external (or, in a broad sense, covariate)
information in the form of another stochastic process observed at a different time scale
than the discrete time process. For example, the ρ term in (1) incorporates external
information about Ips spp. activity due to seasonal variation; such information can only
be incorporated into the model in Zhu et al. (2006) after some form of aggregation. On
the other hand, we require the external information that was collected in the field across
a full season of Ips spp. activity modeled into ρ to obtain a realistic continuous time
model for Ips spp. attacks. If we had no such information or only unreliable information
available, the continuous time model approach would be problematic. It would also be a
problem if the modeling form of ρ is misspecified. Specifying ρ is time consuming, and
this partially offsets the advantage of the shorter computation time for the continuous
time model.

Time scale comparability: While the parameters of two continuous time processes
may be compared even if their time scales for observations (i.e. time lengths between
observation times) are different, it may not be meaningful to compare the parameters
of two discrete time processes with different time scales. The choice of observation
times in Zhu et al. (2006) is biologically meaningful, since we have annual observation
after cessation of insect activity; however, suppose that we had another data set with
observations every second year. Further, imagine that we wish to use a model of the
same form as in Zhu et al. (2006) for this other data set. Then, because of the different
time scales, we cannot directly compare the parameters governing e.g. Ips spp. activity.

11



Consistency: Although observed only at discrete times, the types of data considered
in the present paper come from an underlying continuous time process, and the existence
of an underlying continuous time process is not ensured by specifying a discrete time
process. Obviously, this is not an issue when we have specified a continuous time model,
but our continuous time model only approximates the complexity of the system under
study. Indeed, Ips spp. colonization does not occur exactly at one time point; it is a
complicated process involving hundreds or thousands of beetles attacking over a short
period of time. On the other hand, the discrete time model reflects the cumulative Ips

spp. attacks throughout the past season, and in this sense it is a perfectly sensible model
for the system under study.

Estimation of missing data: A continuous time process allows us to model what has
happened between observation times, where in our case the event times of within-season
Ips spp. attacks can be readily estimated by the MCMC algorithm in Section 4.1. In
contrast it is not possible to do this kind of estimation for missing data based on the
model in Zhu et al. (2006), although it was not a part of the scientific objectives there.
In the present paper, the estimates provide some trustful qualitative results regarding
how the times of events depend on the distance to the gap of dead trees and the similar
behavior over the years. However, quantitative results depend much on a careful modeling
of external information, particularly the function ρ.

Predictions: It is straighforward to predict what may happen at any time after the
final observation time, applying Ogata’s modified thinning algorithm for the continuous
time process in the present paper (see Appendix A). The discrete time model in Zhu
et al. (2006) allows us only to predict what may happen annually.

In conclusion, spatial-temporal processes often suffer from being computationally in-
tensive, and we have demonstrated that in the present case, using a continuous time
process is indeed a viable alternative to a discrete time process.

Appendix A

For model checking in Section 4.2, we need to simulate new data from the observation
model. For this we use Ogata’s modified thinning algorithm extended to marked processes
(Daley and Vere-Jones, 2003; Ogata, 1981).

Factorize the intensity, λt,i = λt × p(i|t), where λt =
∑

i λt,i is the intensity for the
temporal process of events disregarding the location, and p(i|t) ∝ λt,i is the probability
function for the location given the time of the event. Note that the dependence on
the past events (locations and times) of both functions are suppressed in the notation.
Furthermore, define two functions l(t) and m(t) by l(t) = t+ 0.1 for k − 1 < t ≤ µk and
l(t) = k for µk < t ≤ k, and m(t) = maxs∈[t,l(t)] λs. Ogata’s modified thinning algorithm
is then started at time t = 0 and the following steps are repeated until t > 5:

1. Compute l(t) and m(t).
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2. Generate an exponentially distributed variable T with inverse mean m(t) and a
uniform variable U on [0, 1] independently of each other.

3. If T > l(t), set t = t+ l(t).

4. Else if t+ T > 5 or U > λt+T/m(t), set t = t+ T .

5. Otherwise, let the next event be ti = t+T , where i is generated using the probability
function p(i|t), and set t = t+ T .

The output is the set of all ti obtained in step 5.
Combining this algorithm with a sample of the posterior distributions in Section 4.1,

we get posterior predictions. In practice we get a sample of the posterior distributions by
taking values from the Markov chains at regular intervals chosen such that the sample is
effectively independent.
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