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1. Introduction

In 1922, Banach first presented the Banach contraction principle [1] in metric spaces, which is
a powerful and classical means to solve problems about fixed point. Subsequently, it has been
generalized in many aspects. One vital generalization is to promote the concept of metric spaces.
b-metric spaces is regarded as a well-known generalization of metric spaces. In 1993, Czerwik [2] first
introduced the concept of b-metric spaces by modifying the third condition of the metric function. The
author also provided fixed point results for contraction conditions in this type space. In the sequel,
several papers have been published on the fixed point theory of various classes of single-valued and
multi-valued operators in b-metric spaces (see [3—6]).

In 1969, Boyd and Wong [7] gave a definition of ¢-contraction in metric spaces for the first time.
Afterward, Alber and Guerre [8] defined the concept of weak contraction and got some fixed point
results in Hilbert space. In [9], Rhoades generalized Alber and Guerre’s results to more general forms.
Alutn [10] proved the common fixed point theorem for weakly contraction mappings of integral type.
Later, more scholars [11-14] presented some fixed point theorems for weakly contractive mappings in
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different spaces.

In particular, Perveen [15] obtained the 6*-weak contraction principle in metric spaces as follows:
Theorem 1.1. [15] Suppose (€2, 7) is a complete metric space and S : Q — Q is a §*-weak contraction.
If 0 is continuous, then

(a) S has unique fixed point (say, z* € ),

(b) l_1)r+r1oo S'z=27",Vze€Q.

M(;tivated and inspired by results in [15], in this paper we give some fixed point theorems for
contractive mappings of the integral type in b-metric spaces. Furthermore, two examples are given to
prove the feasibility of the theorems. Also, the solvability of a functional equation arising in dynamic

programming is considered by means of obtained results.
2. Preliminaries

We introduce the following definitions and lemmas, which will be used to obtain our main results.
Definition 2.1. [2] Let N be a nonempty set and s > 1 be a given real number. A mapping @ : N XN —
[0, +00) is said to be a b-metric if, and only if, for all , 4, u € N, the following conditions are satisfied:

(i) w(k, A) = 01if, and only if, k = A;

(1) @w(k, 1) = @(A, K);

(iii) @(k, 1) < s(@w(k, u) + @4, w)).

In general, (N, @) is called a b-metric space with parameter s > 1.

Remark 2.2. Visibly, every metric space is a b-metric space with s = 1. There are several examples of
b-metric spaces that are not metric spaces (see [16]).

Example 2.3. [17] Let (N, d) be a metric space, and @w(k, 1) = (d(k, 1))”, where p > 1 is a real number,
then @w(k, A) is a b-metric with s = 277!,

Definition 2.4. [18] Let (N, @) be a b-metric space with parameter s > 1, then a sequence {«,} ] in N
is said to be:

(i) b-convergent if there exists « € N such that w(k, k) = 0 as ¢t — +oo;

(i1) a Cauchy sequence if @w(k,, k,) — 0 when (,v — +co.

As usual, a b-metric space is called complete if, and only if, each Cauchy sequence in this space is
b-convergent.

The following lemma plays a key role in our conclusion.

Lemma 2.5. [17] Let (X, @) be a b-metric space with parameter s > 1. Assume that {«,}] C N and
{4)/5) c N are b-convergent to k and A, respectively, then we have

1
Sk, A) < liminf @w(k,, A,) < limsup @w(k,, 4,) < sw(k, A).
S 1—+00

1—>+00

In particular, if ¥ = A, then we have lim,_, ,, @w(x,, 4,) = 0. Moreover, for each u € N, we have

1
—w(k,u) < liminf @w(k,, u) < limsup w(k,, u) < sw(k, p).
S 1—+00

1—+00

Lemma 2.6. [19] Let ¢ € J and {k,},ax be a nonnegative sequence with lim «, = «, then

n—+00

K,

lim p(w)dow = fK p(w) dw.
0

n—+oo Jo
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Lemma 2.7. [19] Let ¢ € J and {«,},c be a nonnegative sequence, then

lim pw)dw =0

t—=+o0 Jo

if, and only if, lim «, = 0.
1—+00

Throughout this paper, we assume that R* = [0, +0), Ny = N U {0}, where N stands for the set of
positive integers,

J =€ : RY — R* satisfies that & is Lebesgue integrable, and f Ew)dw > 0 foreach d > 0}.
0

Let (N, @) be a b-metric space with parameter s > 1 and S be a self-mapping on N. For any u, v € N,
set
w(u, Sv) + @w(v, Su)
2s h

A, v) = max{w(u, ), wu, Su), w(v, Sv),
3. Main results

In this part, we introduce the new concept of a-admissible mapping and other definitions, which
will be used to prove the fixed point theorems of the integral type in b-metric space. Moreover, we also
provide two examples to support our results.

Let

®; ={6|0 : (0,+00) — (1, +0c0) satisfies the following conditions (1) and (3)},

0, = {610 : (0, +00) — (0, 1) satisfies the following conditions (2) and (3)},

where

(1) 8 is nondecreasing and continuous;

(2) 8 is nonincreasing and continuous;

(3) for each sequence {8,}] C (0, +o0), Ll_lgrrg0 0B)=1= lim B, =0.

t—+00

Definition 3.1. Let (N, @) be a b-metric space with parameter s > 1 and p > 1 be an integer. A

mapping S : X — N is said to be a,,—admissible if for all 3, w € N, one has
a3, w) > s = a(S3, Sw) > s’

where @ : 8 X X — [0, +00) is a given function.
Lemma 3.2. Let ¢ € J and {«,},ax be a nonnegative sequence. If lim sup x, = «, then

t—+00
f p(w)dw < lim supf p(w) do.
0 1—+00 0
If liminf k, = «, then

L—+00

L—+00

lim inf f o(w)dw < f o(w) do.
0 0

Proof. Tt follows from lim sup , = « that there exists a subsequence {x,_} of {«,} such that

1—+00

lim «, = .

¢—+00
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In view of Lemma 2.6, we deduce that
f p(w)dw = lim f ) p(w)dw < lim supf p(w)dw.
0 s+ Jo | —+00 0

Similarly, one can prove another inequality. O

Theorem 3.3. Let (N, @) be a complete b-metric space with parameter s > 1 and S : N — N be a given
self-mapping. Assume that @ : N X N — [0, +c0) and p > 3. If

(1) S is ag-admissible,

(ii) there is py € N satisfying a(pg, Spy) = s?,

(iii) « satisfies transitive property, i.e., for &,n,¢ € N if

a§.n) 2 s" and a(n,{) = s" = a(§,) 2 5",

(iv) if {p,} is a sequence in N satisfying p, — p as ¢t — +oo, then there exists a subsequence {p,};2] of

{p.} 5 with a(p,x), p) = 7,
(v) S is a -weak contraction, that is, there exists £ € (0, 1), ¢ € J, 6 € O, such that: for any u,v € N,

7w (Su,Sv) a(1,0)@(Su,Sv) A(u,0)
a(u,n) > s”,f p(w)dw > 0= 9([ p(w)dw) < [6( f o(w)dw)’, (3.1
0 0 0

then S has a fixed point in N. Furthermore, if

(vi) for p,q € Fix(S), one can get the conditions of a(p,q) > s” and a(q,p) > s”, where Fix(S)
represents the collection of all fixed points of S,

then the fixed point is unique.

Proof. Under condition (ii), there is a py € N satisfying a(pg, Spg) > s”. Define sequence {p,} in X by
Pne1 = Sp, for n € N. If p,, = Sp,, for some ny, then p,, is a fixed point of S. Suppose that p,.; # p,
for n € N. It follows from condition (i) that

a(pg, Spg) > s = Q(SPO,SZPO) > 5P,

a(pr, P2) > 57 = a(Spy, Spy) > 57,
a(p2, p3) = s" = a(Spy, Sp3) = 57,

Thus, for all n € N, we have a(p,_1, p,) = s”. Using (3.1) by u = p,_; and v = p,,, one gets

(Pp—1,Pn)T(SPp-1,SPn) A(Pp—1,Pn)
o fo () dw) < [6( fo () dw)]’ (3.2)
where
APat. D) = MA@ (Pt D), D (Opts SPyor), (s ), 2L Sp”);sw(p”’ SP))
= XD (D, D), D (Pt B DD D)y e Bret) + T, B), (3.3)

2s
= max{w(pn—la pn)a w(pn’ pn+l)}'
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If w(,, Pps1) = @®,u-1,p,) for some n € N, in view of (3.2) and (3.3), we have A(P,_1,P,) =
@ (Pps Pu+1), SO

w(pmprﬁl) s”w(pn,an)
6 f Plw) dw) <6( f (W) dw)
0 0

a(plrl ,DH)W(SD,F[ ,Spn)
<6( f () dw)
0

A(p/rl ,pn)
<[6( f () dw))’
0

w(pn,p/ﬁl)
=[6( f p(w) dw)]’
0

which is impossible. Hence,

w(pn—l’ pn) > w(pn’ pn+1)~ (34)

(3.4) implies that A(p,_1, P,) = @(P,—1, Pn) 1s decreasing. Thus, we have

m(pnapll+l) w(pnflapn)
o( f p(w) dw) < [6( f o(w)dw)]’
0 0
w(pn72apn—l) >
< [6( f o(w) dw)]’
0
@(Po,P1) )
<. <[l f o(w)dw)]”.
0

Letting n — +oco in the above inequality, we get
@ (Pn>Pn+1) @ (Po,P1)

1 < lim 6( p(w)dw) < lim [6( f o(w)dw)]” =1
n—+oo 0

n—+0o 0

ie., lim 8(f7"""" ¢(w)dw) = 1, which by the definition of 6 yields that

n—+co

w(pnaer 1 )

lim pw)dw =0

n—+oo J
which implies
nli‘Elo @(Ppy Prs1) = 0.

Now, we prove {p,} is a Cauchy sequence. Suppose {p,} is not Cauchy, then there exists € > 0 for
which we can choose sequences {p, )} and {p,,x)} of {p,}, such that n(k) is the smallest index for which
n(k) > mk) > k,

& < @(Pmi)> Pr))> T(Pmiys Puty-1) < E. (3.5)

AIMS Mathematics Volume 9, Issue 2, 4729-4748.



4734

Under the triangle inequality and (3.5), we get

g < T(Pmw)> Pak) < ST(Pm)> Prtr-1) + ST(Ppik)-1, Prk)) < SE + ST(Pp(k)-1> Prk))-

Taking the superior limit and inferior limit as k — +co, we get

e< llklllJrlgf w(pm(k), Dn(k)) < lim sup w(pm(k), pn(k)) < se€.

k—+00

Similarly, one can deduce the following inequalities:

TPty Pu) < STPmcs Pnco-1) + S T P15 Pur-1) + ST Pugo-15 Puciy)»
TPmt)-1> Pae-1) < ST P15 Pm)) + ST Prciys Prcty) + ST Prhys Prr—1)s
TPk Pr) < ST(Pmey> Pmciy-1) + ST Pmeiy-15 Puck))s
T(Pm)-15 Pucey) < STDm)-15 Pmiy) + ST Pmey> Puck))s
TPy Puk) < ST Pmey> Puky-1) + ST(Pnciy-15> Puk))s

T(Pmiiy> Prr-1) < STPmk)s Prck)) + ST Pn)> Prti-1)-

By (3.6)-(3.8), we have

& .. . 3
2 < lkm +1Hf T(Pmio)-1> Put-1) < Im sup @ (P15 Puey-1) < 7€
—teo k—+00

It follows from (3.6), (3.9), and (3.10) that

g .. . 2
— < liminf @(Pme)-1, Puky) < lim sup @ (-1, Puk)) < S°€.
S k—+oo k400

According to (3.6), (3.11), and (3.12), one can obtain

e ... . 2
3 < ll,fillilf @(Pmeiy> Pr—1) < Im sup @w(Pmw)> Puy-1) < S7€.

k—+00

Thus, there exists N € Ny such that for m(k), n(k) > N, f 7 Pntey-1 Patey-1)

b p(w)dw > 0.
In view of the definition of A(u, v), we have

A(pm(k)—la Pn(k)—l) = maX{W(Pm(k)—l, pn(k)—l)a W(Pm(k)—l, Spm(k)—l), W(Dn(k)—l, Spn(k)—l)a
T(Pim(y-1> SPak)-1) + T(Pu)-1, SPmy-1)
2s }
= Max{@(Pme)-1> Puk)-1)s TPm@)-1> Pmi))> TPngy-15 Puii))»
T(Pmi-15 Puy) + T(Pn)-1, Dm(k))}
2s '

(3.6)

(3.7)

(3.8)

(3.9

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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Letting k — +o00 in (3.16), we get

. . 3 s’ + s’e 3
hkm:nf APmi-1> Prio—1) < lim sup A(Ppeiy-1, Pa—-1) < max{s’g, 0,0, Yy }=se. (3.17)
—Fee k—+0c0

The transitivity property of @ yields that @(pk)-1, Paw-1) = 7. Choosing 1t = p,,p-1 and v = Py
in (3.1), by Lemma 3.2, one can deduce

e SP @ (D) Pnk))
6( f p(w)dw) < lgcm inf 6( f p(w) dw)
0 —+00 0

A (Pi(k)—1Pnk)—1)T(SPim)-1-SPn(k)-1)
< liminf 6( f p(w) dw)
0

k—+00

APm(k)—-15Pr()-1)
< lim inf[6( f o(w) dw)]’
0

k—+00

< [6( f p(w)dw)]’
0

which is a contradiction. So, {p,} is Cauchy. As N is complete, there exists p* € N such that p, — p*
as n — +oo.

Next, we prove the point p* to be a fixed point of S. So, we think about a set, say Q = {n € Nj :
p, = Sp*}, then it has two situations. One, if Q is an infinite set, then there exists a subsequence
{Pniy} € {p,}, which converges to Sp*. By the uniqueness of limit, we have Sp* = p*. The other, if Q

is a finite set, then there is N* € N such that fow(p"’sp*) ¢(w)dw > 0 for any n > N*. By (iv), we obtain

. n 3S *
that there exists a subsequence {p,x)} € {p,} such that a(p,¢)-1, p*) > s” and fow(p 5%
Yk > N*. Taking u = p,y-; and v = p* in (3.1), we get

& (Pr(k)-1,P)T(SP(k)-1,59%) APnk)-1,0")
o( f (1) dr) < [6( f p(w) dw)]’ (3.18)
0 0

p(w)dw > 0,

where

@(Pny-1,SP") + dw(P*, SPu)-1)

APni)-1, P°) = max{@(Puw)-1, P°)s TPuco-1> SPcy-1), @D, SP*), P }
. e wn TPn@—1,SP") + @(P*, Prr))
= max{@(Pni)-1> P ), T(Png-1> Pa))> @(P*, SP*), © P ©%.
(3.19)
Putting the limit as k — +o0 in (3.19), we get
. . ¢ sy TP, SPY) . c
kllrllo A(Pgiy-1, P7) = max{0, 0, @ (p”, Sp*), T} = w(p*, Sp”).
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According to (3.18), (3.19), and Lemma 2.5, we get

@ (p*,Sp*) s> La(p*,Sp7)
af ﬂwmw<mf p(w) dw)
0 0

P (SPuky-1,S9")
< lim sup 6( p(w) dw)
n—-+oo 0
(Pu(y-1,P )T (SPp(ky-1Sp™)

< lim sup 6( $(w) dw)
n—+oo 0
APn()-1,97)
< lim sup[6( p(w) dw)]’
n—+oo 0

w(p*,Sp*)
:wf‘ o(0) d)]’
0

which is contradiction. Hence, Sp* = p*.
For the uniqueness, let q* be one more fixed point of S, then (vi) yields a(p*, q*) > s”. Using (3.1),

one can arrive at
a(p*,q" )@ (Sp*,Sq*) A(P*,07) ,
o( f p(w)dw) < [6( f p(w)dw)]
0 0

where
. . . ¢ a TELSqY) + @(q7, Sp7)
AP, q") = max{w(p’, q"), @(d", Sp"), w(q", Sq*), > }
. @ (p*,q") + @(q*, p*) .
= max{w(p*,q"),0,0, X ,0,0} = w(p™, a7).
So, we have

@ (p*,q%) s> w(p*,q")
egf ¢@»dw><egf () dw)
0 0

a(p*,q" )@ (Sp*,Sq*)
swf () duv)
0

A(P,97)
smf () dw))’
0

w(p*,q")
:mf o(w) dw)]
0

a contradiction. Thus, p* = q*, which proves the uniqueness of the fixed point. This completes
the proof. O

Example 3.4. Let 8 = [0, 1] and @(p, q) = (p — q). It is easy to show that (N, @) is a h-metric space
with parameter s = 2. Define mappings S : N — N by

p
—=—+1, pe[0,1),
1 pe[0,1)

Sp = 7 _,
85 p_
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and @ : X XN — [0, +0c0) by
a(p,q) =2°,¥p,q € N.
Define 6 : [0, +00) — (1,4+00) and ¢ : [0, +00) — [0, +00) by

B(w) = e*0rn¢ and p(w) = 2w.

It is easy to get that a(u, v) > 23, jﬂ Grs) p(w)dw > 0 © 1,0 € [0,1] and u # v. We consider the
two following cases:
Case 1. u,v € [0, 1). It follows that

@(11,0)w (S1,Sv) 23 (- 4+1+5-1)
6( f p(w) dw) =6( f 2w dw)
0 0

1
=05 (1 = 0))

:e64(u—n)4+sin(%(u—n)4)’

A1) | (1-0)? .
[9(f p(w)dw)]? 2[9(f 2wdw)]?
0 0

1
=[6((1 — v)*]?
— 6128(11—0)4+7““((“2’“)4) .

Case 2. u€[0,1),v» = 1. One can deduce that

(1,0)w(Su,S0) 23(-t41-17
o( f p(w) dw) =6( f 2w dw)
0 0

:alm—§f>

(4>< 16)

_ 4+sin A
=e 64 ,

@w(1,50)+w@(v,Su)

A(u,0) . 53 .
[6( f p(w) dw)]> =[6( f 2wdw)]?
0 0

Ha-17+2) ]
=[6( f 2w dw)]?

L - (-9 1
_ 6 f 2w dw)]?

T2 -1 .
Z[G(f 2w dw)]?
0
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Clearly, as ¢ = 1, we have

(u,0)ww(Su,Sv) A(u,0)
o s <io [ e do.
0 0

Hence, (3.1) holds. It follows that all conditions of Theorem 3.3 are satisfied with s = 2 and p = 3.
Here, £ is the fixed point of S .

Remark 3.5. If (N, @) is a metric space and a(i,v) = 1 in Theorem 3.3, then one can obtain
Theorem 1.1 immediately.

Theorem 3.6. Let (N, @) be a complete b-metric space with parameter s > 1 and S : N — N be a given
self-mapping. Assume that @ : N X N — [0, +o0) and p > 3. If

(1) S is a-admissible,

(ii) there is py € N satisfying a(pg, Spg) > s?,

(iii) « satisfies transitive property, i.e., for &,7, € N if

a,n) = s" and a(n,{) = s" = a(§, Q) > s”,

(iv) if {p,} is a sequence in N satisfying p, — p as ¢ — +oo, then there is a subsequence {p,)};2] of

(P} with a(p,), p) > 7,
(v) S is a 6-y-weak contraction, that is, there exists ¢ € J, § € @, such that: for any 1,0 € ¢

o (Su,Sv)
a(u,v) > sp,f p(w)dw >0
0 (3.20)

a(11,0)@(Su,So) A(11,0) A(u,0)
= ¥( f P(w) dw) <O(Y( f P(w) dw)y( f p(w) dw),
0 0 0

where ¢ : [0, +00) — [0, +00) is a continuous and increasing function with ¥(w) = 0 if, and only if,
w =0,

then S has a fixed point in N. Moreover, if

(vi) for p,q € Fix(S), one can get the conditions of a(p,q) > s” and a(q,p) > s”, where Fix(S)
represents the collection of all fixed points of S,

then the fixed point of S is unique.

Proof. As in the proof of Theorem 3.3, we infer a(p,-1,p,) = s”. Using (3.16) with u = p,_; and
» = p,, one can deduce that

Y1) TEPr-1,5P1) A(Pa-1.P2) AT
U f(: P(w) dw) <O(Y( ﬁ p(w) dw)( fo o(w) dw) (3.21)
where
APn-1> Pn) = MaX{@(Pn-1, Pn)> T(Pp-15 SPn-1)> @(Pps SPp), Dt Sp");w(p’“ Sp"‘l)}
= XDyt D) T (Bt D), (D D), L p””z): @ B, (3.22)

= max{w(pn—la pn), w(pna pn+1)}-
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If @(p,, Pur1) = @(Py-1, p,) for some n € N, according to (3.22), one can obtain A(P,—1,P,) =
@ (P, Pps1). It follows that

w(pn’prﬁrl )

W( | p(w) dw)
(Pr=1,P)@(SPp-1,591)
< f' (W) dw)
0

APn-1,Pn) A(Pu-1,Pn)
<6 fo () d)U( fo o) dw)

w(pn’p)ﬁ—l) w(pnspn+l)

=00 ( (W) dw)y( f p(w) dw)
0 0
which is a contradiction. Thus,

w(pn—l’ pn) > w(pn’ pn+1)~ (323)

By (3.23), we get that A(p,_1, p,) = @(P,_1, P,) 1S a decreasing sequence. Hence, there exists p > 0
such that w(p,_1, p,) = p. If p > 0, then

w(foww,pm) go(w) dcu)
w7 p(w) dw)

@ (Py—1,Pn)
< o fo o) dw)).

Taking n — 400, we obtain

T (Pu-1,Pn)

1 < lim 6(y( p(w)dw)) <1

n—+oo 0

which implies lim 6(y/( fow(p"’l’p”) p(w)dw)) = 1. In view of the definition of 6 and ¢, one can
n—+oo
deduce that

m(pnfl 7pn)

lim pw)dw =0

n—+eo )
1.e.,
lim w(pm pn+1) =0,
n—+oo

which is contradiction. It follows that lim @ (p,, p,+1) = 0.
n—+oo

Next, we want to show {p,} is a Cauchy sequence. As in the proof of Theorem 3.3, we obtain
that (3.13)—(3.17) hold. The transitivity property of @ implies that &(Pyw)-1, Paky-1) = s”. Putting

AIMS Mathematics Volume 9, Issue 2, 4729-4748.
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U = Pm(h)-1 and v = Putr)-1 into (320), we get

e SP @ (Pmck)-Pnck))
o[ vtwrdo) <timintuc [ () d
0 —teo 0
(pmk—] spnk—l )W(Spmk—] sSpnk—] )
<liminf y( f\q p(w) dw)
k—+o00 0
) ) A(pmk—l :pnk—l) A(pmk—] spnk—l)
<timinflo( ) doyu [ () do)]
A(pmk—lspnk—l) A(pmk—lspnk—l)
<lim sup 6(y( P(w) dw) - lim inf Y ( f p(w) dw)
k—+00 0 k—+o00 0
A(pmkfhpnkfl) A(pmkflapnkfl)
=60(lim inf y( ¢(w)dw)) - Y(liminf f p(w) dw)
k—+o00 0 k—+o00 0
538
<y( f p(w) dw)
0

which is a contradiction. Hence, {p,} is Cauchy. The completeness of & ensures that there exists p* € N
such that {p,} — p* asn — +oo.

Next, we prove the point p* to be a fixed point of S. Similar to the discussion related to Theorem 3.4,
taking 1 = p,x-; and » = p* in (3.20), we get

(Pn(t)-1-P )T (SPuy-1,S9")
W( f (w) dw)
0

A(Pa()-1,P") An)-1,0") (3 24)
<O fo () da)i fo 0(w) dw)

where

T(Pni)-1, SP*) + @(P*, SPp(k)-1)

AWniy-1, P7) = max{@(Puw)-1, P, TBnc-1> SPay-1), @(P", SP*), P }
. v s T(Pag-1,59") + T(P*, Pu)
= maX{W(Pn(k)—l, p ),W(Pn(k)—l, Pn(k)), w(p*,Sp°), o1 o © ).
(3.25)
Taking the limit as n — +o0 in (3.25), we get
n1—1>r-Poo A(pn(k)—b P ) = maX{O’ 0’ w(p s Sp )a T} = w(p s Sp )' (326)
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According to (3.24), (3.26), and Lemma 2.5, we get

w(p*,Sp*) 53 La(p*,Sp*)
lﬂ(f @(1) dr) Sl//(f @(2) dr)
0 0

(Pr(k)=1,P)T(SPr(i)-1,Sp™)

< lim ( p(w) dw)
n—+00 0
APn)-1,0") APnk)-1,0")
< 11131 Oy ( (w) dw)y( f p(w) dw)

@(p*,Sp) @(p*,Sp7)
=0(y( fo (w) dw))y( fo p(w) dw)

@ (p*,Sp)
<y ( fo $(w) dw)

which is impossible. It follows that Sp* = p*.
At last, we show the uniqueness of the fixed point of S. Suppose q* is another fixed point of S. It
follows from the condition (iv) that a(p*, q*) > s”. In light of (3.20), one can get

a0 @(ER.S0) A7) A" 0")
Y( j; p(w) dw) <OH(Y( fo @(w) dw)( f; p(w) dw),

@(p*,Sq") + @w(q”, Sp*)}

A(P*, q") = max{@(»", q), @(p*, Sp*), w(q", Sq7),

2s
. @(p*,q") + w(q", p*) .
= max{w(p’,q"),0,0, > }=w@(p’, ")
Then
@ (p*,q%) (r*,9")@(Sp,Sq)
" f () dw) <Y( f o) dw)
0 0
A(PT,97) A(PT.97)
<OY( f p(w) dw)( f p(w) dw)
0 0
@ (p*,q%)
<y ( f p(w) dw)
0
a contradiction, which implies that p* = g*. This completes the proof. O

Example 3.7. Let 8 = [0, 1] and @(p, q) = (p — q)*. Define mappings S : 8 — N by

P 1
b EO?_’
e PEl0g]
Sp =
: DE(I 1]
32 §fe’ 2’

and @ : X XN — [0, +00) by
a(p,q) = 24, p,q€]0,1].
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Define 6 : [0, +00) — (0,1) and ¢, ¢ : [0, +o0) — [0, +c0) by

O(w) = e, Y(w) = w and p(w) =

One can deduce that a(u,v) > 24, U(SU ) p(w)dw > 0 & u,v € [0, 1] with u # v. It follows that

we also consider two cases:
Case 1. u,v € [0, 1], then

u

(1,0 (S1,S) 244 L—)?
o f o(w) dw) = f 2= b dw
0 0

1 4
=—(u-0)",
642><\“/E( )

A(11,0) A(1,D) A1) A(11,0)
9(%0(f ()0((.1)) dw))lﬂ(f QO(CL)) a’w) :6_4f0 wdw f 2w dw
0 0 0

—(u — )",

\/_

Case 2. u € [0, %], v E (%, 1]. It is easy to obtain that

u

a(11,0)w(Su,So) 24( 1 1 )
1ﬁ(f p(w) dw) :f e« 2wdw
0 0

— 1)4

1
=—(u
642 x \“/E(
1

S,
642 x e

A(1,0) A(u,0) A0) A(U,0)
O( f p(w) dw)y( f o(w)dw) =e™*h 2wdw.. f 20 dw
0 0 0

11 <l 1 N

et 16 32 Ne
1

>—.

642 x e

That is,
a(1,0)@(Su,S) A(11,0) A(u,0)
w( fo p(w) dw) < 0(Y( fo o(w) dw))y( fo (W) dw).

It follows that all conditions of Theorem 3.6 are satisfied with s = 2 and p = 4. It is easy to get that 0
is the unique fixed point of S.
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4. An application

In this section, by using the fixed point theorems obtained in Section 3, we study the existence of
solutions of the following functional Eq (4.2).

Let O and P be two Banach spaces and S € O and D C P be the state and decision spaces. B(S)
denotes the Banach space of all bounded real-valued functions on S with norm

|| m ||= supf{|m(€)| : £ € S} for any m € B(S). “.1)

Bellman [20] was the first to investigate the existence and uniqueness of solutions for the following
functional equations arising in dynamic programming:

f(x) = ;gg max{r(x, ), s(x, y), f(b(x, )},

f(x) = ;2[1; max{r(x,y), f(b(x, y))}

in a complete metric space BB(S). As suggested in Bellman and Lee [21], the basic form of the
functional equations in dynamic programming is as follows:

f(X) = Opt)'eD{H(x’ Y, f(T()C, y)))}’ V)C € S

where the opt represents sup or inf. Bhakta and Mitra [22] obtained the existence and uniqueness of
solutions for the functional equations

J(x) = sup{p(x,y) + A(x,, f(a(x, y))}

yeD

in a Banach space B(S) and
f(x) = sup{p(x,y) + fla(x, y))}

yeD

in BB(S), respectively. After that, many authors established the existence and uniqueness of
solutions or common solutions for several classes of functional equations or systems of functional
equations arising in dynamic programming by means of various fixed and common fixed point
theorems (see [23-25]).

It is easy to get that (B(S ), @) is a complete b-metric space with

@(&n) = é-n P, Yén € BES).
Consider the functional equations arising in dynamic programming:
f(x) = iglg{u(x, y)+ H(x, y, {(T(x, y))h Vx €S (4.2)
whereu: S XD —->R, T:S XD — Sand H:S XD XR — R are mappings. Let
Sf(x) = irelg{u(x, y) + H(x, y, {(T(x, )}, Y(x,T) € S X B(S). (4.3)

Theorem 4.1. Letu : S XD > R, T:SXxD —> S, H:SXDXR - R,S : B(S) - B(S),
a:B(S)XB(S)—> R.If
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(1) u and H are bounded,

(i1) S is az-admissible,

(iii) there is py € B(S) satisfying a(pg, Spg) > 57,

(iv) a satisfies transitive property, i.e., for &, 71, € B(S) such that

aé.n) 2 s" and a(n,{) = 5" = a(§,) 2 5",

(v) if {p,} is a sequence in B(S) satisfying p, — p as n — +oo, then there is a subsequence {p,y} of
{pn} with a(p,), p) > 57,

(vi) for p,q € Fix(S), one can get the condition of a(p,q) > s” and a(q,p) > s”, where Fix(S)
represents the collection of all fixed points of S,

(vii) if there exists £ € (0, 1), ¢ € J such that

[ISu—So||?
a(u,v) > s”,f p(w)dw >0
0

= (4.4)

20(11,0)| H(11,0,8(T(11,0)))—H (11,0,5(T(11,0)))[? A(1,D)
l
exp( f () dw) < [exp( f (@) d),
0 0

then the functional Eq (4.2) has a unique solution p* € B(S).
Proof. It follows from (7) that there exists M > 0 satisfying
supf{lu(x, y)I, [H(x,y, )| : (x,y,1) € S X DX R} < M.
It is easy to see that S is a self-mapping in B(S). Define a : B(S) X B(S) — [0, o) by

(.v) s”, w(Su,Sv) > 0,
U,0) =
@ 0, otherwise.

By (i) and ¢ € J, we have for each & > 0, there exists § > 0 such that
f(p(t)dt < g VC c[0,2M] with m(C) < 6, 4.5)
c

where m(C) denotes the Lebesgue measure of C.
Letue S,bh, g€ B(S). By (4.3), there exists v, w € D satisfying

Sg(u) > u(u,v) + H(u, v, g(T(u, v))) — gs,
Sh(u) > u(u, w) + Hu, w, H(T(u, w))) — Tx/Z_é,

Sg(u) < u(u, w) + Hu, w, g(T(u, w))),
Sh(u) < u(u, v) + H(u, v, h(T(u, v))).
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Thus,
Sg(u) — Sh(u) <H(u, w, g(T(u, w))) — H(u, w, h(T(u, w))) + g
<|H (1, w, g(T(u, w))) — H(u, w, h(T(1, w)))| + g,
Sh(u) — Sg(u) <H(u, v, h(T (1, v))) — H(u, v, g(T(1, v))) + gs
<|H(u, v, h(T(1,v))) — H(u, v, g(T(1, 0)))| + g.
It follows that
IS¢ — Shil = sup ISg(1) — Sh(w)| < max{Ty, T} + g,

where

T, = [H(u, w, g(T(1, w))) — H(u, w, h(T(u, w)))l,

T2 = |H(ua D, b(T(u, D))) - H(u’ D, g(T(uv U)))l

It is easy to get that [|Sg — SB||> < max{2T,?,2T,%} + 6. Under (4.4) and (4.6), we have

sP||Sg(w)—Sh(w)|?
exp( f #(w) dw)
0

sP max{2T2,2T2}+6
<exp( f p(w)dw)
0

25PT2+6 25P T3 +6
= max{exp( f p(w) dw), exp( f o(w)dw)}
0 0

25PT2+6

ZSPT%
_ max{exp( f () de) - exp( o) do),
0

25/ T}
25P T3 +6

257 T3
exp( fo ¢(w) dw) - exp( ¢(w) dw)}

ZSI'T%

ZSPT% 25”T%
< max{exp( f p(w) dw), exp( f p(w) dw)}
0 0
25PT2+6 25PT3+6

- max{exp( ¢(w) dw), exp( p(w) dw)}
2sl’T? 2sl’T§

A(1,0)
<[exp( f o(w) dw)]’ - exp(e).
0

(4.6)
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Letting € — 0" in the above inequality, we get

a(u,)|[Sg—Sbh|? AQLD)
exp( f o(w) dw) < [exp( f p(w) dw)]’.
0 0

Thus, the conditions of Theorem 3.3 are satisfied by taking 8(w) = exp(w), so the functional Eq (4.2)
has a unique fixed sloution p* € B(S). This completes the proof. O

5. Conclusions

In this manuscript, we first defined two new types of weak contractions named 6-weak contraction
and 6-y-weak contraction. Second, we presented the conditions of existence and uniqueness of
fixed points for them in b-metric spaces. After that, two examples were given to demonstrate the
practicability of our theorems. As an application, the existence and uniqueness of solutions for a class
of functional equations arising in dynamic programming were discussed.
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