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Authentication and Sandboxing in a Distributed
π-Calculus

Hans Hüttel? and Morten Kühnrich??

Department of Computer Science, Aalborg University
Frederik Bajersvej 7E, 9220 Aalborg Ø, Denmark

Abstract. This paper presents an extension of Hennessy et al. Dπ-
calculus [10] with constructs for signing and authenticating code and
for sandboxing. A sort system, built on Milner’s [8] sort systems for
the polyadic π-calculus, is presented and proven sound with respect to
an error predicate which ensures that errors do not occur outside sand-
boxes and that authentication and migration only happen when allowed.
Futhermore a weak subject reduction result involving partial well sort-
edness is presented.

1 Introduction

In computer networks the notion of sharing resources between sites has become
increasingly common. This now also includes mobile code such as Java applets
and downloadable applications for handheld devices. However, applications of
unknown origin pose a potential security threat, as seen by the well-known ex-
amples of problems caused by malicious software.

Sandboxing is a known way to handle untrusted applications. In the Java
Virtual Machine (JVM) [6] only trusted code has full permissions to different
vital system resources such as the file system. All other untrusted code is sand-
boxed. In JVM 1.1 digital signatures were introduced as a means of authenti-
cation. Signed remote applets are only granted execution rights if the signature
is trusted, i.e., the public key used to verify the signature must be trusted.
Unsigned applets are sandboxed right away. Beginning with JVM 1.1 security
policies regulating the use of system resources for trusted code (both local code
and well signed remote applets) can be defined. These permissions are defined by
the user or an administrator. Each permission gives a right to use one resource
such as read or write permission to certain files and directories or host and ports.

Within the universe of process calculi various theories have been developed
in order to model different security aspects of concurrent systems. In particular,
there has been a substantial amount of work on process calculi with sites and
mobility [1, 10, 12, 4]. Prominent examples are Mobile Ambients [1] and Dπ[5].

There has already been work on expressing signed code directly in process
calculi.
? hans@cs.aau.dk
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Merro and Hennessy present an extension of the ambient calculus with pass-
words in [7]. Here, the primitives of Mobile Ambients have been augmented
with passwords so that mobility between sites is conditional on the presence of
passwords.

M. Bugliesi et al. [2] introduce an ambient variant in which ambients may be
signed. Under the use of a type system they obtain a secrecy result informally
stating that if a piece of data is secret it cannot be revealed to the public.

Moreover, a number of authors have address the issue of sandboxing in a
process calculus setting.

In [13] Vivas introduces a blocking operator in a π-calculus without locations
and shows how one may use it to describe restrictions on access rights.

P. Sewell and J. Vitek show how interference of communication can be con-
trolled using a boxed π-calculus in [12]. Their semantics allows the construction
of so called wrappers, closely related to the concept of sandboxes.

In this paper we present an extension of the Dπ–calculus called DSπ (the let-
ter s can stand for secure, signed or sandboxed). The DSπ–calculus, introduced
in Section 2, allows the signing of processes under keys as well as sandboxing.

In Section 3 we present a type system in the form of a sort system extended to
handle migration and authentication. A well-sorted process in our sort system
will not error due to communication outside sandboxes or due to illegal mi-
gration or authentication. Processes can be well-sorted or partially well-sorted.
The sort system satisfies a number of desirable properties. Firstly, we estab-
lish two subject reduction results. The standard subject reduction result states
that well-sorted processes stay well-sorted under reductions, and a new, weak
subject reduction result states that partially well-sorted processes can become
well-sorted. Secondly, we define an error predicate and show that a well-sorted
process will never misbehave.

2 Syntax and semantics of the DSπ–calculus

2.1 Syntax

The syntax in Table 1 is largely an extension of that of Hennessy and Riely’s
Dπ [10] with a few modifications. Our syntax uses simple tuples where Dπ
uses nested tuples in message passing. Moreover, the biconditional match con-
struct used in [10] has been replaced by match and mismatch since structural
congruence fails to be type-safe in the presence of the biconditional axiom
[ũ = ũ]P,Q ≡ P for arbitrary Q. In DSπ, names represent channels, loca-
tions or keys (signatures). We let the letter N denote a countable set of names
a, b, c, . . . ,m.

The letter V denotes a set of variables x, y, z, . . . which is disjoint from N .
Identifiers u, v range over the set I def= N ∪ V. A tilde like in ṽ denotes a finite
tuple of identifiers.

The syntax of DSπ consists of processes and networks. Networks are built
from located processes which we refer to as sites or locations. The location
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γ ::= ◦ | • Open and closed sites

π ::= u?(x̃ : T ) Input
| u!〈ṽ〉 Output
| go vγ Migration to location v
| {P}v Encryption of P under key v
| authK(v1, v2) Authentication

P ::= 0 Inaction
| P | Q Parallel composition
| (νa : T ) P Name restriction
| π.P Prefixed process
| ∗P Replication
| [ũ = ṽ]P Match
| [ũ 6= ṽ]P Mismatch

M, N ::= 0 Nil network
| M | N Parallel composition
| (νla : T )N Name restriction
| l[P ]γ Sites

Table 1. Syntax of the DSπ–calculus

structure of the calculus is flat, i.e. sites do not contain subsites. Communication
is purely local to sites. Sites are tagged and can be either open (the tag ◦) or
closed (the tag •). An open site semantically allows all kinds of communication
and migration whereas closed sites (sandboxes) do not allow processes to leave.
A signed process with an unknown key at the moment of authentication can
only end up at a closed site.

Messages are received using the prefix u?(x̃ : T ).P along channel u. Some-
times the sort annotation is left out and we write u?(x̃).P . A message received is
instantiated for the variables in x̃ in P . We demand that x̃ is linear, i.e. variables
in x̃ occur at most once, and require that the names in x̃ have the object sort of
T (defined in Section 3). An output prefix u!〈ṽ〉.P transmits message ṽ on the
channel u and proceeds as P .

A name m within a process P can be restricted by (νm : T )P where the
name m is now bound in P and required to have sort T .

Migration go vγ .P moves process P to the open location v if γ equals ◦ and
otherwise P is moved to the closed location v.

The new features of DSπ are the primitives for signing and authentication.
The prefix {P}v denotes that process P is signed with the key v. The authentica-
tion prefix is authK (v1, v2), where the set of recognized keys K ⊆ I is assumed
to be finite. Authentication is possible whenever a term {P}k appears in parallel
with authK (v1, v2). If the key k is found in the set of keys K then P is moved
to the open location v1, otherwise P is moved to the closed location v2.
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Restriction at network level is denoted by (νlm : T )M , where the name m is
restricted at location l in the network M to the sort T .

Restriction and input are the binding constructs of DSπ. The notations bn(P )
and bn(M) denote the set of bound identifiers for the process P or the network
M respectively. For processes, these sets are defined in the standard way [11] with
the added clause for the new encryption prefix that bn({P}v) = bn(P )∪{v} and
fn(authK(v1, v2)) = {v1, v2}∪ fn(K). Further, we shall assume that the scope of
names bound in P in the prefix {P}v is P . The set of all identifiers is defined as
n(P ) or n(M) for processes and network respectively.

2.2 Semantics

Substitution and structural congruence. The substitution of a free name
m for a free variable v written [m/v] is defined as expected. For signed processes
we have that {P}u.Q[m/v] = {P [m/v]}u[m/v].Q[m/v]. Substitution is extended
in a natural way to handle simultaneous substitutions of the form [ṽ/x̃].

We write P ≡α Q or M ≡α N if processes P and Q are equal up to renaming
of bound names or networks M and N are equal up to renaming of bound names
respectively.

Definition 1. The network contexts are defined by

E ::= (−) | (νl a : T ) E | E | M

The notation E(N) means that N is inserted in the hole (−) in E.

The relation of structural congruence on networks M and N is the least binary
reflexive, symmetric and transitive relation satisfying the rules given in Table 2.

A reduction semantics for DSπ. The reduction semantics in Table 3 is an
extended version of the semantics of Dπ given in [10]. Rule (R-Go) describes
migration from an open site (hence a closed site does not permit escape by
migration) and rule (R-Com) describes communication local to a site. The rules
(R-Auth1) and (R-Auth2) describe authentication from open sites (hence a
closed site does not permit authentication of signed processes). If k is in the set
of known keys K then P will placed at the open location l1. If k is unknown (not
in K) then P is executed in a sandbox l2. The remaining rules are standard.

A labelled semantics for DSπ. In our results about the sort system we refer
to the keys known in a system (Definition 7). To capture this, we introduce a
labelled semantics for processes and networks.

We define the following set of action labels. An action is either a prefix π
(which corresponds to all the possible actions in processes) or a located action
π@l (which are all actions π at some location l in the network). We let α denote
the action labels:

α ::= π | π@l

The labelled semantics of DSπ is given in Table 4.
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(S1) N | 0 ≡ N (S2) (M | N) | N ′ ≡ M | (N | N ′)

(S3) M | N ≡ N | M (S4) l[0]γ ≡ 0

(S5) l[P | Q]γ ≡ l[P ]γ | l[Q]γ (S6) l[∗P ]γ ≡ l[P | ∗ P ]γ

(S7) (νl n : T ) 0 ≡ 0 (S8) l[(ν n : T ) P ]γ ≡ (νl n : T ) l[P ]γ , n 6= l

(S9) l[[ũ = ũ] P ]γ ≡ l[P ]γ (S10) l[[ũ 6= ṽ] P ]γ ≡ l[P ]γ , when ũ 6= ṽ

(S11) M ≡ N N ≡ N ′

M ≡ N ′ (S12) M ≡α N
M ≡ N (S13) M ≡ N

E(N) ≡ E(M)

(S14) M | (νl n : T ) N ≡ (νl n : T ) (M | N), n /∈ fn(M)

Table 2. Structural congruence relation defined on networks

Theorem 1 (Operational correspondence). The reduction semantics and
the labelled transition semantics agree; that is

M −→ M ′ iff M
τ−→ M ′

The action u?(x̃ : T ) is the input transition, a message may be received at the
channel u, and instantiated for the variable x̃. The action u!〈ṽ〉 is the corre-
sponding output of ṽ on channel u. The prefix go vγ is the migration action
where process P migrates to open or closed (depending on γ) location v. The
authK(v1, v2) and {P}v are actions which signify authentication and the signing
of a process. The notation n(α) returns all names n ∈ N occurring in α.

There are two rules for sites. Rule (L-Site1) allows any actions π at open
locations whereas rule (L-Site2) prohobits migration from closed locations.

Example 1. (A program server example in DSπ) Define a network consisting of
a program server ProgServer and a system process System. The system sends a
request for a signed process to the server. The program server returns a signed
process which is authenticated in the system.

ProgServer [req?(x).go x◦.{P}k]◦ |
System [go ProgServer◦.req!〈System〉 | auth{k}(l, lbox)]◦

The messenger with the request req!〈System〉 migrates to the server

ProgServer [req?(x).go x◦.{P}k]◦ | ProgServer[req!〈System〉]◦ |
System [auth{k}(l, lbox)]◦
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(R-Go) l[go mγ .P ]◦ → m[P ]γ

(R-Com) l[a!〈ṽ〉.P ]γ | l[a?(x̃ : T ).Q]γ → l[P ]γ | l[Q[ṽ/x̃]]γ

(R-Auth1) l[authK(l1, l2).P ]◦ | l[{P ′}k.Q]◦ → l[P ]◦ | l[Q]◦ | l1[P
′]◦, if k ∈ K

(R-Auth2) l[authK(l1, l2).P ]◦ | l[{P ′}k.Q]◦ → l[P ]◦ | l[Q]◦ | l2[P
′]•, if k /∈ K

(R-Par) If N → N ′ then M | N → M | N ′

(R-Res) If N → N ′ then (νl n : T ) N → (νl n : T ) N ′

(R-Struct) If N ≡ M, M → M ′ and M ′ ≡ N ′ then N → N ′

Table 3. Reduction semantics of DSπ defined on networks

Next the source address System is revealed to the program server ProgServer:

ProgServer [go System◦.{P}k]◦ | ProgServer[ ]◦ |
System [auth{k}(l, lbox)]◦

The new signed application {P}k is returned to System:

System[auth{k}(l, lbox)]◦ | System[{P}k]◦

Since k is a known key this evaluates to

System [ ]◦ | l[P ]◦

Example 2 (Control of system resources). Below a simple file system is modelled.
A file with filename n and content c is created using CreateFile

CreateF ile(n, c) def=
∗req?(s, fname).[fname = n]go s◦.io!〈c〉

In order to look up a file, we send a receiving address and a file name on the
channel req. If there is a file with that name the expression go s◦.io!〈c〉 is trig-
gered and the file (in the example represented by a name) is delivered on the
channel io at the location s. Below a file system which has the capabilities of
reading and writing files is defined.

IOSystem def=
Files[ ]◦ |
ReadFile[∗req?(from, fname).go Files◦.req!〈from, fname)〉] |
WriteFile[∗req?(n, c).go Files◦.CreateF ile(n, c)]
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(L-Pre)
π.P

π−→ P
(L-Struct)N ≡ M M

α−→ M ′ M ′ ≡ N ′

N
α−→ N ′

(L-Com)
P

m〈ṽ〉−→ P ′ Q
m(x̃:T )−→ Q′

l[P ]γ | l[Q]γ
τ−→ l[P ′]γ | l[Q′[ṽ/x̃]]γ

(L-Auth1)M
authK(l1,l2)@l−→ M ′ N

{P ′}k@l−→ N ′

M | N
τ−→ M ′ | N ′ | l1[P

′]◦
, k ∈ K

(L-Auth2)M
authK(l1,l2)@l−→ M ′ N

{P ′}k@l−→ N ′

M | N
τ−→ M ′ | N ′ | l2[P

′]•
, k /∈ K

(L-Go) P
go mγ−→ P ′

l[P ]◦
τ−→ m[P ′]γ

(L-Par) N
α−→ N ′

M | N
α−→ M | N ′

(L-Res) N
α−→ N ′

(νln : T )N
α−→ (νln : T )N ′ , n /∈ n(α)

(L-Site1) P
α−→ P ′

l[P ]◦
α@l−→ l[P ′]◦

(L-Site2) P
α−→ P ′

l[P ]•
α@l−→ l[P ′]•

, α ∈ {m?(x̃), m!〈ṽ〉}

Table 4. Labelled transition semantics for DSπ processes and networks

In order to write a file a messenger migrates to the collection of all files at the
site Files and perform a writing request req〈n, c〉; write file with contents c
under the name n. The following network M creates a file with the content a
under the file name myFile

M def= IOSystem | l[go WriteFile◦.req!〈myFile, a〉].

Definition 2. The weak labelled transition relation M
α=⇒ M ′ is defined by

M
τ−→

∗
N

α−→ N ′ τ−→
∗

M ′

where τ−→
∗

denotes the reflexive and transitive closure of the relation τ−→.

3 A sort system for DSπ

We now present a novel sort system for the DSπ–calculus based on Milner’s
sort system for the polyadic π-calculus [8] and the sort system by Hennessy and
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Riely in [10]. In our system we assign sorts to every free identifier and use com-
posite sort expressions as security policies. This lets us avoid the complications
introduced by the dependent types used in [10].

Our sort system is likewise capable of controlling whether a certain chan-
nel may be used for communication at some location or not. Furthermore it is
possible to type the expression a!〈a, b〉 which is not typable in [10].

Under the use of sorts the regulation of migration is refined. Migration of a
process from a site l to the site l′ is allowed whenever site l is allowed to send
code to l′ and l′ is allowed to receive code from l. By comparison Hennessy and
Riely allow migration whenever the destination location has the go capability.

The novel part of our sort system is the control of authentication and signing
of processes. It is controlled which keys may be used at certain locations and
the authentication is only allowed when the authenticated process behaves well.
The concept of partial wellsortedness express the fact that a signed process may
misbehave under some executions. This will be made clear in the following.

3.1 Sorts and sortings

Let S where S ∩ N = ∅, be a countable set of so called ground sorts. A sort
system assumes the existence of a sorting, which can be viewed a partition of
the set of identifiers into equivalence classes called sorts. A sorting is a function
that maps sort variables from the set S to sort expressions defined below (where
T̃ denote tuples of sorts).

Definition 3. The set of sort expressions is defined by the grammar:

T ::= chan(T̃ ) Channel sort

| loc(T̃ ) Site sort

| key(T̃ ) Key sort
| S Sort variable

where S ∈ S. A sort expression which is not a ground sort is called composite.
The set of composite sort expressions is denoted C.

An identifier with the sort constructor chan(T1, . . . , Tn) is an identifier which
can be used for input and output of n-ary tuples where the i-th component of
message should have sort Ti. A key with the sort constructor key(T̃ ) is a name
which can be used as a signature that allows authentication to locations with
names whose sort is among the sorts in T̃ . A location with the sort constructor
loc(T̃ ) allows channels whose sort is among the sorts in T̃ and trusts locations
whose sort is in T̃ . Furthermore only keys whose sort is in loc(T̃ ) are allowed to
be used at the location.

A sorting context assigns sorts to free identifiers. If a site l contains the chan-
nel a we write that name as al. This means that the ground sorts of identifiers
are relative to a location.
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Definition 4. A sorting context is a map

Γ : I ∪ {vw | v, w ∈ I} → S

from identifiers and located identifiers to sort variables. In order for a sorting
context to be well defined we demand that the domain of Γ is a finite set. An
identifier v ∈ N is said to have the sort T written v : T if Γ (v) = T for a fixed
context Γ .

Γ, vw : T is the updated sorting context where the identifier vw is mapped to
sort T , replacing any possible sort assigned to vw in Γ .

Definition 5. A sorting is a mapping ∆ : S → C. We use the notation s(vw)
for ∆(Γ (vw)), i.e. we look up the sorting defined for vw.

3.2 Type judgements

Our type judgements describe when processes and networks are well-sorted. As
mentioned processes and networks can be either well-sorted or partially well-
sorted. A network is partially well-sorted whenever it contains a signed process
which may authenticate to locations where it will not be well-sorted.

The type judgments for networks are on the form Γ `∆ M : � (M is well-
sorted) and Γ `∆ M : ? (M is partially well-sorted). The sorting judgments for
processes are on the form Γ `∆

w P : α where w is a location and α ∈ {?, �} have
the same meaning as before.

A network which is partially well sorted may become well sorted. Consider

M = l[{P}k | auth{m,n}(l1, l2)]◦

where we assume that P contains a subexpression that makes network M par-
tially well sorted. Since the key k is not among the keys {m,n} process P is
sandboxed at location l2. When P is placed in l2, the network becomes well
sorted.

The typing rules are given in Table 5 and 6. Rule (S-Out) has two side
conditions. First, each of the names vi which is transmitted should be allowed
on the channel v. Secondly, the channel name v must be an allowed name at
location w. Rule (S-In) is quite standard for sort systems for π-calculi; here we
also check that the channel v is permitted at location w.

To type a parallel composition in (S-Par), we find the greatest lower bound
of the well-sortedness assertions. That is, if some part of the system fails to be
well-sorted, the entire system can at most be partially well-sorted.

Definition 6. Define an operator u on the set {?, �} by

α u β = �, if α = β = �
α u β = ?, if α = ? or β = ?

In other words u is the greatest lower bound with respect to the ordering ? ≤ �
on the set {?, �}.
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In (S-Go) we check whether the migrating process P is well-sorted at its new
location v or not by the demand that Γ `∆

v P : �. Furthermore, migration is only
allowed when the source and target location trust each another, i.e when their
sortings each contain the site sort of the other location. In the case of migration
to a closed location, well-sortedness is guaranteed.

In the rules for signed processes, the sorting of keys is important. The sorts
in the sorting for key k specify the sorts of locations that P may arrive at. In
(S-Sign1), we therefore require that P is well sorted at all locations whose sort
can be found in T̃ . If this is the case then everything is fine, since {P}v either
authenticates to one of these locations or to a closed location.

The rule (S-Sign2) describes how a signed process {P}v.Q may become
partially well sorted. This is the case if there exists a location, with sort in the
sorting for the key, where process P is not well sorted. The rule has a negative
premise ∃u : Γ (u) ∈ T̃ : Γ 6`∆

u P : �. However, the truth value of this negative
premise can always be determined, since it depends only on the subset of the
rules defining well-sortedness, namely the set of all rules but (S-Sign2). These
rules all have positive premises only and do not involve judgements of partial
well-sortedness. Moreover, there are only finitely many locations u which have
to be checked.

The rule (S-Auth) checks that the sort of every key in K contains the sort
of v. In other words all keys in K should permit authentication to the location v.
Furthermore keys K used for authentication should be allowed by the location
sort s(w). Note that we do not demand anything with respect to the location
v′. This is due to the semantics which ensures that the location v′ is a sandbox.

Rule (S-Box) states that all sandboxes are well sorted – no matter what
they contain. This is because migration and authentication of processes are se-
mantically impossible.

3.3 Properties of the sort system

Whenever a network obeys the sorting it will keep obeying the sorting no matter
how it is evaluated in the semantics.

Theorem 2 (Subject reduction). If Γ `∆ M : � and M → N∗ then Γ `∆

N : �

When a network M is only partially well–sorted we describe conditions under
which M does not become untypable under evaluation.

We say that all keys used for signing are unknown in a given network M
if keys k used in actions involving signed processes {P}k are unknown in all
corresponding authentication prefixes authK(l1, l2), i.e. k /∈ K. If this property
holds for all signed processes in a network then all keys are said to be unknown.

Definition 7. All keys of signed processes are said to be unknown in a network
M if

∀l : M
{P}k@l−→ M ′ ⇒ ∀M authK(l1,l2)@l

======⇒ M ′′ : k /∈ K ∧ (K ∪ {k}) ∩ V = ∅
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(S-Nil-Proc)
Γ `∆

w 0 : �

(S-Par)
Γ `∆

w P : α Γ `∆
w Q : β

Γ `∆
w P | Q : α u β

(S-Bang) Γ `∆
w P : α

Γ `∆
w ∗P : α

(S-New1)
Γ, nw : T `∆

w P : α
Γ `∆

w (ν n : T ) P : α

(S-Out) Γ `∆
w P : α

Γ `∆
w v!〈v1, . . . , vn〉.P : α

,

0@ s(vw) = chan(T1, . . . , Tn)
∀1 ≤ i ≤ n : Ti = Γ (viw)

loc(T̃ ) = s(w), Γ (vw) ∈ T̃

1A
(S-In)

Γ, x1w : T1, . . . , xnw : Tn `∆
w Q : α

Γ `∆
w v?(x1, . . . , xn : T ).Q : α

„
T = chan(T1, . . . , Tn)

loc(T̃ ) = s(w), Γ (vw) ∈ T̃

«

(S-Go) Γ `∆
v P : α

Γ `∆
w go vγ .P : α

0@ loc(T̃v) = s(v)

loc(T̃w) = s(w)

(γ = • ∨ (Γ (w) ∈ T̃v ∧ Γ (v) ∈ T̃w))

1A
(S-Match) Γ `∆

w P : α
Γ `∆

w [ũ
√

ṽ] P : α
,
√
∈ {=, 6=}

(S-Sign1)
∀u : Γ (u) ∈ T̃ : Γ `∆

u P : � Γ `∆
w Q : α

Γ `∆
w {P}v.Q : α

, s(vw) = key(T̃ )

(S-Sign2)
∃u : Γ (u) ∈ T̃ : Γ 6`∆

u P : � Γ `∆
w Q : α

Γ `∆
w {P}v.Q : ?

, s(vw) = key(T̃ )

(S-Auth) Γ `∆
w P : α

Γ `∆
w authK(v, v′).P : α

,

„
∀k ∈ K : key(T̃k) = s(kw) ∧ Γ (v) ∈ T̃k ∧
loc(T̃ ) = s(w) ∧ Γ (kw) ∈ T̃

«

Table 5. The typing rules for S

(S-Nil-Net)
Γ `∆ 0 : �

(S-Site)
Γ `∆

l P : α
Γ `∆ l[P ]◦ : α

(S-Box)
Γ `∆ l[P ]• : �

(S-New2)
Γ, nl : T `∆ N : α

Γ `∆ (νl n : T ) N : α
(S-Par-Net)

Γ `∆ M : α Γ `∆ N : β
Γ `∆ M | N : α u β

Table 6. The typing rules for networks S
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Theorem 3 (Weak subject reduction). If Γ `∆ M : ? and M
τ−→ M ′ and

all keys used for signing are unknown then M ′ is typable i.e. Γ `∆ M ′ : � or
Γ `∆ M ′ : ?.

Remark 1. A network which is partially well sorted with unknown keys may
never become well sorted. Consider the network

M = l[{P}k | a(x).auth{m,n}(l1, l2)]◦

where we assume that P contains a subexpression that makes network M par-
tially well sorted. Since synchronization never occurs on channel a process P will
never be sandboxed – hence M will remain partially well sorted.

In order to describe the errors detected by the sort system we define an
error predicate on networks. The predicate err−→ is defined relative to a sort
context Γ and a sorting ∆ (see table 7). The rules (E-Out) and (E-In) describe
unauthorized use of communications channels or the use of a channel in an
unsorted way. Rule (E-Go) describes a migration where process P is either
untrusted at the destination site or unallowed to go from the source site. Rule
E–Auth describes an unauthorized use of a key at an open location.

(E-Out) l[a!〈v1, . . . , vn〉.Q]◦
err−→Γ,∆ if Γ (al) /∈ s(l) or ∃i : Γ (vil) 6= Ti

where chan(T1, . . . , Tn) = s(al)

(E-In) l[a?(x1, . . . , xn : T ).Q]◦
err−→Γ,∆ if Γ (al) /∈ s(l) or ∃i : Γ (xil) 6= Ti

where chan(T1, . . . , Tn) = T

(E-Go) l[go u◦.P ]◦
err−→Γ,∆ if Γ (l) /∈ s(ul) or Γ (ul) /∈ s(l)

(E-Auth) l[authK(l1, l2).P ]◦
err−→Γ,∆ if ∃k ∈ K : Γ (kl) /∈ s(l)

(E-Par)
M

err−→Γ,∆

M | N
err−→Γ,∆

(E-Struct)
N

err−→Γ,∆ M ≡ N

M
err−→Γ,∆

(E-Res)
M

err−→(Γ,nl:T ),∆

(νl n : T )M
err−→Γ,∆

Otherwise
err

6−→Γ,∆

Table 7. The error predicate defined on networks

Definition 8. A network N is said to error for a given context Γ and sorting
∆ if it holds that N

err−→Γ,∆.

The following theorem states that a well-sorted network will not exhibit any
of the errors described by the error predicate.
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Theorem 4 (Type safety). If Γ `∆ M : � then M
err

6−→Γ,∆.

Combining the results of subject reduction and type safety we get that a
well–sorted network will never produce a violation of the security policy along
any path of execution.

Corollary 1. If Γ `∆ M : � and M →∗ M ′ then M ′
err

6−→Γ,∆.

Example 3 (Control of system resources). We revisit Example 2. Inspect the
system given file system below. Recall the creation of files

CreateF ile(n, c) def= ∗req?(s, fname).[fname = n]go s◦.io!〈c〉

and the file system

IOSystem def=
Files []◦ |
ReadFile [∗req?(from, fname).go Files◦.req!〈from, fname)〉]◦ |
WriteFile [∗req?(n, c).go Files◦.CreateF ile(n, c)]◦

Again we define a network M which tries to create a file with file name
myFile and content a.

M def= IOSystem | l[go WriteF ile◦.req!〈myFile, a〉]◦

In order to allow this file writing we choose the following sort context (where
the ground sorts and the sorting for IOSystem are omitted)

Γ = {l 7→ λ, WriteF ilel 7→ w, reql 7→ ρ,myFilel 7→ µ, al 7→ α, . . .}

and sorting

∆ = {λ 7→ loc({w, . . .}), w 7→ loc({λ, . . .}), ρ 7→ chan(µ, α), . . .}.

The file can be written because the sites trust each other with respect to migra-
tion. If on the other hand we want to disallow the writing of files this can be
done in two ways. We can define a sorting ∆ = {λ 7→ loc(), w 7→ loc({λ, . . .}), . . .}
which states that the site l do not allow the writing of files (i.e. migration to the
file writing demon). We can also define a sorting ∆ = {λ 7→ loc({w}, . . .), w 7→
loc(), . . .} which can be interpreted as that the write demon do not trust any
users who attempt to write files.

4 Conclusions and future work

We have developed an extension of the Dπ–calculus of Riely et al. called the
DSπ–calculus, in which security problems related to authentication and migra-
tion have been studied. Our main interest has been to discover how authenti-
cation of new processes can be controlled under the use of a sort system and a
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distinction between open and closed sites. The semantics of closed sites does not
allow migration or authentication of new processes, thus capturing the notion of
sandboxing.

We have described a sort system which ensures that both communication and
the use of keys happen correctly on open locations. Furthermore migration is only
allowed when the involved sites trust each other. Under the use of the labelled
semantics for DSπ we have shown a weak subject reduction result – partially well
sorted networks may become well sorted, if all keys used for signing processes are
unknown. This idea as well as the use of sorts for the control of authentication
appear to be novel.

The semantics of sandboxes can easily be refined. It would be interesting to
tag each site with a set of rights or even with a sorting – creating a semantics
which could determine whether rights were violated or not for sand boxes using
dynamic typing. The sort system would then be in charge of ensuring safety for
the un-sandboxed rest of the network.

It would also be interesing to consider the introduction of subtyping into
the sort system, as this would allow us to distinguish between keys and sites
operating at different levels of security. In this setting, a sandbox would be at
the lowest level of security.

Finally, one should investigate the expressive power of the DSπ–calculus
compared to Dπ. It appears straightforward to encode the prefixes {P}v, and
authK(v1, v2) within a version of Dπ with match and mismatch. However, the
encoding of open and closed locations appears to require a notion of blocking
[13].
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