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Abstract
Many decision-making tasks are characterized by a combination of diagnostic and non-diagnostic information, yet models of 
responding and confidence almost exclusively focus on the contribution of diagnostic information (e.g., evidence associated 
with stimulus discriminability), largely ignoring the contribution of non-diagnostic information. An exception is Baranski 
and Petrusic’s Journal of Experimental Psychology: Human Perception and Performance, 24(3), 929-945, (1998) doubt-
scaling model, which predicts a negative relationship between non-diagnostic information and confidence, and between 
non-diagnostic information and accuracy. In two perceptual-choice tasks, we tested the effects of manipulating non-diag-
nostic information on confidence, accuracy and response time (RT). In Experiment 1, participants viewed a dynamic grid 
consisting of flashing blue, orange and white pixels and indicated whether the stimulus was predominantly blue or orange 
(using a response scale ranging from low-confidence blue to high-confidence orange), with the white pixels constituting 
non-diagnostic information. Increasing non-diagnostic information reduced both confidence and accuracy, generally slowed 
RTs, and led to an increase in the speed of errors. Experiment 2 replicated these results for a decision-only task, providing 
further support for the doubt-scaling model of confidence.

Keywords Confidence · Decision making · Doubt scaling · Evidence accumulation

Introduction

We examine what we believe to be an empirically and theo-
retically interesting and important, but somewhat neglected, 
question: How are decision confidence, speed and accuracy 
affected by ‘non-diagnostic’ information (i.e., information 
that is not relevant to the choice and hence not determi-
native of accuracy)? Many theories of choice assume that 
relevant evidence drives the decision process. This is true 
by construction when the evidence is unidimensional, as is 
assumed by the most widely applied theory of binary choice 
accounting for accuracy, Signal Detection Theory (SDT; 
Bernbach, 1971; Egan et al., 1959; Green & Swets, 1966). 

It is also true of the most widely applied dynamic theory 
of binary choice, which also accounts for accuracy and 
response time (RT), the Diffusion Decision Model (DDM; 
Ratcliff & McKoon, 2008). In both cases the input to the 
decision process is constructed from the evidence for one 
choice option minus the evidence for the other choice option, 
so the effect of any non-diagnostic information is effectively 
ignored. Although both frameworks account decision mak-
ing, they have not been extended to make explicit predictions 
about the effects of non-diagnostic information on RT and 
accuracy.

However, another widely applied class of dynamic choice 
theories – accumulator models (Audley, 1960, Brown & 
Heathcote, 2008, Tillman et al., 2020, Usher & McClel-
land, 2001, Vickers, 1970; Smith & Vickers, 1988: Vick-
ers & Lee, 1998, Van Zandt et al., 2000) – have separate 
inputs corresponding to each response option, and could 
more easily allow for explicit predictions regarding the 
effects of non-diagnostic information. Baranski and Petru-
sic’s (1998) doubt-scaling model comes from this class, 
and is the only theory we know of quantitatively predicting 
accuracy and RT that attempts to directly address the effects 
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of non-diagnostic information. Their model also addresses 
decision confidence, and it is with respect to confidence that 
there has been the most interest in the effects of non-diag-
nostic information. This interest is motivated by dissocia-
tions between confidence and accuracy – running counter to 
the generally robust positive confidence-accuracy relation-
ship – that have been attributed to non-diagnostic informa-
tion (e.g., Busey et al., 2000; Manley et al., 2019). However, 
empirical studies of confidence have rarely included direct 
quantitative manipulations of non-diagnostic information. In 
this paper we study a perceptual choice task that affords such 
a direct manipulation, and use our results to test predictions 
of the doubt-scaling model. Before reporting the results of 
two experiments, we first discuss why the effects of non-
diagnostic information are of both theoretical and applied 
interest, describe the doubt-scaling model, and derive from 
it predictions about accuracy, RT and confidence.

The doubt‑scaling model of confidence

The positive confidence-accuracy relationship has been 
influential in both theoretical and applied domains (Brewer 
& Wells, 2006; Gigerenzer et al., 1991; Juslin et al., 2000; 
Palmer et al., 2013; Sauer et al., 2010). For example, in 
eyewitness identification, confidence is often relied upon to 
assess the reliability of a decision when the correct response 
is unknown (Brewer & Wells, 2006; Wixted & Wells, 2017; 
National Academy of Sciences (NAS), 2014). However, fac-
tors unrelated to accuracy may also shape confidence (Busey 
et al., 2000; Baranski & Petrusic, 1998; Van Zandt, 2000). 
For example, Busey et al. found that confidence in face rec-
ognition decisions increased, with no corresponding increase 
in accuracy, when the luminance of an image increased from 
study to test. Accuracy, however, was improved when lumi-
nance at encoding was test matched. Hence, non-diagnostic 
information can inflate confidence.

Although the doubt-scaling model is alone in explicitly 
accounting for the effect of non-diagnostic information on 
accuracy, RT and confidence, it has not, to our knowledge, 
been directly tested. Understanding the role of non-diagnos-
tic information on confidence, accuracy and RT could be of 
great value in applied settings, where decision stimuli often 
contain non-diagnostic information. For example, consider 
an eyewitness identification test. During the commission of 
a crime, parts of a perpetrator’s face may be concealed from 
or unobserved by an eyewitness. However, when the witness 
later views a lineup, the faces of the lineup members may be 
presented unobstructed. Thus, each face will contain featural 
and configural information that is non-diagnostic because 
that information was not encoded during the initial event and 
therefore cannot contribute to genuine recognition.

For example, Manley et al. (2019) conducted a face-recog-
nition task involving a combination of full and partial faces 
(faces where only the eye area was visible, as might be the 
case if the perpetrator was wearing a ski-mask). Participants’ 
confidence in their recognition decisions was lower for trials 
in which they studied a partial face but were tested with a full 
face, suggesting that decision confidence was reduced by the 
additional, non-diagnostic information present at test (i.e., parts 
of the face obscured at study but visible at test). Given the 
recent international surge of mask-wearing for health reasons, 
it is important to understand how non-diagnostic informa-
tion affects recognition, and the confidence and RT associ-
ated with recognition. Non-diagnostic information may also 
affect applied perceptual discrimination tasks. For example, 
when border security agents compare passport images to real 
faces, some features are relatively stable and therefore likely to 
be diagnostic (e.g., shape of the face, distance between eyes), 
while others are easily changeable and therefore may prove 
non-diagnostic (e.g., colour/length of hair, lighting). Under-
standing how non-diagnostic information affects decision-
making processes may have substantial applied value.

Although it could be argued that non-diagnostic informa-
tion is simply a source of noise, the doubt-scaling model 
provides an alternative hypothesis. While it is generally 
accepted that noise impairs the decision-maker’s ability to 
appraise diagnostic information (therefore indirectly affect-
ing confidence by interfering with the evaluation of infor-
mation that underlies such judgements), the doubt-scaling 
model instead suggests that non-diagnostic information is 
central to the assessment of confidence. Thus, the aim of this 
study was to empirically determine the veracity of this claim.

The doubt-scaling model of confidence (Baranski & Petru-
sic, 1998) evolved from the slow-and-fast guessing theory 
(Petrusic, 1992). It is an extension of a very early type of 
evidence-accumulation model, Audley’s (1960) ‘runs model’ 
of binary choice, which assumes that on each time step evi-
dence is dichotomized as either A > B (favouring choice 
A) or B > A (favouring choice B). This discrete evidence is 
tallied in corresponding accumulators until a response thresh-
old is reached, triggering a decision. Slow-and-fast guessing 
theory proposes a third accumulation process: A = B (i.e., 
non-diagnostic evidence favouring neither choice option). If 
the A = B accumulator reaches its threshold first a guess 
response is triggered, reducing accuracy. The doubt-scaling 
model expands upon this account by making explicit pre-
dictions regarding the relationship between non-diagnostic 
information and confidence; specifically, that confidence is 
inversely proportional to the amount of information accumu-
lated for A = B. Thus, the more non-diagnostic information 
accumulated, the less confident the responder will be.

Rather than testing the doubt-scaling model quanti-
tively, and hence having to commit to all of the specific 
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details of the runs model, we instead tested more general 
ordinal predictions made by the model. First, the presence 
of non-diagnostic information slows overall RT. Accumu-
lation in the runs model is competitive (as is assumed by 
more modern evidence-accumulation models, e.g., Usher 
& McClelland, 2001; van Ravenzwaaij et al., 2020): if one 
type of evidence is tallied on a given time-step, the other 
evidence totals remain unchanged. Hence, when evidence 
increments are shared among accumulators, the time for 
any one accumulator to reach threshold is slowed.

A more fine-grained prediction is made with respect to 
the relationship between RT and accuracy: the speed and fre-
quency of guessing responses increases as the rate of A = B 
increments increases. We cannot observe guessing and non-
guessing responses separately, but we can compare the speed of 
less accurate responses (which should include more guessing 
responses) and more accurate responses (which should include 
more non-guessing responses) using Conditional Accuracy 
Functions (CAFs; Thomas, 1974; Elliott et al., 2022). CAFs 
plot accuracy as a function of RT, with responses being 
ordered by RT and grouped into a series of equal-sized ‘bins’ 
(e.g., the fastest 20% of responses, the next fastest 20%, etc.) 
within which accuracy is calculated. The doubt-scaling model 
predicts that as overall accuracy decreases with an increase in 
non-diagnostic information, the accuracy of responses in the 
faster bins will decrease relative to the accuracy of the slower 
bins, resulting in a flattening of the CAF (see Fig. 1).

The current study

Due to the lack of explicit consideration given to the role 
of non-diagnostic information in the decision literature, we 
have endeavored to empirically test the predictions of the 

doubt-scaling model (1998), which suggests that non-diag-
nostic information has an important role in driving decision 
making (rather than simply a source of noise in the evidence-
accumulation process). In the first of two experiments, we 
investigate the effects of differing levels of non-diagnostic 
information on confidence, accuracy and RT in a perceptual 
task. In the second, we look at the effects of non-diagnostic 
information solely on accuracy and RT.

Experiment 1

The choice stimuli in Experiment 1 were grids containing a 
combination of blue, orange and white pixels the arrange-
ment of which changed dynamically. Participants provided 
a decision, and a confidence rating for their decision, about 
whether there were more orange or blue pixels, with an equal 
number of trials where blue pixels outnumbered orange 
pixels compared to trials where orange pixels outnumbered 
blue. Hence, the white pixels provided non-diagnostic 
information.

We introduced two manipulations that test the general-
ity of the doubt-scaling model’s predictions, one of which 
provides a further test of the model. First, the more common 
colour constituted 55% of the diagnostic pixels in an easy-
choice condition and 52% in a hard-choice condition. This 
difficulty factor was crossed with two ways of manipulating 
the amount of non-diagnostic information. In all cases there 
were four levels of non-diagnostic information, a control 
condition with no white pixels, and low, moderate and high 
non-diagnosticity conditions, where white pixels constituted, 
respectively, one-sixth, one-third or one-half of the total 
number of pixels. In the ‘additive’ manipulation, the number 
of coloured (i.e., diagnostic) pixels was kept constant as the 

Fig. 1  Conditional-accuracy functions (CAFs) of model simu-
lated data, illustrating a ‘flattening’ of the curve as the proportion 
of non-diagnostic information increases (due to a decrease in accu-
rate responses in the faster response time (RT) bins). Note: CAFs of 
simulated data are from an adapted version of Audley’s (1960) runs 
model (incorporating an additional accumulator for non-diagnostic 

information that, in turn, drives ‘guessing’ responses. R code avail-
able at: https:// osf. io/ exqba/). Accuracy is shown as a function of RT. 
The first point on the x-axis represents the fastest responses (below 
the 20th percentile of RT), the second point the 20th to 40th percen-
tile, etc

https://osf.io/exqba/
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number of white pixels increased, leading to an increase in 
total grid size. In the ‘stable’ condition, grid size remained 
constant, and the total number of diagnostic pixels decreased 
while maintaining the blue-to-orange proportion. If the abso-
lute amount of diagnostic or non-diagnostic information is 
important, the results for these two manipulations could dif-
fer. In contrast, the runs model assumes that all that matters 
is the relative amounts of the three different types of infor-
mation, so the doubt-scaling model predicts no difference 
between the additive and stable conditions.

In summary, we expected that accuracy and confidence 
would be less, and RT slower, for the hard condition than for the 
easy condition. The doubt-scaling model predicts that as non-
diagnostic information increases, in both the hard and the easy 
conditions, confidence will decrease and RT will increase; that 
the accuracy of faster responses will decrease relative to slower 
responses; and that the additive and stable conditions will not 
differ. If the absolute amount of non-diagnostic information is 
important, we would expect our manipulation of non-diagnos-
tic information to have a larger effect in the additive condition. 
Alternatively, if the absolute amount of diagnostic information 
is more influential, we would expect a larger effect in the stable 
condition (where any increase in non-diagnostic information 
involves a corresponding decrease in diagnostic information).

Method

Design

We used a 2 (grid-type: stable or additive) × 4 (proportion 
of non-diagnostic information: 0, 0.17, 0.33, 0.50) × 2 (dif-
ficulty: easy vs. hard) × 2 (majority colour: blue vs. orange) 
mixed design, with grid-type as the between-subjects factor. 

Dependent variables are decision confidence (low, moder-
ate, and high), mean RT, and accuracy; measured by the 
equal-variance signal-detection theory discrimination (d´) 
measure, and proportion correct as a function of RT (as used 
in the CAFs).

Participants

We randomly allocated 56 participants to the stable or addi-
tive condition, so as to allow for a minimum of 20 partici-
pants per cell. Eight participants were excluded from analyses 
as their data showed truncated RT distributions due to the 5-s 
response window (n = 5), or below 55% accuracy on ‘easy’ 
trials (n = 3). An additional participant was excluded for 
incomplete data. This left 22 participants in the stable condi-
tion and 25 participants in the additive condition. First-year 
psychology students were reimbursed with research credits 
and other participants received a $20 e-voucher. Participants 
were required to have normal or corrected-to-corrected nor-
mal vision, and were not eligible to participate if they suf-
fered from epilepsy or related conditions.

Materials

Participants completed the task on in-lab desktop computers 
equipped with 3.30 GHz Intel i5-6600 processors, 16 GB 
RAM, and a Windows 7 enterprise operating system config-
ured to minimize internal task-switching. The program was 
written and run using MATLAB (The MathWorks, R2016b). 
For each trial, participants viewed a dynamic grid consist-
ing of blue (RGB = 0, 65, 255), orange (RGB = 255, 127, 
0) and sometimes white (RGB = 128, 128, 128) pixels (see 
Fig. 2). Although the colour of pixels in the grid changed 

Fig. 2  Schematic representations of the dynamic-grid stimulus at 
varying levels of non-diagnostic information. White pixels represent 
non-diagnostic information, and the total proportion of non-diagnos-

tic information increases from left to right. The first row represents 
the stable condition, whereas the second row represents the additive 
condition
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constantly, the proportion of blue, orange and white pixels 
remained constant. Table 1 provides a breakdown of how 
the coloured pixels varied between different levels of non-
diagnostic information for each grid type.

Participants responded by moving their mouse from the 
start point (a circle on the screen, equidistant from six response 
options) to the relevant segment of the response arc (labelled 
low-confidence blue, moderate-confidence blue, high-confi-
dence blue, low-confidence orange, moderate-confidence orange 
and high-confidence orange). This design allows RT data for 
multiple levels of confidence to be collected in a way that mini-
mizes noise associated with motor responses (e.g., differences in 
motor time associated with the use of different fingers to indicate 
confidence using a keyboard). Participants clicked inside a circle 
in the middle of the screen to begin each trial. Participants who 
responded too quickly (before .15 s) were warned that they were 
too fast. Participants who took longer than 2 s to respond were 
warned that they were responding too slowly. If participants did 
not respond within 5 s, the trial ended, and they received an on-
screen message saying they were too slow to respond.

In the stable condition, the overall grid size remained constant. 
Thus, as the overall proportion of non-diagnostic pixels (i.e., white 
pixels) increased, the number of diagnostic pixels (i.e., blue and 
orange pixels) decreased. In the additive condition, the dynamic 
grid increased in size as the proportion of non-diagnostic pixels 
increased, meaning the number of diagnostic pixels remained con-
stant (529 diagnostic/coloured pixels). In easy trials, 55% of the 
diagnostic pixels consisted of the dominant colour (i.e., correct 
response). In hard trials, 52% of the diagnostic pixels consisted of 
the dominant colour (i.e., correct response). The remainder of the 
grid was filled with the incorrect colour, and non-diagnostic pixels.

Procedure

Participants first completed three training blocks, with the 
first two blocks comprising 20 trials and the third block 40. 
In all three practice blocks, participants were provided with 
feedback indicating whether each response was correct. In 
the first practice block, participants responded to a stimulus 
like that in Fig. 1 (i.e., pixels were either orange or blue; no 
white was included), by simply indicating whether the stimu-
lus was predominantly orange or blue, with no confidence 
ratings required. The second practice block introduced the 
manipulation of non-diagnostic information (i.e., white pix-
els), and the third practice block introduced the six response 
categories (high-confidence blue, moderate-confidence blue, 
etc.). This approach was intended to help participants learn the 
demands of the task before starting experimental trials. Each 
experimental block comprised 80 trials. Participants com-
pleted nine experimental blocks. Unlike the practice blocks, 
participants did not receive feedback for the experimental tri-
als. Participants were encouraged to take rests between blocks 
as required. The task took approximately 1 h to complete.

Analysis methods

Few participants consistently used all three levels of confidence, 
with participants varying in the least-used level. To produce stable 
estimates for our analyses, we collapsed responses to two levels 
of confidence (‘low’ and ‘high’). For each participant, moderate 
responses were collapsed into either the high or low category based 
on upon which of these two options was used less frequently.

We used linear mixed-effect models assuming Gaussian error 
to analyze the logarithm of RT and generalized linear mixed-
effect models with a probit link function to analyze the prob-
ability of high-confidence responses (Bates et al., 2015; Kuznet-
sova et al., 2017). Participant was set as a random factor, with 
grid-type (additive/stable), proportion of non-diagnostic infor-
mation (0, 0.17, 0.33, 0.50), difficulty (hard/easy), and predomi-
nant stimulus colour (orange or blue) included as fixed effects.

Due to response bias in the data – participants showed a 
bias towards orange stimuli at low proportions of non-diag-
nostic information, and a bias towards blue stimuli at high 
levels of non-diagnostic information – we analyzed accuracy 
using the SDT-based measure of discrimination, d´, rather 
than raw accuracy scores. This allowed us to determine the 
effect of non-diagnostic information on participants’ ability 
to discriminate between the correct and incorrect response 
independent of response bias. The discrimination analysis 
was accomplished using a generalized linear mixed-effect 
model with a probit link function on the proportion of blue 
responses, with d´ corresponding to the difference between 
majority blue versus majority orange stimuli, and effects on 
d´ corresponding to interactions with the stimulus factor.

We constructed CAFs by dividing responses into quintile 
bins (separately for the stable and additive conditions, and 
then collapsed across both). For the first bin the accuracy of 
the fastest 20% of responses is plotted, for the second the accu-
racy for RTs between the 20th and 40th percentiles and so on 
up to the slowest 20% of responses for the fifth bin. The choice 
of number of bins is arbitrary; this relatively coarse division 
results in precise accuracy estimates for each bin as they are 
based on many responses. The same pattern of results, albeit 
with more variability, was found using more bins.

Results

Statements about significance are made with respect to a 
.05 criterion. Although we included the majority-colour 
factor in the RT and confidence ANOVAs we do not report 
tests of it as they are not germane to our hypotheses. Full 
ANOVA tables for confidence, accuracy and RT are avail-
able on OSF (available at https:// osf. io/ exqba/) and impor-
tant effects are summarized below.

https://osf.io/exqba/
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Confidence

Consistent with the doubt-scaling model, the proportion 
of high-confidence responses decreased as the amount of 
non-diagnostic information increased, χ2(3) = 2102.32, 
p < .001 (see Fig. 2, panels A and B). There was also a 
significant main effect of difficulty on confidence, with 
easy trials receiving a higher proportion of high-confi-
dence responses than hard trials, χ2(1) = 95.64, p < .001, 
with no significant interaction between the two effects 
(see Fig. 2). Although the main effect of grid type, and 
interactions with difficulty, were non-significant, grid 
type did interact with the proportion of non-diagnostic 
information, χ2(1) = 24.25, p < .001. However, the inter-
action effect was only small: non-diagnostic information 

exerted a slightly greater effect on confidence in the stable 
condition (mean confidence decreased from 62% at zero 
non-diagnostic information to 29% at half non-diagnostic 
information) than in the additive condition (59% vs. 31%), 
collapsing across difficulty conditions.

Discrimination

Increasing the proportion of non-diagnostic information also 
affected discrimination, χ2(3) = 322, p < .001. As shown in 
Fig. 3 (panel E), discrimination was nearly identical at the 
two lowest levels, but decreased systematically thereafter. 
Difficulty had the expected strong main effect, χ2(1) = 1251, 
p < .001, and the amount of non-diagnostic information had 

Fig. 3  The effects of non-diagnostic information on confidence, accu-
racy (d´) and response time (RT) for Experiment 1. Figures demon-
strate the relationship between non-diagnostic information and con-

fidence (panels A and B), RT for all responses (panels C and D), and 
accuracy (as indexed by d´, panel E). Error bars represent the stand-
ard error
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a weaker effect for hard than for easy trials, χ2(1) = 66.8, p 
< .001. The only effect including grid type was a relatively 
weak interaction where the difficulty effect was larger in the 
stable than in the additive condition, χ2(1) = 4.83, p = .03.

Response times

RT generally slowed as the proportion of non-diagnostic 
information increased, F(3,33599) = 109.7, p <.001, and 
was faster for easy than for hard choices, F(3,33599) = 
218.2, p < .001. However, as shown in Fig. 3 (panels C and 
D), the slowing was restricted to conditions where there 
was some non-diagnostic information, and the effect of non-
diagnostic information was again weaker for the hard condi-
tion than for the easy condition. The only significant effect 
of grid type was a significant interaction with both difficulty 
and non-diagnostic information, F(3,33599) = 2.95, p =.03, 
due to a larger difficulty effect for stable than additive for 
the low proportion of non-diagnostic information.

Conditional accuracy functions

Figure 4 shows a pattern consistent with the predictions 
of the doubt-scaling model: the overall level of the CAFs 
decreased as non-diagnostic information increased, and 
accuracy for slower bins increased relative to accuracy for 
faster bins, although the relative change was less marked for 
the hard additive condition.

Discussion

Consistent with predictions based on the doubt-scaling 
model, the proportion of high-confidence responses – and 
participants’ ability to discriminate between correct and 
incorrect responses – decreased as non-diagnostic infor-
mation increased. RT generally increased as non-diag-
nostic information increased, and CAFs showed that the 
accuracy of fast responses generally decreased relative to 
that of slow responses. The grid-type manipulation gener-
ally had little impact, with the exception of a larger diffi-
culty effect on RT for stable than additive trials for the 1/6 
proportion of non-diagnostic information, and a stronger 
effect of the proportion of non-diagnostic information on 
confidence in the stable condition than in the additive con-
dition. The latter result appears to indicate an effect of 
the absolute amount of diagnostic information in addition 
to an effect of non-diagnostic information. Although the 
effect is only small (a reduction of 33% in the stable condi-
tion compared to a reduction of 28% in the additive condi-
tion), it suggests a slight deviation from the predictions of 

the doubt-scaling model. We note that this inconsistency 
was not evident in either accuracy or RT (aside from the 
three-way interaction with difficulty and non-diagnostic 
information). We observed response bias in the data, with 
participants demonstrating a bias towards orange at low 
levels of non-diagnostic information, switching to a bias 
towards blue at higher levels of non-diagnostic informa-
tion. This may be due to the colours used in the dynamic 
grid, as there is a smaller difference between the RGB 
values of blue and white than between orange and white, 
making white more confusable with orange than blue.

Experiment 2

Having participants consider confidence while making deci-
sions slows the decision-making process (Baranski & Petru-
sic, 2001; Petrusic & Baranski, 2003). To test whether the 
observed effects of non-diagnostic information on accuracy 
and RT generalize, Experiment 2 removed the confidence 
ratings. Our hypotheses with respect to accuracy, RT, and 
their combination in CAFs remain the same.

Method

Design

We used a 4 (proportion of non-diagnostic information: 0, 
1/6, 1/3, ½) × 2 (difficulty: easy or hard) within-subjects 
design. The outcome variables were accuracy (d’) and RT 
(as indexed by CAFs and mean RT).

Participants

Twenty-one participants completed the experiment, with one 
being removed for truncated RTs. Renumeration and exclu-
sion criteria were the same as Experiment 1.

Procedure

The procedure and materials were identical to those of 
Experiment 1, with three exceptions. First, there were only 
two response options (‘Orange’ and ‘Blue’). Second, as grid-
type did not moderate the effects of non-diagnostic informa-
tion on accuracy or RT, we used only the stable manipula-
tion. Third, participants completed only two practice blocks 
before beginning the experimental trials (20 trials without 
the presence of non-diagnostic information, 40 trials with 
the non-diagnostic manipulation) as confidence ratings were 
no longer relevant.
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Fig. 4  Conditional accuracy functions for Experiment 1. The figures 
show conditional-accuracy functions of accuracy as a function of 
response time (RT) for hard and easy trials in both the additive and 

the stable conditions. The first point on the x-axis represents the fast-
est responses (below the 20th percentile of RT), the second point the 
20th to 40th percentile, etc. Error bars represent the standard error
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Analysis methods

Data were analyzed using the same approach as Experiment 1.

Results

Discrimination

As expected, d´ decreased significantly as non-diagnostic 
information increased, χ2(3) = 244, p < .001. Again, there 
was a main effect of difficulty, with participants showing better 
discrimination for easy than for hard trials, χ2(1) = 448, p < 
.001, and the effect of non-diagnostic information was weaker 
for the hard condition than for the easy condition, χ2(1) = 17, 
p < .001 (see Fig. 4, panel A). Figure 4 also shows that, in 
contrast to Experiment 1, discrimination was highest in the 
control (no non-diagnostic information) condition.

Reaction times

As per Experiment 1, a linear mixed-effects model on log 
RTs showed that RT generally increased as the proportion of 
non-diagnostic information increased, F(3,14347) = 90.5, p 
< .001. There was the expected overall slowing for difficult 
choices, F(1,14347) = 135.6, p < .001, which interacted 
with proportion of non-diagnostic information, F(3,14347) 
= 7.7, p < .001. The interaction was due to the effect of non-
diagnostic information being weaker for the hard condition 
than for the easy condition, and the slowing in the control 
condition relative to the low non-diagnostic information 
condition seen in Experiment 1 was weakened (see Fig. 5, 
panel B).

Conditional accuracy functions

Like Experiment 1, CAFs generally decreased when there was 
no non-diagnostic information and flattened as the amount of 

non-diagnostic information increases. Correspondingly, the 
interaction between RT range as factor and proportion of non-
diagnostic information was significant, χ2(1) = 41.9, p < .001. 
In this case, the three-way interaction with difficulty was also 
significant, χ2(1) = 15.3, p = .004, reflecting stronger flatten-
ing in the easy condition (see Fig. 6).

Discussion

The results of Experiment 2 support the generality of the 
predictions made by the doubt-scaling model with respect 
to accuracy and RT. First, discrimination decreased signifi-
cantly as non-diagnostic information increased, while RT 
increased as non-diagnostic information increased. The 
effect on these measures was more monotonic than in Exper-
iment 1, although the control condition was still slower than 
the low non-diagnostic condition for hard choices. Second, 
as non-diagnostic information increased, CAFs flattened, 
suggesting that participants’ errors sped up as the propor-
tion of non-diagnostic information increased.

Again, we found significant interactions between dif-
ficulty and non-diagnostic information for effects on both 
accuracy and RT: the effect of the difficulty manipulation 
was less pronounced as the proportion of non-diagnostic 
information increased.

General discussion

Baranski and Petrusic’s (1998) doubt-scaling model pro-
vides a framework for understanding the effect of non-diag-
nostic information (i.e., information that is not relevant to 
making a correct decision) on choice tasks. Although the 
model was proposed in the literature in 1998, it has not, 
to our knowledge, been directly tested in an experimental 
setting. Experiment 1 confirmed the model’s prediction 
that confidence decreases monotonically as non-diagnostic 

Fig. 5  The effects of non-diagnostic information on accuracy (d´) 
and response time (RT) for Experiment 2. The figures demonstrate 
the relationship between non-diagnostic information and accuracy (as 

indexed by d´, panel A) and RT for all responses (panel B). Error bars 
represent the standard error
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information increases, and that this holds for both harder and 
easier decisions. Both our experiments confirmed the pre-
diction that accuracy decreases, and RT increases, as non-
diagnostic information increased. However, results deviated 
from the prediction that the control condition should show 
the highest accuracy and lowest RT in Experiment 1 (where 
confidence judgements were required), and regarding RT for 
hard decisions in Experiment 2 (without confidence).

We also tested two more fine-grained predictions of the 
doubt-scaling model. First, it predicted that as non-diag-
nostic information increased so would the accuracy of slow 
responses relative to the accuracy of fast responses. In both 
experiments we confirmed this prediction, consistent with 
the idea that the presence of more non-diagnostic informa-
tion causes faster and more frequent guessing responses. 
The second prediction concerns the effect of non-diagnostic 
information being determined by only the proportion rather 
than the absolute amounts of diagnostic and non-diagnostic 
information. This prediction held for accuracy and RT, but 
not for the confidence judgements in Experiment 1, where an 
increase in the proportion of non-diagnostic information had 
a stronger effect when it was accompanied by a decrease in 
the absolute amount of diagnostic information. Apart from 
these relatively minor deviations from predictions, our 
results provide clear support for the doubt-scaling model, 

at least in the context of the perceptual decisions studied in 
the present experiments. We now discuss the applied and 
theoretical implications of our results.

Although the present results are generally consistent 
with the predictions of Baranski and Petrusic’s (1998) 
doubt-scaling model, those predictions are not necessar-
ily unique to that model. For example, the effect of non-
diagnostic information can be framed as a manipulation 
of choice difficulty. Like typical difficulty manipulations, 
increasing non-diagnostic information reduces accuracy, 
increases RT, and reduces confidence. Choice difficulty is 
typically manipulated by reducing the difference between 
stimulus information favouring one choice versus stimulus 
information favouring the other choice. Hence, it is pos-
sible that non-diagnostic information affects decisions by 
reducing the subjective diagnosticity of information in the 
choice stimulus, even when, as our experiments demonstrate, 
objective diagnosticity is maintained in both a proportional 
and an absolute sense. One possibility is that non-diagnostic 
information acts as a source of noise, and so reduces the 
signal-to-noise ratio for a stimulus. A related possibility is 
that non-diagnostic information weakens a participant’s abil-
ity to selectively attend to diagnostic information, as in the 
account of Manley et al. (2019), again increasing the signal-
to-noise ratio. Our experiments cannot rule out accounts like 

Fig. 6  Conditional accuracy functions for Experiment 2. The figures 
show conditional accuracy functions as a function of RT for hard and 
easy trials in both the additive and the stable conditions. The first 

point on the x-axis represents the 20th percentile of RT, the second 
point the 20th to 40th percentile, etc. Error bars represent the stand-
ard error
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these where the effect of non-diagnostic information is on 
early processing stages rather than on a later response-selec-
tion stage as proposed by the doubt-scaling model.

However, such early-stage accounts would need to 
be elaborated to make testable in terms of specific pre-
dictions. Our finding that the CAF slope decreases may 
be particularly constraining such elaborations when an 
increase in non-diagnostic information is modeled by 
effects on the rate at which evidence about a choice is 
accumulated. For example, in the DDM a decrease in 
discriminability due to increase in rate variability leads 
to slower errors, which corresponds to CAF flattening 
(i.e., a greater proportion of errors are slow). In contrast, 
a decrease in discriminability due to an increase in the 
mean rate of evidence accumulation has less effect on error 
speed. However, evaluating these possibilities will likely 
require explicit model fitting. Another potential alternative 
explanation for the doubt-scaling account that was recently 
proposed by Hellmann et al. (2023) combines early and 
late approaches. Their model accumulates evidence about 
stimulus discriminability that is combined with evidence 
accumulated about a choice to determine confidence. This 
model could potentially be applied to explain the results 
of our first experiment. Although we saw effects of non-
diagnostic information in the absence of confidence judge-
ments in our second experiment, it is possible that their 
model could be extended to account for this case as well. 
We did find some deviations from the predictions of the 
doubt-scaling model that suggest some avenues for further 
theoretical investigation. First, the effect of the absolute 
amount of diagnostic information is consistent with the 
small but reliable effects of absolute stimulus magni-
tude found in paradigms ranging from simple perceptual 
choices (Teodorescu et al., 2016) to value judgements 
(Miletić et al., 2021). Modern descendants of Audley’s 
(1960) runs model, such as Usher & McClelland (2001) 
Leaky Competitive Accumulator model and van Raven-
zwaaij et al.’s (2020) Advantage Linear Ballistic Accumu-
lator model, produce small magnitude effects as the rela-
tive amount of information for each choice increases. In 
future work, it would be interesting to apply these models 
to manipulations of non-diagnostic information.

A second potential theoretical extension could be con-
sidered with respect to the doubt-scaling model’s guessing 
mechanism. Hawkins and Heathcote (2021) used a guess-
ing process to provide a broad and integrative account of 
the effect of the passage of time on decisions. Like the 
doubt-scaling model, their Timed Racing Diffusion Model 
(TRDM) produces guesses when a third accumulator beats 
both accumulators that accrue diagnostic information about 
a binary choice. In their case, the guessing accumulator is 
driven by a constant input, and so provides a measure of 
the passage of time. It would be interesting to investigate 

whether the rate of this accumulator is modulated by the 
presence of non-diagnostic information, further broadening 
the explanatory reach of the TRDM.

In a more applied vein, our work also raises questions 
regarding the mechanisms that lead to higher accuracy rates 
for recognition tasks when lineup members are presented 
simultaneously versus sequentially. It has been suggested 
that simultaneous presentation allows participants to dis-
count features that are shared by the lineup members and 
hence non-diagnostic (Wixted & Mickes, 2014; Wixted 
et al., 2018). Although discounting of common features 
seems likely to occur at least to some degree with faces and 
other complex visual stimuli (see also Heathcote et al, 2009; 
Tulving, 1981), our findings suggest that the presence of 
non-diagnostic information could have a residual effect in 
terms of decreased confidence and accuracy. Hence, further 
work examining the role of non-diagnostic information on 
decision making using a complex recognition task (com-
pared with a basic perceptual task) is needed to clarify the 
generalizability of our results. Another question raised by 
this study pertains to whether we would expect the same 
pattern of results if the participants believed the non-diag-
nostic information to be diagnostic to the decision. While we 
cannot answer this question with our existing experimental 
paradigm, it highlights an avenue for further research.

In conclusion, given the fact that non-diagnostic infor-
mation has the potential to be present in a variety of 
important applied decision-making scenarios (e.g., identi-
fying a weapon within a crowded piece of luggage, or rec-
ognizing a tumour in a medical x-ray), a greater focus on 
its effects seems warranted. The current research provides 
some initial insight into the effects of non-diagnostic infor-
mation that may be utilized in applied scenarios to better 
understand and evaluate decision making. In future work 
it would be useful to extend our investigation to the sorts 
of complex perceptual decisions, and recognition memory 
decisions, relevant to these applied contexts, as well as by 
developing and quantitatively evaluating detailed models.
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