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Abstract

Bayesian Experimental Design (BED), which aims to find the
optimal experimental conditions for Bayesian inference, is
usually posed as to optimize the expected information gain
(EIG). The gradient information is often needed for efficient
EIG optimization, and as a result the ability to estimate the
gradient of EIG is essential for BED problems. The primary
goal of this work is to develop methods for estimating the
gradient of EIG, which, combined with the stochastic gradi-
ent descent algorithms, result in efficient optimization of EIG.
Specifically, we first introduce a posterior expected represen-
tation of the EIG gradient with respect to the design variables.
Based on this, we propose two methods for estimating the
EIG gradient, UEEG-MCMC that leverages posterior sam-
ples generated through Markov Chain Monte Carlo (MCMC)
to estimate the EIG gradient, and BEEG-AP that focuses on
achieving high simulation efficiency by repeatedly using pa-
rameter samples. Theoretical analysis and numerical studies
illustrate that UEEG-MCMC is robust agains the actual EIG
value, while BEEG-AP is more efficient when the EIG value to
be optimized is small. Moreover, both methods show superior
performance compared to several popular benchmarks in our
numerical experiments.

Introduction

The advancement of science and engineering heavily relies
on the acquisition of data through experiments. However,
conducting experiments can be resource-intensive and time-
consuming. To maximize the information gained from col-
lected data and optimize experimental outcomes, researchers
turn to Bayesian experimental design (BED) which offers
a systematic and powerful framework for making informed
decisions about experimental setups and selecting optimal
conditions for data collection. At its core, BED aims to strate-
gically allocate resources to collect the most informative
data, which leads to more accurate parameter estimation,
model validation, and decision-making. It has been broadly
applied in diverse scientific fields, including pharmacokinetic
study (Ryan et al. 2014), drug discovery (Lyu et al. 2019),
systems biology (Kreutz and Timmer 2009), compressed
sensing (Seeger and Nickisch 2008) and physics simulations
(Melendez et al. 2021).

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Mathematically, BED can be formulated as an optimiza-
tion problem, where the objective is to maximize a specific
function known as the utility function. The choice of the
utility function is often driven by the purpose of the BED.
In this paper, our focus lies on BED’s application to precise
parameter estimation. Various utility functions have been em-
ployed to address parameter estimation challenges, and some
notable examples include Bayesian A-posterior precision,
Bayesian D-posterior precision, quadratic loss and expected
information gain (EIG) (see (Ryan et al. 2016) for a review).
While the EIG stands out for its exceptional theoretical ap-
peal among these functions, its use has been a long-standing
challenge historically due to the computational complexity as-
sociated with estimating the evidence or marginal likelihood,
which is analytically intractable or computationally expen-
sive to evaluate directly. Consequently, BED based on EIG
was once restricted to special cases where analytical solutions
or simplifying assumptions allowed for a tractable computa-
tion of the evidence (Borth 1975; Lewi, Butera, and Paninski
2009). Fortunately, recent advancements in Artificial Intelli-
gence (AI) tools, particularly in neural EIG estimators and
automatic differentiation frameworks, have significantly al-
leviated the computational challenge, enabling the efficient
implementation of EIG-based BED in a wide range of non-
linear and high-dimensional problems.

Accurate estimation of EIG has been widely recognized as
one of the most significant barriers of EIG-based BED. How-
ever, our primary interest is not in the exact value of the EIG,
but rather in the design variables that maximize the value. Mo-
tivated by this viewpoint, an alternative strategy is directly
estimating the gradient of EIG w.r.t. the design variables
and then using stochastic gradient descent to search for the
optimal design. In this paper, we propose two methods for es-
timating the EIG gradient. The first method, UEEG-MCMC,
applies posterior samples generated by Markov Chain Monte
Carlo (MCMC) to estimate the EIG gradient. It is shown
effective across different scenarios, regardless of the ground-
truth EIG values. The second method, BEEG-AP, is more
simulation-efficient. However, its performance suffers when
dealing with problems that have large ground-truth EIG val-
ues. The paper establishes a connection with nested Monte
Carlo to analyze this behavior, shedding light on the limita-
tions of BEEG-AP in such cases.

We validate the aforementioned attributes of the two pro-



posed methods through a meticulous numerical experiment
and diverse applications featuring varying expected EIG lev-
els. Additionally, comprehensive comparisons are made with
several bench-marking approaches, revealing the superior
performance of our proposed methods.

Related Work

Rainforth et al.(Rainforth et al. 2023) provide a thorough
review of modern methods for Bayesian experimental design.
Early schemes for Bayesian experimental design used sepa-
rate stages to estimate the Expected Information Gain (EIG)
and optimize the design variables �, both of which can be
challenging tasks. For EIG estimation, the main computa-
tional challenge arises from the intractability of p(y|�) and
several methods have been proposed to solve this problem.
Notably, Nested Monte Carlo (NMC) (Rainforth et al. 2018;
Ryan 2003) emerged as a prominent method in this area. Ad-
ditionally, Variational EIG estimators (also known as varia-
tional mutual information estimators) (Foster et al. 2019; Bar-
ber and Agakov 2004; Donsker and Varadhan 1975; Nguyen,
Wainwright, and Jordan 2010) combined with deep learning
techniques (Belghazi et al. 2018; Oord, Li, and Vinyals 2018;
Alemi et al. 2016; Song and Ermon 2019) showed significant
progress. Furthermore, alternative approaches for EIG estima-
tion included using ratio estimation (Thomas et al. 2022) as
proposed in (Kleinegesse and Gutmann 2019), and bounding
EIG from below by two or more entropies in the data space
(Ao and Li 2020) which are then be estimated by entropy esti-
mation methods (Kraskov, Stögbauer, and Grassberger 2004).
A direct lower bound estimation for EIG was introduced in
(Tsilifis, Ghanem, and Hajali 2017) for models with fixed nor-
mally distributed measurement noises, and the EIG Laplace
approximation was proposed in (Long et al. 2013). Regarding
the optimization of �, conventional gradient-free approaches
such as Bayesian optimization (BO) (Snoek, Larochelle, and
Adams 2012), Simultaneous perturbation stochastic approxi-
mation (SPSA) (Spall 1998), simulation-based optimization
(SBO)(Müller 2005), and Nelder-Mead nonlinear simplex
(NMNS)(Nelder and Mead 1965) were commonly employed.
However, these methods encountered scalability issues when
dealing with high-dimensional design variable spaces.

Recent advancements have introduced efficient gradient-
based approaches that leverage the reparameterization trick
and automatic differentiation frameworks. These methods,
such as those proposed in (Foster et al. 2020; Kleinegesse
and Gutmann 2020; Zhang, Bi, and Zhang 2021; Zaballa and
Hui 2023), allow for simultaneous optimization of both the
variational parameters and the design variables. Moreover,
Goda et al. (Goda et al. 2022) presented a method that di-
rectly obtains an unbiased estimator of the EIG gradient using
a randomized version of multilevel Monte Carlo (MLMC)
method (Rhee and Glynn 2015). Furthermore, gradient esti-
mators for implicit models (Li and Turner 2017; Wen et al.
2021; Lim et al. 2020; Shi, Sun, and Zhu 2018) with score
matching techniques (Hyvärinen and Dayan 2005; Song et al.
2020) have emerged as another avenue for optimizing � in
a gradient-based way. Despite receiving limited attention in
the Bayesian experimental design community, these methods
hold promise and deserve further exploration.

Preliminary Knowledge

Problem Formulation

This section defines the variables and functions involved as
well as the primary objective of Bayesian experimental de-
sign. Let � 2 D be the design variables that can be controlled
by users. The parameters to be inferred from the observed
data y are denoted by ✓ and ⇡✓(✓) denotes its prior that
represents our knowledge or belief about the parameters be-
fore observing any data. ✏ represents the base model noises
generated from a known distribution ⇡✏(✏). The process of
simulating the observed data can be modeled by a sampling
path

y = g(✓, ✏,�). (1)
In this context, we assume the existence of a tractable likeli-
hood function l(y|✓,�), which is derived from the sampling
path. However, it is important to note that the marginal like-
lihood p(y|�) is not available in closed-form. Under certain
design �, the expected information gain (EIG) is defined as

U(�) = E⇡✓(✓)l(y|✓,�)
[log l(y|✓,�)]� Ep(y|�)[log p(y|�)].

(2)
It represents the expected amount of information that obser-
vations y provide about ✓ and is well known as the mutual
information (Cover 1999) between ✓ and y in information
theory community. The objective of Bayesian experimental
design is then to maximize the EIG over the design variable
space D

�⇤ = argmax
�2D

U(�). (3)

Simulation Cost

Estimating and optimizing the EIG entails generating obser-
vation samples and evaluating the corresponding likelihood
values. This process can be computationally demanding, and
its efficiency is of paramount importance in practical appli-
cations. In this section, we will illustrate how to quantify
the simulation cost during the process when explicit models
are considered. For explicit models, the sampling path can
typically be written as a hierarchical structure

y = g(f(✓,�), ✏, ✓,�), (4)

where f is the forward model which dominates the main com-
putational cost. Examples of the commonly used hierarchical
structure include:

Additive noise : y = f(✓,�) + �(✓,�)✏. (5)

Multiplicative noise : y = f(✓,�)(1 + �(✓,�)✏). (6)
Mixture of noises : y=f(✓,�)(1+�1(✓,�)✏1)+�2(✓,�)✏2.

(7)
For simplicity, we take the case of additive noise for exam-

ple to analyze the simulation cost concerned in applications.
Given a fixed parameter ✓⇤, simulating multiple observations
(e.g. y(k) = f(✓⇤,�) + �(✓⇤,�)✏(k), k = 1, ...,K) only
involves a single simulation (i.e. f(✓⇤,�)) of the forward
model. Likewise, since the likelihood function can be analyt-
ically written as

l(y|✓,�) = ⇡✏
⇣y � f(✓,�)

�(✓,�)

⌘
, (8)



evaluating the values of the likelihood w.r.t. multiple obser-
vations (e.g. l(y(k)|✓⇤,�), k = 1, ...,K) also requires only a
single forward pass of f . Thus, the simulation cost of generat-
ing observations from and evaluating the likelihood is directly
related to the number of different parameters involved. This
observation is important for the analysis of simulation costs
of estimators in the later sections.

Posterior Expected Representations of the EIG

Gradient

In this section, we introduce a novel representation of the
EIG gradient that offers new insights into the development
of efficient gradient estimators. To start with, we analyze the
difficulty in directly computing the EIG gradient w.r.t. the
design variables �. Estimating the gradient of Eq. (2) directly
with score-function estimators (Mohamed et al. 2020) could
lead to high variance. As a result, practitioners often turn to
pathwise gradient estimators (also known as the reparame-
terization tricks) (Mohamed et al. 2020), as an alternative
strategy for estimating this gradient:

r�U(�) =r�E⇡✓(✓)⇡✏(✏)
[log l(g(✓, ✏,�)|✓,�)]

�r�E⇡✓(✓)⇡✏(✏)
[log p(g(✓, ✏,�)|�)]

=E⇡✓(✓)⇡✏(✏)
[r� log l(g(✓, ✏,�)|✓,�)]
� E⇡✓(✓)⇡✏(✏)

[r� log p(g(✓, ✏,�)|�)].
(9)

While obtaining r�g(✓, ✏,�) is typically straightforward
using modern automatic differentiation frameworks (e.g. Ten-
sorflow (Abadi 2016) and Pytorch (Paszke et al. 2017)), the
score function ry log p(y|�) usually does not have an analyt-
ical form, rendering the second term of the above estimator
intractable. To address this challenge, we apply the key idea
in (Brehmer et al. 2020), which involves using the tractable
score of likelihood ry log l(y|✓,�) to estimate the intractable
score function ry log p(y|�). This can be summarized as the
following Lemma 1.

Lemma 1. The gradient of the logarithm of the marginal den-
sity w.r.t. the experimental condition � admits the following
representation:

r� log p(g(✓, ✏,�))|�)
= �Eq(✓0|g(✓,✏,�),�)[r� log l(g(✓, ✏,�)|✓0,�)],

(10)
where q(✓0|y,�) / ⇡✓(✓0)l(y|✓0,�) is the posterior density
of parameters given the observation sample y.

Using this lemma, we derive an entropy gradient estimator
for the marginal distribution of y as stated in Theorem 1.

Theorem 1. The gradient of the entropy H(p(y|�)) w.r.t. the
experimental condition � satisfies

r�H(p(y|�))
=� E⇡✓(✓)⇡✏(✏)q(✓0|g(✓,✏,�),�)[r� log l(g(✓, ✏,�)|✓0,�)],

(11)
where q(✓0|y,�) / ⇡✓(✓0)l(y|✓0,�) is the posterior density
of parameters given the observation sample y.

Using Theorem 1, we can get a posterior expected rep-
resentation of the EIG gradient, as stated in the following
Corollary 1.
Corollary 1. The gradient of the EIG U(�) w.r.t. the experi-
mental condition � satisfies

r�U(�)

= E⇡✓(✓)⇡✏(✏)q(✓0|g(✓,✏,�),�)[r� log l(g(✓, ✏,�)|✓,�)
�r� log l(g(✓, ✏,�)|✓0,�)],

(12)
where q(✓0|y,�) / ⇡✓(✓0)l(y|✓0,�) is the posterior density
of parameters given the observation sample y.

Estimating the EIG Gradient

Building upon the posterior expected representation of the
EIG gradient in Eq. (12), we propose two estimators of EIG
gradient. When integrated with stochastic gradient descent
algorithms, these estimators seamlessly evolve into the re-
spective algorithms for Bayesian experimental design. For
simplicity, we denote the observation samples generated from
the sampling path as y(i)(�) = g(✓(i), ✏(i),�) throughout this
section.

Unbiased Estimation of EIG Gradient with Markov

Chain Monte Carlo

The most straightforward method to estimate the expectation
in Eq. (12) is utilizing MCMC schemes. Specifically, giving
samples {✓(i)}Mi=1 and {✏(i)}Mi=1 drawn from ⇡✓(✓)⇡✏(✏), the
expectation in Eq. (12) can be estimated by Monte Carlo
average as

r�U(�) ⇡ 1

M

MX

i=1

r� log l(y
(i)
(�)|✓(i),�)

� 1

M

MX

i=1

Eq(✓0|y(i)(�),�)[r� log l(y
(i)
(�)|✓0,�)].

(13)
Ideally if we can draw samples {✓(i,j)}Nj=1 exactly from the
posterior q(✓0|y(i)(�),�), we can obtain an unbiased estima-
tor of Eq(✓0|y(i)(�),�)[r� log l(y(i)(�)|✓0,�)]:

Eq(✓0|y(i)(�),�)[r� log l(y
(i)
(�)|✓0,�)]

⇡ 1

N

NX

j=1

r� log l(y
(i)
(�)|✓(i,j),�).

(14)
Combining Eq. (13) and Eq. (14) yields an unbiased estima-
tor of EIG gradient in theory. In reality however, one often
relies on Markov Chain Monte Carlo (MCMC) methods to
sample the posterior distribution, which draws biased sam-
ples from the posterior distribution. We refer to the method
as unbiased estimation of EIG gradient with MCMC (UEEG-
MCMC). The simulation cost of a single gradient estimation
for UEEG-MCMC is O(M ⇥ L), where L is the number
of simulations used to perform MCMC. We reinstate that
a finite-length MCMC can not produce unbiased samples



from the posterior and as such it causes bias in the gradient
estimator. Nevertheless, we emphasize that the bias lies in
the samples and the estimator itself is unbiased provided that
samples are generated perfectly from the posterior. As will be
shown in the numerical examples, the bias due to MCMC is
often much smaller than those in other methods especially for
problems with large EIG values. Moreover, while we adopt
MCMC for sampling the posterior here, the proposed method
can be implemented with any sampling methods. To this end,
if more effective sampling methods are available, they can be
used instead of MCMC to reduce the estimation bias.

Biased Estimation of EIG Gradient with Atomic

Priors

Generating an observation from or evaluating the likelihood
for each new parameter sample requires to simulate the phys-
ical model considered once more. For expensive physical
models, this constitutes the most significant computational
cost.

In this section, we show how to obtain a simulation-
efficient approach using atomic priors. Suppose a finite set
of parameter-noise pairs ⌦ = {(✓(i), ✏(i))}Mi=1 are gener-
ated, where (✓(i), ✏(i)) ⇠ ⇡✓(✓)⇡✏(✏), and we denote ⇥ =

{✓(i)}Mi=1. Replacing the sampling distributions ⇡✓(✓)⇡✏(✏)
by U⌦ and ⇡✓(✓0) by U⇥, where U denotes the uniform dis-
tribution on the given set, we can approximate the sampling
distribution over which the expected value is taken in Eq. (12)
as

⇡✓(✓)⇡✏(✏)q(✓
0|g(✓, ✏,�),�)

=
⇡✓(✓)⇡✏(✏)⇡✓(✓0)l(g(✓, ✏,�)|✓0,�)R

⇡✓(✓0)l(g(✓, ✏,�)|✓0,�)d✓0

⇡
MX

i=1

PM
j=1 �✓(i)(✓)�✏(i)(✏)�✓(j)(✓

0
)l(y(i)(�)|✓(j),�)

PM
j=1 l(y

(i)(�)|✓(j),�)
.

(15)
Given this approximation of sampling distribution, we finally
obtain a biased estimator of EIG gradient

r�U(�)

⇡
MX

i=1

PM
j=1 l(y

(i)
(�)|✓(j),�)r� log

⇥ l(y(i)(�)|✓(i),�)
l(y(i)(�)|✓(j),�)

⇤

PM
j=1 l(y

(i)(�)|✓(j),�)
.

(16)
we refer to it as biased estimation of EIG gradient with atomic
priors (BEEG-AP). As it requires only one batch of parameter
samples for each gradient estimation, the simulation cost
amounts to O(M).

Unifying BEEG-AP and NMC

To provide a more comprehensive understanding of BEEG-
AP, this section reveals its close connection to NMC. Indeed,
BEEG-AP can be regarded as an approach that directly com-
putes the gradient of the NMC estimator with sample reuse
technique (srNMC) in (Huan and Marzouk 2013). We start
this section by revisiting the concepts of NMC and srNMC.

The naı̈ve NMC estimates the EIG as

U(�) ⇡ 1

M

MX

i=1

log
l(y(i)(�)|✓(i),�)

1
N

PN
j=1 l(y

(i)(�)|✓(i,j),�)
, (17)

where ✓(i) ⇠ ⇡✓(✓), ✏(i) ⇠ ⇡✏(✏) and ✓(i,j) ⇠ ⇡✓(✓). This
approximation requires a simulation cost of O(M ⇥ N).
To reduce the cost to O(M), Huan & Marzouk (Huan and
Marzouk 2013) propose reusing the batch of prior samples
for the outer Monte Carlo sum in all inner Monte Carlo
estimations (i.e., ✓(i,j) = ✓(j) and N = M ). This yields a
more simulation-efficient estimator of EIG

bUM
srNMC(�) =

1

M

MX

i=1

log
l(y(i)(�)|✓(i),�)

1
M

PM
j=1 l(y

(i)(�)|✓(j),�)
.

(18)
This estimator is also related to the InfoNCE with a tractable
conditional (Oord, Li, and Vinyals 2018; Poole et al. 2019),
often utilized for the mutual information estimation in rep-
resentation learning. In addition, similar sample reuse tech-
niques have been applied to portfolio risk measurement prob-
lems (Zhang et al. 2022; Feng and Li 2022).

Now it is evident that the BEEG-AP can be directly de-
rived from the gradient of Eq. (18) w.r.t. �. This observation
allows us to explore the theoretical behavior of the BED with
BEEG-AP by investigating the convergence properties of the
srNMC. The original paper of (Huan and Marzouk 2013)
only provides a simple numerical study of the bias of srNMC.
Here, we give a more rigorous convergence analysis as the
following theorems.
Theorem 2. The expectation of bUM

srNMC(�) satisfies the
following:
1. E[bUM

srNMC(�)] is a lower bound on U(�) for any M >
0.

2. E[bUM
srNMC(�)] is monotonically increasing in M , i.e.,

E[bUM1
srNMC(�)]  E[bUM2

srNMC(�)] for 0  M1  M2.
Theorem 3. If l(g(✓, ✏,�)|✓0,�) is bounded away from
0 and uniformly bounded from above (i.e., C1 
l(g(✓, ✏,�)|✓0,�)  C2 a.s. for some positive constants C1

and C2), then the mean squared error of bUM
srNMC(�) con-

verges to 0 at rate O(1/M).
Theorem 2 indicates that the srNMC provides a lower

bound estimation for the EIG and the gap can be increas-
ingly narrowed as M increases. This suggests that BED with
BEEG-AP aims to use stochastic gradients to maximize a
lower bound of the ground-truth EIG. Theorem 3 further
establishes the consistency of srNMC and obtains a linear
convergence rate of O(1/M) under certain assumptions, in-
dicating that the optimization objective of BED with BEEG-
AP can be sufficiently close to true EIG as we increase the
number of samples M . However, the following Theorem 4
suggests that achieving a neglected error is challenging in
practice when the ground-truth EIG is large, even when these
assumptions are admitted.
Theorem 4. For any C satisfying 0  C  U(�)/2, if
M  exp(U(�)/2), we have

U(�)� bUM
srNMC(�) > C. (19)



Indeed, this theorem tells us that the simulation cost re-
quired grows exponentially with the ground-truth EIG to
achieve a reasonable error bound.

Experiments

A large variety of BED methods could exhibit
poor performance due to the presence of large
EIG values in the experiments to be designed. Be-
fore diving into numerical demonstrations (see
https://github.com/ziq-ao/GradEIG for
the research code and Appendix for further details of our
experiments), we list a few bench-marking approaches and
briefly discuss the above limitation they have in common.

PCE. Prior contrastive estimation (PCE) (Foster et al.
2020) estimates the EIG as

bUM,N
PCE(�) =

1

M

MX

i=1

log
l(y(i)(�)|✓(i),�)

1
N+1

PN
j=0 l(y

(i)(�)|✓(i,j),�)
,

(20)
where ✓(i), ✏(i) ⇠ ⇡✓(✓)⇡✏(✏), ✓(i,0) = ✓(i) and ✓(i,j) ⇠
⇡✓(✓) for j = 1, ..., N . In contrast to srNMC, PCE only
reuses one outer Monte Carlo sample in each inner Monte
Carlo estimation, resulting in a simulation cost of O(M⇥N).
It is easy to check that bUM,N

PCE(�) does not exceed logN , so
PCE shares a similar result to the one stated in Theorem 4,
implying its simulation inefficiency for estimating large EIG
values.

ACE. To improve the inner Monte Carlo in the denomina-
tor, adaptive contrastive estimation (ACE) (Foster et al. 2020)
introduces a posterior inference network q� parameterized
by � and use it as the proposal distribution for sampling, i.e.,

bUM,N
ACE(�)

=
1

M

MX

i=1

log
l(y(i)(�)|✓(i),�)

1
N+1

PN
j=0

⇡✓(✓i,j)l(y(i)(�)|✓(i,j),�)
q�(✓(i,j)|y(i)(�))

,
(21)

where ✓(i), ✏(i) ⇠ ⇡✓(✓)⇡✏(✏), ✓(i,0) = ✓(i) and ✓(i,j) ⇠
q�(✓(i,j)|y(i)(�)) for j = 1, ..., N . Given this adaptive esti-
mator, the network parameter � and design variable � are then
optimized jointly. However, learning the posterior inference
network can be challenging when there are strong depen-
dencies between the conditional (the observations) and target
variables (the parameters). This occurs when the ground-truth
EIG values are large (i.e., there is a high mutual informa-
tion between parameters and observations). In practice, we
observe that general-purpose conditional density networks
(such as Mixture Density Network (Bishop 1994) and Nor-
malizing Flows (Papamakarios et al. 2021)) usually fail or
run indefinitely for invalid values during training in this case.

GradBED. Gradient-based Bayesian Experimental Design
(GradBED) (Kleinegesse and Gutmann 2021) designs exper-
iments by optimizing a variational lower bound of mutual
information between parameters and observations. A variety
of candidates of lower bounds can be found in (Kleinegesse
and Gutmann 2021). In this paper, we only consider the fol-
lowing NWJ estimator (Nguyen, Wainwright, and Jordan

2010):

bUM
NWJ(�)

=
1

M

MX

i=1

⇥
T (✓

(i), y(i)(�))� 1

e
exp (T (✓

(i), y0(i)(�))
⇤
,

(22)
where ✓(i), ✏(i) ⇠ ⇡✓(✓)⇡✏(✏), ✓0(i), ✏0(i) ⇠ ⇡✓(✓)⇡✏(✏),
y0(i)(�)) = g(✓0(i), ✏0(i),�))) and T is a neural network pa-
rameterized by . The simulation cost is O(M) for GradBED.
During optimization, the network parameter  and design
variable � are updated simultaneously. As studied in (Song
and Ermon 2019), the variance of certain variational mutual
information estimators, including NWJ, could grow exponen-
tially with the ground-truth mutual information (or EIG in
Bayesian experimental design literature) and thereby lead to
poor designs.

EIG Gradient Estimation Accuracy

We start by examining the empirical convergence properties
of the proposed estimators. We consider a Bayesian linear
regression model with tractable EIG gradients. Assume n⇥ 1

observations are generated by the following linear acquisition
system

y = D✓ + ✏ (23)
where D = [1,�0, (�0)2] is the design matrix obtained by the
design vector � = (�1, ...,�n), ✓ = (✓1, ✓2, ✓3)0 are the pa-
rameters of interest and ✏ are n⇥ 1 i.i.d. noises. In Bayesian
framework, we assign a Gaussian prior ✓ ⇠ N (0, I3) on
the unknown parameters and a Gaussian observation noise
with variance �2, that is, p(y|✓) = N (D✓,�2In). The above
modeling admits a closed-form representation of EIG us-
ing the entropy expressions of multivariate normal distribu-
tions(Ahmed and Gokhale 1989), that is,

U(�) =
1

2
(log

|DD
0
+ �2In|

|�2In|
). (24)

The EIG gradient can then be analytically derived or directly
computed by automatic differentiation frameworks.

In this study, we estimate and compare the biases of three
approaches (BEEG-AP, UEEG-MCMC and PCE) with a
large number of repeated trials. The scatter plots in Fig. 1
shows the comparisons of these estimated biases across 20
independent designs. From the top of Fig. 1, it is evident that
the UEEG-MCMC has lower bias with the ground-truth EIG
increases, outperforming the other two methods. On the other
hand, the bottom of Fig. 1 exhibits that, while BEEG-AP
requires fewer simulation costs, it yields a comparable level
of bias to PCE.

A Toy Algebraic Model

In this experiment, we consider a toy problem with a single
optimal design. The model is given by the following nonlinear
map:

y1
y2

�
=


0.5✓3d1 + ✓ exp(�|0.2� 0.5d1|) + d21

0.5✓3(d2+1.6)+✓ exp(�|0.6+0.5d2|)+d22

�
+


✏1
✏2

�
,

(25)
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Figure 1: Top: the estimated biases of BEEG-AP and PCE
versus those of UEEG-MCMC for 20 independent designs.
Bottom: the estimated biases of PCE versus those of BEEG-
AP for 20 independent designs.

where ✓ is the model parameter, di are design variables and
✏i are independent observation noises. We assign a uniform
prior ✓ ⇠ Unif(0, 1) on the parameter and restrict the design
variables in the interval of [0, 1]. We conduct two experiments
with different noise terms, i.e., a large noise scenario with
✏i ⇠ N (0, (0.1)2) and a small noise scenario with ✏i ⇠
N (0, (0.0001)2). By setting different noise terms, we can
create scenarios to represent the small and large EIG cases
and observe how the different methods perform under these
conditions.

We applied five methods to this problem: BEEG-AP,
UEEG-MCMC, ACE, PCE and GradBED. To mitigate the
impact of randomness, we perform 20 independent runs for
each method. The results for both the large and small noise
settings are depicted in Fig. 2. From the figures we can see
the final designs obtained by BEEG-AP and UEEG-MCMC
are more concentrated compared to the designs generated
by the other three methods. In particular, in the small noise
case, UEEG-MCMC stands out as the only method where
all designs eventually concentrate on a single point. Then
we use different metrics to judge the quality of the designs
obtained for the two settings. In the large noise case, we apply
NMC with large samples to obtain high-quality estimations
of the EIGs. Fig. 3 shows the estimated EIGs throughout
the entire design space. Remarkably, we observe that the
only optimal design identified by the estimations aligns with
the the results obtained by BEEG-AP and UEEG-MCMC.
In the small noise case, utilizing NMC for reliable EIG es-
timations becomes impractical due to the large simulation
budget required. We therefore resort to using the posterior
entropy as the metric to evaluate the quality of the designs,
and the results are plotted in Fig. 4. From the figure, it is
evident that BEEG-AP and UEEG-MCMC produce designs
with smaller posterior entropy. Specifically, UEEG-MCMC
yields even smaller posterior entropy than BEEG-AP, which
demonstrates the superior performance of UEEG-MCMC in
large EIG case.
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Figure 2: The final designs of 20 independent trials for large
noise setting (left) and small noise setting (right).
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for small noise setting. Shown
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Pharmacokinetic (PK) Model

Next, we consider an experimental design problem for PK
studies. These studies aim to comprehend the underlying
kinetics of a drug, shedding light on how it is absorbed, dis-
tributed, metabolized, and eliminated within the body over
time. To achieve this understanding, it is a common practice
to collect blood samples from the study subjects. However,
the process of blood sampling involves various practical con-
straints, including financial limitations, participant burden,
and ethical considerations. Therefore, researchers must strate-
gically design the sampling strategy to gather meaningful
information while minimizing the number of blood samples
required. Here, we focus on the PK model introduced by
(Ryan et al. 2014). The model under consideration consists of
three parameters of interest ✓ = (ka, ke, V ): the absorption
rate constant ka, the elimination rate constant ke, and the
volume of distribution V which represents the theoretical vol-
ume that the drug would need to occupy to achieve the current
concentration in the blood plasma. The drug concentration of
blood sample taken at time t, denoted as yt, follows

yt =
D

V
· ka
ka � ke

· (e�ket � e�kat) · (1 + ✏1t) + ✏2t, (26)

where D = 400 is the fixed dose administered at the be-
ginning of the experiment, ✏1t and ✏2t are the multiplicative
and additive Gaussian noises respectively. As in (Ryan et al.
2014), we assign a log-normal prior on ✓

log ✓ ⇠ N

" 
log(1)

log(0.1)
log(20)

!
,
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Figure 5: Optimization of
EIG for PK model with mul-
tiplicative noise N (0, 0.01)
and additive noise N (0, 0.1)
as a function of number of
simulations. Shown are the
moving averages with the
standard error bars.

Figure 6: The posterior en-
tropy for PK model with
additive noise N (0, 0.001)
as a function of number of
simulations. Shown are the
means of entropy with their
standard error bars.

The design variables are assumed to be the 10 blood sampling
times (d1, ..., d10), di � 0 for i = 1, ..., 10, and the corre-
sponding drug concentrations at these times (yd1 , ..., yd10)

form the observations.
Again, we create a small EIG setting with ✏1t ⇠

N (0, 0.01) and ✏2t ⇠ N (0, 0.1), and a large EIG setting
with ✏1t = 0 and ✏2t ⇠ N (0, 0.001). In small EIG scenario
we use large samples to compute high-quality NMC estima-
tions to validate various methods, while in large EIG scenario
we compare the posterior entropies obtained by them. Fig. 5
shows BEEG-AP outperforms other methods in terms of
convergence rate in small EIG scenario. This can also be sup-
ported by examining the convergence histories of all methods,
as shown in Fig. B.1 in the Appendix. However, in large EIG
scenario, UEEG-MCMC achieve the best performance as
the validation experiments indicate in Fig. 6 and the conver-
gence histories show in Fig. B.2 in the Appendix. It should
be mentioned that in this case ACE fails to learn a posterior
inference network due to the strong dependencies between
the observations and the parameters.

Signal Transducer and Activator of Transcription 5

(STAT5) model

Finally we aim to design the measurement times for a dy-
namic system modeled by ordinary differential equations
(ODEs). We take the mathematical model of the core mod-
ule of the Janus family of kinases (JAK)–signal transducer
and activator of transcription (STAT) pathway in (Swameye
et al. 2003) as a case study. The core module of the JAK-
STAT pathway is represented by the latent transcription factor
STAT5, and the dynamics of STAT5 populations x1, x2, x3

and x4 can be described by four coupled ODEs (see Ap-
pendix for full details of the ODEs). The rate constants k1,
k2 and the delay parameter ⌧ are the three model parameters
to be inferred from measured data.

It is experimentally challenging to directly measure distinct
STAT5 populations separately. Instead, one can measure the
amount of tyrosine phosphorylated STAT5 y1 = s1(x2 + x3)

and the total amount of STAT5 y2 = s2(x1+x2+x3). We as-
sume the scaling parameters to be s1 = 0.33 and s2 = 0.26.
We assign a uniform prior on ✓ = (k1, k2, ⌧) with lower
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Figure 7: The posterior en-
tropy for STAT5 model with
additive noise N (0, 10�4

)

for designs obtained. Shown
are the means of entropy
with their standard error
bars.
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Figure 8: The posterior en-
tropy for STAT5 model with
additive noise N (0, 10�6

)

for designs obtained. Shown
are the means of entropy
with their standard error
bars.

range [0.5, 0.05, 4.0] and upper range [3.0, 0.2, 10.0]. The
objective of the experimental design is to allocate 16 mea-
surement times for STAT5 populations over a time span from
0 to 60 minutes, which yields 32 experimental measurements
in total.

In this application, we set two levels of additive Gaus-
sian observation noises, N (0, 10�4

) and N (0, 10�6
), repre-

senting the small and large EIG scenarios respectively. In
both cases, we assess the quality of designs by the poste-
rior entropies obtained. The results for the small EIG sce-
nario depicted in Fig. 7 indicate that, both BEEG-AP and
UEEG-MCMC outperform other methods and BEEG-AP
appears the best. However, UEEG-MCMC demonstrates the
best performance in the large EIG scenario, while BEEG-
AP’s performance falls below that of GradBED, as shown in
Fig. 8. ACE fails in both scenario. The convergence histories
of all approaches can be found in Fig. B.3 and Fig. B.4 in the
Appendix.

Conclusion

In this work we have proposed two approaches, UEEG-
MCMC and BEEG-AP, to Bayesian experimental design
based on EIG gradient estimation. We use MCMC sam-
pling techniques to build the gradient estimation for UEEG-
MCMC, while BEEG-AP approximates the EIG gradients
with atomic priors. Both of them are straightforward to im-
plement and have demonstrated improved performance com-
pared to bench-marking methods.

Our theoretical analysis aligns well with the numerical re-
sults. Specifically, BEEG-AP exhibits superior simulation ef-
ficiency when dealing with problems that have small ground-
truth EIG values, making it a favorable option in such cases.
On the other hand, UEEG-MCMC shows robustness across
various EIG levels, making it suitable for a broader range
of experimental scenarios. We believe the work provides re-
searchers and practitioners with promising tools and guidance
to optimize their experiments and make informed decisions
across different domains.

Acknowledgments

This work was partially supported by the China Scholarship
Council (CSC).



References

Abadi, M. 2016. TensorFlow: learning functions at scale.
In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, 1–1.
Ahmed, N. A.; and Gokhale, D. 1989. Entropy expressions
and their estimators for multivariate distributions. IEEE
Transactions on Information Theory, 35(3): 688–692.
Alemi, A. A.; Fischer, I.; Dillon, J. V.; and Murphy, K. 2016.
Deep variational information bottleneck. arXiv preprint
arXiv:1612.00410.
Ao, Z.; and Li, J. 2020. An approximate KLD based ex-
perimental design for models with intractable likelihoods.
In International Conference on Artificial Intelligence and
Statistics, 3241–3251. PMLR.
Banga, J. R.; and Balsa-Canto, E. 2008. Parameter estimation
and optimal experimental design. Essays in biochemistry, 45:
195–210.
Barber, D.; and Agakov, F. 2004. The im algorithm: a varia-
tional approach to information maximization. Advances in
neural information processing systems, 16(320): 201.
Belghazi, M. I.; Baratin, A.; Rajeshwar, S.; Ozair, S.; Bengio,
Y.; Courville, A.; and Hjelm, D. 2018. Mutual information
neural estimation. In International conference on machine
learning, 531–540. PMLR.
Bishop, C. M. 1994. Mixture density networks.
Borth, D. M. 1975. A total entropy criterion for the dual
problem of model discrimination and parameter estimation.
Journal of the Royal Statistical Society: Series B (Method-
ological), 37(1): 77–87.
Brehmer, J.; Louppe, G.; Pavez, J.; and Cranmer, K. 2020.
Mining gold from implicit models to improve likelihood-free
inference. Proceedings of the National Academy of Sciences,
117(10): 5242–5249.
Butcher, J. C. 1996. A history of Runge-Kutta methods.
Applied numerical mathematics, 20(3): 247–260.
Chen, R. T. Q.; Rubanova, Y.; Bettencourt, J.; and Duvenaud,
D. 2018. Neural Ordinary Differential Equations. Advances
in Neural Information Processing Systems.
Cover, T. M. 1999. Elements of information theory. John
Wiley & Sons.
Donsker, M. D.; and Varadhan, S. S. 1975. Asymptotic
evaluation of certain Markov process expectations for large
time, I. Communications on Pure and Applied Mathematics,
28(1): 1–47.
Feng, R.; and Li, P. 2022. Sample recycling method–a new
approach to efficient nested Monte Carlo simulations. Insur-
ance: Mathematics and Economics, 105: 336–359.
Foster, A.; Jankowiak, M.; Bingham, E.; Horsfall, P.; Teh,
Y. W.; Rainforth, T.; and Goodman, N. 2019. Variational
Bayesian optimal experimental design. Advances in Neural
Information Processing Systems, 32.
Foster, A.; Jankowiak, M.; O’Meara, M.; Teh, Y. W.; and
Rainforth, T. 2020. A unified stochastic gradient approach
to designing bayesian-optimal experiments. In International
Conference on Artificial Intelligence and Statistics, 2959–
2969. PMLR.

Goda, T.; Hironaka, T.; Kitade, W.; and Foster, A. 2022.
Unbiased MLMC stochastic gradient-based optimization of
Bayesian experimental designs. SIAM Journal on Scientific
Computing, 44(1): A286–A311.
Huan, X.; and Marzouk, Y. M. 2013. Simulation-based op-
timal Bayesian experimental design for nonlinear systems.
Journal of Computational Physics, 232(1): 288–317.
Hyvärinen, A.; and Dayan, P. 2005. Estimation of non-
normalized statistical models by score matching. Journal of
Machine Learning Research, 6(4).
Kleinegesse, S.; and Gutmann, M. U. 2019. Efficient
Bayesian experimental design for implicit models. In The
22nd International Conference on Artificial Intelligence and
Statistics, 476–485. PMLR.
Kleinegesse, S.; and Gutmann, M. U. 2020. Bayesian exper-
imental design for implicit models by mutual information
neural estimation. In International Conference on Machine
Learning, 5316–5326. PMLR.
Kleinegesse, S.; and Gutmann, M. U. 2021. Gradient-
based Bayesian experimental design for implicit models
using mutual information lower bounds. arXiv preprint
arXiv:2105.04379.
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A Proofs of Results

Lemma 1. The gradient of the logarithm of the marginal density w.r.t. the experimental condition � admits the following
representation:

r� log p(g(✓, ✏,�))|�) = �Eq(✓0|g(✓,✏,�),�)[r� log l(g(✓, ✏,�)|✓0,�)], (A.1)

where q(✓0|y,�) / ⇡✓(✓0)l(y|✓0,�) is the posterior density of parameters given the observation sample y.

Proof. Let y = g(✓, ✏,�), we find
r� log p(g(✓, ✏,�)|�)

=r� log p(y|�)

=
1

p(y|�)r�p(y|�)

=
1

p(y|�)r�

Z
⇡✓(✓

0
)l(y|✓0,�)d✓0

=
1

p(y|�)

Z
⇡✓(✓

0
)r�l(y|✓0,�)d✓0

=

Z
q(✓0|y,�)r�l(y|✓0,�)

l(y|✓0,�) d✓0

=

Z
q(✓0|y,�)r� log l(y|✓0,�)d✓0

=Eq(✓0|y,�)[r� log l(y|✓0,�)],

(A.2)

Finally, by plugging y = g(✓, ✏,�) back into the equation, we obtain

r� log p(g(✓, ✏,�)|�) = Eq(✓0|g(✓,✏,�),�)[r� log l(g(✓, ✏,�)|✓0,�)]. (A.3)

Theorem 1. The gradient of the entropy H(p(y|�)) w.r.t. the experimental condition � satisfies

r�H(p(y|�)) = �E⇡✓(✓)⇡✏(✏)q(✓0|g(✓,✏,�),�)[r� log l(g(✓, ✏,�)|✓0,�)], (A.4)

where q(✓0|y,�) / ⇡✓(✓0)l(y|✓0,�) is the posterior density of parameters given the observation sample y.

Proof. By the reparameterization trick, we have

r�H(p(y|�)) = �r�E⇡✓(✓)⇡✏(✏)[log p(g(✓, ✏,�)|�)]
= �E⇡✓(✓)⇡✏(✏)[r� log p(g(✓, ✏,�)|�)].

(A.5)

Using Lemma 1, we can substitute the gradient of the logarithm of the marginal density in the above equation by the posterior
expectation of the logarithm of the likelihood function.

Corollary 1. The gradient of the EIG U(�) w.r.t. the experimental condition � satisfies

r�U(�) = E⇡✓(✓)⇡✏(✏)q(✓0|g(✓,✏,�),�)[r� log l(g(✓, ✏,�)|✓,�)�r� log l(g(✓, ✏,�)|✓0,�)], (A.6)

where q(✓0|y,�) / ⇡✓(✓0)l(y|✓0,�) is the posterior density of parameters given the observation sample y.

Proof. Applying the reparameterization trick to the gradient of the negative conditional entropy term E⇡✓(✓)l(y|✓,�)
[log l(y|✓,�)]

w.r.t. the experimental condition �, we have

r�E⇡✓(✓)l(y|✓,�)
[log l(y|✓,�)] = E⇡✓(✓)⇡✏(✏)[r� log l(g(✓, ✏,�)|✓,�)]

= E⇡✓(✓)⇡✏(✏)q(✓0|g(✓,✏,�),�)[r� log l(g(✓, ✏,�)|✓,�)].
(A.7)

Combining the above equation with Theorem 1, we finally get Eq. (A.6).

Theorem 2. The expectation of bUM
srNMC(�) satisfies the following:

1. E[bUM
srNMC(�)] is a lower bound on U(�) for any M > 0.

2. E[bUM
srNMC(�)] is monotonically increasing in M , i.e., E[bUM1

srNMC(�)]  E[bUM2
srNMC(�)] for 0  M1  M2.



Proof. To prove the first result in Theorem 2, we first note that the outer Monte Carlo terms are identically distributed. Thus,

E[bUM
srNMC(�)] = E

"
log

l(y(1)|✓(1),�)
1
M

PM
j=1 l(y

(1)|✓(j),�)

#
, (A.8)

where y(1) = g(✓(1), ✏(1),�) and the expectation is taken over p(y(1)|�)q(✓(1)|y(1),�)
QM

j=2 ⇡✓(✓
(j)

). We proceed the rest as in
(Foster et al. 2020). We let � = U(�)� E[bUM

srNMC(�)], then

� = E
"
log

1
M

PM
j=1 l(y

(1)|✓(j),�)
p(y(1)|�)

#

= E
"
log

1
M

PM
j=1 q(✓

(j)|y(1),�)
Q

k 6=j ⇡✓(✓
(k)

)

QM
j=1 ⇡✓(✓

(j))

#

= E
"
log

P (✓(1:M)|y(1))
QM

j=1 ⇡✓(✓
(j))

#
,

(A.9)

where P (✓(1:M)|y(1)) = 1
M

PM
j=1 q(✓

(j)|y(1),�)
Q

k 6=j ⇡✓(✓
(k)

). Due to the permutation symmetry of the integrand over the
labels 1, ...,M , the expectation keeps the same if it is instead taken over p(y(1)|�)P (✓(1:M)|y(1)). Thus we have

� = E

DKL

✓
P (✓(1:M)|y(1))k

MY

j=1

⇡✓(✓
(j)

)

◆�
� 0, (A.10)

where the expectation is taken over p(y(1)|�).
To prove the second result, as in the former proof we let � = E[bUM2

srNMC(�)]� E[bUM1
srNMC(�)]. Then

� = E
"
log

1
M1

PM1

j=1 l(y
(1)|✓(j),�)

1
M2

PM2

j=1 l(y
(1)|✓(j),�)

#

= E
"
log

Q(✓(1:M2)|y(1))
P (✓(1:M2)|y(1))

#
,

(A.11)

where the expectation is taken over p(y(1)|�)q(✓(1)|y(1),�)
QM2

j=2 ⇡✓(✓
(j)

) and Q(✓(1:M2)|y(1)) =

1
M1

PM1

j=1 q(✓
(j)|y(1),�)

QM2

k 6=j ⇡✓(✓
(k)

). Again, using the permutation symmetry, we can get the same expectation if
the sampling distribution is taken as p(y(1)|�)Q(✓(1:M2)|y(1)) instead. Thus,

� = E

DKL

✓
Q(✓(1:M2)|y(1))kP (✓(1:M2)|y(1))

◆�
� 0, (A.12)

where the expectation is taken over p(y(1)|�).

Theorem 3. If l(g(✓, ✏,�)|✓0,�) is bounded away from 0 and uniformly bounded from above (i.e., C1  l(g(✓, ✏,�)|✓0,�)  C2

a.s. for some positive constants C1 and C2), then the mean squared error of bUM
srNMC(�) converges to 0 at rate O(1/M).

Proof. For simplicity, we denote f(✓, ✏) = log
l(g(✓,✏,�)|✓,�)
p(g(✓,✏,�)|�) . Then the ground-truth EIG can be represented as U(�) = E[f(✓, ✏)].

Using Minkowski’s inequality, the mean squared error of bUM
srNMC(�) can be bounded by

E[(U(�)� bUM
srNMC(�))

2
] = kU(�)� bUM

srNMC(�)k22  U2
+ V 2

+ 2UV  2(U2
+ V 2

), (A.13)

where the expectation is taken over
QM

i=1 ⇡✓(✓
(i)
)⇡✏(✏(i)) , U =

���U(�) � 1
M

PM
i=1 f(✓

(i), ✏(i))
���
2

and V =
��� 1
M

PM
i=1 f(✓

(i), ✏(i))� bUM
srNMC(�)

���
2
. Since l(g(✓, ✏,�)|✓0,�) is uniformly bounded from below and above, we have f 2 L2.

Also noting that U is the square of mean error of a Monte Carlo estimation, it is easy to get U = O(1/
p
M). Now we turn to



bound V . Using the assumption that l(g(✓, ✏,�)|✓0,�) � C1 a.s., we have

V =

���
1

M

MX

i=1

log

1
M

PM
j=1 l(y

(i)|✓(j),�)
p(y(i)|�)

���
2

 1

M

MX

i=1

��� log
1
M

PM
j=1 l(y

(i)|✓(j),�)
p(y(i)|�)

���
2

 1

C1M

MX

i=1

���
1

M

MX

j=1

l(y(i)|✓(j),�)� p(y(i)|�)
���
2
,

(A.14)

where y(i) = g(✓(i), ✏(i),�). For each term of the above equation, by Minkowski’s inequality we have
���
1

M

MX

j=1

l(y(i)|✓(j),�)� p(y(i)|�)
���
2

 1

M

���l(y(i)|✓(i),�)� l(y(i)|✓0(i),�)
���
2
+

���
1

M

MX

j 6=i

l(y(i)|✓(j),�) + 1

M
l(y(i)|✓0(i),�)� p(y(i)|�)

���
2
,

(A.15)

where ✓0(i) ⇠ ⇡✓(✓). Using the assumption that l(g(✓, ✏,�)|✓0,�)  C2, the first term of above equation can be bounded by
2C2/M . The square of the second equation can be bounded as

���
1

M

MX

j 6=i

l(y(i)|✓(j),�) + 1

M
l(y(i)|✓0(i),�)� p(y(i)|�)

���
2

2

=E
h
E
h⇣

1

M

MX

j 6=i

l(y(i)|✓(j),�) + 1

M
l(y(i)|✓0(i),�)� p(y(i)|�)

⌘2���y(i)
ii

=E
h
Var

h
1

M

MX

j 6=i

l(y(i)|✓(j),�) + 1

M
l(y(i)|✓0(i),�)

���y(i)
ii

=
1

M
E
h
Var

h
l(y(i)|✓0(i),�)

���y(i)
ii

(A.16)

where the first equality is obtained by the tower property of conditional expectation. It can be further bounded O(1/M) noting
that l(y(i)|✓0(i),�) is uniformly bounded from below and above. Therefore, we have V = O(1/

p
M) as well. Finally, using the

obtained bounds of U and V we get the mean squared error of bUM
srNMC(�)

E[(U(�)� bUM
srNMC(�))

2
]  2(U2

+ V 2
) = O(1/M). (A.17)

Theorem 4. For any C satisfying 0  C  U(�)/2, if M  exp(U(�)/2), we have

U(�)� bUM
srNMC(�) > C. (A.18)

Proof. We first show that bUM
srNMC(�) does not exceed logM . By the definition of srNMC, we have

bUM
srNMC(�) =

1

M

MX

i=1

log
l(y(i)|✓(i),�)

1
M

PM
j=1 l(y

(i)|✓(j),�)

 1

M

MX

i=1

log
l(y(i)|✓(i),�)
1
M l(y(i)|✓(i),�)

 1

M

MX

i=1

logM = logM,

(A.19)

where y(i) = g(✓(i), ✏(i),�). Using this inequality and M  exp(U(�)/2), it is easy to get

U(�)� bUM
srNMC(�) � U(�)� logM

� U(�)/2 � C.
(A.20)



B Further details of experiments

B.1 EIG Gradient Estimation Accuracy

We assume 3 design variables (i.e. � = (�1,�2,�3)) for this test. The 20 independent designs are uniformly drawn from [�1, 1]3.
To estimate the biases associated with the methods under investigation, we perform 100 independent trials. Table 1 summarizes
the number of samples used to estimate the gradient for a single design.

Method Number of samples
BEEG-AP 100⇥ 100(M)

UEEG-MCMC 100⇥ 100(L)
PCE 100⇥ 100(M)⇥ (100(N) + 1)

Table 1: Method and number of samples for the test of EIG gradient estimation accuracy.

B.2 A Toy Algebraic Model

In this test, we allocate a simulation budget of 2⇥ 10
4 for optimizing the design variables for each method. For UEEG-MCMC,

we use slice sampling (Neal 2003) with a thinning factor of 2 to draw 10 samples for the posterior sampling in Eq. (14). For
ACE, we use a conditional Gaussian posterior inference network q�(·|y) = normpdf(·|µ�(y), e2��(y)), where µ� and �� are
the two outputs of a two-layer fully connected network with 50 hidden units and ReLU activation functions. For GradBED, we
use a two-layer fully connected network T with 50 hidden units and ReLU activation functions. The number of samples used to
estimate a single gradient for each method is given by Table 3.

Method Number of samples
BEEG-AP 100(M)

UEEG-MCMC 10(M)⇥No. samples from slice sampling

ACE 10(M)⇥ (10(N) + 1)

PCE 10(M)⇥ (10(N) + 1)

GradBED 100(M)

Table 2: Method and number of samples for the toy model.

To validate the quality of designs, we use NMC with 10,000 samples for each estimate of EIG in Fig. 3. The estimated posterior
entropy in Fig. 4 is obtained as follows. In our experimental setup, each method yields 20 final designs. For each of these designs,
we conduct simulations resulting in 500 observed data points derived from the marginal likelihood, thus forming 500 guess
posteriors. Subsequently, kernel density estimation (KDE) is applied to these posteriors, utilizing 100 posterior samples for each,
to approximate the entropies of these posteriors. The posterior entropy for each method is then computed by averaging these
approximated entropies.

B.3 PK Model

In this application, we allocate a simulation budget of 2 ⇥ 10
6 for optimizing the design variables for each method. For

UEEG-MCMC, we use an adaptive Metropolis-Hastings (MH) method with a thinning factor of 95 to draw only one sample for
the posterior sampling in Eq. (14). For ACE, we utilize the Mixture Density Network (Bishop 1994) as our chosen posterior
inference network, with 3 hidden layers, 50 hidden units in each layer and ReLU activation function. For GradBED, we follow
the network settings in (Kleinegesse and Gutmann 2020). Specifically, we use a one-layer connected network T consisting of
300 hidden units and ReLU activation functions. The number of samples used to estimate a single gradient for each method is
given by Table 3.

Method Number of samples
BEEG-AP 100(M)

UEEG-MCMC 1(M)⇥ 100(approximated cost of the adaptive MH)
ACE 10(M)⇥ (10(N) + 1)

PCE 10(M)⇥ (10(N) + 1)

GradBED 100(M)

Table 3: Method and number of samples for PK model and STAT5 model.

In the validation experiments, we use NMC with 10,000 samples for each estimate of EIG in Fig. 5. In Fig. 6, the posterior
entropy for each method is estimated via 1000 independent trials (see Appendix B.2 for the procedure). For each trial, we use
KDE to estimate the guess posterior entropy with 1000 samples.



B.4 STAT5 Model

The dynamics of STAT5 populations can be described by four coupled ODEs

ẋ1 = �k1x1 EpoRA(t) + k2x3(t� ⌧)

ẋ2 = �x2
2 + k1x1 EpoRA(t)

ẋ3 = �k2x3 + x2
2

ẋ4 = �k2x3(t� ⌧) + k2x3.

(B.1)

The variables in the model are defined as follows. x1 represents unphosphorylated STAT5. x2 and x3 represent tyrosine
phosphorylated monomeric STAT5 and tyrosine phosphorylated dimeric STAT5 respectively. x4 is the nuclear STAT5. EpoRA(t)
describes the erythropoietin receptor activity that determines the STAT5 response.

We assume that x1(0) = 3.71 is the only non-zero initial state of the ODES. To facilitate the solvability of the ordinary
differential equations (ODEs), as in (Peifer and Timmer 2007; Banga and Balsa-Canto 2008), we apply linear interpolation
to synthesize the function EpoRA(t) with the original data in (Swameye et al. 2003), and use a delay chain of length N to
approximate the delayed term x3(t� ⌧),

q̇1 =
N

⌧
(in(t)� q1)

q̇2 =
N

⌧
(q1 � q2)

. . .

q̇N�1 =
N

⌧
(qN�2 � qN�1)

out =
N

⌧
(qN�1 � out(t)) ,

(B.2)

where N = 8, in(t) = x3(t) and out(t) = x3(t� ⌧).
To build the sampling path that supports backpropagation through ODE solutions, we utilize the package torchdiffeq

(Chen et al. 2018) to solve the ODEs with 3/8-Runge-Kutta method (Butcher 1996). Linear interpolation is then applied to get
the observations at any measurement times.

In this application, we allocate a simulation budget of 5 ⇥ 10
5 for optimizing the design variables for each method. The

settings for the methods involved are consistent with those employed for the PK model, and the sample size for each method
is also provided in Table 3. In the validation experiments, the posterior entropy for each method shown in Fig. 7 and Fig. 8 is
estimated via 100 independent trials (see Appendix B.2 for the procedure). For each trial, KDE is employed with 1000 posterior
samples.
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Figure B.1: Convergence of the individual design dimensions for PK model with multiplicative noise N (0, 0.01) and additive
noise N (0, 0.1).



Figure B.2: Convergence of the individual design dimensions for PK model with additive noise N (0, 0.001).



Figure B.3: Convergence of the individual design dimensions for STAT5 model with additive noise N (0, 0.01).



Figure B.4: Convergence of the individual design dimensions for STAT5 model with additive noise N (0, 0.001).
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