UNIVERSITYOF BIRMINGHAM University of Birmingham

A Chirally Locked Bis-perylene Diimide Macrocycle

Penty, Samuel E.; Orton, Georgia R. F.; Black, Dominic J.; Pal, Robert; Zwijnenburg, Martijn A.; Barendt, Timothy A. DOI:

[10.1021/jacs.3c13191](https://doi.org/10.1021/jacs.3c13191)

License: Creative Commons: Attribution (CC BY)

Document Version Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Penty, S, Orton, GRF, Black, DJ, Pal, R, Zwijnenburg, MA & Barendt, TA 2024, 'A Chirally Locked Bis-perylene Diimide Macrocycle: Consequences for Chiral Self-Assembly and Circularly Polarized Luminescence', Journal of the American Chemical Society, vol. 146, no. 8, pp. 5470-5479. <https://doi.org/10.1021/jacs.3c13191>

[Link to publication on Research at Birmingham portal](https://birmingham.elsevierpure.com/en/publications/08b49a18-62b8-4b0a-9754-98ddadb042ba)

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

[pubs.acs.org/JACS](pubs.acs.org/JACS?ref=pdf) **Article**

A Chirally Locked Bis-perylene Diimide Macrocycle: Consequences for Chiral Self-Assembly and Circularly Polarized Luminescence

[Samuel](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Samuel+E.+Penty"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) E. Penty, [Georgia](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Georgia+R.+F.+Orton"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) R. F. Orton, [Dominic](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dominic+J.+Black"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) J. Black, [Robert](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Robert+Pal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Pal,[*](#page-7-0) Martijn A. [Zwijnenburg,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Martijn+A.+Zwijnenburg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) and [Timothy](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Timothy+A.+Barendt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) A. Barendt[*](#page-7-0)

chiroptical materials. In this work, we report the first bay-connected bis-PDI macrocycle that is configurationally stable (Δ*G*[⧧] > 155 kJ mol[−]¹). We use this chirally locked macrocycle to uncover new knowledge of chiral PDI self-assembly and to perform new quantitative CPL imaging of the resulting single-crystal materials. As such, we discover that the chirality of a 1,7-disubstituted PDI provides a rational route to designing H-, J- and concomitant H- and J-type self-assembled materials, important arrangements for optimizing (chir)optical and charge/energy transport properties. Indeed, we reveal that CPL is amplified in the single crystals of our chiral macrocycle by quantifying the degree of emitted light circular polarization from such materials for the first time using CPL-Laser Scanning Confocal Microscopy.

■ **INTRODUCTION**

The importance of macrocycles can be traced back to the origins of supramolecular chemistry.^{[1](#page-7-0)} Since then, chiral macrocycles such as cyclodextrins, 2 cyclopeptides, 3 and pillararenes^{[4](#page-7-0)} have provided added value due to their chiral recognition^5 recognition^5 and chiral self-assembly properties.^{[6](#page-7-0),[7](#page-7-0)} Now, macrocycles containing chiral organic dyes are driving the development of chiroptical materials, $8-11$ $8-11$ $8-11$ including those that exhibit circularly polarized luminescence (CPL) , 12,13 12,13 12,13 which have burgeoning applications in sensing, $14-16$ $14-16$ security, $17,18$ $17,18$ $17,18$ and optical communications.[14](#page-8-0),[19](#page-8-0)−[23](#page-8-0) The macrocycle's preorganized chiral framework is conducive to a strong and persistent CPL signal, which, in tandem with its supramolecular properties, promises efficacious CPL materials through molecular self-assembly.

Alongside molecular design, advancements in CPL materials are also driven by new CPL diagnostics. Here, Circularly Polarized Luminescence-Laser Scanning Confocal Microscopy (CPL-LSCM) is a valuable new technique for imaging CPL materials which combines fast acquisition times and high spatial resolution.[16](#page-8-0),[26](#page-8-0) A key parameter for CPL materials is the emission dissymmetry factor (*g*lum), which represents the degree of circular polarization. While the *g*lum is readily

measured in solution using CPL spectroscopy, quantifying CPL dissymmetry in single-crystal materials using CPL-LSCM has yet to be achieved. Furthermore, most organic CPL emitters have low dissymmetry factors (*g*lum ≈ 10[−]³ or lower), 27 which limits their applicability for CPL imaging and indeed their ultimate practicality.

Perylene diimides (PDIs) are a class of luminescent organic dyes and promising supramolecular building blocks for chiroptical materials.^{[28](#page-8-0)−[37](#page-8-0)} Alongside excellent photophysical properties, PDIs that are functionalized at one or more of their bay positions (1,6,7,12) are chiral due to twisting of the aromatic perylene core, which generates *M* or *P* atropisomers ([Figure](#page-2-0) 1a).[38](#page-8-0) Core twisted PDIs may undergo self-assembly through $\pi-\pi$ interactions,^{[39](#page-8-0)−[41](#page-8-0)} which provides the potential to amplify the *g*lum of CPL due to excitonic coupling between the

Figure 1. (a) Cartoon of a 1,7-strapped mono-PDI macrocycle and its preference for homochiral dimerization.^{24,25} (b) Chirally locked bis-PDI macrocycle 1 facilitates *π*−*π* stacking on both PDI *π*-surfaces to afford CPL in single crystals and concurrent H- and J-type aggregates.

Figure 2. (a) The diastereoselective synthesis of macrocycle 1. (b) A cartoon of the "intramolecular somersault" mechanism for the interconversion of bis-PDI macrocycle stereoisomers,[70](#page-9-0) which is inhibited in 1. (c) X-ray crystal structure of macrocycle 1-*PP*. (d) Circular dichroism (CD) spectra of 1-*MM* and 1-*PP* (10 *μ*M, toluene, and 298 K).

chiral chromophores.^{[42](#page-8-0),[43](#page-8-0)} However, CPL measurements on single crystals of PDI dyes are unprecedented.

PDIs most commonly assemble through face-to-face⁴⁴ or slipped-stack⁴⁵ arrangements of their π -surfaces,^{[46](#page-8-0)} known as Hand J-type aggregates respectively, with differences in excitonic coupling leading to blue- and red-shifted absorption spectra, respectively.[47](#page-8-0) The formation of concurrent H- and J-type aggregates is rare for organic materials in general, yet highly advantageous for tuning optoelectronic properties^{[48](#page-8-0)-[55](#page-9-0)} since H-type coupling is conducive to charge carrier mobility, [56,57](#page-9-0) while J-type coupling benefits exciton transport and amplified emission.^{[58](#page-9-0)} By analogy, understanding the self-assembly of chiral dyes,^{[59](#page-9-0)–[61](#page-9-0)} including chiral PDIs,^{[62](#page-9-0)–[66](#page-9-0)} is important for chiral optoelectronic materials. However, the connection between PDI chirality and H-/J-type aggregation is poorly understood, and to the best of our knowledge, concurrent Hand J-type aggregates have not been realized with chiral, coretwisted PDIs in the same material.

Upon aggregation, the *π*−*π* interactions between 1,7 disubstituted PDIs are stronger than those between 1,6,7,12- tetrasubstituted PDIs because the former are less twisted.^{[39](#page-8-0)} Moreover, since the 1,7 substituents are directed toward the same face of the PDI (Figure 1a), 39 disubstituted PDIs possess two different *π*-surfaces, one more sterically hindered than the other. These *π*-surfaces would be expected to exhibit distinct *π*−*π* interactions and thus self-assembly properties. Importantly, the organic dye must be configurationally stable to assess the impact of optical purity on *π*−*π*-directed selfassembly (i.e., to compare racemic and enantiopure materials). Of the handful of configurationally stable disubstituted PDIs reported $(\Delta G^{\ddagger} > 117 \text{ kJ mol}^{-1})$,^{24,[67](#page-9-0),[68](#page-9-0)} $\pi-\pi$ self-assembly is limited to the formation of H-type dimers.^{[24,25](#page-8-0)} This is because macrocyclic strapping via the 1,7 bay positions, a necessity for preventing atropisomer interconversion, restricts *π*−*π* interactions to only one of the *π*-surfaces of the mono-PDI macrocycle (Figure 1a).

A promising strategy for extending *π*−*π* self-assembly is to strap the PDI core with a second PDI unit, yielding a bay-connected bis-PDI macrocycle^{69-[71](#page-9-0)} with accessible *π*-surfa- \cos^{72} \cos^{72} \cos^{72} on both the interior and exterior of the macrocycle, for *intra*- and *inter*-molecular *π*−*π* interactions respectively (Figure 1b). Here, the choice of functional group at the PDI's terminal

Figure 3. (a) UV−vis spectrum of 1-*rac* upon increasing the concentration (3:2 CH2Cl2:*n*-hexane, 298 K). Inset: black squares are the change in *ε* (*λ* = 596 nm) for the titration in (a). Red line is the binding isotherm from a cooperative nucleation-elongation model. (b) Schematic of the *π*−*π* self-assembly of 1-*rac*. (c) UV-vis spectrum of 1-PP upon increasing the concentration (3:2 CH₂Cl₂:n-hexane, 298 K). (d) Packing of 1-PP in the X-ray crystal structure. (e) Packing of 1-*rac* in the X-ray crystal structure.

imide positions is key because it must be of the correct size and shape to facilitate $\pi-\pi$ interactions while also inhibiting the interconversion of the macrocycle's stereoisomers (*PP*, *PM*, and *MM*). However, all current bay-connected bis-PDI macrocycles, $70,71$ including our previous "Pink Box", 69 exhibit dynamic chirality since their imide groups do not prevent an intramolecular somersault of the PDI imide heads through the macrocycle cavity ([Figure](#page-2-0) 1b).

Herein, we report the first bay-connected bis-PDI macrocycle that is chirally locked (ΔG^{\ddagger} > 155 kJ mol⁻¹, [Figure](#page-2-0) 1b). In combining configurational stability with *π*-surface accessibility, this macrocycle (1) enables us to investigate the impact of chirality on the *π*−*π* supramolecular self-assembly of 1,7 disubstituted PDIs beyond dimers. We discover that the selfassembly of macrocycle 1 through intermolecular *π*−*π* interactions on sterically hindered *π*-surfaces requires a slipped-stack and heterochiral relationship between PDI units (i.e., *M*−*P*), while *intra*molecular *π*−*π* stacking on the remaining *π*-surfaces is face-to-face and homochiral (i.e., *M*− *M* or *P*−*P*). Therefore, we show for the first time that the chirality of twisted PDIs can provide a rational route to direct H- and J-type aggregation in the same material. Indeed, the racemate of macrocycle 1 self-assembles into a material containing concurrent intramolecular H- and intermolecular J-type coupling [\(Figure](#page-2-0) 1b). Configurational stability enables us to perform CPL-LSCM imaging on both enantiopure and racemic single crystals of macrocycle 1 and so, for the first time, quantify their degree of emitted light circular polarization by calculating an Enantioselective Differential Chiral Contrast dissymmetry factor (g_{EDCC}), a value akin to a g_{lum} .

■ **RESULTS AND DISCUSSION**

Macrocycle Design, Synthesis, and Characterization. A key element in our design of bis-PDI macrocycle 1 is the use of *tert*-butyl benzoate substituents at the imide termini of the PDI units ([Figure](#page-2-0) 2a,c). We envisaged these substituents

would enforce configurational stability on the macrocycle

because, from our initial molecular modeling study (Supporting Information, [Section](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S8), these rigid substituents elongate the PDIs by ∼8 Å ([Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S34), thereby preventing them from somersaulting through the macrocycle cavity $(d = 3.7 \text{ Å}, \text{Figure}$ $(d = 3.7 \text{ Å}, \text{Figure}$ $(d = 3.7 \text{ Å}, \text{Figure}$ [2](#page-2-0)b,c). Furthermore, the absence of ortho substituents on the phenyl rings is designed to facilitate strong *π*−*π* stacking between PDI units, critical for supramolecular self-assembly.

For the final macrocyclization step, macrocycle 1 was synthesized using copper(I)-catalyzed azide−alkyne cycloaddition (CuAAC) "click" chemistry ([Figure](#page-2-0) 2a) and purified by preparatory thin-layer chromatography (TLC). Since the chirality of the bis-PDI macrocycle is locked (vide infra), we expected to obtain all macrocycle stereoisomers from the TLC plate, namely the pair of enantiomers (1-*MM*/*PP*) and the heterochiral diastereomer (1-MP). However, only 1-*MM* and 1-*PP* were isolated, which is intriguing, because this means that the macrocyclization reaction is diastereoselective. The exclusive formation of homochiral macrocycles was confirmed by chiral high performance liquid chromatography (HPLC) analysis of the crude reaction mixture, which revealed two macrocycle peaks of equal intensity in the chiral chromatograms corresponding to 1-*MM* and 1-*PP* ([Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S4). This pair of enantiomers have a single set of signals in their ¹H NMR spectrum (Supporting Information, [Section](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S1) and, upon their resolution by chiral HPLC, exhibit mirror image circular dichroism (CD) spectra [\(Figures](#page-2-0) 2d, S9 and [S10](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf)), and specific optical rotations $\left[\alpha\right]_{D}^{20}$ of +1333 and −1333° for 1-*MM* and 1-*PP* respectively. The enantiomers were assigned by X-ray crystallography and by comparing experimental and time dependent-DFT predicted CD spectra [\(Sections](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S3, S4, and [S8](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf)). Therefore, the configurational stability of 1 enables us to determine the stereochemical outcome of this bis-PDI macrocyclization and indicates the potential for PDI−PDI homochiral templation during the ring−closing reaction (vide infra). Macrocycle 1 was fully characterized by ${}^{1}H$ and ${}^{13}C$ NMR spectroscopy, as well as high resolution mass

Table 1. Photophysical and Chiroptical Properties of Enantiopure (1-*MM*/*PP*) and Racemic (1-*rac* and 3) Compounds in a Toluene Solution

spectrometry and single crystal X-ray crystallography ([Sections](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S₁ [and](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S₃).

To demonstrate the configurational stability of macrocycle 1, the 1-*MM* enantiomer was heated at 180 °C for 24 h in 1,2 dichlorobenzene and, when subsequently reinjected back onto the chiral HPLC column, the chromatogram was unchanged ([Figures](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S2 and S3). Therefore, the free energy barrier to macrocycle stereoisomer interconversion (ΔG^{\ddagger}) is at least 155 kJ mol⁻¹,^{[73](#page-9-0)} with a racemization half-life $(t_{rac}1/2)$ of more than 10^5 years at room temperature.^{[74](#page-9-0)} This ΔG^{\ddagger} is significantly higher than for all previously reported bay-connected bis-PDI macrocycles $(\Delta G^{\ddagger} < 108 \text{ kJ mol}^{-1})$, which have $t_{\text{rac}}^{1/2}$ values ranging from minutes to days. $69,70$ The configurational stability of macrocycle 1 provides excellent evidence for the "intramolecular somersault" mechanism since the PDI is now too long to flip through the cavity [\(Figure](#page-2-0) 2b), as seen from the crystal structure ([Figure](#page-2-0) 2c). Alongside single crystals of the macrocycle racemate (1-*rac*), the configurational stability of 1 also enabled us to grow enantiopure single crystals of 1-*PP* and 1-*MM* without the risk of forming scalemic or racemic mixtures during the crystallization process (vide infra). Single crystals of 1-*rac* were grown by the slow diffusion of methanol into a chloroform solution, while the growth of 1-*PP*/*MM* crystals required the slow diffusion of hexane into a 1:1 chloroform:1,2-dicholobenzene solution.

Supramolecular Self-Assembly. The configurational stability of 1 provides us with the opportunity to understand how the chirality of 1,7-disubstituted PDIs impacts their supramolecular self-assembly. Therefore, with enantiopure (1- *MM* and 1-*PP*) and racemic $(1 - \frac{rac{1}{2}}{1 - \frac{1}{2}})$ samples in hand,¹⁵ we investigated macrocycle self-assembly in solution by UV−vis spectroscopy because of the characteristic electronic absorptions of PDI aggregates. At relatively low concentrations (down to 1 *μ*M), the UV−vis spectra of 1-*rac* and 1-*PP* are identical [\(Figure](#page-3-0) 3a,c and Table 1) and diagnostic of H-type aggregation⁴⁶ since, relative to the PDI monomer 3 [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) [S15,](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) Table 1), λ_{max} of the PDI S₀−S₁ absorption band is blueshifted $(\Delta \lambda = 30 \text{ nm})$ and the vibronic ratio of this band is reduced $(\varepsilon_{0-0}/\varepsilon_{0-1} = 0.54$ vs 1.14) with an exciton coupling energy of $J = 420$ cm⁻¹ [\(Section](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S5b).^{[76,77](#page-9-0)} This is due to the formation of an intramolecular homochiral PDI *π*−*π* dimer, as seen in the crystal structure [\(Figure](#page-2-0) 2c). In contrast to our previous bis-PDI macrocycle, 69 the homochiral dimer in 1 persists in chlorinated solvents such as dichloromethane and 1,1,2,2-tetrachloroethane (TCE), solvents that are considered the most competitive for PDI *π*−*π* stacking interactions ([Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S13).^{[78,79](#page-9-0)} Importantly, the intramolecular homochiral *π*−*π* stacking in dichloromethane ([Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S14) provides excellent evidence for homochiral *π*−*π* templation during the macrocycle synthesis in the same solvent and hence a probable explanation for the observed diastereoselectivity (vide supra).

Since we could not disrupt the intramolecular *π*−*π* stacking in macrocycle 1, we used acyclic bis-triazole PDI 3 to estimate the binding strength of the PDI dimer (K_d) . Of course, the K_d

measured with 3 provides a lower estimate of K_d in 1, since the former is an intermolecular system (i.e., K_{d-inter}) which is less preorganized than macrocycle 1 (i.e., $K_{d-intra}$). Upon concentration of acyclic PDI 3 up to 418 μ M in 3:2 CH₂Cl₂:*n*-hexane solution [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S22) the monomeric UV−vis spectrum evolves into one characteristic of H-type aggregation $(\varepsilon_{0-0}/\varepsilon)$ ε_{0-1} decreases from 1.14 to 0.74), from which we calculated a $K_{\text{d-inter}} = 1677 \text{ M}^{-1}$ by nonlinear curve fiting to the monomer– dimer model [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S23).^{[80](#page-9-0)} We note that the magnitude of the error in this $K_{\text{d-inter}}$ value $(\pm 19\%)$ arises because further changes to the UV−vis spectrum at higher concentrations of 3 are indicative of the formation of larger aggregates than dimers.

While we could not fully decouple PDI dimerization from subsequent binding events using acyclic PDI 3, bis-PDI macrocycle 1 is ideally suited to investigating chiral *π*−*π* selfassembly beyond the dimer limit. This is because macrocycle 1 is preorganized into an intramolecular H-type dimer and has two accessible *π*-surfaces on its exterior. Notably, while the macrocycle racemate exhibits Beer−Lambert behavior at low concentrations, 1-*rac* shows significant deviations above 10 *μ*M ([Figures](#page-3-0) 3a, [S24,](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) and S25). Upon concentration, a new PDI absorption band at λ = 596 nm appears with isosbestic points (*λ* = 472, 545, 571, 582 nm), indicating the macrocycle "monomer", in fact, an intramolecular dimer, is in equilibrium with a new aggregated species ([Figure](#page-3-0) 3a). That this absorption band is significantly red-shifted relative to the monomer of acyclic PDI 3 ($\Delta \lambda$ = 46 nm) indicates the selfassembly of macrocycle 1-*rac* into a J-type aggregate, which was confirmed through analysis of packing in single crystals (vide infra).

To estimate the binding constant (s) for macrocycle selfassembly, we fitted the data from the concentration-dependent UV−vis spectra to several binding models suited to the aggregation of π-conjugated molecules.^{[80](#page-9-0)} This included models for the formation of larger aggregates, namely the isodesmic model, in which all binding events have the same *K* value, and the modified isodesmic model, in which K_d (an initial dimerization process) is different to the *K* values for forming higher aggregates [\(Section](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S6b). Interestingly, the fit to the dimer and isodesmic models was poor [\(Figures](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S26 and S27), suggesting the aggregate formed by 1-*rac* is distinct to an H-type dimer^{[39](#page-8-0)} or cofacial columnar stack,^{[44](#page-8-0)} common assemblies for PDIs.⁴⁶ Instead, the fact that spectral changes occur over a narrower concentration range indicates a nonisodesmic aggregation process [\(Figure](#page-3-0) 3a). Indeed, a "nucleationelongation" mechanism is characteristic of slipped-stack J-type aggregates of PDIs.^{[66](#page-9-0)} As such, the best fit was achieved with a cooperative nucleation-elongation model in which a weaker dimerization, $K_d = 90 \text{ M}^{-1}$, is followed by a stronger isodesmic extension of the aggregate, $K = 90,000 \text{ M}^{-1}$ ([Figures](#page-3-0) [3](#page-3-0)a,b and [S25](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf)).

It is notable that the H-type dimer formed by the bis-triazole PDI ($K_{\text{d-inter}} = 1677 \text{ M}^{-1}$ for 3) is significantly stronger than the analogous J-type dimer (K_d = 90 M⁻¹ for 1). This is

Figure 4. Standard and CPL-LSCM images (λ_{em} = 514 nm, Ar-laser, 2 mW) of single crystals of (a) 1-PP, (b) 1-MM and (c) 1-rac. The yellow squares denote the area where the image brightness was measured.

because, as evident from the crystal structure of macrocycle 1 ([Figure](#page-2-0) 2c), the PDI's bay triazole groups point away from the internal π -surfaces, thereby favoring a face-to-face H-type dimerization. The positioning of these heterocycles toward the outer *π*-surfaces of the dimer thus directs subsequent selfassembly through slipped-stack J-type *π*−*π* stacking [\(Figure](#page-3-0) [3](#page-3-0)b). This difference in K_d for H- and J-type aggregates is expected to be even larger in 1-*rac* since the macrocycle preorganizes the H-type dimer to make it *intra*molecular (so $K_{\text{d-intra}} \gg 1677 \text{ M}^{-1}$), while the J-type dimer is intermolecular $(K_d = 90 M⁻¹).$

Interestingly, this $\pi-\pi$ self-assembly behavior is unique to the macrocycle racemate (1-*rac*) since solutions of the pure enantiomers 1-MM*/*PP continue to obey the Beer−Lambert law upon their concentration ([Figure](#page-3-0) 3c), indicating the absence of higher-order $\pi-\pi$ aggregates.^{[81](#page-9-0)} Therefore, in stark contrast to *intra*molecular *π*−*π* stacking between PDIs, which is exclusively homochiral, the intermolecular *π*−*π* stacking of macrocycle 1 must be heterochiral. In other words, the studies with 1 indicate that, when both *π*-surfaces of a twisted 1,7 disubstituted PDI are available for *π*−*π* self-assembly, homochiral H-type dimerization on the less sterically hindered face is followed by heterochiral stacking on the remaining *π*surface, which generates extended slipped-stack J-type aggregates ([Figure](#page-3-0) 3b). While the J-type self-assembly of hydrogen-bonded tetrasubstituted PDIs have shown a dependence on optical purity, 62 this is the first-time chirality has been connected to the simultaneous formation of H- and J-type aggregates of PDIs solely through complementary *π*−*π* interactions.

Distinct molecular packing in the single crystal structures of macrocycles 1-*PP* and 1-*rac* confirm the unique *π*−*π* selfassembled structure formed by the latter [\(Figure](#page-3-0) 3d,e). While both enantiopure and racemic crystals exhibit *intra*molecular H-type *π*−*π* stacking between the macrocycle's two PDI units (*d* = 3.7 Å), only 1-*rac* exhibits intermolecular J-type *π*−*π* stacking $(d = 4.0 \text{ Å}, \text{ centroid–centroid slip-angle} = 42^{\circ})$ between the PDI macrocycles themselves. Furthermore, this

intermolecular *π*−*π* stacking in 1-*rac* is exclusively heterochiral, occurring between the *M*-PDI unit of one macrocycle and the *P*-PDI unit of a neighbor. Overall, the crystal packing shows how a mismatch in PDI chirality goes hand-in-hand with a slipped-stacked J-type arrangement, since the intermolecular *π*−*π* stacking can only occur between naphthalene subunits on adjacent macrocycles of opposite chirality.

These observations are consistent with the results of solution self-assembly studies. We confirmed that the self-assembled structure of 1-*rac* in solution matches that in the single crystal through agreement between solution and solid-state UV−vis spectra ([Figures](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S20 and S24), most notably the presence of the same, red-shifted absorption band (*λ* = 593 nm), a feature not observed in crystals of 1-*PP* [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S20). Furthermore, the fluorescence emission in 1-*rac* crystals is red-shifted relative to that in the 1-*PP* crystals $(\Delta \lambda = 23 \text{ nm}, \text{Figure S21}).$ $(\Delta \lambda = 23 \text{ nm}, \text{Figure S21}).$ $(\Delta \lambda = 23 \text{ nm}, \text{Figure S21}).$ Therefore, macrocycle 1 is unique among twisted chiral PDIbased materials in exhibiting both H-type and J-type aggregation simultaneously.

Chiroptical Properties. Having established the supramolecular organization of chiral macrocycle 1, we sought to understand how the structure impacts chiroptical properties, including those in the solid state [\(Section](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S7). For this, we performed Enantioselective Differential Chiral Contrast (EDCC) imaging of single crystals of 1-*rac*, 1-*PP*, and 1-*MM* using CPL Laser Scanning Confocal Microscopy (CPL-LSCM).^{[16](#page-8-0)} In CPL-LSCM, right- and left-circularly polarized photons are collected simultaneously from the sample, generating independent right- and left-circular CPL images rapidly. To ascertain the difference between the degree of lefthanded- and right-handed circularly polarized luminescence dominance, one of these images is subtracted from the other to generate an EDCC image. As such, we were able to perform EDCC imaging of 1-*MM* and 1-*PP* crystals because they emit equal and opposite CPL (Figures 4a,b, [S32,](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) and S33). Importantly, while the 1-*rac* and 1-MM*/*PP crystals show emission in both the right- and left-handed CPL channels, only the enantiopure crystals exhibit a difference between the right

and left CPL emission intensities ([Figures](#page-5-0) 4a−c and [S31](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf)− [S33\)](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf). These are the first reported CPL-LSCM EDCC images of single crystals.

Having distinct enantiopure and racemic single crystals provided us with the opportunity to quantify the degree of circularly polarized emitted light from single crystals for the first time using CPL-LSCM, by calculating an EDCC dissymmetry factor ($g_{\rm{EDCC}}$), which is analogous to the luminescence dissymmetry factor obtained by CPL spectroscopy (*g*lum). In doing so, it is critical to correct for the inherent CPL bias arising from orientation-induced reflection and subsequent partial helicity inversion of emitted circularly polarized light. Therefore, we introduced a bias factor ($B = 8 \times$ 10[−]³), which is subtracted from the uncorrected (raw) EDCC values of the enantiopure crystals [\(Section](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S7c). Importantly, this bias factor could be easily determined by using the enantiopure 1-*MM* and 1-*PP* single crystal EDCC values. However, it is the 1-*rac* racemic crystals that enabled us to unequivocally determine and validate this system-specific bias factor as no overall CPL should be observed from 1-*rac* since it is a racemic material ([Figure](#page-5-0) 4c). Incorporating the bias factor into eq 1, we then used (1) to calculate a g_{EDCC} of 6 × 10⁻² at *λ*em > 570 nm for 1-*MM* and 1-*PP* single crystals [\(Section](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) [S7c](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf)). We also performed CPL spectroscopy on 1-*MM* and 1- *PP* in toluene and TCE solution and calculated a $g_{\text{lum}} = 2 \times$ 10[−]² at *λ*em = 675 nm in both solvents (Figure 5a, [Table](#page-4-0) 1). To put this in context, macrocycle 1 has a higher CPL dissymmetry factor than the majority of chirally locked small organic molecules in solution that emit in the red region of the spectrum [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S12).[10](#page-7-0),[28](#page-8-0)−[30](#page-8-0),[33](#page-8-0)[,82](#page-9-0)−[87](#page-10-0)

$$
g_{\text{EDCC}} = \frac{I_{(L-R)} - I_{(R-L)}}{2I_{(L+R)}} - B
$$
\n(1)

where $g_{\rm EDDC}$ is the enantioselective differential chiral contrast (EDCC) dissymmetry factor, $I_{(L-R)}$ is the left-handed EDCC average 8-bit (0-255 greyscale) pixel value¹⁶ (i.e., left CPL− right CPL), *I*(L+R) is the right handed EDCC average 8-bit pixel value (i.e., right CPL−left CPL), *I*(L+R) is the total image average 8-bit pixel value (left CPL + right CPL) and *B* is the bias factor (8×10^{-3}) .

Interestingly, the degree of emitted light circular polarization is three times higher in the crystalline state than in solution, most likely due to restricted molecular dynamics in the solid-state.^{[88](#page-10-0)−[90](#page-10-0)} This includes rigidification of the homochiral intramolecular $\pi-\pi$ dimer, which, as found from self-assembly studies, is the primary PDI−PDI interaction in 1-*MM*/*PP*. Indeed, we found that the strict homochirality of the intramolecular $\pi-\pi$ dimer is key to the high emission dissymmetry factor of macrocycle 1. This is because g_{lum} is an order of magnitude larger than the equivalent dissymmetry factor for absorption, $g_{\text{abs}} = 3 \times 10^{-3}$ ($\lambda = 610$ nm, [Table](#page-4-0) 1), a characteristic feature of CPL emission from a chiral excimer state which arises from the excitonic coupling of two chromophores.^{[43](#page-8-0)[,91,92](#page-10-0)} Indeed, the fluorescence of macrocycle 1 is typical of excimer emission because, compared to the PDI monomer 3, it is red-shifted (by 35 nm, [Table](#page-4-0) 1 and [Figures](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) [S13](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) and S15), quenched (Φ = 35% vs 70%, [Table](#page-4-0) 1) and has a significantly longer lifetime ($\tau = 36$ vs Eight ns, Figure 5b). Further evidence for the connection between homochiral *π*−*π* dimerization and *g*lum comes from the fact that both are unchanged upon switching the solvent from toluene to TCE (Figures 5a, [S13,](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) and [Table](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf) S1). Therefore, the *π*−*π*

Figure 5. (a) Circularly polarized luminescence (CPL) spectra of 1- *MM* and 1-*PP* in toluene and TCE (10 μ M, 298 K, λ_{ex} = 520 nm; dashed line is the Gaussian fit). (b) Time-resolved fluorescence decay profiles of 1-*rac* and PDI monomer 3 (toluene, 5 *μ*mol, *λ*ex = 373 nm, $\lambda_{\text{em}} = 635$ nm for 1-*rac*, and $\lambda_{\text{em}} = 604$ nm for 3).

homochiral preorganization of chromophores, as evidenced from absorption and CD spectra, provides an effective strategy for amplifying *g*lum in organic materials.

■ **SUMMARY AND CONCLUSIONS** We have designed and prepared a novel chiral bis-PDI macrocycle 1 that, due to our judicious choice of imide group, combines PDI configurational stability with accessible *π*surfaces. These features enable us to develop a new understanding of the self-assembly of PDI chiroptical materials and their quantitative EDCC imaging using CPL-LSCM of single crystals for the first time. Configurational stability is bestowed by elongation of the macrocycle's PDI units, which, as a novelty for bay-connected bis-PDI macrocycles, prevents the "intramolecular somersault" mechanism for stereoisomer interconversion.

Configurational stability enables us to assess the impact of disubstituted PDI chirality on the supramolecular structure and (chir)optical properties of self-assembled materials, both in solution and in the solid state. The *π*−*π* self-assembly of macrocycle 1 initially favors homochiral face-to-face (H-type) dimerization on the less sterically hindered interior *π*-surfaces $(K_d \gg 10^3 \text{ M}^{-1})$, followed by the formation of heterochiral slipped-stack (J-type) dimers $(K_d \approx 90 \text{ M}^{-1})$, and ultimately

extended J-type aggregates $(K \approx 10^4 \ \text{M}^{-1})$, on the remaining exterior *π*-faces. Therefore, this allows us to make a more general prediction about the *π*−*π* self-assembly of 1,7 disubstituted PDIs: when both *π*-surfaces are available for *π*stacking, homochiral H-type dimerization on the less sterically hindered face is then followed by heterochiral J-type slippedstacking on the remaining *π*-surface.

As demonstrated by macrocycle 1, this outcome has important consequences for the chiral structure−property relationships of 1,7-disubstituted PDI materials. First, the preference for homochiral H-type dimers leads to the diastereoselective synthesis of bis-PDI macrocycle enantiomers, 1-*MM* and 1-*PP*, systems that are conducive to the formation of an intramolecular homochiral excimer to boost CPL. Notably, the degree of emitted light circular polarization is further amplified in single crystals of 1-MM*/*PP, as shown by their enantioselective differential chiral contrast dissymmetry factor ($g_{\text{EDCC}} = 6 \times 10^{-2}$), a value akin to a g_{lum} and calculated here for the first-time using CPL-Laser Scanning Confocal Microscopy. Following dimerization, the self-assembly of 1,7 disubstituted PDI dimers requires a racemate and leads to redshifted photophysics due to J-type aggregation. Therefore, we show that the chirality of the disubstituted PDI building block provides a rational route to designing H-, J-, and concomitant H- and J-type materials, with 1-*rac*, to the best of our knowledge, providing a unique demonstration of the latter for twisted PDIs. This discovery seeds the possibility of scalemic materials^{[59](#page-9-0)} that synergize H- and J-type coupling between chiral chromophores to the mutual benefit of photon polarization and exciton transport, for the manipulation of circularly polarized light.

■ **ASSOCIATED CONTENT**

\bullet Supporting Information

The Supporting Information is available free of charge at [https://pubs.acs.org/doi/10.1021/jacs.3c13191.](https://pubs.acs.org/doi/10.1021/jacs.3c13191?goto=supporting-info)

Experimental methods, including synthetic procedures, compound characterization, crystallographic and spectroscopic data, self-assembly studies, details and results of the (tight binding) DFT calculations, CPL microscopy, and computational studies [\(PDF](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_001.pdf))

Relevant DFT-optimized structures are available for download [\(ZIP\)](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c13191/suppl_file/ja3c13191_si_002.zip)

Accession Codes

CCDC 2308898 and 2308894 contain the supplementary crystallographic data for this paper, for macrocycles 1-*rac* and 1-PP, respectively.

■ **AUTHOR INFORMATION**

Corresponding Authors

- Robert Pal − *Department of Chemistry, University of Durham, Durham DH1 3LE, U.K.;* [orcid.org/0000-0002-0641-](https://orcid.org/0000-0002-0641-4218) [4218](https://orcid.org/0000-0002-0641-4218); Email: robert.pal@durham.ac.uk
- Timothy A. Barendt − *School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.;* [orcid.org/0000-0002-9806-4381;](https://orcid.org/0000-0002-9806-4381) Email: [t.a.barendt@](mailto:t.a.barendt@bham.ac.uk) [bham.ac.uk](mailto:t.a.barendt@bham.ac.uk)

Authors

Samuel E. Penty − *School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.;* orcid.org/0000-0003-4554-0855

- Georgia R. F. Orton − *School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.;* orcid.org/0000-0002-7566-0092
- Dominic J. Black − *Department of Chemistry, University of Durham, Durham DH1 3LE, U.K.*
- Martijn A. Zwijnenburg − *Department of Chemistry, University College London, London WC1H 0AJ, U.K.;* orcid.org/0000-0001-5291-2130

Complete contact information is available at: [https://pubs.acs.org/10.1021/jacs.3c13191](https://pubs.acs.org/doi/10.1021/jacs.3c13191?ref=pdf)

Author Contributions

The manuscript was written through contributions of all authors.

Notes

The authors declare no competing financial interest.

■ **ACKNOWLEDGMENTS**

T.A.B. thanks the University of Birmingham and the EPSRC (EP/W037661/1) for funding. R.P. thanks the BBSRC (BB/ S017615/1, BB/X001172/1) and the EPSRC (EP/X040259/ 1) for funding. S.E.P. thanks Dr Cécile Le Duff at the University of Birmingham for support with NMR spectroscopy. G.R.F.O. thanks Diamond Light Source for time on Beamline I19 (CY28766) and the Leverhulme Trust (ECF-2023-056) for funding.

■ **REFERENCES**

(1) Pedersen, C. J. Cyclic polyethers and their [complexes](https://doi.org/10.1021/ja00986a052?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) with metal [salts.](https://doi.org/10.1021/ja00986a052?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 1967, *89* (10), 2495−2496.

(2) Guo, J.; Hou, J.; Hu, J.; Geng, Y.; Li, M.; Wang, H.; Wang, J.; Luo, Q. Recent advances in *β*[-cyclodextrin-based](https://doi.org/10.1039/D3CC01962D) materials for chiral [recognition.](https://doi.org/10.1039/D3CC01962D) *Chem. Commun.* 2023, *59* (60), 9157−9166.

(3) Song, Q.; Cheng, Z.; Kariuki, M.; Hall, S. C. L.; Hill, S. K.; Rho, J. Y.; Perrier, S. Molecular Self-Assembly and [Supramolecular](https://doi.org/10.1021/acs.chemrev.0c01291?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [Chemistry](https://doi.org/10.1021/acs.chemrev.0c01291?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Cyclic Peptides. *Chem. Rev.* 2021, *121* (22), 13936− 13995.

(4) Chen, J.-F.; Ding, J.-D.; Wei, T.-B. [Pillararenes:](https://doi.org/10.1039/D1CC03778A) fascinating planar chiral [macrocyclic](https://doi.org/10.1039/D1CC03778A) arenes. *Chem. Commun.* 2021, *57* (72), 9029−9039.

(5) Cochrane, J. R.; Schmitt, A.; Wille, U.; Hutton, C. A. [Synthesis](https://doi.org/10.1039/c3cc44784g) of cyclic peptide [hemicryptophanes:](https://doi.org/10.1039/c3cc44784g) enantioselective recognition of a chiral [zwitterionic](https://doi.org/10.1039/c3cc44784g) guest. *Chem. Commun.* 2013, *49* (76), 8504−8506.

(6) Zhu, H.; Li, Q.; Shi, B.; Xing, H.; Sun, Y.; Lu, S.; Shangguan, L.; Li, X.; Huang, F.; Stang, P. J. [Formation](https://doi.org/10.1021/jacs.0c09598?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Planar Chiral Platinum Triangles via Pillar[5]arene for Circularly Polarized [Luminescence.](https://doi.org/10.1021/jacs.0c09598?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2020, *142* (41), 17340−17345.

(7) Insua, I.; Montenegro, J. 1D to 2D Self [Assembly](https://doi.org/10.1021/jacs.9b10582?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Cyclic [Peptides.](https://doi.org/10.1021/jacs.9b10582?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2020, *142* (1), 300−307.

(8) Osswald, P.; Reichert, M.; Bringmann, G.; Würthner, F. [Perylene](https://doi.org/10.1021/jo070056c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Bisimide Atropisomers: Synthesis, Resolution, and [Stereochemical](https://doi.org/10.1021/jo070056c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [Assignment.](https://doi.org/10.1021/jo070056c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Org. Chem.* 2007, *72* (9), 3403−3411.

(9) Weh, M.; Rühe, J.; Herbert, B.; Krause, A.-M.; Würthner, F. [Deracemization](https://doi.org/10.1002/anie.202104591) of Carbohelicenes by a Chiral Perylene Bisimide [Cyclophane](https://doi.org/10.1002/anie.202104591) Template Catalyst. *Angew. Chem., Int. Ed.* 2021, *60* (28), 15323−15327.

(10) Saikawa, M.; Nakamura, T.; Uchida, J.; Yamamura, M.; Nabeshima, T. Synthesis of [figure-of-eight](https://doi.org/10.1039/C6CC05439K) helical bisBODIPY [macrocycles](https://doi.org/10.1039/C6CC05439K) and their chiroptical properties. *Chem. Commun.* 2016, *52* (71), 10727−10730.

(11) Sato, S.; Yoshii, A.; Takahashi, S.; Furumi, S.; Takeuchi, M.; Isobe, H. Chiral [intertwined](https://doi.org/10.1073/pnas.1717524114) spirals and magnetic transition dipole [moments](https://doi.org/10.1073/pnas.1717524114) dictated by cylinder helicity. *Proc. Natl. Acad. Sci. U.S.A.* 2017, *114* (50), 13097−13101.

(12) Hasegawa, M.; Nojima, Y.; Mazaki, Y. [Circularly](https://doi.org/10.1002/cptc.202100162) Polarized [Luminescence](https://doi.org/10.1002/cptc.202100162) in Chiral *π*-Conjugated Macrocycles. *ChemPhotoChem* 2021, *5* (12), 1042−1058.

(13) Wang, J.-Q.; Han, X.-N.; Han, Y.; Chen, C.-F. [Advances](https://doi.org/10.1039/D3CC04187E) in circularly polarized [luminescence](https://doi.org/10.1039/D3CC04187E) materials based on chiral macro[cycles.](https://doi.org/10.1039/D3CC04187E) *Chem. Commun.* 2023, *59*, 13089−13106.

(14) Deng, Y.; Wang, M.; Zhuang, Y.; Liu, S.; Huang, W.; Zhao, Q. Circularly polarized luminescence from organic [micro-/nano](https://doi.org/10.1038/s41377-021-00516-7)[structures.](https://doi.org/10.1038/s41377-021-00516-7) *Light: Sci. Appl.* 2021, *10* (1), 76.

(15) Meskers, S. C. J. Circular Polarization of [Luminescence](https://doi.org/10.1002/cptc.202100154) as a Tool To Study Molecular [Dynamical](https://doi.org/10.1002/cptc.202100154) Processes. *ChemPhotoChem* 2022, *6* (1), No. e202100154.

(16) Stachelek, P.; MacKenzie, L.; Parker, D.; Pal, R. [Circularly](https://doi.org/10.1038/s41467-022-28220-z) polarised [luminescence](https://doi.org/10.1038/s41467-022-28220-z) laser scanning confocal microscopy to study live cell chiral molecular [interactions.](https://doi.org/10.1038/s41467-022-28220-z) *Nat. Commun.* 2022, *13* (1), 553.

(17) MacKenzie, L. E.; Pal, R. Circularly polarized [lanthanide](https://doi.org/10.1038/s41570-020-00235-4) [luminescence](https://doi.org/10.1038/s41570-020-00235-4) for advanced security inks. *Nat. Rev. Chem* 2021, *5* (2), 109−124.

(18) De Rosa, D. F.; Stachelek, P.; Black, D. J.; Pal, R. [Rapid](https://doi.org/10.1038/s41467-023-37329-8) handheld [time-resolved](https://doi.org/10.1038/s41467-023-37329-8) circularly polarised luminescence photography camera for life and material [sciences.](https://doi.org/10.1038/s41467-023-37329-8) *Nat. Commun.* 2023, *14* (1), 1537.

(19) Zhang, Y.; Yu, S.; Han, B.; Zhou, Y.; Zhang, X.; Gao, X.; Tang, Z. Circularly polarized [luminescence](https://doi.org/10.1016/j.matt.2022.01.001) in chiral materials. *Matter* 2022, *5* (3), 837−875.

(20) Yang, Y.; da Costa, R. C.; Fuchter, M. J.; Campbell, A. J. Circularly polarized light detection by a chiral organic [semiconductor](https://doi.org/10.1038/nphoton.2013.176) [transistor.](https://doi.org/10.1038/nphoton.2013.176) *Nat. Photonics* 2013, *7* (8), 634−638.

(21) Lee, C.-T.; Lin, H.-Y.; Tsai, C.-H. Designs of [broadband](https://doi.org/10.1364/OE.18.027079) and wide-view patterned polarizers for [stereoscopic](https://doi.org/10.1364/OE.18.027079) 3D displays. *Opt. Express* 2010, *18* (26), 27079−27094.

(22) Farshchi, R.; Ramsteiner, M.; Herfort, J.; Tahraoui, A.; Grahn, H. T. Optical [communication](https://doi.org/10.1063/1.3582917) of spin information between light [emitting](https://doi.org/10.1063/1.3582917) diodes. *Appl. Phys. Lett.* 2011, *98* (16), 162508.

(23) Hu, M.; Ye, F.-Y.; Du, C.; Wang, W.; Zhou, T.-T.; Gao, M.-L.; Liu, M.; Zheng, Y.-S. Tunable Circularly Polarized [Luminescence](https://doi.org/10.1021/acsnano.1c06644?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) from Single Crystal and Powder of the Simplest [Tetraphenylethylene](https://doi.org/10.1021/acsnano.1c06644?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [Helicate.](https://doi.org/10.1021/acsnano.1c06644?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *ACS Nano* 2021, *15* (10), 16673−16682.

(24) Safont-Sempere, M. M.; Osswald, P.; Radacki, K.; Würthner, F. Chiral Self-Recognition and [Self-Discrimination](https://doi.org/10.1002/chem.201001137) of Strapped Perylene Bisimides by *π*-Stacking [Dimerization.](https://doi.org/10.1002/chem.201001137) *Chem.*�*Eur. J* 2010, *16* (25), 7380−7384.

(25) Safont-Sempere, M. M.; Osswald, P.; Stolte, M.; Grüne, M.; Renz, M.; Kaupp, M.; Radacki, K.; Braunschweig, H.; Würthner, F. Impact of Molecular Flexibility on Binding Strength and [Self-Sorting](https://doi.org/10.1021/ja202696d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Chiral *π*[-Surfaces.](https://doi.org/10.1021/ja202696d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2011, *133* (24), 9580−9591. (26) MacKenzie, L. E.; Pålsson, L.-O.; Parker, D.; Beeby, A.; Pal, R.

Rapid time-resolved Circular Polarization [Luminescence](https://doi.org/10.1038/s41467-020-15469-5) (CPL) emission [spectroscopy.](https://doi.org/10.1038/s41467-020-15469-5) *Nat. Commun.* 2020, *11* (1), 1676.

(27) Sánchez-Carnerero, E. M.; Agarrabeitia, A. R.; Moreno, F.; Maroto, B. L.; Muller, G.; Ortiz, M. J.; de la Moya, S. [Circularly](https://doi.org/10.1002/chem.201501178) Polarized [Luminescence](https://doi.org/10.1002/chem.201501178) from Simple Organic Molecules. *Chem.*� *Eur. J* 2015, *21* (39), 13488−13500.

(28) Renner, R.; Mahlmeister, B.; Anhalt, O.; Stolte, M.; Würthner, F. Chiral Perylene Bisimide Dyes by Interlocked Arene [Substituents](https://doi.org/10.1002/chem.202101877) in the Bay [Area.](https://doi.org/10.1002/chem.202101877) *Chem.*�*Eur. J* 2021, *27* (46), 11997−12006.

(29) Kumar, J.; Nakashima, T.; Tsumatori, H.; Mori, M.; Naito, M.; Kawai, T. Circularly Polarized Luminescence in [Supramolecular](https://doi.org/10.1002/chem.201302146) Assemblies of Chiral [Bichromophoric](https://doi.org/10.1002/chem.201302146) Perylene Bisimides. *Chem.*� *Eur. J* 2013, *19* (42), 14090−14097.

(30) Liu, B.; Böckmann, M.; Jiang, W.; Doltsinis, N. L.; Wang, Z. Perylene [Diimide-Embedded](https://doi.org/10.1021/jacs.0c00954?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Double [8]Helicenes. *J. Am. Chem. Soc.* 2020, *142* (15), 7092−7099.

(31) Li, F.; Li, Y.; Wei, G.; Wang, Y.; Li, S.; Cheng, Y. [Circularly](https://doi.org/10.1002/chem.201601328) Polarized [Luminescence](https://doi.org/10.1002/chem.201601328) of Chiral Perylene Diimide Based Enantiomers Triggered by [Supramolecular](https://doi.org/10.1002/chem.201601328) Self-Assembly. *Chem.*�*Eur. J* 2016, *22* (36), 12910−12915.

(32) Reine, P.; Ortuño, A. M.; Mariz, I. F. A.; Ribagorda, M.; Cuerva, J. M.; Campaña, A. G.; Maçôas, E.; Miguel, D. [Simple](https://doi.org/10.3389/fchem.2020.00306) Perylene Diimide [Cyclohexane](https://doi.org/10.3389/fchem.2020.00306) Derivative With Combined CPL and TPA [Properties.](https://doi.org/10.3389/fchem.2020.00306) *Front. Chem.* 2020, *8*, 306.

(33) Liu, Y.; Ma, Z.; Wang, Z.; Jiang, W. Boosting [Circularly](https://doi.org/10.1021/jacs.2c04012?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Polarized [Luminescence](https://doi.org/10.1021/jacs.2c04012?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Performance by a Double *π*-Helix and [Heteroannulation.](https://doi.org/10.1021/jacs.2c04012?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2022, *144* (25), 11397−11404. (34) Li, J.; Li, P.; Fan, M.; Zheng, X.; Guan, J.; Yin, M. [Chirality](https://doi.org/10.1002/anie.202202532) of Perylene Diimides: Design Strategies and [Applications.](https://doi.org/10.1002/anie.202202532) *Angew. Chem., Int. Ed.* 2022, *61* (27), No. e202202532.

(35) Zhang, L.; Song, I.; Ahn, J.; Han, M.; Linares, M.; Surin, M.; Zhang, H.-J.; Oh, J. H.; Lin, J. *π*[-Extended](https://doi.org/10.1038/s41467-020-20390-y) perylene diimide doubleheterohelicenes as ambipolar organic [semiconductors](https://doi.org/10.1038/s41467-020-20390-y) for broadband circularly polarized light [detection.](https://doi.org/10.1038/s41467-020-20390-y) *Nat. Commun.* 2021, *12* (1), 142.

(36) Hecht, M.; Leowanawat, P.; Gerlach, T.; Stepanenko, V.; Stolte, M.; Lehmann, M.; Würthner, F. Self-Sorting [Supramolecular](https://doi.org/10.1002/anie.202006744) [Polymerization:](https://doi.org/10.1002/anie.202006744) Helical and Lamellar Aggregates of Tetra-Bay-Acyloxy Perylene [Bisimide.](https://doi.org/10.1002/anie.202006744) *Angew. Chem., Int. Ed.* 2020, *59* (39), 17084−17090.

(37) Stolte, M.; Hecht, R.; Xie, Z.; Liu, L.; Kaufmann, C.; Kudzus, A.; Schmidt, D.; Würthner, F. Crystal [Engineering](https://doi.org/10.1002/adom.202000926) of 1D Exciton Systems Composed of Single- and [Double-Stranded](https://doi.org/10.1002/adom.202000926) Perylene Bisimide [J-Aggregates.](https://doi.org/10.1002/adom.202000926) *Adv. Opt. Mater.* 2020, *8* (18), 2000926.

(38) Osswald, P.; Würthner, F. Effects of Bay [Substituents](https://doi.org/10.1021/ja074508e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) on the [Racemization](https://doi.org/10.1021/ja074508e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Barriers of Perylene Bisimides: Resolution of Atropo-[Enantiomers.](https://doi.org/10.1021/ja074508e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2007, *129* (46), 14319−14326.

(39) Chen, Z.; Baumeister, U.; Tschierske, C.; Würthner, F. [Effect](https://doi.org/10.1002/chem.200600891) of Core Twisting on [Self-Assembly](https://doi.org/10.1002/chem.200600891) and Optical Properties of Perylene Bisimide Dyes in Solution and Columnar Liquid [Crystalline](https://doi.org/10.1002/chem.200600891) Phases. *Chem.*�*Eur. J* 2007, *13* (2), 450−465.

(40) Wang, W.; Shaller, A. D.; Li, A. D. Q. Twisted [Perylene](https://doi.org/10.1021/ja7111959?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [Stereodimers](https://doi.org/10.1021/ja7111959?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Reveal Chiral Molecular Assembly Codes. *J. Am. Chem. Soc.* 2008, *130* (26), 8271−8279.

(41) Solymosi, I.; Neiß, C.; Maid, H.; Hampel, F.; Solymosi, T.; Görling, A.; Hirsch, A.; Pérez-Ojeda, M. E. [Dictating](https://doi.org/10.1002/slct.202300523) Packing and Interactions of Perylene Bisimides within [Cyclophane](https://doi.org/10.1002/slct.202300523) Structures in the Solid [State.](https://doi.org/10.1002/slct.202300523) *ChemistrySelect* 2023, *8* (17), No. e202300523.

(42) Greenfield, J. L.; Wade, J.; Brandt, J. R.; Shi, X.; Penfold, T. J.; Fuchter, M. J. Pathways to increase the [dissymmetry](https://doi.org/10.1039/D1SC02335G) in the interaction of chiral light and chiral [molecules.](https://doi.org/10.1039/D1SC02335G) *Chem. Sci.* 2021, *12* (25), 8589− 8602.

(43) Zinna, F.; Brun, E.; Homberg, A.; Lacour, J., Circularly Polarized Luminescence from Intramolecular Excimers. In *Circularly Polarized Luminescence of Isolated Small Organic Molecules*, Mori, T., Ed.,: Springer Singapore: Singapore, 2020; pp 273−292.

(44) Chen, Z.; Stepanenko, V.; Dehm, V.; Prins, P.; Siebbeles, L. D. A.; Seibt, J.; Marquetand, P.; Engel, V.; Würthner, F. [Photo](https://doi.org/10.1002/chem.200600889)luminescence and Conductivity of [Self-Assembled](https://doi.org/10.1002/chem.200600889) *π*-*π* Stacks of Perylene [Bisimide](https://doi.org/10.1002/chem.200600889) Dyes. *Chem.*�*Eur. J* 2007, *13* (2), 436−449.

(45) Kaiser, T. E.; Wang, H.; Stepanenko, V.; Würthner, F. [Supramolecular](https://doi.org/10.1002/anie.200701139) Construction of Fluorescent J-Aggregates Based on [Hydrogen-Bonded](https://doi.org/10.1002/anie.200701139) Perylene Dyes. *Angew. Chem., Int. Ed.* 2007, *46* (29), 5541−5544.

(46) Würthner, F.; Saha-Möller, C. R.; Fimmel, B.; Ogi, S.; Leowanawat, P.; Schmidt, D. Perylene Bisimide Dye [Assemblies](https://doi.org/10.1021/acs.chemrev.5b00188?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) as Archetype Functional [Supramolecular](https://doi.org/10.1021/acs.chemrev.5b00188?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Materials. *Chem. Rev.* 2016, *116* (3), 962−1052.

(47) Bialas, D.; Kirchner, E.; Röhr, M. I. S.; Würthner, F. [Perspectives](https://doi.org/10.1021/jacs.0c13245?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) in Dye Chemistry: A Rational Approach toward Functional Materials by [Understanding](https://doi.org/10.1021/jacs.0c13245?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) the Aggregate State. *J. Am. Chem. Soc.* 2021, *143* (12), 4500−4518.

(48) Chen, J.; Tang, N.; Zhou, J.; Wang, L.; Jiang, N.; Zheng, N.; Liu, L.; Xie, Z. [Coexistence](https://doi.org/10.1021/acs.jpclett.1c00674?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Parallel and Rotary Stackings in the Lamellar Crystals of a Perylene Bisimide Dyad for [Temperature-](https://doi.org/10.1021/acs.jpclett.1c00674?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as)Sensitive [Bicomponent](https://doi.org/10.1021/acs.jpclett.1c00674?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Emission. *J. Phys. Chem. Lett.* 2021, *12* (13), 3373−3378.

(49) Wilson-Kovacs, R. S.; Fang, X.; Hagemann, M. J. L.; Symons, H. E.; Faul, C. F. J. Design and Control of Perylene [Supramolecular](https://doi.org/10.1002/chem.202103443) Polymers through Imide [Substitutions.](https://doi.org/10.1002/chem.202103443) *Chem.*�*Eur. J* 2022, *28* (3), No. e202103443.

(50) Cai, K.; Xie, J.; Zhang, D.; Shi, W.; Yan, Q.; Zhao, D. Concurrent Cooperative J-Aggregates and [Anticooperative](https://doi.org/10.1021/jacs.8b01463?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) H-[Aggregates.](https://doi.org/10.1021/jacs.8b01463?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2018, *140* (17), 5764−5773.

(51) Yagai, S.; Seki, T.; Karatsu, T.; Kitamura, A.; Würthner, F. [Transformation](https://doi.org/10.1002/anie.200705385) from H- to J-Aggregated Perylene Bisimide Dyes by [Complexation](https://doi.org/10.1002/anie.200705385) with Cyanurates. *Angew. Chem., Int. Ed.* 2008, *47* (18), 3367−3371.

(52) Ghosh, S.; Li, X.-Q.; Stepanenko, V.; Würthner, F. [Control](https://doi.org/10.1002/chem.200801454) of H- and J-Type *π* Stacking by Peripheral Alkyl Chains and [Self-Sorting](https://doi.org/10.1002/chem.200801454) Phenomena in Perylene Bisimide Homo- and [Heteroaggregates.](https://doi.org/10.1002/chem.200801454) *Chem.*�*Eur. J* 2008, *14* (36), 11343−11357.

(53) Zhao, Q.; Lai, H.; Chen, H.; Li, H.; He, F. H- and [J-aggregation](https://doi.org/10.1039/D0TA11146E) inspiring efficient solar [conversion.](https://doi.org/10.1039/D0TA11146E) *J. Mater. Chem. A* 2021, *9* (2), 1119−1126.

(54) Maiti, N. C.; Mazumdar, S.; Periasamy, N. J- and [H-Aggregates](https://doi.org/10.1021/jp9723372?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of [Porphyrin-Surfactant](https://doi.org/10.1021/jp9723372?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Complexes: Time-Resolved Fluorescence and Other [Spectroscopic](https://doi.org/10.1021/jp9723372?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Studies. *J. Phys. Chem. B* 1998, *102* (9), 1528− 1538.

(55) Eder, T.; Stangl, T.; Gmelch, M.; Remmerssen, K.; Laux, D.; Höger, S.; Lupton, J. M.; Vogelsang, J. [Switching](https://doi.org/10.1038/s41467-017-01773-0) between H- and Jtype electronic coupling in single [conjugated](https://doi.org/10.1038/s41467-017-01773-0) polymer aggregates. *Nat. Commun.* 2017, *8* (1), 1641.

(56) Dou, J.-H.; Zheng, Y.-Q.; Yao, Z.-F.; Lei, T.; Shen, X.; Luo, X.- Y.; Yu, Z.-A.; Zhang, S.-D.; Han, G.; Wang, Z.; Yi, Y.; Wang, J.-Y.; Pei, J. A Cofacially Stacked [Electron-Deficient](https://doi.org/10.1002/adma.201503803) Small Molecule with a High Electron [Mobility](https://doi.org/10.1002/adma.201503803) of over 10 cm2 V-1 s-1 in Air. *Adv. Mater.* 2015, *27* (48), 8051−8055.

(57) Dou, J.-H.; Zheng, Y.-Q.; Yao, Z.-F.; Yu, Z.-A.; Lei, T.; Shen, X.; Luo, X.-Y.; Sun, J.; Zhang, S.-D.; Ding, Y.-F.; Han, G.; Yi, Y.; Wang, J.-Y.; Pei, J. [Fine-Tuning](https://doi.org/10.1021/jacs.5b11114?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Crystal Packing and Charge Transport Properties of BDOPV [Derivatives](https://doi.org/10.1021/jacs.5b11114?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) through Fluorine [Substitution.](https://doi.org/10.1021/jacs.5b11114?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2015, *137* (50), 15947−15956.

(58) Hecht, M.; Würthner, F. [Supramolecularly](https://doi.org/10.1021/acs.accounts.0c00590?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Engineered J-[Aggregates](https://doi.org/10.1021/acs.accounts.0c00590?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Based on Perylene Bisimide Dyes. *Acc. Chem. Res.* 2021, *54* (3), 642−653.

(59) Yang, Y.; Rice, B.; Shi, X.; Brandt, J. R.; Correa da Costa, R.; Hedley, G. J.; Smilgies, D.-M.; Frost, J. M.; Samuel, I. D. W.; Oterode-la-Roza, A.; Johnson, E. R.; Jelfs, K. E.; Nelson, J.; Campbell, A. J.; Fuchter, M. J. Emergent Properties of an Organic [Semiconductor](https://doi.org/10.1021/acsnano.7b03540?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Driven by its [Molecular](https://doi.org/10.1021/acsnano.7b03540?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Chirality. *ACS Nano* 2017, *11* (8), 8329− 8338.

(60) Josse, P.; Favereau, L.; Shen, C.; Dabos-Seignon, S.; Blanchard, P.; Cabanetos, C.; Crassous, J. [Enantiopure](https://doi.org/10.1002/chem.201701066) versus Racemic [Naphthalimide](https://doi.org/10.1002/chem.201701066) End-Capped Helicenic Non-fullerene Electron Acceptors: Impact on Organic [Photovoltaics](https://doi.org/10.1002/chem.201701066) Performance. *Chem.*� *Eur. J* 2017, *23* (26), 6277−6281.

(61) Shi, W.; Salerno, F.; Ward, M. D.; Santana-Bonilla, A.; Wade, J.; Hou, X.; Liu, T.; Dennis, T. J. S.; Campbell, A. J.; Jelfs, K. E.; Fuchter, M. J. Fullerene [Desymmetrization](https://doi.org/10.1002/adma.202004115) as a Means to Achieve Single-[Enantiomer](https://doi.org/10.1002/adma.202004115) Electron Acceptors with Maximized Chiroptical Re[sponsiveness.](https://doi.org/10.1002/adma.202004115) *Adv. Mater.* 2021, *33* (1), 2004115.

(62) Xie, Z.; Stepanenko, V.; Radacki, K.; Würthner, F. [Chiral](https://doi.org/10.1002/chem.201200089) J-Aggregates of [Atropo-Enantiomeric](https://doi.org/10.1002/chem.201200089) Perylene Bisimides and Their [Self-Sorting](https://doi.org/10.1002/chem.201200089) Behavior. *Chem.*�*Eur. J* 2012, *18* (23), 7060−7070.

(63) Mahlmeister, B.; Renner, R.; Anhalt, O.; Stolte, M.; Würthner, F. Axially chiral [bay-tetraarylated](https://doi.org/10.1039/D1TC04116A) perylene bisimide dyes as nonfullerene [acceptors](https://doi.org/10.1039/D1TC04116A) in organic solar cells. *J. Mater. Chem. C* 2022, *10* (7), 2581−2591.

(64) Shang, X.; Song, I.; Ohtsu, H.; Lee, Y. H.; Zhao, T.; Kojima, T.; Jung, J. H.; Kawano, M.; Oh, J. H. [Supramolecular](https://doi.org/10.1002/adma.201605828) Nanostructures of Chiral Perylene Diimides with [Amplified](https://doi.org/10.1002/adma.201605828) Chirality for High-[Performance](https://doi.org/10.1002/adma.201605828) Chiroptical Sensing. *Adv. Mater.* 2017, *29* (21), 1605828.

(65) Safont-Sempere, M. M.; Stepanenko, V.; Lehmann, M.; Würthner, F. Impact of core chirality on [mesophase](https://doi.org/10.1039/c1jm10309a) properties of perylene [bisimides.](https://doi.org/10.1039/c1jm10309a) *J. Mater. Chem.* 2011, *21* (20), 7201−7209.

(66) Kaiser, T. E.; Stepanenko, V.; Würthner, F. [Fluorescent](https://doi.org/10.1021/ja900684h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) J-Aggregates of [Core-Substituted](https://doi.org/10.1021/ja900684h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Perylene Bisimides: Studies on Structure-Property Relationship, [Nucleation-Elongation](https://doi.org/10.1021/ja900684h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Mechanism, and [Sergeants-and-Soldiers](https://doi.org/10.1021/ja900684h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Principle. *J. Am. Chem. Soc.* 2009, *131* (19), 6719−6732.

(67) Li, A.; Zhang, X.; Wang, S.; Wei, K.; Du, P. [Synthesis](https://doi.org/10.1021/acs.orglett.3c00152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Physical Properties of a Perylene [Diimide-Embedded](https://doi.org/10.1021/acs.orglett.3c00152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Chiral Conjugated [Macrocycle.](https://doi.org/10.1021/acs.orglett.3c00152?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Org. Lett.* 2023, *25* (7), 1183−1187.

(68) Dnyaneshwar Veer, S.; Chandrakant Wakchaure, V.; Asokan, K.; Dixit, R.; Goswami, T.; Saha, R.; Gonnade, R.; Ghosh, H. N.; Santhosh Babu, S. [Oligothiophene-Ring-Strapped](https://doi.org/10.1002/anie.202212934) Perylene Bisimides: [Functionalizable](https://doi.org/10.1002/anie.202212934) Coaxial Donor-Acceptor Macrocycles. *Angew. Chem., Int. Ed.* 2023, *62* (3), No. e202212934.

(69) Penty, S. E.; Zwijnenburg, M. A.; Orton, G. R. F.; Stachelek, P.; Pal, R.; Xie, Y.; Griffin, S. L.; Barendt, T. A. The Pink Box: [Exclusive](https://doi.org/10.1021/jacs.2c03531?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Homochiral Aromatic Stacking in a [Bis-perylene](https://doi.org/10.1021/jacs.2c03531?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Diimide Macrocycle. *J. Am. Chem. Soc.* 2022, *144* (27), 12290−12298.

(70) Ball, M.; Fowler, B.; Li, P.; Joyce, L. A.; Li, F.; Liu, T.; Paley, D.; Zhong, Y.; Li, H.; Xiao, S.; Ng, F.; Steigerwald, M. L.; Nuckolls, C. Chiral [Conjugated](https://doi.org/10.1021/jacs.5b05698?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Corrals. *J. Am. Chem. Soc.* 2015, *137* (31), 9982− 9987.

(71) Türel, T.; Bhargava, S.; Valiyaveettil, S. Tubular [Perylene](https://doi.org/10.1021/acs.joc.9b02972?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Bisimide [Macrocycles](https://doi.org/10.1021/acs.joc.9b02972?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) for the Recognition of Geometrical Isomers of [Azobenzenes.](https://doi.org/10.1021/acs.joc.9b02972?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Org. Chem.* 2020, *85* (5), 3092−3100.

(72) Barendt, T. A.; Ball, M. L.; Xu, Q.; Zhang, B.; Fowler, B.; Schattman, A.; Ritter, V. C.; Steigerwald, M. L.; Nuckolls, C. [Supramolecular](https://doi.org/10.1002/chem.202000514) Assemblies for Electronic Materials. *Chem.-Eur. J* 2020, *26* (17), 3744−3748.

(73) As no chiral interconversion was detected at 180 °C (453 K) in 24 h, the racemization lifetime τ is much greater than 24 h. However we used $\tau = 24$ h and temperature T = 453 K to calculate $\Delta G^{\ddagger} = 155$ kJ mol[−]¹ according to the Eyring equation as a lower bound for the free energy barrier for stereoisomer interconversion.

(74) Heeb, J. P.; Clayden, J.; Smith, M. D.; Armstrong, R. J. Interrogating the [configurational](https://doi.org/10.1038/s41596-023-00859-y) stability of atropisomers. *Nat. Protoc.* 2023, *18* (9), 2745−2771.

(75) 1-*MM* is enantiopure but the 1-*PP* sample contains a small trace of 1-*MM* (95:5 *PP*:*MM* based on chiral HPLCchromatograms).

(76) Kaufmann, C.; Bialas, D.; Stolte, M.; Würthner, F. [Discrete](https://doi.org/10.1021/jacs.8b05490?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *π*-Stacks of Perylene Bisimide Dyes within [Folda-Dimers:](https://doi.org/10.1021/jacs.8b05490?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Insight into Long- and [Short-Range](https://doi.org/10.1021/jacs.8b05490?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Exciton Coupling. *J. Am. Chem. Soc.* 2018, *140* (31), 9986−9995.

(77) Kistler, K. A.; Pochas, C. M.; Yamagata, H.; Matsika, S.; Spano, F. C. Absorption, Circular Dichroism, and [Photoluminescence](https://doi.org/10.1021/jp208794t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) in Perylene Diimide Bichromophores: [Polarization-Dependent](https://doi.org/10.1021/jp208794t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) H- and J-[Aggregate](https://doi.org/10.1021/jp208794t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Behavior. *J. Phys. Chem. B* 2012, *116* (1), 77−86.

(78) Würthner, F. Solvent Effects in [Supramolecular](https://doi.org/10.1021/acs.joc.1c00625?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Chemistry: Linear Free Energy Relationships for Common [Intermolecular](https://doi.org/10.1021/acs.joc.1c00625?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [Interactions.](https://doi.org/10.1021/acs.joc.1c00625?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Org. Chem.* 2022, *87* (3), 1602−1615.

(79) We also attempted to disrupt any potential intramolecular hydrogen bonding in 1 using methanol but no conformational change was observed by ¹H NMR spectroscopy (Figures S29–30).

(80) Chen, Z.; Lohr, A.; Saha-Möller, C. R.; Würthner, F. [Self](https://doi.org/10.1039/B809359H)[assembled](https://doi.org/10.1039/B809359H) *π*-stacks of functional dyes in solution: structural and [thermodynamic](https://doi.org/10.1039/B809359H) features. *Chem. Soc. Rev.* 2009, *38* (2), 564−584.

(81) 1-*MM/PP* is also an order of magnitude more soluble than 1 *rac*.

(82) Zhao, Z.-H.; Liang, X.; He, M.-X.; Zhang, M.-Y.; Zhao, C.-H. [Triarylborane-based](https://doi.org/10.1021/acs.orglett.9b03734?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [5]Helicenes with Full-Color Circularly Polarized [Luminescence.](https://doi.org/10.1021/acs.orglett.9b03734?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Org. Lett.* 2019, *21* (23), 9569−9573.

(83) Dhbaibi, K.; Favereau, L.; Srebro-Hooper, M.; Jean, M.; Vanthuyne, N.; Zinna, F.; Jamoussi, B.; Di Bari, L.; Autschbach, J.; Crassous, J. Exciton coupling in [diketopyrrolopyrrole-helicene](https://doi.org/10.1039/C7SC04312K) derivatives leads to red and [near-infrared](https://doi.org/10.1039/C7SC04312K) circularly polarized [luminescence.](https://doi.org/10.1039/C7SC04312K) *Chem. Sci.* 2018, *9* (3), 735−742.

(84) Pascal, S.; Besnard, C.; Zinna, F.; Di Bari, L.; Le Guennic, B.; Jacquemin, D.; Lacour, J. Zwitterionic [4]helicene: a [water-soluble](https://doi.org/10.1039/C6OB00752J) and reversible [pH-triggered](https://doi.org/10.1039/C6OB00752J) ECD/CPL chiroptical switch in the UV and red spectral [regions.](https://doi.org/10.1039/C6OB00752J) *Org. Biomol. Chem.* 2016, *14* (20), 4590− 4594.

(85) Bosson, J.; Labrador, G. M.; Pascal, S.; Miannay, F.-A.; Yushchenko, O.; Li, H.; Bouffier, L.; Sojic, N.; Tovar, R. C.; Muller, G.; Jacquemin, D.; Laurent, A. D.; Le Guennic, B.; Vauthey, E.; Lacour, J. [Physicochemical](https://doi.org/10.1002/chem.201604489) and Electronic Properties of Cationic [6]Helicenes: from Chemical and [Electrochemical](https://doi.org/10.1002/chem.201604489) Stabilities to Far-Red (Polarized) [Luminescence.](https://doi.org/10.1002/chem.201604489) *Chem.*�*Eur. J* 2016, *22* (51), 18273. (86) Alnoman, R. B.; Rihn, S.; O'Connor, D. C.; Black, F. A.; Costello, B.; Waddell, P. G.; Clegg, W.; Peacock, R. D.; Herrebout, W.; Knight, J. G.; Hall, M. J. Circularly Polarized [Luminescence](https://doi.org/10.1002/chem.201504484) from Helically Chiral [N,N,O,O-Boron-Chelated](https://doi.org/10.1002/chem.201504484) Dipyrromethenes. *Chem.*�*Eur. J* 2016, *22* (1), 93−96.

(87) Zhao, F.; Zhao, J.; Liu, H.; Wang, Y.; Duan, J.; Li, C.; Di, J.; Zhang, N.; Zheng, X.; Chen, P. Synthesis of *π*[-Conjugated](https://doi.org/10.1021/jacs.3c00306?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Chiral [Organoborane](https://doi.org/10.1021/jacs.3c00306?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Macrocycles with Blue to Near-Infrared Emissions and the Diradical [Character](https://doi.org/10.1021/jacs.3c00306?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Cations. *J. Am. Chem. Soc.* 2023, *145* (18), 10092−10103.

(88) El-Zubir, O.; Martinez, P. R.; Dura, G.; Al-Mahamad, L. L. G.; Pope, T.; Penfold, T. J.; Mackenzie, L. E.; Pal, R.; Mosely, J.; Cucinotta, F.; McGarry, L. F.; Horrocks, B. R.; Houlton, A. [Circularly](https://doi.org/10.1039/D2TC00366J) polarised [luminescence](https://doi.org/10.1039/D2TC00366J) in an RNA-based homochiral, self-repairing, [coordination](https://doi.org/10.1039/D2TC00366J) polymer hydrogel. *J. Mater. Chem. C* 2022, *10* (18), 7329−7335.

(89) El-Zubir, O.; Rojas Martinez, P.; Dura, G.; Doherty, C.; Cucinotta, F.; Mackenzie, L. E.; Pal, R.; Horrocks, B. R.; Houlton, A. Hierarchical [self-assembly](https://doi.org/10.1039/D3DT00634D) in an RNA-based coordination polymer [hydrogel.](https://doi.org/10.1039/D3DT00634D) *Dalton Trans.* 2023, *52* (17), 5545−5551.

(90) Kitagawa, Y.; Wada, S.; Islam, M. D. J.; Saita, K.; Gon, M.; Fushimi, K.; Tanaka, K.; Maeda, S.; Hasegawa, Y. Chiral [lanthanide](https://doi.org/10.1038/s42004-020-00366-1) [lumino-glass](https://doi.org/10.1038/s42004-020-00366-1) for a circularly polarized light security device. *Commun. Chem.* 2020, *3* (1), 119.

(91) Arrico, L.; Di Bari, L.; Zinna, F. [Quantifying](https://doi.org/10.1002/chem.202002791) the Overall Efficiency of [Circularly](https://doi.org/10.1002/chem.202002791) Polarized Emitters. *Chem.*�*Eur. J* 2021, *27* (9), 2920−2934.

(92) Tanaka, H.; Inoue, Y.; Mori, T. [Circularly](https://doi.org/10.1002/cptc.201800015) Polarized [Luminescence](https://doi.org/10.1002/cptc.201800015) and Circular Dichroisms in Small Organic Molecules: Correlation between Excitation and Emission [Dissymmetry](https://doi.org/10.1002/cptc.201800015) Factors. *ChemPhotoChem* 2018, *2* (5), 386−402.