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VARIABLE ORDER HARMONIC SINUSOIDAL PARAMETER ESTIMATION
FOR SPEECH AND AUDIO SIGNALS

Mads Græsbøll Christensen and Søren Holdt Jensen

Dept. of Electronic Systems
Aalborg University, Denmark
{mgc,shj}@kom.aau.dk

ABSTRACT

In this paper, a computationally efficient method for the es-
timation of the parameters of harmonic sinusoidal signals,
including the order, which is of particular importance, for
speech and audio signals is presented. The signal is mod-
eled as a sum of harmonically related sinusoids in colored
Gaussian noise. Aside from the order, the proposed method
estimates the noise parameters, the fundamental frequency
and the phase and amplitude of the individual harmonics.
For the special case of white Gaussian noise, the method be-
comes particularly simple. The application of the proposed
estimator to analysis of voiced speech and music signals is
illustrated using real-life signals.

1. INTRODUCTION

Speech and audio signals are often modeled as sums of sinu-
soids in colored Gaussian noise, e.g., [1, 2], and recent au-
dio coding standards, such as MPEG-4, include such para-
metric signal models as a basis for data compression. The
fundamental signal model is often described as consisting
of a deterministic part, the sinusoids, and a stochastic part,
a noise term. The deterministic part is, in most cases, syn-
thesized such that the reconstructed waveform matches the
original while the stochastic part is typically generated such
that the spectral envelope and sometimes also a coarse tem-
poral envelope match that of the original signal. In other
words, the stochastic part is only described in terms of its
second order statistics. This is motivated by the notion that
the human auditory system cannot distinguish two realiza-
tions of the same stochastic process. Signals produced by
many musical instruments as well the human speech pro-
duction system exhibit strong local periodicities. These sig-
nals can, for a particular segment, be modeled as a sum of
harmonically related sinusoids, meaning that the frequen-
cies of the individual sinusoids are integer multiples of a
fundamental frequency. This fundamental frequency is an
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important feature in many signal processing applications
ranging from speech coding to automatic music transcrip-
tion. The task of extracting this fundamental frequency or
the pitch period is known as fundamental frequency esti-
mation or pitch estimation. The former is usually preferred
since the latter may easily be confused with the related task
of determining the perceived pitch. We present, in this pa-
per, a method for estimation of the parameters of a set of
harmonically related sinusoids, including the number of har-
monics also known as the order, in colored Gaussian noise.
Additionally, the covariance matrix of the Gaussian noise
and its inverse are also estimated in a computationally effi-
cient manner and we discuss the involved tradeoffs. The
proposed estimator is based on the well-known principle
of maximum likelihood which is combined with an order-
dependent penalty term (see, e.g., [3]). It must be empha-
sized that even when only a subset of the parameters is of in-
terest, such as the fundamental frequency, the rest have to be
estimated, implicitly, anyway to yield correct estimates.For
example, the background noise, which may or may not be
produced by the instrument or the speaker, may be white or
colored Gaussian noise and the number of sinusoidal com-
ponents may vary [4]. Often, the order is assumed known
(e.g. [5, 6, 7]). However, it is important to estimate the or-
der for several reasons. Firstly, if the order is not estimated
(or chosen) correctly, the fundamental frequency may er-
roneously be estimated at, for example, half or double of
the true value [8, 9]. This is easy to see for the nonlin-
ear least-squares estimator. Secondly, it can be seen from
the Cramér-Rao bound for the fundamental frequency (see
[5, 8]) that it is desirable to include as many of the harmon-
ics as possible as this increases the accuracy. Therefore the
order should be estimated on a segment to segment basis.
The fundamental frequency estimation problem can be de-
fined as follows. Consider a harmonic signal with the fun-
damental frequencyω0 in additive complex circularly sym-
metric Gaussian noise,e(n), i.e.,

x(n) =
k∑

l=1

Ale
j(ω0ln+φl) + e(n), (1)



whereAl > 0 andφl are the amplitude and the phase of the
l’th harmonic, respectively. The frequency of thel’th har-
monic is thusω0l, and the problem considered in this paper
is to estimate the fundamental frequencyω0, the amplitude
and phase of the individual harmonics as well as the model
order k and the noise covariance matrix from a set ofN
measured samples,x(n). We note in passing that the com-
plex model used here also is valid for real signals through
the use of the down-sampled discrete-time analytic signal,
provided that there is no signal of interest near0 and2π.

The remaining part of this paper is organized as follows.
First, we present, in Section 2, the fundamentals of the pro-
posed estimator, namely the principle of the maximum like-
lihood estimator. In Section 3, we then proceed to discuss
how to evaluate the log-likelihoods in a computationally ef-
ficient manner. Specifically, we discuss how to, for a par-
ticular candidate fundamental frequency, obtain amplitude
and noise covariance matrix estimates for various orders.
We then treat the special case of white Gaussian noise in
Section 4, and, in Section 5, we give some examples of the
application of the proposed estimator to analysis of speech
and audio signals. Finally, Section 6 concludes on the work.

2. MAXIMUM LIKELIHOOD ESTIMATOR

We will now present the signal model and the proposed al-
gorithm. The algorithm operates on a signal sub-vector at
timen x(n) ∈ C

M , defined as

x(n) = [ x(n) · · · x(n + M − 1) ]
T

, (2)

which is constructed from the observed signalx(n). For
many speech and audio signals, such a sub-vector can be
modeled as a sum ofk harmonically related complex sinu-
soidsx̂(n) ∈ C

M , in colored Gaussian noisee(n) ∈ C
M

having covariance matrixQ, i.e.,

x(n) = x̂(n) + e(n) (3)

= Zk(n)ak + e(n), (4)

with ak = [ A1e
jφ1 · · · Akejφk ]T being a vector contain-

ing the complex amplitudes and(·)T denotes the transpose.
Furthermore,Zk(n) is a Vandermonde matrix at timen

Zk(n) =
[

z1(n) · · · zk(n)
]
, (5)

where them’th entry of the column vectorzk(n) ∈ C
M

is defined as[zk(n)]m = ejω0k(n+m−1). Sincex(n) has
lengthM and we haveN observations ofx(n), we can thus
construct a set ofG = N − M + 1 different sub-vectors
{x(n)}G−1

n=0 . Next, we introduce the signal and noise param-
eter vectorθ containing the fundamental frequencyω0, the
complex amplitudes{Ale

jφl} and thereby implicitly the or-
derk and the noise covariance matrixQ of the model in (4).

The likelihood function of the observed signal sub-vector
x(n) can then be written as

p(x(n);θ) =
1

πMdet(Q)
e−eH(n)Q−1e(n), (6)

with (·)H denoting the conjugate transpose and the noise
vector being found ase(n) = x(n)−x̂(n) by estimating the
deterministic part of the signal modelx̂(n). Now, assuming
that the deterministic part̂x(n) is stationary ande(n) is in-
dependent and identically distributed overn, the likelihood
of the observed set of vectors{x(n)}G−1

n=0 can be written as

p({x(n)};θ) =
G−1∏

n=0

p(x(n);θ) =
1

πMGdet(Q)G

× e−
P

G−1

n=0
eH(n)Q−1e(n).

(7)

Although the approach of splitting the signal into sub-vectors
x(n) is inherently suboptimal since it ignores inter-vector
dependencies, it is required in order to estimate signal and
noise covariance matrices. Taking the logarithm of (7), we
get the so-called log-likelihood function, i.e.,

L(θ) =

G−1∑

n=0

ln p(x(n);θ) = −GM lnπ

− G ln det(Q) −

G−1∑

n=0

eH(n)Q−1e(n).

(8)

The maximum likelihood estimates of the parametersθ are
then arg maxL(θ). However, it is well-known that this
will result in a preference for more complicated models, i.e.
higher order. Instead, we find the parameters, with·̂ denot-
ing estimates, as

θ̂ = arg max
θ

2L(θ) − ν(|θ|, GM), (9)

whereν(|θ|, GM)| is an order-dependent penalty term (see,
e.g., [3]) and|θ| is the number of parameters to be esti-
mated. Here, we have used the minimum description length
(MDL) for model order selection, which is identical to the
Bayesian information criterion under certain conditions (
see [10, 3]), i.e.,

ν(|θ|, GM) = |θ| ln (2GM) . (10)

Note that the factor2 is due to the complex case being con-
sidered here. Furthermore, we have assumed that all model
orders are equally probable. The Bayesian information cri-
terion is consistent meaning that the probability of correct
detection tends to 1 as the number of samples grow. The
main difficulty in evaluating the cost function in (9) is that
the fundamental frequency is a nonlinear parameter and that
the noise covariance matrixQ generally is unknown. The



amplitudes and phases, on the other hand, can be seen in
(4) to be linear complex parameters that can easily be found
given the fundamental frequency and the noise covariance
matrix. DefiningZk = Zk(0) and assuming that the phases
of the harmonics are independent and uniformly distributed
on the interval(−π, π], the covariance matrixR ∈ C

M×M

of the signal in (4) can be written as (see [3, 11]),

R = E
{
x(n)xH(n)

}
= ZkPkZ

H
k + Q (11)

whereE {·} denotes the statistical expectation and

Pk = E
{
aka

H
k

}
= diag

([
A2

1 · · · A2
k

])
. (12)

Given the noise covariance matrixQ, the complex ampli-
tudesak can be found, for a certain candidate fundamental
frequency, as

âk =

(
G−1∑

n=0

ZH
k (n)Q−1Zk(n)

)−1
G−1∑

n=0

ZH
k (n)Q−1x(n),

(13)

which for the case whereZk(n) does not depend onn can
be interpreted as a weighted least-squares fit of the signal
model to the sample mean vector1

G

∑G−1
n=0 x(n).

3. EFFICIENT COMPUTATIONS

We will now discuss how to construct a practical estimator.
In particular, we will discuss how to evaulate the likelihood
function (7) from observed data in a computationally effi-
cient manner. First of all, the noise covariance matrixQ

is unknown and an estimate has to be obtained. Here, we
will do this based on the signal covariance model in (11). In
practice, the signal covariance matrix in (11) too is unknown
and is replaced by an estimate, the sample covariance ma-
trix, i.e.,

R̂ =
1

G

G−1∑

n=0

x(n)xH(n). (14)

There are some inherent tradeoffs in the choices ofN and
M and therebyG. The number of observationsN should
be chosen appropriately such that the signalx(n) can be as-
sumed to be stationary whileM should be chosen such that
all significant non-zero correlations in the covariance ma-
trix are modeled. On the other hand,M should also not be
chosen higher than strictly necessary, since the goodness of
the signal covariance matrix estimate in (14) depends onG
being as high as possible. Additionally, since the evalua-
tion of the likelihood function requires the existence (and
calculation) of the inverse of the noise covariance matrix,it
is required thatrank (Q) = M . This in turn implies that
G ≥ M and henceM ≤ N

2 . For a particular candidate

fundamental frequency, we can construct the orderk Van-
dermonde matrixZk in (11). However, we also need an es-
timate of the sinusoidal amplitudes inPk to obtain a noise
covariance matrix estimate. An obvious approach is to use
the estimated signal covariance matrix instead of the noise
covariance matrix resulting in a Capon-like amplitude esti-
mator or one of the other amplitude estimates proposed and
discussed in [11]. However, in order to minimize the com-
putational complexity, we here use the following asymptoti-
cally efficient estimate (see [11]) of the complex amplitudes
for approximating the likelihood for various fundamental
frequencies and orders:

âk =

(
G−1∑

n=0

ZH
k (n)Zk(n)

)−1
G−1∑

n=0

ZH
k (n)x(n), (15)

which can be approximated for largeN as

âk ≈
1

MG

G−1∑

n=0

ZH
k (n)x(n). (16)

This is a number of phase-shifted FFTs. In fact, (16) can be
evaluated using just one FFT ofx(n) for n = 0, . . . , N − 1.
If desired, refined estimates may be obtained using one of
the above estimators once the order and fundamental fre-
quency have been estimated. Having found the complex
amplitudes associated with a certain candidate fundamental
frequency, we can now estimate the noise covariance matrix
from thek’th order sinusoidal model as

Q̂k = R̂ − ZkP̂kZ
H
k = R̂ −

k∑

l=1

Â2
l zlz

H
l , (17)

with P̂k = diag
([

Â2
1 · · · Â2

k

])
. The inverse noise

covariance matrix is needed for the evaluation of the likeli-
hood function, and direct inversion for different model or-
ders and fundamental frequencies poses a computational bur-
den. Therefore, it is advantagous to compute it using the
matrix inversion lemma as follows:

Q̂−1
k = R̂−1 + R̂−1ZkP̂

1

2

k

×
(
I − P̂

1

2

k ZH
k R̂−1ZkP̂

1

2

k

)−1

P̂
1

2

k ZH
k R̂−1,

(18)

which is computationally less demanding than direct inver-
sion of Q̂k sincek < M , or, iteratively fork = 1, 2, . . .
as

Q̂−1
k = Q̂−1

k−1 + Q̂−1
k−1

Â2
kzkz

H
k

1 − Â2
kz

H
k Q̂−1

k−1zk

Q̂−1
k−1, (19)

with Q̂−1
0 = R̂−1. Note that the stochastic parts of speech

and audio signals are often modeled as auto-regressive Gaus-
sian noise, in which case the matrix inversion may also be
computed using Gohberg-Semencul’s formula [3].



4. WHITE NOISE CASE

In some cases, the stochastic part of the signal model in
(1) can be assumed to be white. Then, the computational
complexity of the proposed estimator can be reduced sig-
nificantly. First of all, the structure of the noise covariance
matrix is now known, i.e., it becomes a scaled diagonal ma-
trix Q = σ2I whereσ2 is the variance of the noise. This
has the consequence that we no longer need to estimate a
full covariance matrix but only the variance, and, therefore,
there is no need to split the observed signal into sub-vectors,
i.e., we can simply setM = N and thusG = 1. For no-
tational simplicity, we in the following sete(0) = e and
x(0) = x. The log-likelihood function can now be written
as

L(θ) = −N lnπ − 2N lnσ −
1

σ2
‖e‖2

2. (20)

Since the noise variance is generally unknown, we need to
form an estimate of it. Like the noise covariance matrix es-
timate, this estimate will depend on the orderk. For a par-
ticular fundamental frequency candidate andk harmonics,
the maximum likelihood noise variance estimate is

σ̂2
k =

1

N
‖x − Zk

(
ZH

k Zk

)−1
ZH

k x‖2
2, (21)

≈
1

N
‖x −

1

N
ZkZ

H
k x‖2

2, (22)

where the last step follows fromN ≫ 1. We see that the
amplitude once again can be found for various fundamental
frequencies and orders using one FFT, this time, however,
we are not ignoring the noise color. Inserting this variance
estimate into (20), we get

L(θ) = −N lnπ − 2N ln σ̂k − N, (23)

which then has to be evaluated for different fundamental
frequencies and orders. Now we can also clearly see the
problem that was pointed out in Section 2. As the orderk is
increased, the log-likelihood too is increased and therefore
the maximum likelihood estimator will lead to the choice
of the highest possible order. Therefore, the log-likelihoods
have to be combined with an order-dependent penalty terms
as was done in (9). Specifically, we get the estimator

θ̂ = arg max
θ

2L(θ) − |θ| ln (2N) . (24)

It is worth noting that, because the white noise case is so
much simpler than the colored case, the estimator presented
in this section may be preferred over the colored noise es-
timator in real-time applications even if the noise is known
not to be completely white as it may still provide adequately
accurate estimates.
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Fig. 1. Spectrogram of voiced speech signal in AR(2) noise
(top) and estimated fundamental frequencies (solid) and or-
ders (dotted) (bottom) for an SNR of 40 dB.
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Fig. 2. Spectrogram of music signal, a trumpet, in AR(2)
noise (top) and estimated fundamental frequencies (bottom)
for an SNR of 40 dB.

5. SOME EXAMPLES

We start out by briefly reporting on some observations that
we have made regarding the use of the colored noise es-
timator versus the much simpler white noise estimator. It
was observed that the estimator based on the white noise
assumption generally works well even for the colored noise
case. This can be explained by some results on general si-
nusoidal frequency estimation for colored Gaussian noise;
in [12] it was shown that the estimator based on the white
noise assumption, the nonlinear least-squares estimator,is
actually asymptotically efficient also for the colored noise



case. Therefore, one would expect the same to hold for the
fundamental frequency estimation problem. However, we
have observed the order estimate to be erroneous when the
white noise estimator is applied to colored noise. Particu-
larly, the white noise estimator was observed to consistently
report orders different from zero when no harmonic content
could be observed in the signal. This can be explained from
the following: the joint estimation of the signal model pa-
rameters and the order requires that the likelihoods be calcu-
lated and this depends on the inverse noise covariance ma-
trix. We will now proceed to illustrate the application of the
proposed estimator to a speech signal. Speech signals can
be modeled using the model in (4) with the harmonics rep-
resenting voiced speech and the colored noise representing
unvoiced speech. In the top panel of Figure 1, a spectro-
gram of the speech signal in auto-regressive Gaussian noise,
here a 2nd order auto-regressive process added at a signal-
to-noise ratio (SNR) of 40 dB, is shown while at the bottom,
the estimated fundamental frequency and the order is de-
picted. Here, the SNR is defined as10 log10(σ̄

2/σ2), with
σ̄2 andσ2 being the power of the speech and noise signals,
respectively. When some of the mid-frequency harmonics
are missing, or buried in noise, the estimator estimates a low
order but the correct fundamental frequency. In Figure 2
the fundamental frequencies as estimated by our method are
shown in the bottom panel for the music signal having the
spectrogram in the top panel. As before, a 2nd order auto-
regressive noise is added to the harmonic signal, a trumpet,
with an SNR of 40 dB. As can be seen, the proposed method
estimates the expected fundamental frequency in stationary
regions. Interestingly, the method can be observed to fail in
transition regions where, due to the impulse response of the
room, multiple fundamental frequencies can be observed si-
multaneously. This can generally be attributed to the signal
model in (4) being invalid for multiple harmonic sources.

6. CONCLUSION

A method for estimation of the parameters of a set of har-
monically related sinusoids in colored Gaussian noise has
been presented. The method, which is based on maximum
likelihood, estimates the number of sinusoids, the funda-
mental frequency, the amplitude and phase of the individual
harmonics, the noise covariance matrix and its inverse in a
computationally efficient manner. Specifically, the inverse
of the noise covariance matrix is computed recursively us-
ing the matrix inversion lemma. For the white noise case,
the method has a very efficient implementation requiring
only one FFT per segment. Examples of the application of
the proposed method to analysis of speech and music sig-
nal have been given. These show that the fundamental fre-
quency can be estimated in an accurate and robust manner
using the proposed method.
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