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Reparametrizations of Continuous Paths

Ulrich Fahrenberg Martin Raussen∗

1 Introduction and Outline

1.1 Introduction

In elementary differential geometry, the most basic objects studied (after points perhaps)
are paths, i.e., differentiable maps p : I →

� n defined on the closed interval I = [0, 1].
Such a path is called regular if p′(t) 6= 0 for all t ∈ ]0, 1[. A reparametrization of the
unit interval I is a surjective differentiable map ϕ : I → I with ϕ′(t) > 0 for all t ∈ ]0, 1[,
i.e. a (strictly increasing) self-diffeomorphism of the unit interval.

Given a path p : I →
� n and a reparametrization ϕ : I → I, the paths p and

p ◦ ϕ represent the same geometric object. In differential geometry one investigates
equivalence classes (identifying p with p ◦ ϕ for any reparametrization ϕ) and their
invariants, like curvature and torsion.

Motivated by applications in concurrency theory, a branch of theoretical Computer
Science trying to model and to understand the coordination between many different
processors working on a common task, we are interested in continuous paths p : I →
X in more general topological spaces up to more general reparametrizations ϕ : I →
I. When the state space of a concurrent program is viewed as a topological space
(typically a cubical complex; cf. [2]), “directed” paths in that space respecting certain
“monotonicity” properties correspond to executions. A nice framework to handle directed
topological spaces (with an eye to homotopy properties) is the concept of a d-space
proposed and investigated by Marco Grandis in [4]. Essentially, a topological space comes
equipped with a subset of preferred d-paths in the set of all paths in X, cf. Definition
4.1. Note in particular, that the reverse of a directed path in general is not directed; the
slogan is “breaking symmetries”.

We do not try to capture the quantitative behaviour of executions, corresponding to
particular parametrizations of paths, but merely the qualitative behaviour, such as the
order of shared resources used, or the result of a computation. Hence the object of study
are paths up to certain reparametrizations which

1. do not alter the image of a path, and

2. do not alter the order of events.

We are thus interested in general paths in topological spaces, up to surjective repara-
metrizations ϕ : I → I which are increasing (and thus continuous!—cf. Lemma 2.7), but
not necessarily strictly increasing. Two paths are considered to have the same behaviour
if they are reparametrization equivalent, cf. Definition 1.2.
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To understand this equivalence relation, we have to investigate the space of all repara-
metrizations which includes strange (e.g. nowhere differentiable) elements. Nevertheless,
it enjoys remarkable properties: It is a monoid, in which compositions and factorizations
can be completely analysed through an investigation of stop intervals and of stop values.
The quotient space after dividing out the self-homeomorphisms has nice algebraic lattice
properties.

A path is called regular if it does not “stop”; and we are able to show that the space of
general paths modulo reparametrizations is homeomorphic to the space of regular paths
modulo increasing auto-homeomorphisms of the interval. Hence to investigate properties
of the former, it suffices to consider the latter. This is a starting point in the homotopy
theoretical and categorical investigation of invariants of d-spaces in [10].

This is essentially an elementary article. Almost all concepts and proofs can be un-
derstood with an undergraduate mathematical background. There are certain parallels
to the elementary theory of distribution functions in probability theory, cf. e.g. [9]. The
flavour is nevertheless different, since continuity (no jumps, i.e., surjectivity) is essential
for us. For the sake of completeness, we have chosen to include also elementary results
and their proofs (some of which may be well-known).

Marco Grandis has studied piecewise linear reparametrizations in [5] for different
purposes, but also in the framework of “directed algebraic topology”.

1.2 Basic definitions

Let always X denote a Hausdorff topological space and I = [0, 1] the unit interval. The
set of all (nondegenerate) closed subintervals of I will be denoted by P[ ](I) = {[a, b] |
0 ≤ a < b ≤ 1}. Let p : I → X denote a continuous map (a path), and remark that the
pre-image p−1(x) of any point x ∈ X is a closed set.

Definition 1.1 1. An interval J ∈ P[ ](I) is called a p-stop interval if the restriction
p |J is constant and if J is a maximal interval with that property.

2. The set of all p-stop intervals will be denoted as ∆p ⊆ P[ ](I). Remark that the
intervals in ∆p are disjoint and that ∆p carries a natural total order. We let
Dp :=

⋃

J∈∆p
J ⊂ I denote the stop set of p.

3. A path p : I → X is called regular if ∆p = ∅ or if ∆p = {I} (no stop or constant).

4. A continuous map ϕ : I → I is called a reparametrization if ϕ(0) = 0, ϕ(1) = 1
and if ϕ is increasing, i.e. if s ≤ t ∈ I implies ϕ(s) ≤ ϕ(t).

Remark that neither a regular path nor a reparametrization need be injective.

Definition 1.2 Two paths p, q : I → X are called reparametrization equivalent if there
exist reparametrizations ϕ, ψ such that p ◦ ϕ = q ◦ ψ.

We will show later (Corollary 3.2) that reparametrization equivalence is indeed an
equivalence relation. As in differential geometry, we are interested in equivalence classes
of paths modulo reparametrization equivalence. We call these equivalence classes traces1

in the space X. In particular, we would like to know whether every trace can be rep-
resented by a regular path. The (positive) answer to this question in Proposition 3.6 is
based on a closer look at the space of reparametrizations of the unit interval.

1with a geometric meaning; the notion has nothing to do with algebraic traces.
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1.3 Outline of the article

Section 2 contains a detailed study of reparametrizations (in their own right) and char-
acterizes their behaviour essentially by an order-preserving bijection between the set of
stop intervals and the set of stop values (Definition 1.1 and Proposition 2.13). This
pattern analysis allows to study compositions, and in particular, factorizations in the
monoid of reparametrizations from an algebraic point of view. In particular, Proposi-
tion 2.18 shows that the space of all reparametrizations “up to homeomorphisms” is a
distributive lattice isomorphic to the lattice of countable subsets of the unit interval.

Section 3 investigates the space of all paths in a Hausdorff space up to reparamet-
rization equivalence. The main result (Theorem 3.5) states that two quotient spaces
are in fact homeomorphic: the orbit space arising from the action of the group of all
oriented homeomorphisms of the unit interval on the space of regular paths (with given
end points, cf. Definition 1.1) on the one side, and the space of all paths with given end
points up to reparametrization equivalence (Definition 1.2); in particular, every trace
can be represented by a regular path. It might be a bit surprising that the proof makes
essential use of the results on factorizations of reparametrizations from Section 2.

The final Section 4 deals with spaces of directed traces (directed paths up to repara-
metrization equivalence) on a d-space (cf. Section 1.1 and Definition 4.1). Corollary 4.5
confirms that the result of Theorem 3.5 has an analogue for directed paths in saturated
(cf. Definition 4.3) d-spaces. This result is one of the starting points for the (categorical)
investigations into invariants of directed spaces in [10]. Furthermore, it is shown how to
relate reparametrization equivalence of directed paths to thin dihomotopies.

2 Reparametrizations

2.1 Stop and move intervals, stop values, stop maps

The following definitions (extending Definition 1.1) and elementary results will mainly
be used for reparametrizations. For the sake of generality, we will state and prove them
for general paths p : I → X in a Hausdoff space X.

Definition 2.1 1. An element c ∈ X is called a p-stop value if there is a p-stop
interval J ∈ ∆p with p(J) = {c}. We let Cp ⊆ X denote the set of all p-stop
values.

2. The map p induces the p-stop map Fp : ∆p → Cp with Fp(J) = c⇔ p(J) = {c}.

3. An interval J ∈ P[ ](I) is called a p-move interval if it does not contain any p-stop
interval and if it is maximal with that property.

4. The set of all p-move intervals will be denoted Γp ⊆ P[ ](I), a collection of disjoint
closed intervals. We let Op :=

⋃

J∈Γp
intJ ⊆ I denote the p-move set.

Lemma 2.2 For any path p : I → X, the sets of p-stop intervals ∆p, of p-move intervals
ΓP and of p-stop values Cp are at most countable.

Proof: The set Op and
⋃

J∈∆p
intJ of interior points in move, resp. stop intervals are

open subsets of I and thus unions of at most countably many maximal open intervals.
Their closures constitute Γp, resp. ∆p. The stop value set Cp is at most countable as
image of ∆p under the p-stop map Fp. �
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Remark 2.3 This result is similar in spirit to the assertion (relevant for distribution
functions in probability theory) that a nondecreasing function to an interval has at most
countably many discontinuity points, cf. e.g. [9, Sec. 11].

It is important to analyse the boundary ∂Dp of the p-stop set: It can be decomposed
as ∂Dp = ∂1Dp ∪ ∂2Dp as follows:

• ∂1Dp = ∂Dp ∩Dp – the set of all boundary points of intervals in Dp, an at most
countable set;

• ∂2Dp = ∂Dp \Dp – the set of all (honest) accumulation points of these boundary
points. ∂2Dp can be uncountable; compare Ex. 2.11.

The move set Op is the complement Op = I \Dp ⊂ I of the closure of Dp. It does
occur that Op is empty; compare Ex. 2.11.

The following elementary technical lemma concerning stop sets will be needed in the
proof of Proposition 3.6.

Lemma 2.4 Let p : I → X denote a path and U ⊆ X an open subspace. Then p−1(U) is
a union of (at most) countably many disjoint open intervals, and for any open interval
]a, b[ in p−1(U), [a, c] 6⊆ Dp and [c, b] 6⊆ Dp for every c ∈ ]a, b[.

Proof: As an open subset of I, p−1(U) is a union of (at most) countably many disjoint
open intervals. Let ]a, b[ be one of these, and let c ∈ ]a, b[. Then p(c) ∈ U, p(a) 6∈
U, p(b) 6∈ U . In particular, p is neither constant on [a, c] nor on [c, b]. �

2.2 Spaces of reparametrizations

Within the set of all self-maps of the unit interval I fixing its boundary points, we study
the following subsets:

Definition 2.5 • Mon+(I) := {ϕ : I → I | ϕ increasing, ϕ(0) = 0, ϕ(1) = 1};

• Rep+(I) := {ϕ ∈ Mon+(I) | ϕ continuous } –
the set of all increasing reparametrizations;

• Homeo+(I) = {ϕ ∈ Rep+(I) | ϕ strictly increasing } –
the set of all auto-homeomorphisms of the interval.

Note that Homeo+(I) ⊂ Rep+(I) ⊂ Mon+(I). The compact-open topology on the
space of all continuous maps C(I, I) induces topologies on the latter two spaces Rep+(I)
and Homeo+(I). Composition ◦ of maps turns Mon+(I) into a monoid, Rep+(I) into a
topological monoid and Homeo+(I) into a topological group (consisting of the units in
Rep+(I)).

All three mapping sets come equipped with a natural partial order: ϕ ≤ ψ if and
only if ϕ(t) ≤ ψ(t) for all t ∈ I, and they form complete lattices with respect to ≤.
Least upper bounds, resp. greatest lower bounds are given by the max, resp. min of the
functions involved:

(ϕ ∨ ψ)(t) := max{ϕ(t), ψ(t)} (ϕ ∧ ψ)(t) := min{ϕ(t), ψ(t)}

Lemma 2.6 1. All three sets Mon+(I),Rep+(I),Homeo+(I) are convex. In partic-
ular, the latter two spaces are contractible.
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2. Any two reparametrizations ϕ,ψ ∈ Rep+(I) are d-homotopic (cf. Definition 4.7 for
the general definition), i.e. there exists a reparametrization ϕ,ψ ≤ η ∈ Rep+(I)
and increasing paths G,H : ~I → Rep+(I) with G(0) = ϕ,H(0) = ψ,G(1) =
H(1) = η.

Proof: 1. The sets are closed under convex combinations (1− s)ϕ+ sψ.

2. For η = ϕ ∨ ψ, define G(s) = (1− s)ϕ+ sη and H(s) = (1− s)ψ + sη. �

A characterization of the elements of Mon+(I), Rep+(I), and Homeo+(I) is achieved
in the elementary

Lemma 2.7 Let ϕ ∈ Mon+(I).

1. For every interval J ⊆ I, the pre-image ϕ−1(J) ⊆ I is an interval, as well. In
particular, ϕ−1(a) is an interval (possibly degenerate) for every a ∈ I.

2. ϕ ∈ Rep+(I) if and only if ϕ is surjective.

3. ϕ ∈ Homeo+(I) if and only if ϕ is bijective.

Proof: The only non-obvious statement is that surjectivity of ϕ ∈ Mon+(I) implies
continuity; we show that the preimage ϕ−1(J) of an open interval J ⊂ I is open:

Let d ∈ ϕ−1(J) and ϕ(d) = c ∈ J . Then there exist ε > 0 such that [c − ε, c +
ε] ⊆ J and d1, d2 ∈ I such that ϕ(d1) = c − ε, ϕ(d2) = c + ε. Monotonicity implies:
ϕ([d1, d2]) ⊆ [c − ε, c + ε] and d′ 6∈ [d1, d2] ⇒ ϕ(d) 6∈ ]c − ε, c + ε[. Surjectivity implies:
ϕ([d1, d2]) = [c− ε, c+ ε] ⊆ J ; hence d has an open neighbourhood in ϕ−1(J). �

The following information about images of intervals under reparametrizations is
needed in the proof of Propostion 3.6:

Lemma 2.8 Let a, b ∈ I and ϕ ∈ Rep+(I). Then

1. ϕ([a, b]) = [ϕ(a), ϕ(b)].

2. ]ϕ(a), ϕ(b)[ ⊆ ϕ(]a, b[) ⊆ [ϕ(a), ϕ(b)].

3. ϕ(]a, b[) 6= ]ϕ(a), ϕ(b)[ if and only if there is c ∈ ]a, b[ such that [a, c] ⊆ Dϕ or
[c, b] ⊆ Dϕ.

Proof: Only the last assertion requires proof. If [a, c] ⊆ Dϕ for some c ∈ ]a, b[, then
ϕ(a) = ϕ(c) ∈ ϕ(]a, b[); similarly, if [c, b] ⊆ Dϕ, then ϕ(b) ∈ ϕ(]a, b[). For the reverse
direction, assume ϕ(a) ∈ ϕ(]a, b[), and let c ∈ ]a, b[ such that ϕ(a) = ϕ(c). Then
ϕ(a) ≤ ϕ(t) ≤ ϕ(c) = ϕ(a) for any t ∈ [a, c], hence [a, c] ⊆ Dϕ. The other implication is
similar. �

The following result deals with the relative size of the homeomorphisms within the
reparametrizations. It will be needed in the proof of the main result in Section 3.

Lemma 2.9 In the topology induced from the compact-open topology, both Homeo+(I)
and its complement are dense in Rep+(I).

5



1
3

2
3

1
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Figure 1: Reparametrization ψ –, homeomorphism ϕ−− and reparametrization ρ · · ·

Proof: The compact-open topology is induced by the supremum metric on the space
C(I, I) of all self-maps of the interval. Hence, for a given ψ ∈ Rep+(I) and n ∈ N, we
need to construct ϕ ∈ Homeo+(I) such that ‖ψ − ϕ‖ ≤ 1

n
: Choose ck, 0 ≤ k ≤ n, such

that c0 = 0, cn = 1 and ψ(ck) = k
n
; clearly ck is strictly increasing with k. Hence the

piecewise linear map ϕ given by ϕ(ck) = k
n

is contained in Homeo+(I). Furthermore, for

x ∈ [ck, ck+1], k < n, we have k
n
≤ ϕ(x), ψ(x) ≤ k+1

n
, and thus ‖ψ − ϕ‖ ≤ 1

n
.

For the same ψ ∈ Rep+(I) and the same definition for c0 and c1 as above, let
ρ ∈ Rep+(I) \Homeo+(I) be given by ρ(x) = ψ(x), x ≥ c1; on the interval [0, c1], we let
ρ be the piecewise linear map with ρ(0) = ρ( c12 ) = 0 and ρ(c1) = ψ(c1). �

2.3 Classification of reparametrizations

In the following, we are mainly interested in an investigation of the algebraic monoid
structure on Rep+(I) induced by composition ◦ of maps. Note that there is another
structure on the sets (spaces) Mon+(I), Rep+(I), and Homeo+(I), induced by concate-
nation of paths

(ϕ,ψ) 7→ ϕ ∗ ψ; (ϕ ∗ ψ)(t) =

{

ϕ(2t) for t ≤ 1
2

ψ(2t− 1) for t > 1
2

This composition does not induce a monoidal structure on these sets, as concatenation
is not associative and does not have units “on the nose”.

We wish to describe a reparametrization ϕ ∈ Rep+(I) by its ϕ-stop map Fϕ : ∆ϕ →
Cϕ illustrated in Fig. 2 and by the restriction of ϕ to its ϕ-move set Oϕ ⊆ I; cf. Definition
2.1.

All countable sets in the interval are stop value sets

Lemma 2.2 tells us that the ϕ-stop value set Cϕ ⊂ I of a reparametrization ϕ is an at
most countable orderered subset of I. Remark also that automorphisms ϕ ∈ Homeo+(I)
are characterized by the properties ∆ϕ = Cϕ = ∅, resp. Oϕ = I.

Which (countable) subsets of the unit interval can be realized as ϕ-stop sets of some
ϕ ∈ Rep+(I)? It is easy to construct (piecewise linear) reparametrizations with a finite
set of stop values. Rather surprisingly, this construction can be extended to arbitrary
(at most) countable sets of stop values:

Lemma 2.10 For every countable set C ⊂ I, there is a reparametrization ϕ ∈ Rep+(I)
with Cϕ = C.

6



c1
c2

c3

∆1 ∆2 ∆3

Figure 2: Stop intervals and stop values

Proof: Let C = {c1, c2, . . . } ⊂ I denote an injective enumeration of the countable set
C. We shall first construct a uniformly convergent sequence of piecewise linear maps
ϕn ∈ Rep+(I), n ≥ 0 with C(ϕn) = {c1, . . . , cn} and thus ∆ϕn = {ϕ−1

n (ci)|1 ≤ i ≤ n}.
Let [x−i , x

+
i ] = ϕ−1

n (ci), 1 ≤ i; moreover, x−0 = 0, x+
0 = 1.

We start with ϕ0 = idI . Inductively, assume ϕn given as above. Among the x±j , 1 ≤

j ≤ n, choose x+
i , x

−
k such that cn+1 ∈ ϕ(]x+

i , x
−
k [) and such that the restriction of ϕn on

that interval is strictly increasing (and linear). The map ϕn+1 will differ from ϕn only on
(the interior of) that subinterval [ci, ck]. The linear map on that interval is replaced by
a piecewise linear map, which comes in three pieces. The middle one takes the constant
value cn+1 on a subinterval [x−n+1, x

+
n+1]. On the left and right subinterval, we connect

linearly to the values ci, ck on the boundaries.

cn+1

x+

i
x−

k
x−

n+1 x+

n+1

Figure 3: Inserting the stop value cn+1

The interval [x−n+1, x
+
n+1] is chosen so small that ||ϕn+1−ϕn||∞ < 1

2n ensuring uniform
convergence of the maps ϕn to a continuous map ϕ ∈ Rep+(I). For this map ϕ, we have
∆ϕ = {[x−n , x

+
n ]|n > 0} and Cϕ = C. �

Example 2.11 If one chooses a dense countable subset C ⊂ I, e.g., C = � ∩ I, then
ϕ cannot be injective on any non-trivial interval; hence Oϕ = ∅ and Dϕ = I. The
(uncountable) complement I \Dϕ = ∂2Dϕ does not contain any non-trivial interval.
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Classification

What are the essential data to describe a reparametrization in terms of stop maps and
move sets?

Proposition 2.12 Let ϕ ∈ Rep+(I) denote a reparametrization.

1. The reparametrization ϕ induces an order-preserving bijection Fϕ : ∆ϕ → Cϕ.
The restriction ϕ |J : J → ϕ(J) to every move interval J ∈ Γϕ (Definition 2.1) is
an (increasing) homeomorphism onto its image.

2. The restriction ϕ |Dϕ : Dϕ → Cϕ of ϕ to Dϕ is onto.

3. Two reparametrizations ϕ,ψ ∈ Rep+(I) with ∆ϕ = ∆ψ, Cϕ = Cψ, Fϕ = Fψ agree
on Dϕ; if, moreover, ϕ |Oϕ = ψ |Oψ , then ϕ and ψ agree on all of I.

Proof: 1. The first statement is obvious from the definitions. For the second, note
that J ∩Dϕ = ∂J (or empty) for every such interval J .

2. Every element b ∈ Cϕ is the limit of a monotone sequence of elements in Cϕ which
is the image of a monotone and bounded sequence of elements in Dϕ; the limit of
such a sequence exists and maps to b under ϕ.

3. By definition, ϕ and ψ agree on Dϕ; by continuity, they have to agree on its closure
Dϕ, as well. The last statement is obvious. �

A reparametrization ϕ ∈ Rep+(I) is thus uniquely characterized by its stop map
Fϕ : ∆ϕ → Cϕ and by a (fitting) collection of homeomorphisms ϕ|J : J → ϕ(J), J ∈ Γϕ.
Now we ask which conditions an “abstract” stop map has to satisfy in order to arise
from a genuine reparametrization. We start with the following data:

• ∆ ⊆ P[ ](I) denotes an (at most) countable subset of disjoint closed intervals –
with a natural total order.

• C ⊆ I denotes a subset with the same cardinality as ∆.

• F : ∆ → C denotes an order-preserving bijection.

Let ∆−,∆+ ⊆ I denote the set of lower, resp. upper boundaries of intervals in ∆.
Define D :=

⋃

J∈∆ ∆ ⊂ I.
Let O = I \D. Since O is open, it is a disjoint union O =

⋃

J∈Γ J of maximal open
intervals indexed by an (at most) countable set Γ – possibly empty.

For every map G : ∆ → C we define a map ϕG : D → C by ϕG(t) = G(J) ⇔ t ∈ J .
If F is order-preserving, then ϕF is increasing. Moreover:

Proposition 2.13 1. A reparametrization ϕ ∈ Rep+(I) satisfies the following for
every pair of monotonely converging sequences xn ↑ x, xn ∈ (∆ϕ)+, yn ↓ y, yn ∈
(∆ϕ)−:

x = y ⇒ limϕ(xn) = limϕ(yn), (1)

x < y ⇒ limϕ(xn) < limϕ(yn), (2)

x = 1 ⇒ limϕ(xn) = 1, (3)

y = 0 ⇒ limϕ(yn) = 0, (4)

8



2. For every order preserving bijection F : ∆ → C with ϕF satisfying (1)–(4) above
for every pair of monotonely converging sequences xn ↑x, xn ∈ ∆+, yn ↓y, yn ∈ ∆−,
there exists a reparametrization ψ ∈ Rep+(I) with ∆ψ = ∆, Cψ = C and Fψ =
F . The set of all such reparametrizations is in one-to-one correspondence with
∏

Γ Homeo+(I).

Proof: 1. By continuity, limϕ(xn) = ϕ(x) and limϕ(yn) = ϕ(y); this settles all but
(2). Suppose ϕ(x) = ϕ(y) in (2). Then [x, y] is contained in a stop interval, hence
x 6∈ ∆+ and y 6∈ ∆−.

2. First, we extend ϕF to D: there is a unique continuous (and increasing!) extension
of ϕF from D to D: limxn↑x ϕF (xn) exists and is independent of the sequence xn by
monotonicity and agrees with limyn↓x ϕF (yn) by condition (1) of Proposition 2.13.
Moreover, we let ϕF (0) = 0 and ϕF (1) = 1, in accordance with (3) and (4) above.

Let J = ]aJ−, a
J
+[ ∈ Γ denote a maximal open interval. Its boundary points aJ−, a

J
+

are contained in ∂D unless possibly if aJ− = 0 and/or aJ+ = 1, in which case
we are covered by (3) and/or (4) above. In conclusion, ϕF is defined on ∂J .
Moreover, ϕF (aJ−) < ϕF (aJ+), since F is order preserving and injective and because
of condition (2) above.

Hence, every collection of strictly increasing homeomorphisms between [aJ−, a
J
+] and

[ϕF (aJ−), ϕF (aJ+)] – preserving endpoints – extends ϕF to a continuous increasing
map ψ : I → I with ∆ψ = ∆, Cψ = C and Fψ = F . The set of all collections
of such homeomorphisms is easily seen to be in one-to-one correspondence with
∏

Γ Homeo+(I). �

2.4 Compositions and Factorizations

We shall now investigate the behaviour of Rep+(I) under composition and factoriza-
tion in view of the description and classification from Proposition 2.13 above. We
need to introduce the following notation: For a (continuous) map ψ : I → I, let
ψ∗, (ψ

−1)∗ : P[ ](I) → P[ ](I) denote the maps induced on subintervals: ψ∗(J) = ψ(J) ∈
P[ ](I), (ψ

−1)∗(J) = ψ−1(J).

Composition of reparametrizations

The results below follow easily from the definitions of stop-intervals, stop-values and
stop-maps:

Lemma 2.14 Let ϕ,ψ ∈ Rep+(I) denote reparametrizations with associated stop maps
Fϕ : ∆ϕ → Cϕ, Fψ : ∆ψ → Cψ. Then

1. ∆ϕ◦ψ = {J ∈ ∆ψ | Fψ(J) 6∈ Dϕ} ∪ (ψ−1)∗(∆ϕ),

2. Cϕ◦ψ = ϕ(Cψ) ∪ Cϕ,

3. Fϕ◦ψ : ∆ϕ◦ψ → Cϕ◦ψ is given by Fϕ◦ψ(J) =

{

ϕ(Fψ(J)), J ∈ ∆ψ

Fϕ(ψ∗(J)), J ∈ (ψ−1)∗(∆ϕ).

�

Corollary 2.15 Let ϕ,ψ ∈ Rep+(I) as in Lemma 2.14. If ψ ∈ Homeo+(I), resp. ϕ ∈
Homeo+(I), then
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1. ∆ϕ◦ψ = (ψ−1)∗(∆ϕ), resp. ∆ϕ◦ψ = ∆ψ,

2. Cϕ◦ψ = Cϕ, resp. Cϕ◦ψ = ϕ(Cψ),

3. Fϕ◦ψ = Fϕ ◦ ψ∗ : ψ−1
∗ (∆ϕ) → Cϕ, resp. Fϕ◦ψ = ϕ ◦ Fψ : ∆ψ → ϕ(Cψ).

�

Factorizations of reparametrizations

Also factorizations can be studied effectively using stop-data of the reparametrizations
involved. It turns out that the following result on factorizations on the right will be an
essential tool in Section 3:

Proposition 2.16 Let α,ϕ ∈ Rep+(I) denote reparametrizations.

1. There exists a lift ψ ∈ Rep+(I) in the diagram

I

ϕ

I
α

ψ

I

(5)

if and only if Cϕ ⊆ Cα.

2. If Cϕ ⊆ Cα and C is any (at most) countable set with ϕ−1(Cα \ Cϕ) ⊆ C ⊆
ϕ−1(Cα \ Cϕ) ∪Dϕ, then there exists such a lift ψ ∈ Rep+(I) with Cψ = C.
In particular, if Cϕ = Cα, there exist a lift ψ ∈ Homeo+(I).

3. Assume Cϕ ⊆ Cα and let ∆1 := F−1
α (Cϕ) ⊆ ∆α. Then the space of all lifts

{ψ | α = ϕ◦ψ} ⊆ Rep+(I) is in one-to-one-correspondence with
∏

L∈∆1
Rep+(L) =

∏

∆1
Rep+(I).

Proof: The “only if” part of 1. follows immediately from Lemma 2.14.2. For the “if”
part, we analyse first the set-theoretic requirements to a lift ψ on relevant subintervals.
To this end, decompose ∆α =: ∆1 t∆2 with ∆1 := F−1

α (Cϕ) and ∆2 = F−1
α (Cα \ Cϕ),

and Dα = D1 t D2 with D1 :=
⋃

J∈∆1
and D2 =

⋃

J∈∆2
. We construct a lift ψ : I =

D1 ∪D2 ∪Oα → I by considering each of these three subsets of I:
Remark that ∆2 necessarily has to be a subset of ∆ψ and that for J ∈ ∆2, Fψ(J)

has to be the unique element of ϕ−1(Fα(J)).
On any move interval K ∈ Γα (cf. Definition 2.1.4), the restriction α |K : K →

α(K) is an increasing homeomorphism; in particular, α(K) ∩ Cα consists at most of
the two boundary points. Hence, the restriction ϕ |ϕ−1α(K) : ϕ−1α(K) → α(K) is
also an increasing homeomorphism, since α(K) ∩ Cϕ ⊆ α(K) ∩ Cα again consists at
most of the two boundary points. The restriction of ψ to K has to be defined as
ψ |K = (ϕ |ϕ−1αK)−1 ◦ α |K ; it is onto ϕ−1αK.

On any interval L ∈ ∆1, the restriction of ψ to L can be defined as any increasing
continuous map ψ |L : L→ F−1

ϕ (Fα(L)) ∈ ∆ϕ respecting the boundary points.

The map ψ : ~I → ~I thus defined altogether is by definition a lift, it is increasing and
surjective. Lemma 2.7.2 settles 1.

The only freedom in the construction of a lift ψ is the choice of increasing continuous
maps on the intervals L ∈ ∆1 (with given end points). As in Lemma 2.10, we can
construct the set of stop values (on D1) to be any countable subset of Dϕ. To these one
has of course to add the preimages of the stop values in Cα \Cϕ. This settles 2. and 3.�
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We will also make use of the following result on factorizations on the left.

Proposition 2.17 Let α,ϕ ∈ Rep+(I) denote reparametrizations.

1. There exists a factorization with ψ ∈ Rep+(I) in the diagram

I

ϕ

α
I

I

ψ

(6)

if and only if there exists a map iϕα : ∆ϕ → ∆α such that J ⊆ iϕα(J) for every
J ∈ ∆ϕ. (∆ϕ is a refinement of ∆α).

2. If it exists, the factor ψ ∈ Rep+(I) is uniquely determined and satisfies

• Cψ = Cα \ {Fα(J) | J ∈ ∆α ∩∆ϕ},

• ∆ψ = {ϕ(K) | K ∈ ∆α \ iϕα(∆ϕ)},

• if K ∈ ∆ψ, then Fψ(K) is the unique element of α(ϕ−1(K)), K ∈ ∆ψ.

Proof: A lift ψ as in (6) has to satisfy ψ(x) := α(ϕ−1(x)). It is well-defined (and then
unique and increasing) if and only if the condition of Proposition 2.17 is satisfied. Since
α is onto, ψ is onto as well, and thus continuous by Lemma 2.7.2. The description of
the invariants of ψ follows by inspection. �

2.5 The algebra of reparametrizations up to homeomorphisms

Consider the group action Rep+(I) × Homeo+(I) → Rep+(I) given by composition on
the right. An element in the quotient space Rep+(I)/Homeo+(I) preserves the set of stop
values, whereas the exact distribution of stop intervals over the interval is factored out.
Using the factorization tools from Section 2.4 above, this intuition will be made more
formal in Propositions 2.18 and 2.22 below.

Consider the partial order on Rep+(I) (different from the one considered in Sec-
tion 2.2) given by α ≤ β ⇔ ∃ ψ ∈ Rep+(I) : β = α ◦ ψ (⇔ Cα ⊆ Cβ by Proposition
2.16.1). This partial order factors to yield a partial order on the quotient Rep+(I)/Homeo+(I)

since β = α ◦ ψ = (α ◦ ϕ) ◦ (ϕ−1 ◦ ψ) for ϕ ∈ Homeo+(I).
Moreover, let us consider the set Pc(I) of countable subsets of I with the partial

order given by inclusion.

Proposition 2.18 The map C : Rep+(I)/Homeo+(I) → Pc(I) given by C(α) = Cα is an
order-preserving bijection.

Proof: By Corollary 2.15.2, the map C is well-defined; by Lemma 2.14, it is order-
preserving, and by Lemma 2.10, it is surjective. Given two reparametrizations with the
same set of stop values, Proposition 2.16 shows that one can construct a lift ψ from one
into the other that is a homeomorphism (Cψ = ∅); as a consequence, C is also injective.�

Proposition 2.19 For every ϕ1, ϕ2 ∈ Rep+(I), there exist ψ1, ψ2 ∈ Rep+(I) completing
the diagram:

I
ψ1

ψ2

I

ϕ1

I ϕ2
I

with Cϕ1◦ψ1
= Cϕ2◦ψ2

= Cϕ1
∪ Cϕ2

.
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Proof: Using Lemma 2.10, construct ψ1 ∈ Rep+(I) with Cψ1
= ϕ−1

1 (Cϕ2
\ Cϕ1

) and
hence Cϕ1◦ψ1

= Cϕ1
∪ Cϕ2

(cf. Lemma 2.14.2). Using Proposition 2.16, construct a lift
ψ2 in the diagram

I

ϕ2

I
ϕ1◦ψ1

ψ2

I

with Cψ2
= ϕ−1

2 (Cϕ1
\ Cϕ2

), i.e., without introducing superfluous extra stop values. �

Remark 2.20 In general, it is not possible to complete the dual diagram

I
ϕ1

ϕ2

I

ψ1

I
ψ2

I

since Dψ1◦ϕ1
= Dψ2◦ϕ2

⊇ Dϕ1
∪Dϕ2

. The latter set might be the entire interval I which
is impossible for a reparametrization.

Is there a natural way to construct from two reparametrizations a third one (a com-
mon factor) with a set of stop values that is just the intersection of the sets of stop
values of the given ones? In order to have the stop intervals to come in a proper order, it
is necessary to modify one of the reparametrizations by a homeomorphism first (which
is not a problem if one works in the quotient Rep+(I)/Homeo+(I)!)

Proposition 2.21 For every ϕ1, ϕ2 ∈ Rep+(I), there exist ρ ∈ Homeo+(I), ψ1, ψ2, ϕ ∈
Rep+(I) completing the diagram

I
ϕ1

ρ

ϕ

I

I

ϕ2

I I
ψ2

ψ1

and such that Cϕ = Cϕ1
∩ Cϕ2

.

Proof: Define ∆ϕ := F−1
ϕ1

(Cϕ1
∩Cϕ2

) ⊆ ∆ϕ1
, Cϕ := Cϕ1

∩Cϕ2
and define Fϕ : ∆ϕ → Cϕ

as the restriction of Fϕ1
. By Proposition 2.13, there exists ϕ ∈ Rep+(I) with Fϕ as its

stop map. By Proposition 2.17, there exists a lift ψ1 ∈ Rep+(I) in the right triangle of
the diagram above.

In general, the reparametrization ϕ constructed above does not factor over ϕ2 imme-
diately, cf. Proposition 2.17. We need a ”correction” homeomorphism ρ ∈ Homeo+(I)
whose restriction to Dϕ fits into

Dϕ
ρ

Fϕ

Dϕ2

Fϕ2

Cϕ
⊆

Cϕ2
.
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On intervals J ∈ ∆ϕ, ρ can be chosen as the increasing linear map sending J onto
F−1
ϕ2

(Fϕ(J)) and then extended from Dϕ to I as a homeomorphism as in the proof of
Proposition 2.13. The condition of Proposition 2.17 is now satisfied to guarantee a lift
of ϕ over ϕ2 ◦ ρ in the left triangle of the diagram above. �

Using the bijection from Proposition 2.18, one may introduce binary operations on
the quotient Rep+(I)/Homeo+(I) in a purely algebraic manner, i.e., one may pull back
the operations given by set union and intersection on Pc(I). The results of this section
allow us to give these operations an intrinsic meaning in terms of reparametrizations.
Using the notation from Proposition 2.19, an operation ∨ (”least common multiple”) is
defined by [ϕ1] ∨ [ϕ2] := [ϕ1 ◦ ψ1] = [ϕ2 ◦ ψ2]. Likewise, [ϕ1] ∧ [ϕ2] can be represented
by the reparametrization ϕ from Proposition 2.21. Altogether we obtain:

Proposition 2.22 The operations

∨,∧ : Rep+(I)/Homeo+(I) ×Rep+(I)/Homeo+(I) → Rep+(I)/Homeo+(I)

turn Rep+(I)/Homeo+(I) into a distributive lattice with the class represented by Homeo+(I)
as a global minimum. The map

C : (Rep+(I)/Homeo+(I),∨,∧) → (Pc(I),∪,∩)

from Proposition 2.18 is then an isomorphism of distributive lattices. �

3 Traces

3.1 Regular traces versus traces

In this section we compare several spaces of paths in a Hausdorff space X up to repara-
metrization. Extending Definition 1.1, we get

Definition 3.1 1. A path p : I → X in a topological space X is said to be regular if
∆p = ∅ or if ∆p = {I}.

2. The set of regular paths in X is denoted R(X) and regarded as a subspace of
P (X) = XI with the compact-open topology.

3. The spaces of (regular) paths p starting in x ∈ X and ending in y ∈ X (p(0) = x,
p(1) = y) are denoted by R(X)(x, y) ⊂ P (X)(x, y).

Composition on the right yields a group action of the topological group Homeo+(I)
on R(X) and a monoid action of the topological monoid Rep+(I) on P (X). These
actions respect the decompositions in subspaces R(X)(x, y), resp. P (X)(x, y).

In Definition 1.2, we called paths p, q ∈ Rep+(I) reparametrization equivalent if there
exist reparametrizations ϕ,ψ ∈ Rep+(I) such that p ◦ ϕ = q ◦ ψ.

Corollary 3.2 1. Reparametrization equivalence of paths is an equivalence relation.

2. Two reparametrization equivalent paths are thinly homotopic.

For a definition of thin homotopy see [6]; essentially, a homotopy H : I × I → X
fixing the endpoints is thin if it factors through a tree (the geometric realisation of an
acyclic one-dimensional simplicial set), i.e. if H : I × I → J → X for a tree J . Remark
that reparametrization equivalent paths have the same image: p(I) = q(I) ⊆ X. This
is not necessarily true for thinly homotopic paths; e.g., the cancellation homotopy ([11],
p. 48) between the concatenation of a path and its inverse and the constant path is thin.
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Proof: 1. Reparametrization equivalence is clearly a reflexive and symmetric rela-
tion. For transitivity, let p, q, r ∈ P (X) denote three paths and assume that
p ◦ ϕ = q ◦ ψ and q ◦ ϕ′ = r ◦ ψ′ for reparametrizations ϕ,ϕ′, ψ, ψ′ ∈ Rep+(I).
By Proposition 2.19, there are η, η′ ∈ Rep+(I) such that ψ ◦ η = ϕ′ ◦ η′; hence
p ◦ ϕ ◦ η = r ◦ ψ′ ◦ η′.

2. It is enough to show that p and p ◦ϕ are thinly homotopic for every ϕ ∈ Rep+(I);

consider the homotopy H : I × I → I
p
→ X, H(s, t) = p((1 − s)t + sϕ(t)), that

even factors over I. �

Factoring out the respective equivalence relations given by the actions above, we
arrive at quotient spaces TR(X) = R(X)/Homeo+(I), resp. T (X) = P (X)/Rep+(I) with
subspaces TR(X)(x, y) = R(X)(x, y)/Homeo+(I), resp. T (X)(x, y) = P (X)(x, y)/Rep+(I)

for x, y ∈ X. They are considered as spaces of (regular) traces of paths in X and
should be compared to the notions of curves or regular curves in elementary differential
geometry.

These spaces can be organised in a topological category T (X) (and likewise TR(X))
with the elements of X as objects, with the topological spaces T (X)(x, y) as morphism
from x to y and with a composition T (X)(x, y)× T (X)(y, z) → T (X)(x, z) induced by
concatenation. Remark that one does not obtain a category structure on P (X) since
concatenation is not associative “on the nose”. The categories T (X) and their directed
relatives are used as important tools in [10].

Lemma 3.3 Let x, y be elements of a Hausdorff space X and let p ∈ R(X)(x, y), ϕ ∈
Rep+(I). If p◦ϕ = p, then ϕ = idI or p is constant. In particular, for x 6= y, the action
of Homeo+(I) on R(X)(x, y) is free.

Proof: If ϕ 6= idI , there exists an interval J = [a, b] ⊆ I with ϕ(a) = a, ϕ(b) = b and,
without loss of generality, ϕ(t) < t for all a < t < b. For all these t we conclude that
p(t) = p(ϕ(t)) = p(ϕn(t)) for all n > 0, and hence that p(t) = p(limn→∞(ϕn(t))) = p(a).
In particular, there is a non-trivial interval on which p is constant; this is not allowed
for a regular path unless p is constant on the entire unit interval I (and thus x = y). �

Corollary 3.4 Let x 6= y be elements of a topological space X. The quotient map
R(X)(x, y) → TR(X)(x, y) is a weak homotopy equivalence.

Proof: The free group action yields a fibration with contractible fiber Homeo+(I). �

It is not clear to the authors whether one can sort out conditions under which the
quotient map is a genuine homotopy equivalence.

3.2 Spaces of (regular) traces

For x, y ∈ X, the inclusion map R(X)(x, y) ↪→ P (X)(x, y) induces a natural map
i : TR(X)(x, y) → T (X)(x, y) between the corresponding quotient trace spaces. The
main aim of this section is a proof of

Theorem 3.5 For every two points x, y ∈ X in a Hausdorff space X, the map i :
TR(X)(x, y) → T (X)(x, y) is a homeomorphism.

In particular, every trace can be represented by a regular trace (cf. Proposition 3.6
below). It turns out that many of the results on reparametrizations from the preceding
section will be used in the proof. In a first step, we show that the map i is surjective:
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Proposition 3.6 For every path p ∈ P (X), there exists a regular path q ∈ R(X) and a
reparametrization ϕ ∈ Rep+(I) such that p = q ◦ ϕ.

Proof: For every interval J ⊆ I let m(J) denote its midpoint. Let m : ∆p → I
denote the map J 7→ m(J) with image C := m(∆p) ⊆ I. In order to arrive at a
reparametrization with stop map m, we check the conditions from Proposition 2.13 for
the order-preserving bijection m : ∆p → C: Let xn = max(Jn) ↑ x ∈ I. Then the
midpoints converge as well: m(Jn) ↑ x. Likewise for a decreasing sequence of lower
boundaries and corresponding midpoints. From Proposition 2.13 we conclude that there
exists a reparametrization ϕ ∈ Rep+(I) with ∆ϕ = ∆p. Hence, there is a set-theoretic
factorization

I
p

ϕ

X

I

q

through a regular map q : I → X.
To check that q is continuous, choose an open set U ⊂ X and note that q−1(U) =

ϕp−1(U). Combining Lemma 2.4 and Lemma 2.8.3, we conclude that p−1(U) is a union
of open intervals that are all mapped onto open intervals under ϕ. Hence q−1(U) is open
as well. �

We turn now to a proof for the injectivity of the map i from Theorem 3.5. It uses:

Lemma 3.7 Let p ∈ R(X)(x, y), p′ ∈ P (X)(x, y), ϕ, ϕ′ ∈ Rep+(I) with p ◦ ϕ = p′ ◦ ϕ′.
Then there exists η ∈ Rep+(I) with p ◦ η = p′. Unless p is constant, η is unique.

Proof: We apply Proposition 2.17 to prove the existence of such a reparametrization
η: For every interval J ′ ∈ ∆ϕ′ , there is a unique J ∈ ∆p′◦ϕ′ = ∆p◦ϕ = ∆ϕ such
that J ′ ⊆ J . Hence, there exists a unique η ∈ Rep+(I) with ϕ = η ◦ ϕ′, whence
p′ ◦ ϕ′ = p ◦ ϕ = (p ◦ η) ◦ ϕ′. Since ϕ′ is onto, we conclude that p′ = p ◦ η.

To prove uniqueness of the factor η, suppose that η1, η2 ∈ Rep+(I) with p◦η1 = p◦η2.
If η1 6= η2, one can choose an interval J = [a, b] such that η1(a) = η2(a), η1(b) = η2(b) and
η1(t) < η2(t) for a < t < b (or vice versa). Given a < t0 = t′0 < b, choose an increasing
sequence ti and a decreasing sequence t′i such that η1(ti+1) = η2(ti), resp. η2(t

′
i+1) =

η1(ti). Both sequences converge to, say, a ≤ T ′ < T ≤ b. Since η1(T ) = η2(T ) and
η1(T

′) = η2(T
′), we must have T ′ = a, T = b.

On the other hand, p(η2(ti)) = p(η1(ti+1)) = p(η2(ti+1)) and hence p(t0) = p(b), and,
by a similar argument: p(t0) = p(a). Since t0 ∈ ]a, b[ was chosen arbitrarily, p has to
be constant on the interval J = [a, b]; this is impossible for a regular path p unless it is
constant. �

Proof of Theorem 3.5: To prove injectivity, let p, q ∈ R(X)(x, y) be reparametri-
zation equivalent (as elements in P (X)(x, y).) If one of them is constant, the other
is as well. Assume that neither p nor q is constant. There exist reparametrizations
ϕ,ψ ∈ Rep+(I) such that p ◦ ϕ = q ◦ ψ. By Lemma 3.7, there is a reparametriza-
tion η ∈ Rep+(I) with q = p ◦ η. Since q is regular, η has to be injective and thus a
homeomorphism; in particular, p and q represent the same element in TR(X)(x, y).
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From the above and from Proposition 3.6, we conclude that the map i from Theo-
rem 3.5 is a continuous bijection. We need to see that the map i in the diagram

R(X)(x, y)
⊆

QR

P (X)(x, y)

Q

TR(X)(x, y)
i

T (X)(x, y)

(7)

is open: Subbases for the topologies of the two quotient spaces are given by

R(C,U ;x, y) := QR({q ∈ R(X)(x, y)|∃ ϕ ∈ Homeo+(I) with ϕ(C) ⊆ q−1(U)}) resp.

P(C,U ;x, y) := Q({p ∈ P (X)(x, y)|∃ ψ ∈ Rep+(I) with ψ(C) ⊆ p−1(U)}).

with U ⊆ X and C ⊂ I compact.
It is enough to see that i(R(C,U ;x, y)) = P(C,U ;x, y). It is clear that the first set

is included in the second. To see the converse, consider p ∈ P (X)(x, y), ψ ∈ Rep+(I)
with ψ(C) ⊆ p−1(U). By Proposition 3.6, there exists q ∈ R(X), ψ′ ∈ Rep+(I) such
that p = q ◦ ψ′. In particular, ψ(C) ⊆ p−1(U) = (ψ′)−1q−1(U), and with ρ := ψ′ ◦
ψ ∈ Rep+(I), we get ρ(C) ⊆ q−1(U). By Lemma 2.9, close to ρ, there exists a a
homeomorphism ϕ ∈ Homeo+(I) with ϕ(C) ⊂ q−1(U). Hence q ∈ R(C,U ;x, y) and
i(QR(q)) = Q(q) = Q(p). �

Remark 3.8 All four spaces in (7) are (at least) weakly homotopy equivalent: If x, y
are not in the same path component, they are all empty. Otherwise, P (X)(x, y) is
homotopy equivalent to the loop space Ω(X)(x) based at x; likewise, R(X)(x, y) is
homotopy equivalent to the space of regular loops ΩR(X)(x) based at x. Both loop
spaces are fibres in fibrations PR(X) ↓ X, resp. P (X) ↓ X over X with contractible
total spaces PR(X;x), resp. P (X;x) of (regular) paths starting at x. The Five Lemma
shows that the inclusion map ΩR(X)(x) ↪→ Ω(X)(x) is a weak homotopy equivalence.

Note that Lemma 3.7 allows us to give the following “backwards” characterization
of reparametrization equivalence:

Proposition 3.9 Paths p, q ∈ P (X) are reparametrization equivalent if and only if there
exists r ∈ P (X) and ϕ,ψ ∈ Rep+(I) such that p = r ◦ ϕ and q = r ◦ ψ.

Proof: For the “only if” part, suppose p ◦ ϕ1 = q ◦ ψ1, ϕ1, ψ1 ∈ Rep+(I). We use
Proposition 3.6 to write p = r1 ◦ ω1 and q = r2 ◦ ω2, with r1, r2 ∈ R(X) and ω1, ω2 ∈
Rep+(I). Then r1 ◦ω1 ◦ϕ1 = r2 ◦ω2 ◦ψ1; by Lemma 3.7, there exists ω ∈ Rep+(I) such
that r2 = r1 ◦ ω, whence q = r1 ◦ ω ◦ ω2.

The reverse implication is clear by Proposition 2.19; if ϕ2, ψ2 ∈ Rep+(I) are such
that ϕ ◦ ϕ2 = ψ ◦ ψ2, then p ◦ ϕ2 = r ◦ ϕ ◦ ϕ2 = r ◦ ψ ◦ ψ2 = q ◦ ψ2. �

Let us finally note the following consequence of Proposition 3.6:

Definition 3.10 A path p : I → X is called loop-free if p(s) = p(t) for any s < t ∈ I
implies that the restriction p |[s,t] is the constant path.

Note that a loop-free regular path is either constant or injective.

Corollary 3.11 A loop-free path p : I → X in a Hausdorff space X has an image
p(I) ⊆ X that is either a point or homeomorphic to I.

Proof: By Proposition 3.6, there is a factorization p = q ◦ ϕ with q a loop-free regular
and thus either constant or injective path. In the second case, q is a continuous bijection
from the compact space I to its image q(I) = p(I) ⊆ X. The claim follows since X is
Hausdorff. �
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4 Directed traces

Originally motivated by models arising in concurrency theory in theoretical computer sci-
ence, an investigation of topological spaces with “preferred directions” has been launched
under the title “Directed Algebraic Topology”. Various frameworks (local po-spaces [2],
d-spaces [4], flows [3], streams [8]) have been suggested, all modifying in various ways
concepts from elementary algebraic topology, in particular replacing relevant groups or
groupois by categories. The d-spaces introduced by M. Grandis [4] have turned out to
give rise to a particularly succesful way to combine homotopy theoretical and categorical
methods for the study of spaces with preferred directions.

The question whether one can neglect reparametrizations in a homotopy theoretical
study of spaces of directed paths was one of the original motivations for this article.
This is – under a certain natural condition – affirmed in Corollary 4.5, which is used as
a starting point for the homotopy theoretical study of “directed spaces” in [10].

Definition 4.1 [4] A d-space is a topological space X together with a set ~P (X) ⊂ P (X)
of continuous paths I → X such that

1. ~P (X) contains all constant paths;

2. p ◦ ϕ ∈ ~P (X) for any p ∈ ~P (X) and any continuous increasing (not necessarily
surjective) map ϕ : I → I;

3. for all p, q ∈ ~P (X) such that p(1) = q(0), their concatenation p ∗ q ∈ ~P (X).

Elements of ~P (X) are called d-paths. ~P (X) ⊆ P (X) is given the subspace topology (of
the compact open topology).

In Definition 4.1(3), the concatenation p ∗ q of two paths p, q ∈ P (X) is defined as usual
by

p ∗ q(t) =

{

p(2t) for t ≤ 1
2 ,

q(2t− 1) for t ≥ 1
2 .

Definition 4.2 A d-map between d-spaces X, Y is a continuous mapping f : X → Y
satisfying p ∈ ~P (X) ⇒ f ◦p ∈ ~P (Y ). Isomorphisms in the category of d-spaces are called
d-homeomorphisms.

The d-interval ~I is given the standard d-structure ~P (I) = Rep+(I). In general d-
spaces, it may occur that a non-d-path becomes directed after reparametrization. To
exclude this possibility, we add

Definition 4.3 A d-space X is called saturated if it has the following additional prop-
erty:

• If p ∈ P (X), ϕ ∈ Rep+(I) and p ◦ ϕ ∈ ~P (X), then p ∈ ~P (X).

In words: If a path becomes a d-path after reparametrization, then it has to be a
d-path itself already. Remark that for a saturated d-space, two trace equivalent paths
are either both d-paths or none of them is. The d-space ~I is saturated. It is easy to
turn a given d-space X into a saturated one: one just adds all paths p ∈ P (X) for which
there is a reparametrization ϕ ∈ Rep+(I) with p ◦ ϕ ∈ ~P (X) to the d-paths in a new
structure S ~P (X), which is easily seen to satisfy the properties of a saturated d-space.
So there is no harm in assuming that a d-space is saturated right away.
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Among the d-paths in X, we pay particular attention to the regular d-paths, cf. Def-
inition 1.1.3; the set of all those will be denoted ~R(X) = R(X) ∩ ~P (X) and equipped
with the subspace topology. Again, Homeo+(I) acts (essentially freely) on ~R(X), and
Rep+(I) acts on ~P (X). We can now speak of spaces of (regular) traces in a saturated
d-space X:

Definition 4.4 • ~TR(X)(x, y) := ~R(X)(x, y)/Homeo+(I) ⊆ TR(X)(x, y)

• ~T (X)(x, y) := ~P (X)(x, y)/Rep+(I) ⊆ T (X)(x, y)

forming the morphisms of categories ~TR(X), resp. ~T (X) that are investigated from a
homotopy theory point of view in [10]. The following consequence of Theorem 3.5 tells
us that it makes no difference in topology which of the two (quotient) trace spaces is
chosen:

Corollary 4.5 Let X denote a saturated d-space and let x, y ∈ X. The map ~i :
~TR(X)(x, y) → ~T (X)(x, y) induced by inclusion ~R(X)(x, y) ↪→ ~P (X)(x, y) is a homeo-
morphism.

Remark 4.6 It is no longer clear whether the inclusion map ~R(X)(x, y) ↪→ ~P (X)(x, y)
is a weak homotopy equivalence. The (weak) homotopy types of both spaces depend on
the choice of x and y and it is therefore not possible to argue using loop spaces as in
3.8. From the diagram

~R(X)(x, y)
⊆

QR '

~P (X)(x, y)

Q

~TR(X)(x, y)
i
∼=

~T (X)(x, y),

obtained from (7) by restricting to d-paths, we can only deduce that the inclusion
maps ~R(X)(x, y) ↪→ ~P (X)(x, y) induce injections and that the quotient maps Q :
~P (X)(x, y) → ~T (X)(x, y) induce surjections on all homotopy groups.

Definition 4.7 1. [4] A d-homotopy from a d-path p ∈ ~P (X) to a d-path q ∈ ~P (X)
is a d-map H : ~I × ~I → X for which H(0, ·) = p, H(1, ·) = q, and H(·, 0), H(·, 1)
are constant.

2. A d-homotopy is said to be thin if it factors through the d-interval ~I, i.e. if there
are d-maps Φ : ~I × ~I → ~I, r : ~I → X such that H = r ◦ Φ.

3. Two d-paths p, q ∈ ~P (X) are said to be d-homotopic, respectively thinly d-homotopic,
if there exists a sequenceH1, . . . ,H2n+1 of d-homotopies, respectively thin d-homotopies,
such that H1(0, ·) = p, H2n+1(1, ·) = q, H2i−1(1, ·) = H2i(1, ·), and H2i(0, ·) =
H2i+1(0, ·).

Remarks 4.8
• The directed structure on a product of d-spaces X and Y is given by

P (X × Y ) ⊇ ~P (X × Y ) = ~P (X)× ~P (Y ) ⊆ P (X)× P (Y )

under the natural identification P (X×Y ) ∼= P (X)×P (Y ). In particular, ~P (~I× ~I)
consists of all paths p : I → I× I that are (weakly) increasing in both coordinates.
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• The relations 4, 4T on d-paths given by existence of (thin) d-homotopies are
preorders on ~P (X). The relations ', 'T on d-paths given by being (thinly) d-
homotopic are equivalence relations on ~P (X); they are the symmetric, transitive
closures of 4 respectively 4T .

Proposition 4.9 Two d-paths p, q in a saturated d-space are reparametrization equiva-
lent if and only if they are thinly d-homotopic.

In particular, the notion of d-homotopy factors over ~T (X) (and ~TR(X)).

Proof: We use Proposition 3.9. For the forward implication, write p = r ◦ϕ, q = r ◦ ψ,
and let ω = max(ϕ,ψ). Define Φ,Ψ : ~I × ~I → ~I by

Φ(s, t) = (1− s)ϕ(t) + sω(t)

Ψ(s, t) = (1− s)ψ(t) + sω(t)

then r ◦ Φ, r ◦Ψ are thin d-homotopies connecting p and q.
To show the back implication, it is enough to consider the case where p and q are

connected by one thin d-homotopy H with H(0, ·) = p and H(1, ·) = q. Write H =
r ◦ Φ : ~I × ~I → ~I → X; by Corollary 4.5, we can assume r to be regular. Also, by
reparametrizing if necessary, we can assume that Φ(0, 0) = 0 and Φ(1, 1) = 1. Then

r(Φ(s, 0)) = H(s, 0) = H(0, 0) = r(0)

r(Φ(s, 1)) = H(s, 1) = H(1, 1) = r(1)

hence by regularity of r and Lemma 3.3, Φ(s, 0) = 0 and Φ(s, 1) = 1.
Now define ϕ,ψ : ~I → ~I by ϕ(t) = Φ(0, t), ψ(t) = Φ(1, t), then ϕ,ψ ∈ Rep+(I) and

p = r ◦ ϕ, q = r ◦ ψ. �

Finally, we modify the results from Section 3 about loop-free paths (Definition 3.10)
to the d-space environment:

Definition 4.10 A d-space X is said to be locally loop-free provided that every point
has a neighbourhood in which all non-constant d-paths are loop-free.

Note that d-spaces arising from a space with a locally partial order [2] are locally
loop-free. The following result applies such to such spaces, in particular. For po-spaces,
a result similar to the following had previously been obtained in [7], Theorem 5.

Corollary 4.11 If p ∈ ~P (X) is a loop-free d-path in a locally loop-free saturated Haus-
dorff d-space X, then its image p(~I) is either a point or d-homeomorphic to ~I.

Proof: The statement is trivial for a constant d-path. Otherwise, Corollary 4.5 provides
us with a regular loop-free d-path q : ~I → X with p = q ◦ ϕ, ϕ ∈ Rep+(I) which by
Corollary 3.11 yields the homeomorphism q : I → p(~I). All we need to show is that its
inverse q−1 : p(~I) → ~I is a d-map.

Let r : ~I → p(~I) be a d-path; we need to show that q−1 ◦ r ∈ ~P (I) = Rep+(I). Let
t1 < t2 ∈ I and suppose that q−1(r(t1)) > q−1(r(t2)).

Restricting to a smaller interval, if necessary, will ensure that r([t1, t2]) ⊆ X is
contained in a loop-free neighbourhood U ⊆ X. The concatenation

r |[t1,t2] ∗ q |[q−1(r(t2)),q−1(r(t1))]

is a d-path and a loop in U and hence constant. Then q |[q−1(r(t2)),q−1(r(t1))] is constant, in
contradiction to being a regular and non-constant path. Hence q−1(r(t1)) ≤ q−1(r(t2))
whence q−1 is a d-map. �
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Remark 4.12 It seems plausible, that many of the methods and of the results from this
article allow generalizations to maps p : In → X, resp. p : ~In → X from (directed) cubes
to (d)-spaces. The relevant reparametrizations to investigate are the d-maps ϕ : ~In → ~In

(monotone in every coordinate) that preserve boundaries in the following sense:

ϕ(x1, . . . , xn) = (y1, . . . , yn) and xi = 0, resp. 1 ⇒ yi = 0, resp. 1.
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