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Excess oxygen (O2) levels may have a stimulating effect, but in the long

term, and at high concentrations of O2, it is harmful to the nervous system.

The hippocampus is very sensitive to pathophysiological changes and altered

O2 concentrations can interfere with hippocampus-dependent learning and

memory functions. In this study, we investigated the hyperoxia-induced changes

in the rat hippocampus to evaluate the short-term effect of mild and severe

hyperoxia. Wistar male rats were randomly divided into control (21% O2),

mild hyperoxia (30% O2), and severe hyperoxia groups (100% O2). The O2

exposure lasted for 60 min. Multi-channel silicon probes were used to study

network oscillations and firing properties of hippocampal putative inhibitory

and excitatory neurons. Neural damage was assessed using the Gallyas silver

impregnation method. Mild hyperoxia (30% O2) led to the formation of moderate

numbers of silver-impregnated “dark” neurons in the hippocampus. On the

other hand, exposure to 100% O2 was associated with a significant increase

in the number of “dark” neurons located mostly in the hilus. The peak

frequency of the delta oscillation decreased significantly in both mild and

severe hyperoxia in urethane anesthetized rats. Compared to normoxia, the

firing activity of pyramidal neurons under hyperoxia increased while it was more

heterogeneous in putative interneurons in the cornu ammonis area 1 (CA1) and

area 3 (CA3). These results indicate that short-term hyperoxia can change the

firing properties of hippocampal neurons and network oscillations and damage

neurons. Therefore, the use of elevated O2 concentration inhalation in hospitals

(i.e., COVID treatment and surgery) and in various non-medical scenarios (i.e.,

airplane emergency O2 masks, fire-fighters, and high altitude trekkers) must be

used with extreme caution.

KEYWORDS

hippocampus, hyperoxia, dark neuron, electrophysiology, network oscillation

Introduction

Oxygen (O2) is the second most abundant element (21%) in Earth’s atmosphere, which
plays an essential role in the efficient maintenance of the metabolic processes of animal
cells and the normal functioning of all organs (Thannickal, 2009; Raffaella et al., 2016).
Oxygen is considered a cornerstone of modern medical care and is often used to reduce
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the damage caused by hypoxia, especially in the emergency
care (Thomas et al., 2022). In clinical practice, normobaric
oxygen therapy is used, when high concentrations of oxygen
are administered at normal atmospheric pressure. For these
therapies, the O2 concentration commonly used is between 40%
and 100% (Chazalviel et al., 2016; Xu et al., 2016; Gonzales-
Portillo et al., 2019). High O2 levels are used in the clinic, for
example, in anesthesia during surgery, treatment of traumatic
brain injuries, in the management of secondary hypoxic brain
injury following ischemic stroke, in septic shock, and post-
cardiac resuscitation (Calzia et al., 2010; Levy et al., 2016).
Oxygen therapy has an important role in newborn care and
the treatment of patients with severe respiratory failure (e.g.,
COPD). Recently, treatment was used for COVID-19 patients
in hospitals (Lyons and Callaghan, 2020). In addition, it is
increasingly used for preconditioning (even in combination with
hypoxia) during sports training, for cardiovascular conditioning,
or before extreme environmental stress, such as SCUBA diving,
military free-fall or space flight, to reduce the chance of
decompression sickness (Webb and Pilmanis, 2011; Balestra
et al., 2021; Lafère et al., 2021; Bestavashvili et al., 2022).
Furthermore, many researchers point to the potential therapeutic
application of oxygen therapy for depression or age-related
neurological diseases such as Alzheimer’s disease (Serebrovska
et al., 2019; Bloch et al., 2021). One potential application of
a hyperoxic environment has also been proposed even in an
extraterrestrial application providing a slight increase in the
partial pressure of O2 on the Moon in underground tunnels
to supply O2 and compensate for the total pressure (Martin
and Benaroya, 2023). Although hyperoxia may seem harmless,
measures taken to achieve “adequate tissue oxygenation” due
to excess oxygen administration or vasopressor therapy may
eventually alter cellular metabolism and functions unintentionally
(Maltepe and Saugstad, 2009). Poorly prescribed and poorly
administered oxygen is particularly dangerous in critically ill
patients (Thomas et al., 2022). High oxygen levels at tissues
(hyperoxia) cause oxygen toxicity, which primarily affects the
central nervous system, retina, and lungs (Diringer, 2008; Vogel
et al., 2015; Lajko et al., 2016). Neurons require a lot of energy
because of their electrical activity, so changes in metabolic
processes caused by an excess of oxygen play a particularly
significant role in the damage of nerve cells (Lassmann and
van Horssen, 2016). Sustained high oxygen levels (80% O2) in
young animals reduce the density of neurons in the hippocampus,
subiculum, prefrontal and parietal and retrosplenial cortices
(Yiş et al., 2008). A duration of 24–48 h of hyperoxia also
reduces both the number of mature and immature neurons, as
well as the proliferation of progenitor cells (Endesfelder et al.,
2014). It is known that hyperoxia can paradoxically reduce
O2 delivery due to cerebral vasoconstriction (Watson et al.,
2000). Cerebral blood flow and cerebral O2 metabolism strongly
influence the brain’s electrical activity (Lauritzen et al., 2012).
In studies in young rats, 24 h hyperoxia has been shown to
reduce the expression of genes involved in acute, subacute, and
long-term synaptic processes, including those responsible for
the regulation of plasticity (Hoeber et al., 2016). High oxygen
levels lasting several days can lead to abnormal neural activity,
primarily to a lack of spatial and recognition memory, and

even to a smaller size of the hippocampus (Ramani et al., 2013;
Lithopoulos et al., 2022). Subregions of the dentate gyrus and
the cornu ammonis area 1 (CA1) region of the hippocampus
are particularly sensitive to normobaric hyperoxia, hyperoxia
increases cell death in these regions (D’Agostino et al., 2007; Yiş
et al., 2008; Porzionato et al., 2015). High O2 concentrations
can negatively affect global protein synthesis and mitochondrial
function in the hippocampus, reducing proteins required for
hippocampus-dependent learning and memory functions (Ramani
et al., 2018). Elevated levels of reactive O2 species (ROS)
and impaired mitochondrial function may increase the risk of
several neurodegenerative disorders such as Alzheimer’s disease
(Arendash et al., 2009).

The data in the literature indicate that the oxygen supply
exceeding the oxygen demand in the O2 metabolism of the brain
plays a key role in the damage of the hippocampus through
the changes that occur and the impairment of mitochondrial
functions. The risk of excess oxygen is determined by many
factors, such as the fraction of inspired O2 (FiO2), partial
pressure, and exposure time, and can also be influenced by
systemic conditions (Chen et al., 2020). The effect of normobaric
hyperoxia on the brain has been studied mainly in the case of
longer exposure times and/or severe hyperoxia, but we still have
incomplete data on neuronal responses induced by short-term
mild hyperoxia.

Therefore, the present study aimed to examine the effect of
short-term mild hyperoxia on neuronal viability and network
activity in different regions of the hippocampus and to compare it
with the effect of short-term severe hyperoxia.

Materials and methods

Animals and experimental procedure of
hyperoxia exposure

The experiments were performed on male Wistar rats (n = 40,
Charles River, Hungary) weighing 250–300 g at the time of surgery.
The animals were housed in a clean and hygienic environment, on
a 12-h light and dark cycle and 23 ± 2◦C temperature, and had
access to standard laboratory food pellets (CRLT/N Charles River
Kft, Budapest, Hungary) and tap water ad libitum.

All experimental procedures were performed according to
guidelines and protocols approved by the National Ethical
Council for Animal Research (Permit number: BA/73/0052-5/2022,
Hungary) and the regulations of the European Community Council
Directives (Directive 2010/63/EU of the European Parliament
and the Council).

Rats were randomly divided into two experimental and control
groups: animals were exposed to normoxic (21% O2) and hyperoxic
(30% and 100% O2) conditions at atmospheric pressure. In the
induction chamber, the level of O2 was continuously monitored
with an O2 sensor (R17 MED, Viamed Limited, UK). After 1-h
O2 exposure rats were anesthetized for histological examination by
intraperitoneal injection of urethane (1.5–2.0 g/kg, Sigma, St. Louis,
MO, USA).
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Silver impregnation method (Gallyas
staining)

After 1-h O2 exposure, the rats (21% n = 10, 30% n = 10,
and 100% n = 10) were anesthetized by intraperitoneal injection of
urethane (1.5–2.0 g/kg). Immediately after euthanasia, transcardial
perfusion with 4% paraformaldehyde (PFA) in 0.1 M phosphate-
buffered saline (PBS) was performed. Brains were excised 12 h
after fixation and post-fixed in 4% PFA in PBS. Brain tissues were
cut into coronal slices (50 µm) using a vibratome (Vibratome R©

Series 1000; Technical Products International Inc., St Louis, MO,
USA). A special Gallyas silver impregnation method was carried
out to detect the compaction of dark neurons. With this staining
procedure, the early stages of neuron degeneration can be detected
(Gallyas et al., 1990). In brief, brain slices were dehydrated through
a series of 1-propanol 50% and 100% (1–2 min) then incubated
for 16 h at 56◦C in 1-propanol containing 1% sulfuric acid
(esterification). Sections were rehydrated in a series of 1-propanol
100% and 50% (1–2 min), followed by washing with double-
distilled water for 5 min and treated with 1% acetic acid for 5 min.
Slices were stained by silver solution and 1% acetic acid was added
to stop the reaction.

Surgery and electrophysiological
recording

For the surgical procedure and electrode implantation, rats
(n = 10) were anesthetized by intraperitoneal injection of urethane
(1.1–1.3 g/kg; Sigma, St. Louis, MO, USA) and fixed in the
stereotaxic frame. The O2 administration was carried out via
an anesthesia mask. A 32-channel silicon probe was implanted
for the recording of neuronal activity under sterile conditions.
In brief, the skull was exposed and cleaned then a 2 mm
hole was drilled over the hippocampus (Hilus-CA1 region:
Medial-Lateral 1.2–2.2 mm, Anterior-Posterior −4 mm and CA3
region: Medial-Lateral 3.6–4.6 mm, Anterior-Posterior −4 mm)
according to the atlas of Paxinos and Watson (2006). Dura
mater was gently removed and the 32-channel multielectrode
array (A4×8-5 mm-200-400-703, NeuroNexus Technologies, Inc.,
USA) was dipped in 2% DiI solution before lowering to the
hippocampus. The probes were attached to a micromanipulator
(Hilus-CA1 region: Medial-Lateral 1.4–2.0 mm, Anterior-Posterior
−4 mm, Dorsal Ventral −3.6 mm, CA3 region: Medial-
Lateral 3.8–4.4 mm, Anterior-Posterior −4 mm, Dorsal-Ventral
−4 mm) (Paxinos and Watson, 2006).

The O2 level in the brain was monitored with a 10 µm diameter,
modified Clark-type polarographic O2 microelectrode (OX-10,
Unisense A/S, Aarhus, Denmark) in the proximity (less than
100 µm) to the silicon probes. The sensor currents were measured
with a high-impedance picoammeter (PA 2000, Unisense A/S,
Aarhus, Denmark). The microelectrode was calibrated according
to the manufacturer’s protocol (see Unisense website). In short, the
calibration of the O2 microsensor was performed by a conventional
two-point calibration in O2-free and air-saturated solution.

Local field potential (LFP) was recorded in normoxic (21% O2)
and hyperoxic (30% and 100% O2) conditions. Field potential and
unit activity were recorded with an amplifier and referenced to

both internal and cranial references. The extracellular recordings
were acquired using a 128-channel TDT system (Tucker-Davis
Technologies Inc., FL, USA) with a sampling frequency of 12 kHz
and a LabChart virtual instrument controlling an analog-to-digital
converter card (AD Instruments).

Microscopy

Olympus BX61 TRF fluorescent microscope (Olympus
Corporation, Tokyo, Japan) was used for the collection of images.
Gallyas stains were qualitatively analyzed through light microscopy
using a halogen bulb. All images were taken at 10× magnification.
Counting of dark neurons was performed with the Image-Pro
plus 7.0 (Media Cybernetics, Inc., Rockville, MD, USA, 2009)
software. Areas of hippocampal regions (CA1, CA3, and dentate
hilus) were measured with Image-Pro plus 7.0 and the density
of stained cells were calculated per 10,000 µm2. Because of
the extreme low density value in normoxia in all regions, these
values are taken as 0.

LFP data processing

Local field potential recordings were subjected to spectral
analysis using built-in functions in Matlab (The MathWorks, Inc.,
Natick, MA, USA). To isolate single unit activity and detect firing
rate and interspike interval (ISI) values, the online algorithm of
the recording software with a bandpass filter of 500–5,000 Hz
was used. We used a bandpass filter to decompose the data into
delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz),
and gamma (30–100 Hz) bands. The anatomical position of each
recording channel was determined based on the spatial location of
electrodes, the distance between the recording channels, and the
amplitude and orientation of the theta waves. Only unit activities
with a stable spike waveform during the recording period, from
21% O2 to 30% O2 and finally to 100% O2 exposure, were included
in the analysis. The physical location of recording channels, firing
frequency and interspike interval values were used to separate
pyramidal cells from inhibitory cells. Pyramidal cells are generally
characterized by firing at a low frequency (<5 Hz). Compared
to excitatory pyramidal cells, inhibitory interneurons discharge at
a high rate (>5 Hz) (Csicsvari et al., 1999; Klausberger et al.,
2003). For ISI values, the cut-off point for distinguishing between
putative pyramidal cells and inhibitory neurons was marked at
200 ms in the pyramidal cell layers. The standard deviation (SD)
values were computed from the series of ISI values for each
recording channel.

Statistical analysis

Statistical tests and graphs were completed with SPSS 28
(SPSS Inc., Chicago, IL, USA) and Microsoft Excel 365 (Microsoft
Inc., Redmond, WA, USA). Data distributions were tested
with a histogram and the Shapiro–Wilk test. If the data were
normally distributed, one-way ANOVA with Tukey’s post-hoc
test was applied for multiple group comparison. If data were
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non-normally distributed, a Kruskal–Wallis test and Dunn’s
multiple comparisons were performed for histological data, and
related samples Friedman’s two-way analysis for unit activity data.
Results were represented as mean ± SEM and p < 0.05 was
considered significant.

Results

Hyperoxia increases the number of dark
neurons in the hippocampus

To induce hyperoxia in rats, animals were exposed to 30%
and 100% O2 for 1 h (n = 10 animal/group). Silver impregnation
staining was performed to quantify the number of stained, dark
neurons of the hilus, CA1 and CA3 hippocampal regions. We
found very few (1–2) dark neurons in some control animals due to
effects not yet determined (Figures 1A–C). The number of stained
neurons slightly increased in the hippocampus (2.32 ± 0.17)
after 1-h of mild (30% O2) hyperoxic treatment, compared to
the control (p < 0.005, Figure 2). Dark neurons were observed
in the deep hilus (3.50 ± 0.47, hilus: 0.9/10,000 µm2) and the
subgranular zone of the dentate gyrus (Figure 1D). In the CA1
region (CA1: 0.1/10,000 µm2) dark neurons were detected in the
stratum oriens (1.66 ± 0.32), stratum pyramidale (1.33 ± 0.15),
and stratum radiatum (0.06 ± 0.04) layers (Figure 1E). In the CA3
region (0.4/10,000 µm2) dark neurons were found in the stratum

oriens (3.00 ± 0.37), stratum pyramidale (2.30 ± 0.21), stratum
lucidum (0.06 ± 0.04), and stratum radiatum (6.70 ± 0.59) layers
(Figure 1F). The number of dark neurons significantly increased
in the stratum radiatum of the CA3 region compared to cell layers
of the CA1 region (p < 0.001, Figure 2B). Similarly, dark neurons
were detected after the 100% O2 exposition, but the number of
dark neurons markedly increased (9.88 ± 0.66) compared to the
control and 30% O2 groups (p< 0.005, Figure 2A). Stained neurons
appeared in the deep hilus (29.63 ± 1.33, hilus: 2.1/10,000 µm2)
and the subgranular zone of the dentate gyrus (Figure 1G). In the
hilus were observed significantly more stained neurons than in the
layers of the CA1 (0.3/10,000 µm2) and CA3 regions (p < 0.05,
0.6/10,000 µm2, Figure 2C). In the CA1 region, silver-stained dark
neurons were located in the stratum oriens (13.80± 0.97), stratum
pyramidale (15.00 ± 1.17), and stratum radiatum (1.03 ± 0.21)
layers (Figure 1H). In the CA3 region, most dark neurons were
observed in the stratum radiatum (10.43 ± 0.96), while fewer
damaged neurons were in the stratum oriens (3.46± 0.61), stratum
pyramidale (5.13 ± 0.60), and stratum lucidum (0.50 ± 0.13)
(Figures 1I, 2C). No dark neurons were found in the stratum
lacunosum-moleculare layer in any of the O2 exposures. The
sample processing was the same in the different groups, so it can
be assumed that the number of dark neurons reflects the effect of
the elevated O2 concentration in the mild and severe hyperoxia
groups. Moreover, the data show that among the hippocampus
regions, the neurons of the hilus are more sensitive in severe
hyperoxic conditions.

FIGURE 1

Effects of normoxia (21% O2), 30%, and 100% hyperoxia on the number of dark neurons after 1 h exposure. (A) Only one dark neuron (arrow) is
visible in the hilus. (B) Silver impregnation staining shows no dark neurons in the CA1 region. (C) There are few dark neurons in the CA3 region
(arrow). (D) Silver-impregnated dark neurons can be seen in the subgranular zone of the dentate gyrus and the deep hilus (arrows) after 30% O2

exposure. (E) Dark neurons in the str. oriens and str. pyramidale of the CA1 region (arrows) in 30% O2 treated animals. (F) In the CA3 area, many dark
neurons with stained neurites are visible (arrows) after mild (30%) hyperoxia. Silver impregnation staining shows numerous dark neurons in the
subgranular zone of the dentate gyrus, in the deep hilus (G, examples pointed with arrows), and in the CA1 (H) and CA3 regions (I). SO, stratum
oriens; SP, stratum pyramidale; SR, stratum radiatum; SL, stratum lucidum; SLM, stratum lacunosum-moleculare; SM, stratum moleculare; SG,
stratum granulare; DG, dentate gyrus. Scale bar: 100 µM.
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FIGURE 2

Number of dark neurons in the hippocampus after 1-h exposure to
30% and 100% O2. (A) The 30% and 100% experimental groups
show a statistically significant difference in the number of
silver-impregnated dark neurons compared to the control (21%)
group and each other. (B) The total number of dark neurons was
higher in the layers of the CA3 region in the 30% O2 group than in
the hilus and CA1 regions. (C) The number of dark neurons
significantly increased in the 100% O2 group. In the hilus, more
stained neurons were observed than in the layers of the CA1 and
CA3 regions. n = 30 slices in each group. Data are presented as
mean ± SEM. *p < 0.05, **p < 0.005, ***p < 0.001, Kruskal–Wallis
test followed by Dunn’s multiple comparisons test.

Hyperoxia decreases the low-frequency
hippocampal activity in
urethane-anesthetized rats

The effect of hyperoxia on brain activity was investigated
by measuring field potentials derived from the hippocampus
layers under urethane anesthesia (n = 9 rats). The brain state
exhibited stable activity during the initial control run for 60 min

followed by 15 min of hyperoxic exposure. A modified Clark-
type polarographic O2 microelectrode was used to directly measure
the O2 level of the hippocampus. The O2 sensor was placed
near the multichannel array. During the baseline recording, the
partial pressure was measured at 20.1 ± 4.36 mmHg. At 30% O2
inhalation, the partial pressure in the hippocampus tissue increased
to 42.4 ± 12.94 mmHg. During the application of 100% O2, the
partial pressure increased further to 79.04± 16.20 mmHg.

We observed no significant changes in alpha (8–12 Hz), beta
(12–30 Hz), and gamma (30–100 Hz) oscillations under hyperoxic
conditions (not shown). The baseline recordings showed in the
delta band (0.5–4 Hz) a distinct, slow-frequency activity around
2 Hz, which has the activity altered under hyperoxia (Figure 3A).
By increasing the O2 concentration to 30%, the peak frequency
significantly decreased (1.92 ± 0.07 Hz) in comparison to baseline
recordings (2.18 ± 0.05 Hz, p < 0.05). In addition, this slow
oscillation reduced (1.72 ± 0.05 Hz) after 100% O2 exposure
and the frequency peak was significantly different compared to
the baseline (p < 0.001, Figure 4A). We compared the peak
frequency of slow- and theta activity (Figures 3A, B, 4A) and
the characteristics of theta oscillation did not change significantly
(4.80 ± 0.11 Hz vs. 4.84 ± 0.11 Hz and 4.86 ± 0.10 Hz,
normoxia vs. 30% O2 and 100% O2, p = 0.936) as a result
of O2 administration. Spectral power was also examined and
there were no significant changes in slow component spectral
power values (38.08 ± 1.37 dB/Hz vs. 35.63 ± 1.15 dB/Hz and
37.31± 1.63 dB/Hz, normoxia vs. 30% O2 and 100% O2, p = 0.456)
or theta oscillation spectral power values (39.44 ± 1.05 dB/Hz
vs. 38.64 ± 1.20 dB/Hz and 37.42 ± 1.91 dB/Hz, normoxia vs.
30% O2 and 100% O2, p = 0.612, Figure 4B). We also checked
whether the theta ratio changed due to hyperoxia. We found no
significant difference in the ratio (18.40% ± 6.39% in normoxia,
16.97% ± 5.50% in 30% O2, and 13.27% ± 5.40% in 100% O2;
Figure 4B).

In summary, we found a selective and significant shift in
the frequency of a slow field potential activity, suggesting that
O2 may be responsible for the shift toward lower frequencies
during hyperoxia.

Hyperoxia increases the firing activity of
pyramidal neurons

To determine how hyperoxia changes the activity of individual
hippocampal neurons, interneuron and pyramidal cell unit activity
was separated based on the anatomical location of recording
channels, firing frequency and inter-spike interval values. The unit
activities were recorded first in normoxic conditions and then at
30% and 100% O2 concentrations. Only those neuron activities
were analyzed of which neurons we were able to keep during
the whole protocol (21%, 30%, and 100% O2). The hippocampus
O2 level was also measured near the recording electrodes during
electrophysiology recording to monitor the state of oxygenation of
the brain tissue not just only the inhaled O2 concentration.

In the CA1 region, nine pyramidal cells were analyzed with
a mean ISI value of 577.27 ms (SEM = 95.71) and mean SD of
152.43 ms (SEM = 36.33) at 21% O2 concentration, compared to
the mean ISI of 147.05 ms (SEM = 33.63) and mean SD of 14.10 ms
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FIGURE 3

Spectral characteristics of the delta and theta activity in the hippocampus in hyperoxia. Colors represent spectral power ranging from blue (low) to
red (high) on a common scale (20–50 dB/Hz). (A) A slow oscillation appeared around 2 Hz in the delta band and decreased with increasing O2.
(B) No significant changes were observed in the theta band during hyperoxia.

FIGURE 4

(A) Comparison of frequency (Hz) for theta oscillation and slow component at 21%, 30%, and 100% O2 concentrations. (B) Comparison of spectral
power (dB/Hz) for theta oscillation, slow component, and the ratio of theta/delta power in normoxia and hyperoxia. n = 9 rats. Data are presented as
mean ± SEM. *p < 0.05, *** p < 0.001, one-way ANOVA followed by Tukey’s post-hoc test.

(SEM = 4.94) at 30% O2 concentration and to the mean ISI of
177.40 ms (SEM = 45.51) and mean SD of 17.92 ms (SEM = 7.68)
at 100% O2 concentration. The firing activity of the pyramidal cells

significantly increased in CA1 at 30% and 100% O2 exposure (30%
O2, p = 0.003 and 100% O2, p = 0.007). Furthermore, we found a
significant decrease in SD value at 30% O2 (p = 0.001) and 100% O2
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concentration (p = 0.014, Figure 5A). This means that hyperoxia
increases firing frequency and regularity in CA1 pyramidal cells.

Twenty pyramidal cells were found in the CA3 region with
a mean ISI value of 475.82 ms (SEM = 55.88) and mean SD of
86.35 ms (SEM = 21.60) in normoxia, compared to the mean ISI of
131.23 ms (SEM = 24.84) and mean SD of 9.98 ms (SEM = 2.96)
at 30% O2 concentration and to the mean ISI of 86.37 ms
(SEM = 12.84) and mean SD of 4.60 ms (SEM = 0.88) while 100%
O2 was supplied. We detected a significant decrease in the ISI value
when the O2 level was increased from 21% to 30% (p < 0.001) and
from 30% to 100% (p < 0.001). In addition, SD values significantly
were lower during 30% O2 (p < 0.001) and 100% O2 (p < 0.001)
exposures (Figure 5B). These results show that hyperoxia increases
firing frequency and regularity in CA3 pyramidal cells.

Hyperoxia changes the firing activity of
inhibitory neurons

Twelve putative interneurons were recorded in the CA1 region
during 21%, 30%, and 100% O2 application, which were divided
into two groups based on the tendency of firing frequency change
in hyperoxia (Table 1). The first putative interneuron group
(n = 5) had a mean ISI value of 63.04 ms (SEM = 3.62) and
mean SD of 17.37 ms (SEM = 1.58) during normoxia, compared
to the mean ISI of 108.70 ms (SEM = 8.37) and mean SD
of 21.08 ms (SEM = 2.53) at 30% O2 concentration and to
the mean ISI of 127.76 ms (SEM = 16.11) and mean SD of
91.00 ms (SEM = 14.85) at 100% O2 concentration. No statistical
differences were found in the ISI value (p = 0.091) and SD
value (p = 0.247) of putative CA1 interneurons in response to
excess O2 (Figure 5C). Based on the results, the frequency of
action potential of putative CA1 type I interneurons decreased but
not significantly in hyperoxia. Likewise, the second group (type
II, n = 7) mean ISI (127.40 ± 8.72 ms) value did not change
significantly (p = 0.066) neither in mild hyperoxia (80.25± 5.94 ms)
nor severe hyperoxia (162.53 ± 18.70 ms). Moreover, there is no
significant difference in SD between normoxic (19.94 ± 2.07 ms)
and hyperoxic conditions (21.09 ± 2.47 and 79.06 ± 12.68 ms,
respectively, p = 0.180, Figure 5D).

In the CA3 region, we found 41 putative interneurons with
stable recording, which were divided into two groups. In the first
putative interneuron group (n = 12) the mean ISI was 44.19 ms
(SEM = 6.35) and the mean SD was 1.49 ms (SEM = 0.38) under
normoxic condition, compared to the mean ISI of 116.57 ms
(SEM = 19.46) and mean SD of 7.12 ms (SEM = 1.77) at 30% O2
concentration and to the mean ISI of 146.83 ms (SEM = 23.30)
and mean SD of 11.57 ms (SEM = 2.15) at 100% O2 concentration.
The mild hyperoxia and severe hyperoxia significantly increased
the ISI (p = 0.024 and p = 0.002, Figure 5E). Similarly, the value
of SD significantly increased during mild (p = 0.024) and severe
(p = 0.002) hyperoxic conditions. Results show that hyperoxia
decreases firing frequency and regularity in putative CA3 type I
interneurons (Table 1).

In contrast to the first interneuron group, in the second putative
interneuron group (n = 29) mean ISI value (83.70 ± 7.44 ms)
and mean SD (4.49 ± 0.81 ms) significantly reduced to the ISI of
41.80 ms (SEM = 3.64, p < 0.000) and SD to 1.23 ms (SEM = 0.17,

p = 0.005) when the O2 concentration was increased from 21%
to 30%. However, there is no significant difference in the ISI
(84.07 ± 17.79 ms, p = 0.627) and SD (5.25 ± 1.62 ms, p = 0.642)
after 100% O2 exposure (Figure 5F). Thus, the frequency of
action potential of putative CA3 type II interneurons significantly
increased only at 30% O2 level.

To summarize unit activity results, the firing activity of
pyramidal cells increased, but the activity of putative interneurons
showed a more diverse response both in the CA1 and CA3 regions
during hyperoxic conditions. A significant difference was detected
in the CA3 region, where one group of putative interneurons (type
I) decreased the firing activity during O2 administration, while in
the other group (type II) we observed an increase in the firing
activity only at 30% O2 concentration. By contrast, the change in
the firing activity of putative interneurons was not significant in
the CA1 region during the application of O2. The change in SD
of ISI represents the regularity of the firing of neurons. We found
that when O2 concentration is increased, CA1 and CA3 pyramidal
cells firing patterns become more regular. This was also observed
for the putative CA3 type II interneurons at 30% O2 concentration.
Nevertheless, the activity of putative CA3 type I interneuron and
CA1 interneuron groups showed increased irregularity during
rising O2 levels.

Discussion

In the present study, we investigated the effect of short-
term normobaric hyperoxia on the morphology and function of
the hippocampal neurons in rats. We showed that hyperoxic
expositions (both 30% and 100% O2) increased the number of
dark neurons in different hippocampal regions. By examining
neuronal activity using a multielectrode array, we found a low-
frequency activity in the delta frequency range decreased with
the increase of O2 concentration. Furthermore, we observed that
the firing frequency of pyramidal cells increased, but putative
interneurons showed functional heterogeneity in both CA1 and
CA3 regions in hyperoxia.

To our knowledge, the occurrence of dark neurons is
reported for the first time in the brain after hyperoxic exposure
in this present study. Silver-impregnated neurons have been
previously detected in hypoxia, ischemia, epilepsy, hypoglycemia,
hyperglycemia, and traumatic brain injury (Auer et al., 1985;
Pál et al., 2006; Kövesdi et al., 2007; Gallyas et al., 2008;
Ahmadpour and Haghir, 2011; Mahakizadeh et al., 2020; Hencz
et al., 2023). Mahakizadeh et al. (2020) observed dark neuron
production in both CA1 and CA3 regions in chronic hypoxia
(Mahakizadeh et al., 2020). Our previous research has described
that short-term mild hypoxia causes dark neuron formation in
the CA1 and CA3 regions and the hilus (Hencz et al., 2023).
Dark neurons have several morphological characteristics, such
as massive shrinkage, high electron density, hyperbasophilia and
induced hyperargyrophilia (Gallyas et al., 2004). The presumed
mechanism of the ultrastructural compaction behind the change in
the intracellular structures is the release of the free energy stored
in a metastable state of individual neurofilaments at any point.
The released energy serves as activation energy at the neighboring
points and spreads in the cytoskeletal network (Gallyas et al., 2004).
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FIGURE 5

The unit activity of hippocampal CA1 and CA3 pyramidal cells and interneurons in normoxic and hyperoxic (30% and 100% O2) conditions.
(A) Inter-spike interval (ISI) and standard deviation (SD) values significantly decreased in CA1 pyramidal cells both at 30% and 100% O2 exposure
(n = 9). (B) Administration of 30% and 100% O2 resulted in a significant decrease in the ISI and SD values in CA3 pyramidal cells (n = 20).
(C) Inter-spike interval and SD values did not change significantly in the CA1 type I interneurons in hyperoxic conditions (n = 12). (D) No difference in
the ISI and SD values was observed in the CA1 type II interneurons in hyperoxia (n = 7). (E) Inter-spike interval and SD values significantly increased in
CA3 type I interneurons both at 30% and 100% O2 exposure (n = 12). (F) Administration of 30% O2 led to a significant decrease of ISI in CA3 type II
interneurons, while ISI and SD values were not different after 100% O2 exposure (n = 29). Data are represented as mean ± SD. *p < 0.05,
**p < 0.005, ***p < 0.001, related-samples Friedman’s two-way analysis.
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TABLE 1 Summary of neuronal firing rates in normoxic and hyperoxic conditions.

Neuron type 21% O2 ISI
(mean + SD)

ms

30% O2 ISI
(mean + SD)

ms

100% O2 ISI
(mean + SD)

ms

Frequency change
in hyperoxia

Firing regularity
change in hyperoxia

CA1 pyramidal
(n = 9)

577.27*± 152.43* 147.05*± 14.10* 177.40± 17.92 Increase Regular

CA1 interneuron type I
(n = 5)

63.04± 17.37 108.70± 21.08 127.76± 91.00 No change No change

CA1 interneuron type II
(n = 7)

127.40± 19.94 80.25± 21.09 162.53± 79.06 No change No change

CA3 pyramidal
(n = 20)

475.82*± 86.35* 131.23*± 9.98* 86.37*± 4.60* Increase Regular

CA3 interneuron type I
(n = 12)

44.19*± 1.49 116.57*± 7.12* 146.83*± 11.57* Decrease Irregular

CA3 interneuron type II
(n = 29)

83.70*± 4.49* 41.80*± 1.23* 84.07± 5.25 Increase Regular

Asterisks represent significant differences between the conditions. A decrease in SD means more regular activity of neurons.

Based on previous studies, excitatory neurotransmitters like
glutamate and free radicals may have a role in the initiation of
the contractile process during dark neuron formation (Vohra et al.,
2002; Kherani and Auer, 2008). The used Gallyas silver method is
practically free from the staining of normal structures of neurons,
therefore the rapid occurrence of hyperargyrophilic phenomenon
shortly after the external initialization indicates the degradation of
the affected cells (Kawai et al., 1992; Csordás et al., 2003; Uchihara,
2007). Dark neurons are morphologically similar to apoptotic cells,
but dark neurons may spontaneously recover, which probably
depends on the extent and time of the damage (Csordás et al., 2003;
Gallyas et al., 2006; Kövesdi et al., 2007; Toth et al., 2016).

Several previous studies have shown that supraphysiological
O2 concentrations cause neuronal damage upon reperfusion and
in the brain of developing animals (Felderhoff-Mueser et al.,
2004; Shimabuku et al., 2005; Gerstner et al., 2008; Koch et al.,
2008; Brücken et al., 2010). For instance, hyperoxia-induced
neurodegeneration has been demonstrated in the developing rat
brain, where the density of neurons decreased in the dentate gyrus
and CA1 regions of the hippocampus, as well as in the prefrontal
cortex, parietal cortex, subiculum, and retrosplenial cortex after 5-
day 80% O2 treatment (Yiş et al., 2008). Similarly, apoptotic cell
death and superoxide anion level increase were observed in CA1
neurons of rat hippocampal slices when the O2 concentration was
95%, but there was no significant difference at O2 levels of 60%
and below (D’Agostino et al., 2007). In the present study, we did
not observe apoptosis after 1-h hyperoxic treatment (TUNEL assay,
data not shown), but our results suggest that mild hyperoxia leads
to neuronal damage not only in the CA1 and hilus but also in the
CA3 region. We assume that increased ROS and reactive nitrogen
species levels due to excessive O2 supply play a significant role in the
damage. Reactive O2 species are also produced throughout normal
metabolic reactions, including anaerobic respiration at the electron
transport chain within the mitochondria, as well as reactions of
cyclooxygenases, lipoxygenases, peroxidases, and cytochrome P450
enzymes (Kirsch and de Groot, 2000). Nevertheless, the high
O2 concentration disrupts the pro-oxidant-antioxidant balance,
leading to general oxidative damage of DNA, lipids and proteins
(Ottolenghi et al., 2020; Juan et al., 2021; Leveque et al., 2023).

A recent study investigated the brain’s susceptibility to
oxidative stress induced by short-term hyperoxia treatment in adult
Wistar rats. Hyperoxia at a FiO2 of 60% was shown to cause
significant oxidative damage to hippocampal lipids and proteins
after 2 h of oxygenation, but not at a FiO2 of 40% (Machado
et al., 2022). Furthermore, in a study of human subjects, researchers
found that the levels of oxidation markers were increased in the first
8 h after exposure to 1 h normobar hyperoxia (30% and 100%), and
the subsequent inflammatory response was significantly higher at
FiO2 of 100% (Leveque et al., 2023). In our study, we hypothesized
that the difference between the hippocampal regions observed at
30% and 100% O2 concentrations may arise from cell type-specific
differences in terms of sensitivity to ROS.

Both normobaric and hyperbaric hyperoxia are frequently used
in various clinical scenarios and O2 therapy, therefore investigating
the effect of elevated O2 on network activity is important. Several
early human studies have reported the effect of hyperoxia on
neural activity, but these results are contradictory, mainly due to
the different conditions during recordings. In previous studies, it
has been shown that elevated O2 did not alter resting-state EEG
or evoked potentials (Smith and Strawbridge, 1974; Kaskinoro
et al., 2010). In contrast, Sheng et al. (2017) found that hyperoxia
decreased the alpha and beta band power of spontaneous neural
activity and that certain peaks of visual stimulation event-related
potentials were delayed during 98% hyperoxic treatment (Sheng
et al., 2017). Another research study reported that during short-
term exposure to 100% O2, alpha, beta and gamma frequencies of
brain activities decreased in eyes-open resting states, while during
eyes-closed conditions hyperoxia decreased the oscillation in the
beta range with a concomitant increase in both delta and theta
power (Kizuk et al., 2019). Similarly, supplementation with 35% O2
resulted in a considerable bilateral increase in delta power and a
significant bilateral decrease in beta and gamma power (Seo et al.,
2007). In our study, we did not observe significant changes in the
theta, beta and gamma oscillations of urethane anesthetized rats.
However, it is important to note that blood flow and O2 regulation
may differ between awake and anesthetized animals. In the brains
of awake mice exposed to hyperoxia, it was shown that interstitial
PaO2 is higher under isoflurane anesthesia than in the awake state
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(Lyons et al., 2016). This is probably related to the vasodilatory
effects of isoflurane, which affects cerebrovascular activity in a
dose-dependent manner (Farber et al., 1997; Lyons et al., 2016).

In contrast, other anesthetics, such as urethane, have minimal
effects on the cardiovascular system, but an increase in dose
leads to reduced blood flow (Iwamoto et al., 1987; Sakaeda et al.,
1998). The state of the brain can be directly or indirectly affected
by changes in breathing rate, O2 concentration and CO2 level
(Pappenheimer, 1977; McQuillen and Ferriero, 2004; Kwak et al.,
2006; Zappe et al., 2008; Ito et al., 2013; Pagliardini et al., 2013;
Hauer et al., 2018). In this experiment, we found that delta wave
frequency (∼2.4 Hz) decreased with increasing O2 concentration
(30% then 100% O2) under urethane anesthesia. This is consistent
with previous results demonstrating that exposure to hyperoxia
shifts the brain toward slow-wave states during urethane anesthesia
and the natural sleep (Hauer et al., 2018). However, we observed
no changes in the power values of the slow oscillation band during
the hyperoxic exposures. The delta oscillation originates from the
thalamic neurons and the deep cortical layers (Dossi et al., 1992;
Steriade et al., 1993). In the case of delta wave activity, several
studies have demonstrated a direct relationship between blood
flow and delta wave band power. The delta wave activity increases
during the blockage of the blood flow (ischemic stroke), which
may represent the sustained membrane hyperpolarization and
inhibition of cortical neurons (John and Prichep, 2006; Foreman
and Claassen, 2012; Fanciullacci et al., 2017; Ferreira et al., 2021).
Reduced blood flow can also develop during hyperoxia as the
systemic effects of hyperoxia include a decrease in blood flow in
the brain, coronary and vascular systems (Thomas et al., 2022).
Pyramidal neurons found in layers III, V, and VI are extremely
sensitive to reduced blood flow, thus leading to many abnormal
EEG changes (Jordan, 2004). The neocortical neuronal discharges
influence hippocampal network activity via the entorhinal input
(Sirota et al., 2003), thereby presumably producing diverse patterns
in the hippocampal delta waves of sleep in altered O2 conditions.
According to previous results on hypoxia, an O2 concentration
slightly lower than the physiological condition causes an increase in
the delta wave activity (Pappenheimer, 1977; Hamrahi et al., 2001;
Hoshikawa et al., 2014; Hencz et al., 2023). Our results suggest that
the reduction of frequency in slow waves under hyperoxia is related
to the secondary effects of O2 that may affect cerebral metabolism.

It is assumed that O2 has a direct effect on the functioning of
mitochondria and can cause mitochondrial dysfunction in neurons
and glial cells, on the other hand, the increase in intracellular
Ca2+ level induced by ROS affects the signaling pathways of
astrocytes. Our result showed that spike activity increased both in
the CA1 and CA3 pyramidal neurons at 30% and 100% hyperoxic
exposure, respectively. A previous study showed that hyperbaric
hyperoxia impairs neuronal excitability and synapses, but this may
be primarily due to the sensitivity of excitability cells to barometric
pressure (Torbati et al., 1976; Colton and Colton, 1982; Garcia
et al., 2010a,b). For instance, in the CA1 region, a single transient
acute hyperbaric hyperoxia stimulus increases neuronal excitability
and stimulates neural plasticity in a wide range of tissue O2
tensions (Garcia et al., 2010a). In our case, the external pressure
had no stimulating effect during the experiment suggesting that the
sensitivity of pyramidal cells and interneurons can be attributed
to the secondary effects of O2. The molecular O2 may interact
with lipid-lipid or lipid-protein in the plasma membrane, resulting

in decreased fluidity of the plasma membrane (Bennett et al.,
1967; Block et al., 1986; D’Agostino et al., 2009). As a result,
ion channels and membrane proteins in general react sensitively
to changes in the membrane composition (Tillman and Cascio,
2003). Therefore, the alterations of ion channel characteristics
or channel expression can affect the neuronal excitability (Noda
et al., 1983; Gu and Haddad, 2003; Mulkey et al., 2003; D’Agostino
et al., 2007, 2009). The high level of O2 increases O2-induced
free radicals in the mitochondria, especially in complex I of the
mitochondrial respiratory chain, which is particularly susceptible
to reactive O2 species (Lenaz, 1998; Guo et al., 2013; Morales-
Martínez et al., 2022). Hyperoxia can damage the activities of
mitochondrial enzymes such as complex I and II and lead to
mitochondrial dysfunction (Ramani et al., 2019; Machado et al.,
2022). In addition, hyperoxia suppresses glucose transport, thereby
causing local hypoglycemia and hypoglycemic failure (Wilson and
Matschinsky, 2019). As a result of local hypoglycemia, K+, and
extracellular excitatory amino acid neurotransmitters accumulate
in the intercellular space (Palmer et al., 1994). Several studies
have found that hyperbaric hyperoxia reduces the production of
inhibitory neurotransmitters such as glycine and γ-aminobutyric
acid (Hori, 1982; Gasier et al., 2017; Demchenko et al., 2023).
We observed that the electrical excitability of putative type I
interneurons in the CA3 decreased in hyperoxia, while the electrical
excitability of putative type II interneurons increased in the CA3
region. The putative CA1 interneurons did not show a significant
change in their firing properties. Neurons in the hilus are very
sensitive to high O2 concentrations (Porzionato et al., 2015). In our
previous study, where we investigated the effect of mild hypoxia,
the inhibitory cells of the hilus reacted particularly sensitively to
O2 deprivation, which was shown by a decrease in their firing
frequency (Hencz et al., 2023). In this work, we did not report the
firing frequency of the neurons of the hilus, because we had to
discard most of the data due to the large spread in the ISI values.
We hypothesize that lowered activation of inhibitory interneurons
may lead to decreased regulation of principal cells in hyperoxia.
Based on our results, the pyramidal cells and interneurons react
differently to hyperoxic stimuli, and the functional heterogeneity
of interneuron subtypes also reflects the effect of supplemental O2.

Conclusion

In summary, the results of the present study reinforce previous
observations that O2 can dose-dependently damage neurons in
different regions of the hippocampus. In addition to the increased
sensitivity of CA1 and hilus, we showed that CA3 neurons can
also be damaged in a similar way as a result of short-term
hyperoxia. The increased O2 level can also modify brain activity
and stimulate a shift toward slow waves. The hyperoxic condition
increases the excitability of the pyramidal cells, while probably
suppressing the activation of a part of the putative inhibitory cells.
The significance of the study is that it draws attention to the
damaging effect of short-term mild hyperoxia. Therefore, the use
of elevated O2 concentration inhalation in hospitals (i.e., COVID
treatment and surgery) and in various non-medical scenarios (i.e.,
airplane emergency O2 mask, fire-fighters, high altitude trekkers,
decompression chambers, military SCUBA divers, and “oxygen
bars”) must be used with extreme caution.
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