

University of Birmingham

An online hyper‐volume action bounding approach for
accelerating the process of deep reinforcement learning
from multiple controllers
Aflakian, Ali; Rastegarpanah, Alireza; Hathaway, Jamie; Stolkin, Rustam

DOI:
10.1002/rob.22355

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Aflakian, A, Rastegarpanah, A, Hathaway, J & Stolkin, R 2024, 'An online hyper‐volume action bounding
approach for accelerating the process of deep reinforcement learning from multiple controllers', Journal of Field
Robotics. https://doi.org/10.1002/rob.22355

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 07. May. 2024

https://doi.org/10.1002/rob.22355
https://doi.org/10.1002/rob.22355
https://birmingham.elsevierpure.com/en/publications/304876ec-442d-43b2-b76c-c2d35ca1e4b8

Received: 2 May 2023 | Revised: 22 January 2024 | Accepted: 15 April 2024

DOI: 10.1002/rob.22355

R E S E A R CH AR T I C L E

An online hyper‐volume action bounding approach for
accelerating the process of deep reinforcement learning
from multiple controllers

Ali Aflakian1,2 | Alireza Rastegarpanah1,2 | Jamie Hathaway1,2 | Rustam Stolkin1,2

1Department of Metallurgy & Materials

Science, University of Birmingham,

Birmingham, UK

2The Faraday Institution, Quad One, Harwell

Science and Innovation Campus, Didcot, UK

Correspondence

Alireza Rastegarpanah, Department of

Metallurgy & Materials Science, University of

Birmingham, Birmingham B15 2TT, UK.

Email: a.rastegarpanah@bham.ac.uk

Funding information

Faraday Institution; UKRI Horizon Europe

Underwriting – Innovate UK

Abstract

This paper fuses ideas from reinforcement learning (RL), Learning from Demonstra-

tion (LfD), and Ensemble Learning into a single paradigm. Knowledge from a mixture

of control algorithms (experts) are used to constrain the action space of the agent,

enabling faster RL refining of a control policy, by avoiding unnecessary explorative

actions. Domain‐specific knowledge of each expert is exploited. However, the

resulting policy is robust against errors of individual experts, since it is refined by a

RL reward function without copying any particular demonstration. Our method has

the potential to supplement existing RLfD methods when multiple algorithmic

approaches are available to function as experts, specifically in tasks involving

continuous action spaces. We illustrate our method in the context of a visual

servoing (VS) task, in which a 7‐DoF robot arm is controlled to maintain a desired

pose relative to a target object. We explore four methods for bounding the actions

of the RL agent during training. These methods include using a hypercube and

convex hull with modified loss functions, ignoring actions outside the convex hull,

and projecting actions onto the convex hull. We compare the training progress of

each method using expert demonstrators, employing one expert demonstrator with

the DAgger algorithm, and without using any demonstrators. Our experiments show

that using the convex hull with a modified loss function not only accelerates learning

but also provides the most optimal solution compared with other approaches.

Furthermore, we demonstrate faster VS error convergence while maintaining higher

manipulability of the arm, compared with classical image‐based VS, position‐based

VS, and hybrid‐decoupled VS.

K E YWORD S

imitation learning, multi‐expert demonstrations, online learning, optimization technique,
reinforcement learning

J Field Robotics. 2024;1–15. wileyonlinelibrary.com/journal/rob | 1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2024 The Authors. Journal of Field Robotics published by Wiley Periodicals LLC.

Ali Aflakian and Alireza Rastegarpanah should be considered joint first author.

mailto:a.rastegarpanah@bham.ac.uk
https://wileyonlinelibrary.com/journal/rob
http://creativecommons.org/licenses/by/4.0/

1 | INTRODUCTION

Recent advances in deep learning and reinforcement learning (RL)

research have enabled robots to handle increasingly challenging tasks

(Hua et al., 2021). In a RL paradigm, an agent attempts to maximize

expected reward by interacting with its environment. However, RL

methods learn via considerable trial and error, making RL difficult to

implement on a real robot (Vecerik et al., 2017). Additional challenges

arise from the agent lacking a priori data or knowledge about its

environment. To alleviate these problems, behavioral knowledge can be

derived from expert demonstrations. A demonstrated action provides a

starting point, which is further refined by RL. The demonstrated action

essentially reduces the search space that must be explored by the RL

agent, during optimization, to find an optimal policy (Zhu & Hu, 2018).

This process is known as Reinforcement Learning from Demonstrations

(RLfD) (Jing et al., 2020).

As an example application of RLfD, we consider a visual servoing

(VS) task in which a robot arm must maintain its end‐effector (EE) at a

desired pose relative to a moving object observed by a wrist‐

mounted camera (eye‐in‐hand). The robot must learn a control policy

that generalizes to handle arbitrary object motions, while exploiting

feedback data comprising robot states and camera images. RL

provides a theoretical way for learning such policies through

exploration of the action space. However, the amount of exploration

required has limited its implementation in real world applications. In

this paper, we address this challenge by merging the demonstrations

from multiple controllers and RL concepts into a single framework,

that guides RL using demonstrations and feedback from several

“expert” controllers.

There are two potential approaches for incorporating knowledge

from expert demonstrations in RL: prior knowledge, comprising

demonstrations before RL refinement; and online knowledge, in

which case demonstrations are occasionally presented while the RL

iterations are in progress (Ramírez et al., 2022). The online method

can significantly enhance the learned policy's convergence toward an

expected performance level while lowering the likelihood of

distributional mismatch compared with the prior knowledge approach

(Ross et al., 2011a). However, several challenges remain with the

online use of demonstrations while the agent is learning. These

include: the high cost of data collection; the inability to generalize to

different scenarios; and the limitation of the agent's exploration to

blindly following the demonstrator (Ho & Ermon, 2016; Krishnan

et al., 2019; Takeda et al., 2007). To avoid unnecessary exploration

while also overcoming the problem of the agent overly following the

expert behavior, we present an online Action Optimizer for improving

Reinforcement Learning from multi‐Demonstrations (AORLD) (de-

tailed in Section 2.2). Our approach is “online” in the sense that the

agent action space would be modified in real‐time during the training

process (while the RL iterations are in progress). The proposed

AORLD approach is generic, in that it can be applied to a wide variety

of RL scenarios. However, to demonstrate and validate the method,

we implement AORLD in the context of a VS task, detailed in

Section 2.2. Based on the knowledge of several controllers, we

explore four methods for bounding the actions of the RL agent during

training.

The first method called AORLD‐HL, involves constraining the

agent's action space to an online convex hull generated from the

collective knowledge of controllers. We achieve this by defining a

convex hull that encapsulates the feasible action space based on the

expertise of the controllers. Subsequently, we modify the loss

function to penalize the agent for deviating from actions within this

generated hypervolume. On the other hand, the second method,

AORLD‐CL, adopts a different approach by generating an online

hypercube from the knowledge of experts to restrict the agent's

action space. Similar to AORLD‐HL, we adjust the loss function to

discourage actions outside the boundaries of the hypercube. While

these two methods share the common goal of limiting the agent's

action space to improve training efficiency, they differ in how they

define and enforce these limitations (convex hull and hypercube).

The third method involves filtering the actions suggested by the

RL policy that lie outside the generated convex hull (AORLD‐HF). We

use the standard loss function for the RL agent. This method does not

modify actions directly but instead filters out undesirable actions.

The fourth method involves projecting the actions outside the

convex hull onto the convex hull (AORLD‐HP). This method modifies

the action space and ensures that the agent always takes actions within

the convex hull. In Section 2, we provide detailed insights into the

structures and algorithms of these four methods to explain the intricacies

of each approach. Thereafter, we compare the performance of these

methods to that of a standard RL algorithm without any bounding

method.

The highlights of this paper are summarized as follows:

1. AORLD adaptively constrains the agent's action spaces by

exploiting demonstrations from different “expert” controllers,

improving training efficiency in terms of reducing the training time

and improving the performance of the trained policy.

2. The AORLD approach is generic and can be incorporated into a

wide variety of multiagent and other RLfD algorithms across

various applications. Moreover, since AORLD does not directly

conform to any single demonstration, it is robust against errors or

imperfections in any individual demonstration.

3. AORLD mitigates the risk of the agent converging prematurely to

suboptimal solutions, since, limiting the action space to a region

where the likelihood of success is higher plays a crucial role in

preventing RL agents from getting stuck in local optima.

The remainder of this study is structured as follows: Section 2

provides a discussion of related literature in RL and VS, followed by a

detailed explanation of the proposed AORLD method. The process of

training AORLD in a simulated environment is subsequently detailed.

Section 3 introduces the simulation environment for a VS application.

Section 4 presents the results of experiments, showing how the

trained policy improves VS task performance. Section 5 provides

concluding remarks, and also offers suggestions for extending AORLD

to other applications, and combining it with other RLfD methods.

2 | AFLAKIAN ET AL.

1.1 | Related work

Early RLfD algorithms are classified into three main groups: Behavior

Cloning (BC), Generative Adversarial Imitation Learning (GAIL), and

Inverse Reinforcement Learning (IRL) (Kumar et al., 2016). BC was

developed based on direct policy learning, which enables the distribution

of the state/action trajectory to match the demonstration given by a

supervisor. The agent has no capability to respond to environmental

changes (Takeda et al., 2007). Therefore, in the case of using a small

number of samples, the trained BC policy has little capability to generalize

to different scenarios. IRL was developed to tackle the problem of reward

function design and is more adaptable to new situations (Krishnan et al.,

2019). While BC and IRL methods gain experience from demonstrations,

they have no capability to interact with experts during training to make

the trained policy more optimized and robust. To enable the agent to

better exploit the expert when optimizing a policy, the GAIL approaches

were developed based on generative adversarial networks (Ho & Ermon,

2016). The GAIL approach is applied by making a comparison between

generated and expert strategies, and converging them as closely as

possible. However, the GAIL method is susceptible to convergence on

local optima (Ho & Ermon, 2016). Also, BC methods suffer from data

mismatch and compounding error issues. Consequently, the DAgger

algorithm was developed to tackle this problem (Ross et al., 2011b).

DAgger is an iterative policy learning method that employs online learning

as a reduction in which the main classifier will be retrained on all states

encountered by the learner at each iteration. In spite of this, the policy

trained with DAgger will not be generalized to different scenarios, and the

approach is limited to learning from the expert and cannot surpass its

performance (Hester et al., 2018). Interactive imitation learning methods

(e.g., HG‐DAgger and ThriftyDAgger) are variants of DAgger, and they are

also introduced to address some robustness issues of DAgger (Hoque

et al., 2021; Kelly et al., 2019).

Typically, human demonstrations were employed for such interactive

imitation techniques. Algorithms that can use other controllers as experts

have been less well studied. Modern RLfD techniques incorporate

aspects from imitation learning, and push the agent to replicate the

demonstrated behaviors when feedback from the environment is scarce

or even missing (Kang et al., 2018; Sun et al., 2018). They specifically

reshape the reward function in RL by adding another term to encourage

expert exploration. While rewarding expert‐like activities might assist in

minimizing unnecessary exploration, applying such rewards throughout

the learning phase can be troublesome with imperfect demonstrations.

There is no guarantee that limiting divergence from expert behavior will

result in an improved agent policy (Yang et al., 2019). Unlike the

aforementioned methods that aimed to replace existing learning from

demonstration strategies, we propose a method that is complementary to

established RLfD methods. We combined aspects of both RL and

imitation learning in a novel online manner. In the selection of expert

controllers, we strategically chose image‐based visual servoing (IBVS) for

its proficiency in image space (2D), position‐based visual servoing (PBVS)

for its excellence in workspace (3D), and hybrid decoupled visual servoing

(HDVS) as a hybrid approach combining both 2D and 3D VS

(Rastegarpanah et al., 2021a). This strategic selection ensures that the

expert controllers demonstrate efficacy in different domains of VS. The

practice of limiting the action space to a region where the likelihood of

success is higher has been shown to play a pivotal role in preventing RL

agents from becoming trapped in local optima (Yuan et al., 2023). Domain

Randomization (DR) is utilized during the process of learning to adapt the

trained policy to real world environments, and to make the policy robust

in terms of noise, lighting variations, and also in the presence of random

objects in the camera scene. We demonstrate a learning process that is

not only greatly accelerated (compared with when there is no

demonstrator), but the policy will also inherit the high performance of

each expert technique and improve its behavior. Furthermore, using DR

F IGURE 1 The outline of the proposed online action‐optimizer combined with the reinforcement learning (RL) method for a visual servoing
(VS) application. The Twin Delayed Deep Deterministic Policy Gradient (TD3) agent was trained by using the Domain Randomization (DR)
method. The Action Optimizer for improving Reinforcement Learning from multi‐Demonstrations (AORLD) method employs a combination of
three different methods (position‐based visual servoing, image‐based visual servoing, and hybrid decoupled visual servoing) as demonstrators to
accelerate training and enhance VS performance. Four different approaches have been used to constrain the action space of the agent and their
results are compared together. [Color figure can be viewed at wileyonlinelibrary.com]

AFLAKIAN ET AL. | 3

http://wileyonlinelibrary.com

significantly enhances the generalizability of the policy to new environ-

ments, unlike other methods, such as DAgger and BC, which suffer in this

area. Figure 1 outlines the AORLD method for a VS application.

2 | METHODOLOGY

2.1 | Proposed AORLD in RL

While a RL agent interacts with its environment, it receives a state s from

a state space S and chooses an action a from an action space A, based on

a policy π a s(). Mapping from state s to actions a ends up with a scalar

reward r and next state s′. This mapping from state to actions is based on

the environment model, rewards function R s a(,), and state transition

probability T s a s P s s a(, , ′) = (′ ,). In an episodic problem, this procedure is

repeated until the agent achieves a terminal state and the agent aims to

maximize cumulative rewards by optimizing its policy.

The RL algorithm used in this approach is TD3 (Twin Delayed Deep

Deterministic Policy Gradient). TD3 is an effective off‐policy actor‐critic

algorithm that uses delayed policy updates and target policy smoothing to

improve stability and performance. The algorithm involves the use of two

Q‐functions, Qϕ1 and Qϕ2, which are learned simultaneously by

minimizing the mean square Bellman error (Bellman, 1957).

To form the Q‐learning target in the TD3 RL algorithm, actions are

generated based on the target policy, denoted as μθ targ . However, clipped

noise is added to each dimension of the action to enhance exploration.

This means that the target action is obtained by adding clipped noise to

the output of the target policy, and then clipping the result to ensure that

it lies within the valid action range (a a a≤ ≤min max). Mathematically, the

target actions can be expressed as (Fujimoto et al., 2018):

a s μ s c c a a′ (′) = clip((′) + clip(ϵ, − ,), ,)θ min maxtarg (1)

where ϵ is a noise term drawn from a normal distribution with zero mean

and standard deviation σ , and c is a constant that determines the amount

of noise added to the action. The approach trains two Q‐functions,

labeled as Qϕ1 and Qϕ2, simultaneously by regressing towards a single

target value. The target value is computed by choosing the Q‐function

that gives the lower target value, which is expressed mathematically as:

y r s d r γ d Q s a s(, ′,) = + (1 −)min (′, ′ (′)).
i

ϕ
=1,2

i, targ (2)

Here, r is the reward, s′ is the next state, d is a binary indicator of

whether the episode has ended, γ is the discount factor, and a s′ (′) is

the target action with clipped noise, as described earlier in (1).

Both Q‐functions, Qϕ1 and Qϕ2, are then trained by minimizing

the squared difference between the predicted Q‐value and the target

value (Lillicrap et al., 2015).

Finally, the TD3 policy with the modified loss function is learned

by maximizing Qϕ1. The actor network, denoted as μθ, selects actions

that maximize the Q‐value estimated by Qϕ1.

While we used TD3 in this case, the proposed method is readily

applicable to different RL algorithms by modifying their target action

limits. The overall procedure of the proposed optimization learning

method is detailed in Algorithm 1. The algorithm takes candidate

actions from multiple expert controllers as input and optimized

actions for a given task, with respect to the observations, are the

outputs of the trained policy. The AORLD approach has four different

methods for constraining the actions generated by the RL algorithm:

convex hull with modified loss function (AORLD‐HL), hypercube with

modified loss function (AORLD‐CL), convex hull with filtering actions

outside the hull (AORLD‐HF), and convex hull with projecting actions

outside the hull onto the convex hull (AORLD‐HP). Each method

modifies the TD3 algorithm in a specific way to constrain the

generated actions. Algorithm 1 allows the user to choose one of the

four methods (AORLD‐HL, AORLD‐CL, AORLD‐HF, or AORLD‐HP)

for the entire training process. The step‐by‐step details for each

action space limitation method are explicitly provided in dedicated

algorithms (Algorithms 2, 3, 4, and 5, respectively).

4 | AFLAKIAN ET AL.

As illustrated in Figure 2, in each iteration of the training

process, the AORLD approach is used to modify the target actions

by one of the four abovementioned methods. The resulting action

is then executed in the environment, and the observed states,

taken actions, resulting rewards, and potential next states are

stored in the replay buffer. Subsequently, these experiences stored

in the replay buffer are used to augment the training data for the

ongoing episode. The actions corresponding to each algorithm

(2–5) represent the outputs of individual expert controllers. These

outputs contribute to the fine‐tuning of the agent's action space.

The agent, in turn, employs each AORLD method to choose a

singular candidate action from within the action space, which

ultimately serves as the output action.

In the following, we will describe those four methods to

constrain actions in detail and explain their respective pros and cons.

The AORLD‐HL algorithm is introduced in Algorithm 2. To compute

the amin and amax values in (1), the following procedure was adopted: data

are collected from multiple controllers that generate candidate action

vectors for each observation of the environment. Thereafter, the convex

hull of action vectors is computed and the resulting convex hull used to

define the feasible action space for the RL agent. Let k be the set of

indices that define the convex hull of A, that is, k A= convhulln(). For

each dimension i of A, minimum (amin) and maximum (amax) values over

the vertices of the convex hull are computed as follows:

∈ ∈
a a a a= min and = max ,i

j k
j i i

j k
j imin, , max, , (3)

where aj i, is the ith component of the jth vertex of the convex hull. It

should be noted that π s g()t in Algorithm 2 is the policy that maps the

AFLAKIAN ET AL. | 5

state st to an action at given the goal g , and → denotes the

assignment of at to the output of the policy. The convex hull is a

mathematical concept that defines the smallest convex set that

contains all the given points in a higher dimensional space. In our

case, the convex hull is a boundary that encloses most of the

potentially desired action vectors. It should be mentioned that it

requires at least n + 1 unique points in n‐dimensional space to create

a n‐dimensional convex hull. The algorithm uses each controller

prediction to have at least n + 1 data if there is not enough data to

build the n‐dimensional convex hull. Given the bounding convex hull,

we can find the minimum and maximum values for each dimension by

computing the minimum (amin) and maximum (amax) values of each

coordinate of the vertices of the convex hull. During training, the

convex hull would be periodically updated using a new set of action

vectors. As explained before, this approach aims to adaptively

constrain the RL agent to choose actions within the feasible action

space defined by the convex hull. Limiting the actions of the RL agent

to lie within the convex hull can potentially simplify the learning

problem and make it easier for the agent to converge to a good

policy. Moreover, by limiting the actions to a smaller region of the

action space, the agent has fewer options to choose from and can

more quickly learn which actions are likely to lead to good outcomes.

The AORLD‐CL algorithm is established in Algorithm 3. In

AORLD‐CL, instead of generating a convex hull around the experts'

outputs, a set of bounds for the action is defined based on the

combination of demonstrators' data. These bounds represent the

minimum and maximum values that each action can take. To create

the lower limit of the ith action, the minimum value of that action from

all the demonstrators' data is used:

a a i a i a i= min([], [], …, []).i ex ex exnmin, 1 2 (4)

Similarly, the upper limit of the ith action is created using the

maximum value of that action from all the demonstrators' data:

a a i a i a i= max([], [], …, []).i ex ex exnmax, 1 2 (5)

This creates a hypercube in the action space that represents the

feasible action space for the agent. Not to mention that the convex

hull is the minimum bounding convex hypervolume that includes the

actions from the controllers, which reduces the action and search

space of the agent more than the hypercube. Convex hull also

accounts for correlations between different actions, whereas the

hypercube approach in AORLD‐CL assumes each action dimension is

independent. During training, the hypercube is updated periodically

with the demonstrators' new set of action vectors. This ensures the

feasible action space is updated as the agent learns from the

demonstrators' data. The modified TD3 loss function in AORLD‐CL

enforces that the agent's predicted actions stay within these bounds.

This simple approach to limiting the action space can be computa-

tionally less expensive than generating a convex hull and still helps to

constrain the agent's actions to the feasible action space. Never-

theless, the agent's exploration space is not optimally condensed and

is larger than when employing a convex hull.

F IGURE 2 Structure of Action Optimizer for improving Reinforcement Learning from multi‐Demonstrations (AORLD) integrated with TD3
RL. The proposed block diagram in this study takes in current and desired features extracted from the vision sensor as inputs. Then, during each
episode, the knowledge from hybrid decoupled visual servoing, position‐based visual servoing, and image‐based visual servoing approaches is
utilized to restrict the action space. The joint velocity actions are then applied to the training environment, and the average rewards are
computed accordingly. [Color figure can be viewed at wileyonlinelibrary.com]

6 | AFLAKIAN ET AL.

http://wileyonlinelibrary.com

The AORLD‐HF algorithm (Algorithm 4) is a variant of the

AORLD‐HL algorithm that also generates a convex hull around expert

actions but differs in how it filters actions. The algorithm takes

candidate actions from multiple expert controllers as input and

outputs candidate actions inside the generated convex hull. The

algorithm 4 follows the steps below:

(I) Generate a convex hull around action vectors A using the

convhulln function, (II) Find the minimum and maximum vectors for

each dimension using the minimum and maximum functions, (III) For

each action sample at, check if it is inside the generated convex hull

using the Inhull function, (IV) If at is inside the hull, sample an action

inside the convex hull using theTD3 policy, (V) If at is outside the hull,

repeat the action generation.

Finally, AORLD‐HP, introduced in Algorithm 5, differs from

AORLD‐HF in that AORLD‐HF filters actions outside the generated

bound; however, AORLD‐HP uses a projection method explained in

Algorithm 5. The projection method projects the candidate action

onto the closest point on the boundary of the convex hull as follows:

Let k be the set of indices of the convex hull points, points be the set

of points on the convex hull, and a be the original action vector to be

projected onto the convex hull. Let u be the starting point of a line

segment on the convex hull, v be the direction of the line segment,

and proj be the projection of a onto the line segment.

⋅

 proj u v
a u v

v
= +

(−)
.

T

2
(6)

This approach ensures that the action is projected onto the

nearest segment of the boundary, by computing the projections on all

segments formed by the boundary and selecting the one with the

lowest distance. Doing so allows the agent to stay within the desired

action space. It should be mentioned that the hard constraint of

modifying the loss function with new minimum and maximum actions

in AORLD‐HL method is more effective than filtering and projecting

actions on the hull (AORLD‐HF and AORLD‐HP, respectively), as it

enforces the action constraints strictly. However, the algorithm in

AORLD‐HL assumes that the candidate actions from the expert

controllers are sufficient to define the action space, which may not

always be the case in complex environments. We will discuss VS as an

application to demonstrate our suggested approaches in the

following subsection.

2.2 | VS

VS is a widely used technique in the field of robot vision that

translates visual errors into actuator commands (Rastegarpanah et al.,

2021b). However, conventional VS methods still face several

limitations in terms of stability, convergence, and gain selection, as

highlighted in (Sampedro et al., 2018). These issues are partly due to

the challenges involved in calculating the image Jacobian (Interaction

matrix), which can lead to singularities and local minima. Additionally,

a lack of direct control over the robot joint velocities can also result in

prominent issues, as the controller may not be aware of the

limitations and performance of the robot (Chaumette, 1998).

The literature has discussed advanced techniques to circumvent

the problems associated with conventional VS methods (Aflakian

et al., 2023; Castelli et al., 2017; Chesi et al., 2004; Corke &

Hutchinson, 2001; Gans & Hutchinson, 2007; Jin et al., 2021;

massoud Farahmand et al., 2009; Rastegarpanah et al., 2021c). These

techniques are aimed at developing more sophisticated and adaptive

control strategies that can improve the stability, convergence, and

gain selection of the system.

The proposed method in this paper involves combining the

results of three different VS methods, namely IBVS, PBVS, and

HDVS, to serve as a supervisor for the learner. The ultimate aim is to

develop a policy that surpasses the performance of these supervisors.

The paper provides an overview of the methodologies employed,

described in detail in the following paragraphs. In IBVS, the features

in the image space provide immediate feedback to the controller.

To link pixel velocity to camera velocity in IBVS, an image

Jacobian matrix (Li) is utilized (Hu et al., 2009). This matrix relates the

camera velocity vector (vcam) to the error in the image space (ei)

described in (Hu et al., 2009). The control law for IBVS is then

calculated:

v k L e= − .i i icam
+ (7)

Here, ki represents the controller gain, and Li
+ denotes the

pseudo‐inverse representation of Li. In PBVS, feedback is obtained

from the reconstructed pose of the environment, which is computed

using Euclidean algorithms and camera parameters (Malis et al.,

1999). The control law for PBVS is given as follows:

v k L e= − .p p pcam
−1 (8)

The control gain is represented by kp, and ep refers to the 3D

error of object position with respect to its desired position, measured

in the task space. L t()p is a 6 × 6 matrix, defined in (Hu et al., 2009).

The third approach utilized in our method is HDVS, which is

explained in detail in Rastegarpanah et al. (2021a). HDVS utilizes both

2D information from image features and their estimated 3D poses.

The control law of the HDVS method is obtained by simultaneously

solving (9) and (10):

v L k e L v= {− − },xy xy h r r
+ (9)

v L k e L v= {− − },r Pr h p Pxy xy
+ (10)

where v v v v v w w w k= (,), = (, , ,),xy x y r z x y z h is the controller gain, and Lxy

and Lr are defined in (Rastegarpanah et al., 2021a). The data from (9)

and (10) was then used to train a LoLiMOT neural network to

produce a detailed prediction of the camera velocities from the

feature errors. After obtaining the end‐effector (EE) velocities

()v v v= [:]xy r
T

cam in the HDVS method, the joint velocities (q̇) can be

computed using the following equation (Baerlocher & Boulic, 1998):

AFLAKIAN ET AL. | 7

q J ξ v˙ = ,λ
c
e c+

cam (11)

where λ is damping factor (Baerlocher & Boulic, 1998). The AORLD

approach utilizes expert demonstrations for learning decision‐making

policies and constraining the agent's action space, as described in

Section 1.1, instead of allowing AI agents to learn solely through their

own exploration. In the RL algorithm, the actions taken by the agent

are defined as joint velocities, while the observations provided to the

agent include image feature locations, camera pose, and robot

Jacobian. Additionally, the reward earned by the agent is a composite

of three distinct reward functions. The first reward function aims to

drive the image feature errors to zero, which is expressed

mathematically as r1:

∑r u u v v= − (−) + (−) ,
i

i id i id1
=1

4
2 2 (12)

where u v(,) denotes the coordinates of a point in the camera view

and u v(,)d d is the desired coordinates of that point. i = 1 to 4 is the

number of features (in this case four features). To keep away from

joint limits, the second reward function (r2) is defined as follows

(Franks et al., 2008):







∑r

n

q q

q q
= −

1

2

− ¯

−
,

j

n
j j

jM jm
2

=1

2

(13)

where q̄j is center of jth joint range. qjM and qjm are the maximum and

minimum angles of the jth joint respectively, and n = 7 is the number

of joints. The last reward component is avoiding manipulator

singularities and improving the robot manipulability (controllability),

described in (Franks et al., 2008):

J q J qr = det(() ()) ,T
3

(14)

where J is the robot Jacobian. The final reward function will be

derived as:

r w r w r w r= − − − .f q m1 2 3 (15)

The terms w w,f q, and wj are weighting factors that are manually

adjusted. For each reward, values of w w= 10, = 2f q , and w = 4j were

chosen to determine the weighting contribution. Therefore, in this

case study, the controllers correspond to each visual servoing control

law for IBVS, PBVS and HDVS, and the actions themselves

correspond to robot's joint velocities. The output action of each

algorithm (2–5) is hence also the joint velocities.

3 | EXPERIMENTAL SETUP

To train the policy, a simulation environment was developed using

ROS/Gazebo. This approach is more efficient and cost‐effective

compared with real world experiments, especially for RL, because it

involves extensive exploration of the environment. Additionally,

using simulation helps prevent potential damage to the robot setup

during training. The trained model with Domain Randomization (DR)

can adapt to the real world environment because the real system is

assumed to be one instance in a wide range of training variations. DR

is a technique used for training models to work in various simulated

settings with randomized properties (Tobin et al., 2017).

The TD3 algorithm was implemented as a ROS node, and Matlab

Reinforcement Learning Toolbox (MATLAB, 2021) was used to train

policies. The simulation environment included two Franka robot

manipulators, one with an eye‐in‐hand configuration and the other

with a tag marker attached to its end‐effector to move the marker

into various positions. An Intel RealSense depth camera D435i was

utilized as a vision sensor. Parallel training was used to accelerate the

learning process with the aid of Parallel Computing Matlab Toolbox,

which involved deploying 12 workers to simulate the agent in the

environment and transmit data back to the client. The simulation

platform depicted in Figure 1 was used in the simulation environment

in Gazebo and Figure 7 shows the real world environment used in this

study.

The system used in this study had the following specifications: an

NVIDIA GTX 1080Ti graphics card, an Intel(R) Core(TM) i7‐10510U

CPU with a base clock speed of 1.80 GHz and a turbo boost

frequency of 4.9 GHz, and 16.0 GB of RAM.

4 | RESULTS AND DISCUSSION

4.1 | Simulation results

To evaluate the effectiveness of the proposed approach, six different

agents were defined and trained, and their training progress was

compared. The first method, called AORLD‐HL, involved constraining

the agent's action space to an online convex hull generated from

controller knowledge and modifying the agent's loss function to

penalize actions outside the generated hypervolume. The second

method, AORLD‐CL, involved generating an online hypercube to

constrain the action space, and similarly modifying the loss function.

The third method, AORLD‐HF, involved filtering out actions

suggested by the RL policy that lie outside the generated convex

hull while using the standard loss function. The fourth method,

AORLD‐HP, involved projecting actions outside the convex hull onto

the convex hull. The fifth approach involved implementing DAgger

with HDVS as the demonstrator. Finally, the sixth policy was created

using only RL without any demonstrator.

To make the policy robust to noise, calibration errors, and

random objects in the scene, domain randomization was used. All six

agents were trained for 25,000 episodes, with the initial position of

the first robot randomized in each episode to generalize the trained

policy. The agent restarted the episode if it met one of four criteria:

(I) when the robot was close to joint limits, (II) when the features were

very close to the image boundary, (III) when the robot's Jacobian

manipulability was very small (less than 0.01), or (IV) when the

8 | AFLAKIAN ET AL.

number of steps in each episode exceeded 400. The parameters for

the RL algorithm in the training were specified in Table 1 for all the

agents.

The agents in the experiment have learned to maximize the

cumulative reward over time, as shown in Figure 3. Among the tested

methods, the TD3 agent with the AORLD‐HL algorithm achieved the

highest average reward of approximately −220, followed by the

agent with AORLD‐CL with an average reward of around −250.

These two methods are effective in ensuring that the agent's actions

are valid, as they enforce hard constraints. However, they require

modifications to the RL algorithm, including changes to the loss

function and target action. Furthermore, it can be inferred from the

data presented in Figure 3 that the AORLD‐HL algorithm requires a

smaller number of episodes to attain a satisfactory average reward

compared with all other four methods. The less the agent must

interact with the environment, the faster it will learn the task.

The AORLD‐HF method, on the other hand, is simpler as it only

allows the agent to choose valid actions without additional

calculations. However, it resulted in a less effective agent, as it may

limit the agent's ability to explore the state space and find optimal

solutions. The average reward obtained by the agent in this method is

approximately −300, as shown in Figure 3. Therefore, the first two

methods are more effective as they allow the agent to explore the

state space while staying within the feasible action space.

The agent trained with AORLD‐HP algorithm had an average

reward of around −400, which is lower than the first two methods

(Figure 3). This is because the projection method used in AORLD‐HP

may not always provide an accurate representation of the action

space, especially in higher dimensions. Additionally, this method is

computationally expensive since it requires projecting each action

outside the hull onto the hull, and it may be less effective if the hull is

irregularly shaped or difficult to calculate. The agent trained with

DAgger demonstrates a noteworthy learning trajectory, reaching an

average reward of approximately −400 within around 500 episodes.

However, despite its initial rapid progress, it struggles to surpass an

average reward of −350, hindering its ability to outperform the

expert demonstrator. This emphasizes the need for a more flexible

training approach, as provided by the proposed AORLD method.

Moreover, as training progresses with DAgger, the agent begins to

exhibit signs of overfitting behavior after approximately 8000

episodes. Finally, the agent without using any action constraints

achieved an average reward of −600, indicating the effectiveness of

the AORLD method.

In this study, we conducted a comparison between the

performance of IBVS, PBVS, HDVS, and six trained policies using

effective parameters. To obtain these parameters, we carried out 90

experiments with the robots starting from randomly selected initial

positions, ensuring that all four features were visible in the image

frame. The mean values of these parameters were then derived and

reported in Figures 4–6.

Figure 4a compares the number of iterations taken to complete

the VS task and the root mean square (RMSE) of 2D errors in the

image space for different methods, including AORLD‐HL, AORLD‐CL,

AORLD‐HF, AORLD‐HP, DAgger, IBVS, PBVS, HDVS, and theTD3. It

TABLE 1 Reinforcement learning (RL) and noise parameters
employed in training.

RL parameters Noise options

Target smooth factor 1e−03 Mean 0

Learning rate 5e−04 Mean attraction constant 5

Sample time 2.5e−02 Variance decay rate 1e−05

Discount factor 0.95 Variance 0.5

F IGURE 3 The graph illustrates the average reward per episode for each method during the training process. AORLD‐HL and AORLD‐CL
exhibit faster learning and achieve higher average rewards. AORLD‐HF, AORLD‐HP, and the agent without action constraints show slower
learning and lower average rewards. DAgger, demonstrates rapid learning but with a trade‐off of lower average rewards compared with
AORLD‐HL and AORLD‐CL. [Color figure can be viewed at wileyonlinelibrary.com]

AFLAKIAN ET AL. | 9

http://wileyonlinelibrary.com

is evident from the figure that the RMSE of errors in AORLD‐HL,

AORLD‐CL, and IBVS are the smallest values among all the other

methods, and AORLD‐HL performs faster (with fewer iterations) than

other methods. To have an optimized performance in VS, both image

space and robot space should be taken into account.

Figure 4b illustrates the RMSE of position and orientation for all

methods in the 3D task space. From this figure, it is shown that the

best performance in 3D task space is achieved by AORLD‐HL and

PBVS followed by AORLD‐CL. This is because the RMSE of

orientation and position is lower for AORLD‐HL and PBVS compared

with the other methods.

Additionally, it is worth noting that theTD3 RL method offers the

worst performance in both 2D and 3D tasks compared with the other

eight methods. This highlights the fact that the agent is more

susceptible to getting stuck in local optima without using the

knowledge of any other controllers or demonstrators. In other

words, using the action space proposed by other controllers can

significantly help the agent find an optimal solutions while avoiding

unnecessary explorations.

Overall, the results presented in Figure 4a,b demonstrate that

the agent using AORLD‐HL is highly effective for both 2D and 3D

tasks, while the TD3 without using data of any demonstrators

performs poorly in comparison.

Figure 5, compared the mean average reward of different methods

for the same 90 trials in Figure 4. The data in Figure 5 shows that

AORLD‐HL achieves the highest average reward of −208.24, out-

performing all other methods. AORLD‐CL comes in second place with an

average reward of −232.42, followed by HDVS with an average reward

of −275.19, DAgger with the average reward of −303.61, IBVS with an

average reward of −309.42, PBVS with an average reward of −316.23,

AORLD‐HF with an average reward of −328.67, AORLD‐HP with an

average reward of −433.06, and finally TD3 with an average reward of

−582.30. The higher average reward indicates the outperforming of

AORLD‐HL in 2D and 3D space compared with the other methods.

The manipulability of a robot is a key factor in evaluating its

performance in task execution. In this study, we compare the

manipulability of different methods for robot control, as shown in

(a) (b)

F IGURE 4 Comparison of visual servoing (VS) performance parameters in two‐dimensional (2D) and 3D. All comparisons in these figures are
based on the average of 10 trials for each method (overall 90) (a) Iterations are taken to complete theVS task and root mean square error (RMSE)
of 2D errors in image space for nine different methods, (b) RMSE of position and orientation errors for nine different methods in 3D task
space. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Comparison of Average Reward for Different
Methods: This figure shows a comparison of the average reward
obtained by different methods. AORLD‐HL offers the highest
average reward followed by AORLD‐CL, hybrid decoupled visual
servoing, DAgger, image‐based visual servoing, position‐based visual
servoing, AORLD‐HF, AORLD‐HP, and TD3, indicating the better
performance of AORLD‐HL compared with other methods.
[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 6 Comparison of Manipulability values and ranges for
nine methods over 90 trials. [Color figure can be viewed at
wileyonlinelibrary.com]

10 | AFLAKIAN ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

Figure 6. The manipulability values and ranges are calculated by averaging

the tracking performance of desired features for the same 90 trials as in

Figure 4.

From the results presented in Figure 6, it is observed that the

AORLD‐HL method provides the highest mean manipulability value

of 0.0494, followed by AORLD‐CL with 0.0453, PBVS with 0.0446,

IBVS with 0.0407, HDVS with 0.0396, AORLD‐HF with 0.0394,

DAgger with 0.0371 AORLD‐HP with 0.0292, and TD3 with 0.0121.

The higher manipulability values for AORLD‐HL indicate its better

performance compared with the other approaches.

Moreover, the results in Figure 6 suggest that the robot has better

controllability with the AORLD‐HL method while tracking the desired

features compared with other methods. This is evident from the fact that

AORLD‐HL minimum manipulability exceeds that of other methods,

showcasing a higher lower bound. Moreover, the maximummanipulability

achieved by AORLD‐HL surpasses that of other methods, indicating a

superior upper bound. Additionally, the average manipulability of

AORLD‐HL is higher that of other methods, emphasizing its overall

superiority in manipulability across the board, indicating that the AORLD‐

HL method provides better control over the motion of the robot.

Overall, from the date of Figures 4–6, the TD3 agent which is

trained with AORLD‐HL achieves the best overall performance over

the image space and Cartesian space, also suggests the best

controllability compared with other approaches. A comprehensive

comparison of the four proposed AORLD methods in terms of their

advantages and disadvantages is illustrated in Table 2.

4.2 | Real world results

In the previous sections, we presented the theoretical foundations

and simulation‐based evaluation of our AORLD method.

Results reveal the effectiveness of our proposed action bounding

method in terms of accelerating the training process and enhancing

cumulative rewards. Building upon this finding, we further investi-

gated the practical applicability of AORLD in the real world. Our

experiments began with the training of agents in a simulated

environment, where AORLD‐HL demonstrated superior performance

compared with other alternative methods (Figures 3–6). However,

transitioning directly from simulation to the real world is challenging

due to the variations between these domains. To address this,

alongside our use of Domain Randomization during the simulation,

we employed a Domain Adaptation approach (Transfer learning) to

further adapt our trained policies for the real world (Aflakian et al.,

2023) (Figure 7). As illustrated in Figure 8, we initiated this adaptation

TABLE 2 Advantages and
disadvantages of Action Optimizer for
improving Reinforcement Learning from
multi‐Demonstrations (AORLD) methods.

AORLD method Advantages Disadvantages

AORLD‐HL ‐ Higher performance ‐ Increase computational cost

‐ Effective action space reduction

‐ Enforces strict constraints

‐ Fast training time

AORLD‐CL ‐ Simplicity in action space
reduction

‐ Exploration space not optimally
condensed

‐ Lower computational cost ‐ Assumes independence between

action dimensions

‐ Enforces strict constraints

AORLD‐HF ‐ Simplicity, no direct action
modification

‐ Does not enforce strict constraints

‐ Limited reduction of action space

‐ Slow training time

AORLD‐HP ‐ Modification of action space ‐ Training process affected

‐ Enforces constraints ‐ Increase computational cost

F IGURE 7 Transferring knowledge learned in the simulation to
the real world using Domain Adaptation (Transfer Learning).
[Color figure can be viewed at wileyonlinelibrary.com]

AFLAKIAN ET AL. | 11

http://wileyonlinelibrary.com

phase by allowing the agent to continue training until it reached the

specified reward threshold in the simulated environment. Once this

threshold was achieved (in this case, −200), we transferred the

trained policy to the real world, marked by the yellow area in

Figure 8. This phase, which we refer to as domain adaptation,

involved further training over 4000 additional episodes in the real‐

world environment. The drop in cumulative rewards during domain

adaptation is a natural consequence of the environment shift

(transitioning from a simulated domain to the real world). During

this phase of domain adaptation, the agent needs time to recalibrate

its policies to effectively operate in the real‐world setting. This

adjustment period can result in lower rewards until the agent

successfully adapts and fine‐tunes its behavior to accommodate the

unique challenges posed by the real‐world environment.

Table 3 presents a comparison of performance metrics among

various VS techniques and the proposed AORLD‐HL. These results

stem from 40 experiments (10 experiments per method), each

initiated from one of 10 randomly selected initial positions for the

tracking. The selection criteria ensured that all four features

remained within the camera's field of view.

As depicted in Table 3, AORLD‐HL demonstrates superior

performance in the image space. It exhibits the smallest RMSE and

accomplishes the task with fewer iterations compared with other

methods. Additionally, AORLD‐HL and IBVS exhibit smaller ranges of

feature errors, suggesting a reduced risk of losing track of the target

object within the camera's field of view, a clear advantage over PBVS

and HDVS. Additionally, the policy trained with AORLD‐HL follows a

shorter camera path on average (0.706m) than IBVS (0.942m), HDVS

(0.917m), and PBVS (0.772m), underscoring a more optimized

trajectory achieved through our proposed training technique.

Analyzing Table 3 further, the mean manipulability values for

the same number of experiments and initial conditions are as

follows: AORLD‐HL (0.0521), IBVS (0.0407), PBVS (0.0446), and

HDVS (0.0396). Consequently, AORLD‐HL exhibits a higher

average manipulability compared with the other methods,

indicating better controllability when tracking desired features

during VS tasks.

F IGURE 8 Training progress while leveraging AORLD‐HL to
constrain the action space and employing Transfer learning for real
world adaptation. [Color figure can be viewed at
wileyonlinelibrary.com]

T
A
B
L
E

3
T
he

re
al

w
o
rl
d
co

m
p
ar
is
o
n
o
f
vi
su
al

se
rv
o
in
g
(V
S)

p
er
fo
rm

an
ce

.

M
et
ho

d
R
M
SE

o
f
2
D

er
ro
rs

F
ea

tu
re

er
ro
r

ra
ng

e
R
M
SE

o
f

p
o
si
ti
o
n
(m

)
R
M
SE

o
f

o
ri
en

ta
ti
o
n
(°
)

C
am

er
a
tr
av

el
ed

d
is
ta
nc

e
(m

)
M
an

ip
ul
ab

ili
ty

m
ea

n
M
an

ip
ul
ab

ili
ty

ra
ng

e
It
er
at
io
ns

A
ve

ra
ge

re
w
ar
d

H
D
V
S

0
.0
2
7
3

[−
0
.4
5
,
0
.4
9
]

0
.0
3
4

8
.4
1

0
.9
1
7

0
.0
3
9
6

[0
.0
2
1
,
0
.0
8
1
]

4
2
4

−
2
7
5
.1
9

P
B
V
S

0
.0
3
8
3

[−
0
.4
4
,
0
.5
1
]

0
.0
2
2

6
.5
4

0
.7
2
2

0
.0
4
4
6

[0
.0
2
4
,
0
.0
8
0
]

3
8
7

−
3
1
6
.2
3

IB
V
S

0
.0
2
2
2

[−
0
.3
6
,
0
.3
1
]

0
.0
3
6

9
.4
3

0
.9
4
2

0
.0
4
0
7

[0
.0
1
4
,
0
.0
8
1
]

2
5
3

−
3
0
9
.4
2

A
O
R
LD

‐H
L

0
.0
2
0
9

[−
0
.3
0
,
0
.3
4
]

0
.0
2
7

6
.6
1

0
.7
0
6

0
.0
5
2
1

[0
.0
3
1
,
0
.0
8
4
]

1
8
9

−
2
3
7
.4
2

N
ot
e:

T
he

b
o
ld

va
lu
e
in

ea
ch

co
lu
m
n
in
d
ic
at
es

th
e
b
es
t
p
er
fo
rm

an
ce

am
o
ng

al
l
th
e
co

m
p
ar
ed

m
et
ho

d
s.

A
b
b
re
vi
at
io
ns
:
2
D
,
tw

o
d
im

en
si
o
na

l;
H
D
V
S,

hy
b
ri
d
d
ec

o
up

le
d
vi
su
al

se
rv
o
in
g;

IB
V
S,

im
ag

e‐
b
as
ed

vi
su
al

se
rv
o
in
g;

P
B
V
S,

p
o
si
ti
o
n‐
b
as
ed

vi
su
al

se
rv
o
in
g;

R
M
SE

,
ro
o
t
m
ea

n
sq
ua

re
er
ro
r.

12 | AFLAKIAN ET AL.

http://wileyonlinelibrary.com

In summary, Table 3 highlights the superior performance (higher

average reward) of AORLD‐HL, trained with our proposed method,

across both image space and Cartesian space.

Figure 9 illustrates the comparison of each controller's action

vector for one random trial among different methods. This sample is

part of the data set used to generate Table 3. The plots illustrate the

joint velocity vector for each method during the task of tracking an

object with a tag in the real world. It is evident from the plots that the

agent trained with the combination of TD3 and AORLD‐HL

outperformed other methods, completing the tracking task in

approximately 200 iterations.

5 | CONCLUSION

This paper proposed a learning‐based online action‐policy optimizer

named AORLD. The AORLD technique intelligently limits the action

space of the agent, based on demonstrated actions from an ensemble

of several different supervisory experts. Thereafter, the agent

explores further within this constrained action space, refining its

policy to become increasingly optimal with respect to a reward

function. The learning process is greatly accelerated, because the

policy search space has been reduced by the expert demonstrations.

We demonstrated AORLD in the context of a standard VS task,

with TD3 algorithms to train the policy. IBVS, PBVS, and HDVS were

defined as a set of expert supervisors for AORLD. We proposed and

compared four methods to bound actions online while training. We

found using the convex hull with modified loss function (AORLD‐HL)

is the most effective method for improving the exploration‐

exploitation trade‐off in RL. Our experimental results demonstrate

the effectiveness of these methods in improving the average reward

progress during training, compared with using no bounding methods.

Moreover, the agent trained with AORLD‐HL achieves better overall

performance in terms of feature trajectories in the 2D image plane,

and also robot trajectories in the 3D task space, while also achieving

higher Jacobian and manipulability of the robot throughout its

motions.

Overall, our study highlights the importance of incorporating

prior knowledge into the training process of RL policies to improve

their performance, particularly in challenging environments with

(a) (b)

(c) (d)

F IGURE 9 The real‐world joint velocity comparison of different methods to perform one random trial (a) hybrid decoupled visual servoing,
(b) position‐based visual servoing, (c) image‐based visual servoing, (d) AORLD‐HL. [Color figure can be viewed at wileyonlinelibrary.com]

AFLAKIAN ET AL. | 13

http://wileyonlinelibrary.com

high‐dimensional action spaces. The AORLD method can be used

when there are multiple control methods available to serve as

demonstrators (from two to arbitrarily many). AORLD finds a useful

trade‐off between these experts, while also incorporating the

capabilities of RL to enable iterative optimizing of policies with

respect to a reward function. The methods presented in this study

provide a promising approach for addressing this challenge and can

be applied in various RL applications. In future work, we aim to

introduce haptic experts in our proposed optimization method to

correct and improve the control signals from a human operator

during tele‐operation tasks. Furthermore, AORLD could be integrated

with multiagent RL, to significantly reduce training episodes by

intelligently limiting the exploration bounds of each agent.

ACKNOWLEDGMENTS

This work was supported in part by the project called “Research and

Development of a Highly Automated and Safe Streamlined Process

for Increase Lithium‐ion Battery Repurposing and Recycling” (RE-

BELION) under Grant 101104241 and in part by the UK Research

and Innovation (UKRI) project “Reuse and Recycling of Lithium‐Ion

Batteries” (RELIB) under RELiB2 Grant FIRG005 and RELIB3 Grant

FIRG057.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the

corresponding author upon reasonable request.

REFERENCES

Aflakian, A., Rastegarpanah, A. & Stolkin, R. (2023) Boosting performance
of visual servoing using deep reinforcement learning from multiple
demonstrations. IEEE Access, 11, 26512–26520.

Baerlocher, P. & Boulic, R. (1998) Task‐priority formulations for the
kinematic control of highly redundant articulated structures. In:

Proceedings. 1998 IEEE/RSJ International Conference on Intelligent

Robots and Systems. Innovations in Theory, Practice and Applications

(Cat. No. 98CH36190). vol. 1. Victoria, BC, Canada, IEEE,
pp. 323–329.

Bellman, R. (1957) Dynamic programming. Princeton University Press,
Princeton, NJ.

Castelli, F., Michieletto, S., Ghidoni, S. & Pagello, E. (2017) A machine
learning‐based visual servoing approach for fast robot control in

industrial setting. International Journal of Advanced Robotic Systems,
14(6), 1729881417738884.

Chaumette, F. (1998) Potential problems of stability and convergence in
image‐based and position‐based visual servoing. In: The confluence of
vision and control, Springer, pp. 66–78.

Chesi, G., Hashimoto, K., Prattichizzo, D. & Vicino, A. (2004) Keeping
features in the field of view in eye‐in‐hand visual servoing: a

switching approach. IEEE Transactions on Robotics, 20(5), 908–914.
Corke, P.I. & Hutchinson, S.A. (2001) A new partitioned approach to

image‐based visual servo control. IEEE Transactions on Robotics and

Automation, 17(4), 507–515.
Franks, J., Huo, L. & Baron, L. (2008) The joint‐limits and singularity

avoidance in robotic welding. Industrial Robot: An International

Journal, 35(5), 456–464.
Fujimoto, S., Hoof, H. & Meger, D. (2018) Addressing function

approximation error in actor‐critic methods. In: International Confer-

ence on Machine Learning. PMLR, pp. 1587–1596.

Gans, N.R. & Hutchinson, S.A. (2007) Stable visual servoing through
hybrid switched‐system control. IEEE Transactions on Robotics, 23(3),
530–540.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B. et al.

(2018) Deep q‐learning from demonstrations. In: Proceedings of the

AAAI Conference on Artificial Intelligence. vol. 32.
Ho, J. & Ermon, S. (2016) Generative adversarial imitation learning.

Advances in Neural Information Processing Systems, 29, 4565–4573.
Hoque, R., Balakrishna, A., Novoseller, E., Wilcox, A., Brown, D.S. &

Goldberg, K. (2021) Thriftydagger: budget‐aware novelty and risk
gating for interactive imitation learning. arXiv preprint
arXiv:2109.08273.

Hu, G., Gans, N.R. & Dixon, W.E. (2009) Adaptive visual servo control.
Florida: Citeseer. pp. 42‐63.

Hua, J., Zeng, L., Li, G. & Ju, Z. (2021) Learning for a robot: deep
reinforcement learning, imitation learning, transfer learning. Sensors,
21(4), 1278.

Jin, Z., Wu, J., Liu, A., Zhang, W. ‐A. & Yu, L. (2021) Policy‐based deep
reinforcement learning for visual servoing control of mobile robots

with visibility constraints. IEEE Transactions on Industrial Electronics,
69(2), 1898–1908.

Jing, M., Ma, X., Huang, W., Sun, F., Yang, C., Fang, B. et al. (2020)
Reinforcement learning from imperfect demonstrations under soft

expert guidance. In: Proceedings of the AAAI conference on artificial

intelligence. vol. 34. pp. 5109–5116.
Kang, B., Jie, Z. & Feng, J. (2018) Policy optimization with demonstrations.

In: International Conference on Machine Learning. PMLR,
pp. 2469–2478.

Kelly, M., Sidrane, C., Driggs‐Campbell, K. & Kochenderfer, M.J. (2019)
Hg‐dagger: interactive imitation learning with human experts. In:
2019 International Conference on Robotics and Automation (ICRA).
IEEE, pp. 8077–8083.

Krishnan, S., Garg, A., Liaw, R., Thananjeyan, B., Miller, L., Pokorny, F.T.

et al. (2019) Swirl: a sequential windowed inverse reinforcement
learning algorithm for robot tasks with delayed rewards. The

International Journal of Robotics Research, 38(2–3), 126–145.
Kumar, V., Gupta, A., Todorov, E. & Levine, S. (2016) Learning dexterous

manipulation policies from experience and imitation. arXiv preprint

arXiv:1611.05095.
Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y. et al.

(2015) Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971.

Malis, E., Chaumette, F. & Boudet, S. (1999) 2 1/2 d visual servoing. IEEE
Transactions on Robotics and Automation, 15(2), 238–250.

Massoud Farahmand, A., Shademan, A., Jagersand, M. & Szepesvári, C.
(2009) Model‐based and model‐free reinforcement learning for
visual servoing. In: 2009 IEEE International Conference on Robotics

and Automation. IEEE, pp. 2917–2924.
MATLAB (2021) version 9.9.0 (R2020b). Natick, MA: The MathWorks Inc.
Ramírez, J., Yu, W. & Perrusquía, A. (2022) Model‐free reinforcement

learning from expert demonstrations: a survey. Artificial Intelligence
Review, 55(4), 3213–3241.

Rastegarpanah, A., Aflakian, A. & Stolkin, R. (2021a) Improving the
manipulability of a redundant arm using decoupled hybrid visual
servoing. Applied Sciences, 11(23), 11566.

Rastegarpanah, A., Aflakian, A. & Stolkin, R. (2021b) Optimized hybrid

decoupled visual servoing with supervised learning. Proceedings of

the Institution of Mechanical Engineers, Part I: Journal of Systems and

Control Engineering, 236(2), 338–354.
Rastegarpanah, A., Hathaway, J. & Stolkin, R. (2021c) Vision‐guided mpc

for robotic path following using learned memory‐augmented model.

Frontiers in Robotics and AI, 8, 688275.
Ross, S., Gordon, G. & Bagnell, D. (2011a) A reduction of imitation learning

and structured prediction to no‐regret online learning. In: Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence

14 | AFLAKIAN ET AL.

and Statistics. JMLR Workshop and Conference Proceedings,
pp. 627–635.

Ross, S., Gordon, G.J. & Bagnell, J.A. (2011b) No‐regret reductions for
imitation learning and structured prediction. In: In AISTATS. Citeseer.

Sampedro, C., Rodriguez‐Ramos, A., Gil, I., Mejias, L. & Campoy, P. (2018)
Image‐based visual servoing controller for multirotor aerial robots using
deep reinforcement learning. In: 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, pp. 979–986.
Sun, W., Bagnell, J.A. & Boots, B. (2018) Truncated horizon policy search:

Combining reinforcement learning & imitation learning. arXiv
preprint arXiv:1805.11240.

Takeda, T., Hirata, Y. & Kosuge, K. (2007) Dance step estimation method
based on hmm for dance partner robot. IEEE Transactions on

Industrial Electronics, 54(2), 699–706.
Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W. & Abbeel, P. (2017)

Domain randomization for transferring deep neural networks from
simulation to the real world. In: 2017 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, pp. 23–30.
Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O., Piot, B. et al.

(2017) Leveraging demonstrations for deep reinforcement learning

on robotics problems with sparse rewards. arXiv preprint arXiv:
1707.08817.

Yang, C., Ma, X., Huang, W., Sun, F., Liu, H., Huang, J. et al. (2019)
Imitation learning from observations by minimizing inverse dynamics

disagreement. Advances in Neural Information Processing Systems, 32.
Yuan, E., Cheng, S., Wang, L., Song, S. & Wu, F. (2023) Solving job shop

scheduling problems via deep reinforcement learning. Applied Soft

Computing, 143, 110436.
Zhu, Z. & Hu, H. (2018) Robot learning from demonstration in robotic

assembly: a survey. Robotics, 7(2), 17.

How to cite this article: Aflakian, A., Rastegarpanah, A.,

Hathaway, J. & Stolkin, R. (2024) An online hyper‐volume

action bounding approach for accelerating the process of

deep reinforcement learning from multiple controllers. Journal

of Field Robotics, 1–15. https://doi.org/10.1002/rob.22355

AFLAKIAN ET AL. | 15

https://doi.org/10.1002/rob.22355

	An online hyper-volume action bounding approach for accelerating the process of deep reinforcement learning from multiple controllers
	1 INTRODUCTION
	1.1 Related work

	2 METHODOLOGY
	2.1 Proposed AORLD in RL
	2.2 VS

	3 EXPERIMENTAL SETUP
	4 RESULTS AND DISCUSSION
	4.1 Simulation results
	4.2 Real world results

	5 CONCLUSION
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	REFERENCES

