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Interacting many-body systems with explicitly accessible spatiotemporal correlation functions are
extremely rare, especially in the absence of Bethe-ansatz or Yang-Baxter integrability. Recently, we
identified a remarkable class of such systems and termed them dual-unitary quantum circuits. These are
brickwork-type local quantum circuits whose dynamics are unitary in both time and space. The
spatiotemporal correlation functions of these systems turn out to be nontrivial only at the edge of the
causal light cone and can be computed in terms of one-dimensional transfer matrices. Dual unitarity,
however, requires fine-tuning, and the degree of generality of the observed dynamical features remains
unclear. Here, we address this question by studying perturbed dual-unitary quantum circuits. Considering
arbitrary perturbations of the local gates, we prove that for a particular class of unperturbed elementary
dual-unitary gates the correlation functions are still expressed in terms of one-dimensional transfer
matrices. These matrices, however, are now contracted over generic paths connecting the origin to a fixed
end point inside the causal light cone. The correlation function is given as a sum over all such paths. Our
statement is rigorous in the “dilute limit,” where only a small fraction of the gates is perturbed, and in the
presence of random longitudinal fields, but we provide theoretical arguments and stringent numerical
checks supporting its validity even in the clean case (no randomness) and when all gates are perturbed. As a
by-product of our analysis, in the case of random longitudinal fields—which turns out to be equivalent to
certain classical Markov chains—we find four types of non-dual-unitary (and nonintegrable) interacting
many-body systems where the correlation functions are exactly solvable and given—without approx-
imations—by the path-sum formula.

DOI: 10.1103/PhysRevX.11.011022 Subject Areas: Quantum Physics, Statistical Physics

I. INTRODUCTION

Understanding the dynamics of extended quantum
many-body systems with local interactions is the core
problem of nonequilibrium statistical mechanics, with a
wide range of applications ranging from condensed matter
physics to high-energy theory and quantum gravity. In
particular, the set of two-point spatiotemporal correlation
functions of local observables can be considered as the
prime quantifier of the dynamics. For example, they can be
used in the framework of linear response theory [1,2] to
express coefficients, such as conductivities and kinematic
viscosities, that describe macroscopic transport properties.
A major obstacle is that computing dynamical correla-

tion functions in interacting systems is notoriously hard.
This is true for numerical simulations of correlations in real
time, which are typically exponentially hard

(in physical simulation time) [3,4] (see also Ref. [5]),
and even more so for analytical computations. Even in
Bethe-ansatz integrable systems, the task turns out to be
daunting: While recent breakthroughs allow for the calcu-
lation of dynamical correlations in the late-time, hydro-
dynamic, regime [6–8], the computation of two-point
correlations at arbitrary intermediate times remains out
of reach. This fact leaves us with noninteracting, quasi-free,
or Gaussian theories as the only general class of systems
where dynamical correlations can be analytically com-
puted, in general. Dynamical correlations in coupled
(interacting) theories are then usually formulated in terms
of (Keldysh) diagrammatic many-body perturbation theory
[1]. In these approaches, correlations are written as power
series in the coupling constant around the underlaying free
theory. Such perturbative series, however, generically have
a vanishing radius of convergence—especially in the
thermodynamic limit—and their relevance for determining
the actual physical behavior of correlation functions in
extended systems is questionable. One typically finds an
even qualitative change in the behavior of correlations and
transport coefficients at finite temperatures when going
from free to strongly coupled theories. For example, while
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free theories usually behave as ballistic conductors,
strongly coupled ones are expected to display diffusive
transport, which is, thus, a nonperturbative effect. In fact,
establishing the microscopic origin of diffusion remains
one of the main challenges of statistical physics [9,10].
Very recently, we proposed a new class of locally

interacting many-body systems, which allows for an exact
computation of spatiotemporal correlation functions of
local observables [11] and of some other indicators of
quantum chaos and scrambling of quantum information
[12–21]. These systems are special brickwork-type quan-
tum circuits (see, e.g., Refs. [22–24]) called “dual-unitary”
quantum circuits and are characterized by unitary evolu-
tion, not only in the direction of time propagation, but also
in the orthogonal direction of space propagation. Owing to
this property, dual-unitary systems allow for a conceptual
exchange of space and time axes and, in a vague sense, are
discrete-space-time analogs of conformal field theories. In
particular, the correlations in these systems can propagate
only at the maximal speed and along one-dimensional
straight paths in the space-time. One may think of these
models as being “statistically exactly solvable,” and, yet,
their dynamics is generically ergodic [11] and quantum
chaotic, from the point of view of both spectral statistics
[12] and dynamical complexity [13,15]. This situation is
similar to that in classical dynamical systems [25], where
correlation functions of certain strongly chaotic single-
particle models, such as, e.g., Arnold cat maps or Baker
maps, are exactly computable [26,27] despite their deter-
ministic trajectories being unpredictable and “incomput-
able” in the algorithmic complexity sense. Similarly, for
generic quantum chaotic dual-unitary dynamics, the
Heisenberg evolution of local operators is exponentially
hard to simulate (classically) [13,15] even though the two-
point functions at infinite temperature are computable
exactly (i.e., with vanishing algorithmic complexity).
Dual unitarity, however, requires fine-tuning of coupling

parameters in the elementary two-body gates defining the
systems, and it is, thus, clearly not stable under generic
perturbations. Nonetheless, one might wonder whether the
properties of ergodicity and quantum chaos of dual-unitary
circuits are structurally stable in a similar way as in
classical ergodic theory. There, one can prove that linear
automorphisms on the tori (Arnold cat maps) are topo-
logically (structurally) stable under perturbations [28].
A quantitative measure of such stability may be a uniform
continuity of two-point time correlation functions with
respect to the perturbation parameter.
While one may imagine integrable and free extended

quantum many-body systems as isolated points or low-
dimensional submanifolds (clearly structurally unstable in
the above sense) in some high-dimensional manifold of all
appropriate (say, translationally invariant, locally interact-
ing, etc.) systems, the chaotic and ergodic models may
represent a finite domain with positive measure. As a matter

of fact, the prevailing opinion of the scientific community is
that almost all models are ergodic, depending on the precise
definition of the ergodic class.
In this paper, we make the first step in addressing the

question of structural stability by studying correlation
functions in perturbed dual-unitary circuits. We consider
generic perturbations on two different types of dual-unitary
circuits: (i) noisy circuits on qubits—there are random local
longitudinal fields at each space-time point over which we
average—and (ii) clean circuits on qudits. In case (i), we
rigorously show that there exists a class of generic (not fine-
tuned) dual-unitary circuits that is “stable” under perturba-
tions. More precisely, when these systems are perturbed,
correlations continue to propagate along one-dimensional
paths in the space-time, though these paths do not need to
be straight anymore. As a result, all points of the causal
light cone acquire nontrivial correlations. To find the
correlations between any two points, one has to sum the
contribution of all “skeleton diagrams,” i.e., all allowed
space-time paths connecting them. Although our rigorous
result holds only in the limit of vanishing density of
perturbed gates (or at fixed, but arbitrary, large order in
perturbation theory), we provide further theoretical argu-
ments and numerical evidence for its validity even when all
gates are perturbed by a small enough perturbation.
Moreover, in this setting, we discover four new types of
circuits where the two-point correlation functions are
exactly (without approximations) given by the sum of
skeleton diagrams. Finally, we formulate two simple
analytical conditions for identifying the stable subclass
of dual-unitary circuits also in the clean case (ii).
Considering qubit gates, we show numerically that the
stable subclass exists and explicitly demonstrate that, for
sufficiently small perturbation strength, the sum of skeleton
diagrams approximates exact two-point correlation func-
tions with arbitrary precision. Finally, we contrast these
findings with the case of random perturbations, where the
light-cone structure of dual-unitary dynamical correlations
[11] is preserved (stable) and the only effect of the
perturbations is an additional exponential damping along
light rays.
Alongside the dynamics of unitary quantum circuits, we

also discuss dynamics of a set of classical bistochastic
many-body Markov chains, which can be written as local
“Markov circuits.” Indeed—as we show in the paper—the
formal treatment of these two classes of systems is
completely analogous. In particular, in Markov circuits,
the property of “dual unitarity” is replaced by that of “dual
bistochasticity,” meaning that the circuit is bistochastic
when propagating in both space and time directions.
Remarkably, the average over random longitudinal fields
discussed at point (i) above maps quantum unitary circuits
into Markov circuits. Therefore, our aforementioned rig-
orous results find a direct application also in the case of
interacting classical stochastic dynamics.
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The rest of the paper is structured as follows. In Sec. II,
we describe the technical setting of the problem and
introduce the necessary diagrammatic notation, while in
Sec. III we present the basic strategy and the main results of
the paper. In Sec. IV, we consider fixed perturbations in
noisy or classical Markov systems. The validity of our
conclusions for clean (nonrandom) perturbed dual-unitary
circuits is demonstrated in Sec. V by combining analytical
arguments with numerical results. Finally, Sec. VI contains
our conclusions. Some further discussions, technical
details, and proofs are relegated to the Appendixes.

II. SETTING OF THE PROBLEM

We consider one-dimensional many-body systems com-
posed of 2L qudits, each of them with d internal states. In
other words, we examine a chain where at each site there is
a quantum system with Hilbert spaceH ≃ Cd and denote an
orthonormal basis of H by

B ¼ fjji; j ¼ 0;…; d − 1g: ð1Þ

The time evolution in this system is generated by discrete
applications of “Floquet operators” U of the form

ð2Þ

Here, we consider periodic boundary conditions, we
assume translational invariance, and we represent diagram-
matically the unitary operator Ux;xþ1=2 ¼ U (“local gate”),
x ∈ f−L=2;…;−1=2; 0; 1=2; 1;…; ðL − 1Þ=2g, as

ð3Þ

Finally, we adopt the convention of time running upward;
namely, in a product AB, the symbol for the operator B is
depicted below A. Introducing the diagrammatic represen-
tation

ð4Þ

we can express the unitarity of the gates in terms of the
following diagrammatic rules:

ð5Þ

A. Dynamical correlations in the folded picture

In this work, we adopt the so-called “folded” representa-
tion of the circuit, a standard trick in tensor-network theory
[29,30] that has recently found many applications in the
studies of local quantum circuits [5,13–15,22,23,31–33].
Here, we consider the simplest possible folding mapping
that consists of turning operators into states of a quantum
circuit with larger local Hilbert space by “bending” their
lower legs on top of the upper ones. More specifically, the
folding mapping turns operators in End½ðCdÞ⊗2L� into states
in ðCd2Þ⊗2L. For example, considering local operators and
following exactly the notation of Ref. [13], we have

ð6Þ

Note that in this paper we always consider operators that
are Hilbert-Schmidt normalized, which lead to normalized
states. Moreover, introducing

ð7Þ

we can rewrite the rhs of Eq. (6) as

ð8Þ

The folding mapping can also be applied to time-evolved
operators in the Heisenberg picture. Considering again the
example of local operators, we have
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ð9Þ

where we introduce the “doubled gate” (or the Heisenberg
operator gate)

ð10Þ

and denote by ð·ÞT the matrix transposition. Note that, on
the level of the doubled gate, the relations (5) read as

ð11Þ

namely, they impose a unitality condition on W ensuring
that it maps the “identity state” j○○i into itself.
In this setting, we consider dynamical correlation func-

tions in the infinite-temperature state, which in the folded
picture are represented as

ð12Þ

Whenever t < 2L − jxþ 2yj, namely, when we are effec-
tively in the thermodynamic limit, nontrivial correlations
are contained in a causal light cone. This result is readily
seen by using the rules (11), which allow us to rewrite (12)
as follows:

ð13Þ
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Here, we conveniently rotate the picture by 45° in the
clockwise direction, and, for concreteness, we depict
correlation functions for integer coordinates y ∈ Z and
x ∈ Z. The cases with half-integer coordinates can be
treated in an analogous fashion: If y ∈ Zþ 1=2, the states
at the bottom (● and ○) are exchanged, while when xþ
y ∈ Zþ 1=2 those at the top (● and ○) are exchanged.
We see that in this representation correlation functions

correspond to partition functions of a statistical mechanical
model (with complex weights determined by the tensorW)
defined on a rectangular lattice of dimensions

xþ ¼ tþ ⌈x⌉; x− ¼ tþ 1 − ⌈x⌉; y ∈ Z; ð14Þ

xþ ¼ tþ1þ ⌈x⌉; x−¼ t−⌈x⌉; y∈Zþ1

2
; ð15Þ

where we introduce the ceiling function ⌈ · ⌉, such that
⌈x⌉ ∈ Z and x ≤ ⌈x⌉ < xþ 1 for any x ∈ R (this definition
applies also for negative x). Moreover, we note that for
values of x such that x� ≤ 0 the correlations vanish

identically. For definiteness, from now on, we always
consider y ¼ 0 unless otherwise stated.
In the representation (13), it is natural to think of the

correlations in terms of horizontal and vertical transfer
matrices

ð16Þ

ð17Þ

as follows:

hbxja0ðtÞi ¼

8>><
>>:

ha○…○jðA○○
x− Þxþ−1A○b

x− j○…○i ¼ h○…○bjðC○○
xþ Þx−−1Ca○

xþ j○…○i; x ∈ Zþ 1
2
;

ha○…○jðA○○
x− Þxþj○…○bi ¼ h○…○jC○b

xþ ðC○○
xþ Þx−−2Ca○

xþ j○…○i; x ∈ Z:

ð18Þ

Note that the above transfer matrices fulfill the following
two properties:

(i) Aab
x and Cab

x are contracting; i.e., their eigenvalues
lie on the closed unit disk around 0 in the complex
plane, for all a, b. This property is a consequence of
the unitarity of W and can be established following
the derivation in Appendix A of Ref. [13].

(ii) The state j○i⊗x is an eigenvector of A○○
x and C○○

x
with eigenvalue one, which is a direct consequence
of the unitality relations (11).

The folding mapping described in this subsection turns
the evolution of operators in the quantum circuit defined by
the elementary gate U into that of states in a larger (super)
quantum circuit defined by the elementary gate W. In this
language, the correlation functions are nothing but matrix
elements of powers of the evolution operator

W ¼ ⊗
x∈ZLþ1=2

Wx;xþ1=2⊗
x∈ZL

Wx;xþ1=2 ð19Þ

between two specific states. In particular, those of local
operators are matrix elements of Wt between two “one-
particle states” composed by the tensor product of 2L − 1
copies of j○i and one state orthogonal to it [jai and jbi in
Eq. (12)]. Matrix elements of this kind can be brought
to the form (13). Even though the gate W is unitary by

construction [cf. Eq. (10)], the unitarity of W is not needed
for the simplification: One just needs the unitality property
(11). Therefore, this setting can be used to study more
general problems than that of computing correlations
in unitary quantum circuits. An example of it is given in
Appendix A, where we use it to study correlations in
“Markov circuits,” i.e., classical Markov chains where at
each half time step the time evolution couples only nearest
neighbors (in a brickwork fashion) with bistochastic
matrices [see the definition in Eq. (A7)].

B. Dual-unitary gates

As observed in Ref. [11], the correlations drastically
simplify whenever the gate, together with Eq. (11), also
fulfills

ð20Þ

We use a different (orange) color to denote doubled gates
fulfilling these two additional conditions. The conditions
(20) originate from the following requirements on the
single (unfolded) gates:
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ð21Þ

and essentially imply that the evolution of the system
remains unitary when one exchanges the roles of space and
time. Gates with these properties, called “dual unitary,”
have recently been used to obtain exact results in a number
of different problems concerning nonequilibrium dynamics
of quantum many-body systems and quantum many-body
chaos [11–19].
The simplification of dynamical correlations can be seen,

for instance, by applying the first of Eqs. (20) to the
rightmost corner of Eq. (13):

ð22Þ

We see that the relation can be applied further and
ultimately allows us to bring the diagram in the following
form:

ð23Þ

By applying the second of Eqs. (20), we see that the
correlation factorizes and reduces to

ð24Þ

These two terms are zero for a and b orthogonal to the
identity operator, i.e., if they are traceless. Following this
derivation, it is easy to see that the only nontrivial
correlations are obtained in diagrams with no corners with
two neighboring○, namely, when the rectangle in Eq. (13)
reduces to a line with two bullets● at the ends. For integer
starting points, y ∈ Z, this reduction happens when

x ¼ t ⇒ xþ ¼ 2t; x− ¼ 1: ð25Þ

In this case, the diagram reads as

ð26Þ

where in the last step we use the transfer matrix (16) for a
simple one-dimensional system (x ¼ 1). Moreover, we add
the subscript “du” to stress that A○○

du;x is made from dual-
unitary gates.
Analogously, when the starting point is a half-odd

integer, say, y ¼ 1=2, the correlation is nonzero only for

x ¼ −t ⇒ xþ ¼ 1; x− ¼ 2t ð27Þ

and reads as

ð28Þ

In summary, in dual-unitary circuits, the correlations are
entirely determined by 1D transfer matrices (or, equiva-
lently, one-qudit maps) and take the following simple form:

hbxþyjayðtÞidu ¼ modð2yþ 1; 2Þδx−thajðA○○

du;1Þ2tjbi
þmodð2y; 2ÞδxþthbjðC○○

du;1Þ2tjai; ð29Þ

where δx denotes the Kronecker delta function and
modðm; nÞ≡m mod n is the mod function. As discussed
in Ref. [11], depending on the spectrum of the transfer
matrices A○○

du;1 and C○○
du;1, these correlations can show

four increasing degrees of ergodicity ranging from
noninteracting behavior—where correlations are all
constant—to the ergodic and mixing one—where all
correlations decay exponentially. In particular, by provid-
ing a complete parametrization of dual-unitary gates for
d ¼ 2, Ref. [11] shows that the ergodic and mixing case is
typical (i.e., it has measure one in the parametriza-
tion space).
Finally, we stress that if the double gate is defined as in

Eq. (10) and U fulfills Eq. (21), then also W and W† fulfill
an analogous diagrammatic relation. This relation is,
however, not needed to obtain the results of this subsection.
We need only the conditions (20), which we dub “dual
unitality.” Even though the two conditions are equivalent
when the gate W comes from a folded quantum circuit,
Eq. (20) is less restrictive and can hold in a more general
setting. For example, in Appendix A, we show that this
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property arises in Markov circuits where the local evolution
matrix is bistochastic in both space and time directions.

III. STRATEGY AND RESULTS

The goal of this paper is to develop a perturbative
expansion of correlation functions around the dual-unitary
point. The idea is to consider circuits with a number of non-
dual-unitary gates Uη composed of a dual-unitary term Udu

and a non-dual-unitary correction. To have gates that are
manifestly unitary, we consider perturbations of the multi-
plicative form

Uη ¼ UdueiηP; ð30Þ
where P is a generic Hermitian two-qudit operator and non-
negative real parameter η sets the strength of the perturba-
tion. The folded gate Wη can then be written as

Wη ¼ ðe−iηP ⊗ eiηP
T ÞWdu: ð31Þ

Note that any quantum gate can be written in the form
(30). Therefore, the expression (30) is the most general

perturbation preserving the circuit structure of the time
evolution.
When representing correlation functions as partition

functions in a lattice of doubled gates [cf. Eq. (13)], one
can think of the gates Wη, for η > 0, as defects. Even
though the methods that we develop are applicable to
arbitrary distributions of defects, for the sake of clarity, in
the main text we consider only the case where all defects
are the same; namely, there is a nonrandom systematic
breaking of dual unitarity. For comparison, we consider in
Appendix C the opposite extreme case of random defects
independently distributed at each space-time point. To
better control the perturbation theory, it is useful to also
modulate the number of defects in the lattice. To this aim,
we introduce an additional parameter: the density δ of
defects. We fix the density, because the actual arrangement
of the defects does not affect appreciably the physics: One
can imagine to randomly place δxþx− defects among the
xþx− gates in the lattice (13). For simplicity, however, it is
sometimes useful to imagine the defects covering a regular
sublattice of Eq. (13) with lattice spacings νþ and ν−, such
that δ ¼ 1=νþν−. For example,

ð32Þ

It follows directly from the above definitions that in both
limiting cases, η → 0 or δ → 0, we recover a dual-unitary
circuit. The two perturbations, however, are highly inequi-
valent. In particular, the case of small density δ ≪ 1 is
substantially easier to treat than that of small strength
η ≪ 1 and allows for rigorous results. This difference can
be appreciated through a simple combinatoric argument:
While for small δ one can work with a single partition
function with a small number of defects and large dual-
unitary islands, separating the dual-unitary islands for
nonzero η generates a complicated sum of terms. In
particular, the number of contributions at a given order
ηn corresponds to the number of ways to dispose n identical

objects in xþx− identical drawers and becomes exponen-
tially large in the volume xþx− for large enough n.
Remarkably, in this paper, we find that—under certain

conditions on the unperturbed dual-unitary gate Wdu—the
leading-order contribution to the correlations can be directly
computed in both cases and, surprisingly, takes the same
form. Specifically, we observe that—at the leading order in
time—correlations are still determined by the 1D transfer
matrices A○○

du;1 and C
○○
du;1 [cf. Eqs. (26)–(28)]. The difference

is that, instead of being contracted along straight lines as in
Eqs. (26) and (28), now the maps can also be contracted
along zigzag lines like
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ð33Þ

which we dub “skeleton diagrams.” In particular, the
correlation between two arbitrary points in the causal
light cone is obtained by summing the contributions of all
skeleton diagrams connecting the two points. The turns in
the diagrams are generated by the defects, which means
that for δ < 1 all the possible positions of the turns are
restricted to a sublattice, while for δ ¼ 1 the turns can be
anywhere in the lattice. Note that all skeleton diagrams
with down or left turns are forbidden. Indeed, these
diagrams are cut by the rules (11) and do not contribute
to the correlation. Such decomposition of the correlation
function can be interpreted as a discrete path integral on
the 2D lattice (32).
To explain how and under what conditions this simpli-

fication arises, we proceed in two steps. First, in Sec. IV, we
present rigorous results in a toy setting where the wires in
Eq. (32) are two dimensional and the doubled gates four
dimensional—we dub this case “reduced gates.” Second, in
Sec. V, we use a combination of analytical arguments
and numerical observations to show that the phenome-
nology identified in the toy setting holds true for generic
d4-dimensional doubled gates.
Let us summarize our results in the above two cases. At

the end, for a comparison, we also provide a summary of
the results we obtain for random, independently distributed
perturbations (details are in Appendix C).

A. Results on reduced gates

We begin by noting that, since the doubled or folded
gates have dimension d4, one cannot reduce the dimension
of these gates below 16 by lowering the local Hilbert space
dimension d. However, as explained in Sec. IV, it is
possible to reduce the problem by considering unperturbed
dual-unitary gates with random Uð1Þ noise (describing, for
example, random magnetic fields in a fixed direction for
spin 1=2 degrees of freedom, d ¼ 2) and focusing on the
correlations averaged over the noise. In this case, each wire
in Eq. (32) becomes effectively a two-state system, and we
consider the following basis:

B ¼ fj○i; j●ig; ð34Þ

where j○i corresponds to the identity operator and j●i is
orthogonal to it (it corresponds to the only nontrivial one-
site traceless operator preserved by the average). The most
general averaged folded two-body gate can be expressed in
the basis B ⊗ B as

ð35Þ

where we use lowercase w and thin lines to highlight that
the wires are just two dimensional and the gate is, hence,
four dimensional.
Since the gate w is obtained via an average, it is not

unitary. However, we see that Eq. (35) fulfills the con-
ditions (11). Moreover, we see that the gate also fulfils the
conditions (20) if we set ε ¼ 0, namely,

ð36Þ

The parameter ε can then be interpreted as the dual-
unitarity breaking parameter in this setting. Indeed,
expressing the elements of w in terms of those of Wη

(see Appendix B 1), we find that ε ¼ OðηÞ, where η is the
strength of the perturbation in Eq. (31). On the other hand,
all other parameters in w are Oðη0Þ. In words, this
expression means that ε vanishes for vanishing η, while
all other parameters in w are, in general, nonzero.
More generally, from the explicit parametrization in

Appendix B 1, we also find that wij ∈ ½−1; 1� and that
the gate becomes a bistochastic matrix [see the definition
(A7)] when conjugated with H ⊗ H, where

H ≔
1ffiffiffi
2

p
�
1 1

1 −1

�
ð37Þ

is the Hadamard transformation. As shown in Appendix A,
this result means that the evolution generated by w can be
mapped to that of a Markov circuit defined on a chain of
two-state systems. Remarkably, we also observe the oppo-
site: Every local propagator of a Markov circuit on two-
state systems can be mapped into a Uð1Þ-averaged unitary
gate. This observation means that all our results on reduced
gates are also applicable to Markov circuits.
For reduced gates, all nontrivial correlations are propor-

tional to h●xj●0ðtÞi, and we find the following three
main results.
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1. Exactly solvable cases

Apart from the dual-unitary point ε ¼ 0, the gate (35) has
four additional nontrivial exactly solvable points:

ðiÞ p ¼ 0; ðiiÞ q ¼ 0;

ðiiiÞ b ¼ d ¼ 0; ðivÞ e ¼ f ¼ 0;

where the parameters that are not set to zero can
take arbitrary values. As shown in Sec. IV B, in
all these cases the correlation functions are exactly given
by the sum of skeleton diagrams. In particular, consid-
ering a regular sublattice of defects as in Eq. (32),
we find

h●xj●0ðtÞi ¼

8>>>>><
>>>>>:

axþδx−−1 þ
X̄n1
n¼1

ðpqε2Þnðx̃þn Þðx̃−−2n−1 Þaxþ−ncx−−n−1 x ∈ Z;

qε
X̄n2
n¼0

ðpqε2Þnðx̃þ−1n Þðx̃−−1n Þaxþ−n−1cx−−n−1 x ∈ Zþ 1=2;

ð38Þ

where we introduce the integers n̄1 ¼ minðx̃þ; x̃− − 1Þ and
n̄2 ¼ minðx̃− − 1; x̃þ − 1Þ [34] and the rescaled light-cone
coordinates

x̃� ¼ bx�=ν�c: ð39Þ
Here, the symbol b·c denotes the floor function, such that
bxc ∈ Z and x − 1 < bxc ≤ x for any x ∈ R.
Note that the ray along which Eq. (38) exhibits the

slowest asymptotic decay in time is generically different
from the light ray (i.e., the unit speed ray) [35]; a
representative example is reported in Fig. 1.
We stress that, generically, the gates fulfilling either of

(i)–(iv) generate highly complex dynamics; e.g., they
efficiently scramble quantum information. For example,
we numerically computed a standard dynamical complexity
indicator for locally interacting systems—the so-called
local-operator entanglement [13,14,31,36–41]—observing
a linear growth. The key property leading to the simple form
(38) is that the dynamics generated by the gates (i)–(iv) are
not time-reversal symmetric. In particular, it is true that
evolving forward (backward) in time the support of local
operators can grow, forming larger and larger strings of local
operator products. Yet these large strings cannot shrink back
and do not contribute to the overlap with ultralocal oper-
ators. The fact that very large strings do not contribute much

to the correlations of local operators is expected to hold quite
generally. For example, a similar idea has recently been
invoked in Ref. [5] to devise a numerical method able to
access the late-time regime. The key point is that this
property becomes exact in cases (i)–(iv).

2. Low-density limit

Two simple conditions on the spectrum of horizontal and
vertical transfer matrices constructed with the reduced dual-
unitary gate (36) (see Sec. IV C 1) allow us to prove that the
expression (38) is the dominant contribution to the corre-
lation function at low density δ and for any ε.More precisely,
if the horizontal (vertical) transfer matrix fulfills the afore-
mentioned conditions, Eq. (38) is dominant in the limit

xþð−Þ; ν̄þð−Þ → ∞; x̃þð−Þ ¼ fixed; ð40Þ
where ν̄þð−Þ is the minimal separation among the defects in
the horizontal (vertical) direction and the relative error
decays exponentially in ν̄þð−Þ. In Sec. IV C 1, we prove
that these conditions hold if the parameters of the gate w0

[cf. Eq. (36)] fulfill

jaj > a2 þ jbfj
1 − α

or jcj > c2 þ jdej
1 − β

; ð41Þ

where α and β, respectively, denote the largest singular
values of the submatrices�

c e

d g

�
and

�
a f

b g

�
: ð42Þ

As explained in Sec. IV [see, in particular, the discussion
around Eq. (79)], these conditions ensure that correlations
propagate on paths of width 1.

3. Small strength at density one

Based on the rigorous results described in Sec. III A 2,
we argue that skeleton diagrams give the dominant con-
tribution also for δ ¼ 1 and ε ≪ 1 if both conditions (41)

FIG. 1. Correlations between integer sites given by Eq. (38).
The correlations are nonzero within the whole light cone, and the
slowest decay is along jζ�j < 1. We use defects at all sites (δ ¼ 1)
and parameters ε ¼ 0.4, p ¼ q ¼ 1, a ¼ 0.0945626, and c ¼
0.195892 (as in gate 3 in Table I).
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are satisfied. As explained in Sec. IV C 2, the main idea is
that, even though Eq. (38) does not provide a complete
perturbative expansion in ε, at each fixed order in pertur-
bation theory the skeleton diagrams dominate for xþ and x−
both large. This argument is tested in Sec. IV C 2 by
comparing Eq. (38) with the exact correlations evaluated
numerically: The observed agreement is excellent. An
example of the correlation pattern described by Eq. (38)
in this case is depicted in Fig. 2.

B. Results on generic gates

Considering quantum gates acting on qudits of generic
dimension d (and again focusing on a regular sublattice of
defects), the contribution of skeleton diagrams reads as

hbxja0ðtÞijsk ¼

8>>>>><
>>>>>:

X̄n1
n¼1

X
flþj g
0 X

fl−j g
0 hbjðA○○

du;1Þl
þ
nþ1E1…ðA○○

du;1Þl
þ
2 E1ðC○○

du;1Þl
−
1 E2ðA○○

du;1Þl
þ
1 jai; x ∈ Z;

X̄n2
n¼0

X
flþj g
0 X

fl−j g
0 hbjðC○○

du;1Þl
−
n E2…ðA○○

du;1Þl
þ
2 E1ðC○○

du;1Þl
−
1 E2ðA○○

du;1Þl
þ
1 jai; x ∈ Zþ 1

2
;

ð43Þ

where n̄1 ¼ minðx̃þ; x̃− − 1Þ and n̄2 ¼ minðx̃− − 1;
x̃þ − 1Þ. We denote by

ð44Þ

the “defect maps,” and the primed sums are subject to the
constraints

Xnþ1

j¼1

lþj ¼xþ−n;
Xn
j¼1

l−j ¼x−−n−1; x∈Z; ð45Þ

Xn
j¼1

lþj ¼xþ−n;
Xn
j¼1

l−j ¼x−−n; x∈Zþ1

2
: ð46Þ

The expression (43) is a direct generalization of Eq. (38),
where one replaces numbers a, c, pε, and qε with d2 × d2

matrices A○○
du;1, C

○○
du;1, E1, and E2, respectively.

The conditions on the spectrum of horizontal and vertical
transfer matrices mentioned in Sec. III A 2 are sufficient to
rigorously prove the dominance of skeleton contributions at
low densities also in the generic case (where the matrices
are constructed with nonreduced dual-unitary gates).
Although we cannot analytically determine the family of
gates Wdu for which the conditions are fulfilled, we
numerically identify such a family for quantum circuits
of qubits (d ¼ 2) in Sec. V. For gates in this family, the
argument discussed in Sec. III A 3 remains valid as well.
Accordingly, we find that if xþ and x− are both large,
Eq. (43) gives the most relevant contribution to correlations
also for δ ¼ 1 and η ≪ 1.

Let us now comment on the physical content of Eq. (43).
The sum is composed of powers of one-dimensional maps.
These maps typically have nontrivial eigenvalues strictly
smaller than one, resulting in exponential decay of each
term in the sum. Therefore, also the sum of all terms
generically decays exponentially in t. For some special
choices of the parameters, however, the exponent of the
decay can approach 0. For instance, if the circuit has a local
conserved charge, e.g., magnetization, we expect diffusive
correlations that decay with time as ∝ 1=t. This result is, in
principle, allowed by Eq. (43).

C. Uncorrelated random perturbations

Systematic defects (homogeneous in the space-time)
have a much more drastic effect on the structure of
correlations than random ones. Indeed, averages over
uncorrelated random defects (30) (with P distributed
according to the Gaussian unitary ensemble) preserve the
dual-unitary form of correlations. The only effect of the
defects is an additional damping factor that causes or
enhances—depending on the degree of ergodicity of the
unperturbed dual-unitary circuit (see the discussion at the
end of Sec. II B)—the exponential decay of the correlations
along the light-cone edge (light ray). Specifically, we have

EGUE½hbxþyjayðtÞi�

¼modð2y;2ÞδxþthbjðC○○
du;1Þ2tjai

�
KGUEðηÞ−1

d4−1

�
x̃−

þmodð2yþ1;2Þδx−thajðA○○
du;1Þ2tjbi

�
KGUEðηÞ−1

d4−1

�
x̃þ
; ð47Þ

FIG. 2. Correlations between integer sites in a perturbed dual-
unitary circuit with density of defects δ ¼ 1, where the gate is
defined in Table I (gate 2). We see a reminiscence of the dual-
unitary behavior with a strong peak along the light-cone edge. As
opposed to the pure dual-unitary result, however, the correlations
are nonzero within the whole light cone.
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where the transfer matrices A○○

du;1 and C
○○

du;1 are defined as in
Eqs. (16) and (17) but in terms of the unperturbed dual-
unitary gate Wdu, the rescaled variables light-cone coor-
dinates are defined in (39), and

KGUEðxÞ≡ EGUE½jtr½eixP�j2� ð48Þ

is the spectral form factor of the Gaussian unitary ensemble
(EGUE½·� is the ensemble average).
An interesting point to note is that Gaussian defects with

infinite strength allow for nonzero correlations; indeed,

lim
η→∞

KGUEðηÞ ¼ d2: ð49Þ

This result should be compared with Haar random defects,
which, instead, trivialize all correlations; i.e., the averaged
correlation function becomes Kronecker delta in space-time
for any positive density δ > 0 (see Appendix C). The two
averages agree only in the d → ∞ limit.

IV. REDUCED GATES

In this section, we study the problem outlined in Sec. III
considering the minimal setting where the wires in Eq. (32)
are effectively two dimensional.
We begin considering the quantum circuit defined in

Sec. II in the following special case.
(i) Fix d ¼ 2 and focus on unitary gates (3) of the form

Ū ¼ ðeiϕ1σ
z ⊗ eiϕ2σ

zÞ · U · ðeiϕ3σ
z ⊗ eiϕ4σ

zÞ; ð50Þ

where U is a generic Uð4Þ matrix, σz is a Pauli
matrix, and the phases ϕ1, ϕ2, ϕ3, and ϕ4 are
independent random variables uniformly distrib-
uted in ½0; 2π�. Once again, the random variables
fϕjg at each gate or space-time point are consid-
ered independent.

(ii) Consider two-point correlations averaged with re-
spect to all fϕjg. This case corresponds to averaging
over the single-site Haar measure of the Uð1Þ group.
On the level of the folded gate W [cf. Eq. (10)], the
average corresponds to a simple projection, i.e.,

W ⟼ w ¼ Efϕjg½W�
¼ ðPz ⊗ PzÞWðPz ⊗ PzÞ; ð51Þ

where

Pz ≔ j1ih1j þ jσzihσzj: ð52Þ

In other words, the average over the Haar Uð1Þ
measure projects each wire onto the subspace
spanned by the diagonal matrices fj○i≡ j1i; j●i≡
jσzig [cf. Eq. (7)], and, from now on, we conven-
iently use this reduced basis notation. In this basis

the averaged two-qubit folded gates are effectively
4 × 4 matrices (while they are 16 × 16 without the
average).

We see that, even though the Uð1Þ average simplifies
the problem by reducing the size of the relevant local
Hilbert space, it does not trivialize the two-folded gate
and, in turn, the two-point correlations. This result is in
contrast to most averages over Haar random unitary gates
that are considered in recent literature [22–24,31,32,42–
61]: In the latter cases, the average of the doubled gate W
is trivial [as in Eq. (C14)] and so are two-point functions.
The minimal folded gate with a nontrivial average is
the one composed of four copies of the time evolution
operator (two copies of U and two copies of its
Hermitian conjugate U†).
To be more specific, let us count the number of free

parameters in the gate (51). This count can be conveniently
done using the following parametrization for the generic
unitary U [cf. Eq. (50)] [62,63]:

U ¼ eiϕðu1 ⊗ u2ÞV½fJjg�ðu†3 ⊗ u†4Þ: ð53Þ

Here, ϕ ∈ R,

V½fJjg�¼exp½iðJ1σx⊗σxþJ2σy⊗σyþJ3σz⊗σzÞ�; ð54Þ

and u1, u2, u3, and u4 are elements of SUð2Þ in the
fundamental representation. They can be expressed in
terms of Euler angles

uj ¼ eiðαj=2Þσzeiðβj=2Þσyeiðγj=2Þσz : ð55Þ

From this parametrization, it is easy to see that the averaged
folded gate (51) depends on 11 angles: two Euler angles (βj
and γj) for each single-wire unitary uj and the parameters
J1, J2, and J3. The explicit form of the averaged gate in the
basis (34) is given by Eq. (35), where the explicit para-
metrization of the parameters pε; a;…; g in terms of the
above angles is given in Appendix B.
It is important to stress that the averaging procedure

described above can be carried on for any fixed value of the
angles fβj; γj; Jjg. In particular, setting J1 ¼ J2 ¼ π=4,
one averages over gates in the dual-unitary subclass [11]. In
this specific case, the averaged gate, now depending on
seven parameters (see Appendix B), takes the form (36).
Comparing with Eq. (35), we see that the effect of requiring
dual unitarity is to set ε to zero. Note that after the
averaging the gate continues to fulfill the dual-unitality
conditions (20).
Before turning to the analysis of correlation functions,

we make a final remark. As shown in Appendix A, one can
produce gates of the form (35) and (36) considering (dual-)
bistochastic gates conjugated with H ⊗ H [cf. Eq. (37)].
Interestingly, there is a one-to-one correspondence between
averaged (dual-)unitary gates and (dual-)bistochastic gates.
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Namely, given a legitimate averaged (dual-)unitary gate,
one can produce a legitimate (dual-)bistochastic gate by
conjugating it with H ⊗ H and vice versa. This result can
be established numerically using the explicit parameter-
izations reported in Appendix B.

A. Correlation functions as sums over paths

Let us now examine Eq. (12) in the minimal setting
under consideration in the section: two-dimensional wires
and gates of the form (35). Inserting a resolution of the
identity 1 ¼ j○ih○j þ j●ih●j at each wire, we can
explicitly decompose Eq. (12) into the sum of 2xþx− terms.
Each term admits a simple interpretation as a (weighted)
path on the two-dimensional space or, analogously, as the
spatial configuration of a certain polymer. To see this
interpretation, let us introduce a different diagrammatic
representation of the weights in terms of “tiles” where we
connect ●’s with solid lines and ignore ○’s. For example,

ð56Þ

The complete set of tiles [corresponding to nonzero
coefficients of the gate (35)] is given by

ð57Þ

Then, the correlation function is expressed as

ð58Þ

We use that all nontrivial states (i.e., those orthogonal to the
“identity” j○i) are proportional to j●i. Namely,

hbxja0ðtÞi ∝ h●xj●0ðtÞi; ð59Þ

for all a, b such that tr½a� ¼ tr½b� ¼ 0. Moreover, in writing
Eq. (58), we consider the case of x; y ∈ Z. The other three
possibilities correspond to different positions of the initial
and final lines. Specifically, for y ∈ Zþ 1=2 the initial line
enters the bottom left tile from below, and for xþ y ∈
Zþ 1=2 the final line exits the top right tile from above.
As suggested by the diagrammatic representation in

Eq. (58), the correlation function can be thought of as
the sum of paths with fixed end points, where different
configurations have different (possibly negative) associated
weights. The paths are allowed to split and merge, with
weights e, f and b, d, respectively, but they cannot “jump”:
Dangling ends of lines inside the diagram are forbidden.
Finally, since downward and leftward turns are forbidden
[cf. Eq. (57)], the paths can form loops only if they split
[see, e.g., the last two diagrams on the rhs of Eq. (58)].

B. Exactly solvable cases

By inspecting the set of allowed tiles (57), we identify
four nontrivial solvable cases, which we analyze in the
following two subsections.

1. Almost dual-unitary cases

As observed before, the case ε ¼ 0 corresponds to the
dual-unitary point and all correlations propagate along
straight paths, with no turns allowed. Depending on the
initial conditions (i.e., on whether y is integer or half-odd
integer), the straight lines are going either upward or
rightward. This result is simply a path-sum reformulation
of the general dual-unitary result (29) (cf. Ref. [11]).
Remarkably, however, the correlations remain exactly

solvable also when only one of pε or qε vanishes. Indeed,
in this case, we allow for only paths with a single turn and
the rules (57) do not permit any “dressing,” i.e., any
thickening of the lines due to loops (see Sec. IV C 1 for
a more precise definition). For example, choosing p ¼ 0
and qε ≠ 0, the correlations take the form given in Eq. (38),
where only the first terms in each of the two lines can be
nonzero [depicted in Eq. (82)]. We see that, apart from the
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straight paths described above, Eq. (38) establishes non-
trivial correlations between integer and half-odd integer
points.

2. Non-dual-unitary solvable cases

Surprisingly, the tiles (57) contain another nontrivial
solvable limit that is not dual unitary. Indeed, there can be
no loops in the paths whenever the “split weights” f and e
or the “merge weights” b and d are zero. Consequently,
when ðe; fÞ ¼ ð0; 0Þ or ðb; dÞ ¼ ð0; 0Þ, the only allowed
paths are the skeleton diagrams described in Sec. III [see,
e.g., the first two diagrams on the rhs in Eq. (58)]. In this
case, we can directly evaluate the correlation function (58)
by summing all skeleton diagrams. In particular, if the
defects cover a regular sublattice as in Eq. (32), one obtains
the expression (38).
The formula (38) can be derived by straightforward

combinatorics. Let us detail its derivation considering the
case x ∈ Z as an example. We begin by noting that, since
the path goes from the bottom left corner to the upper right
one, it must involve the same number n of right and up
turns, with weights, respectively, given by pε and qε. The
minimum number of such turns is 0 (it contributes only for
x− ¼ 1), while the maximum, minðx̃þ; x̃− − 1Þ, is set by the
size of the defect’s sublattice [the rescaled light-cone
coordinates x̃� are defined in Eq. (39)]. For each fixed
n, one has n turns, xþ − n horizontal segments, contrib-
uting with a factor axþ−n, and x− − 1 − n vertical ones,
contributing with a factor cx−−1−n. To count all the possible
ways in which the elementary pieces can be combined, we
can consider the horizontal and the vertical directions
separately. In the horizontal direction, we need to distribute
n indistinguishable pairs of turns (first up and then right) in
x̃þ positions, leading to the combinatorial factor�

x̃þ
n

�
: ð60Þ

In the vertical direction, we are instead more constrained.
Indeed, the first and last turns must be in the first and last
row, respectively. The other n − 1 pairs can be distributed
freely in the remaining x̃− − 2 positions, leading to�

x̃− − 2

n − 1

�
: ð61Þ

Putting it all together, we obtain the desired result. For
defects on irregular sublattices, the reasoning is similar, but
one has different combinatorial coefficients depending on
the actual shape of the sublattice.

C. Perturbation theory around the dual-unitary point

Let us now consider the case of circuits that are perturbed
away from the dual-unitary point. Namely, we consider the

setting introduced in Sec. III: Among the xþx− gates in the
lattice (13), there are ð1 − δÞxþx− dual-unitary gates and
δxþx− perturbations (or defects) breaking dual unitarity
[see the pictorial representation in Eq. (32)]. As discussed
in Sec III, we use two parameters to control the perturba-
tions: strength ε [which is proportional to η in Eq. (31) for
small η] and density δ. We begin by considering the case of
perturbation in the density of defects, which allows for a
more rigorous analysis. Later, we see that, surprisingly,
most of the rigorous conclusions drawn in that case apply
also for small ε and arbitrary δ ≤ 1.

1. Low density, unit strength

We begin our analysis by focusing on fixed defects with
arbitrary strength ε placed on a regular sublattice as in
Eq. (32). In this case, there are regular strips (vertical and
horizontal) composed only of dual-unitary gates. Whenever
the widths ν� [cf. Eq. (32)] of these strips become large
enough, we can simplify the contribution by considering
only the leading eigenvectors of the strips’ transfer matrices
a○○
du;x and c○○

du;x. These are defined as in Eqs. (16) and (17)
but using the 4 × 4 dual-unitary (or, rather, dual-bistochastic)
gate wdu [cf. Eq. (36)], namely,

ð62Þ

ð63Þ

To treat these matrices, we make use of the following
rigorous result, proved in Appendix D.
Property 1.—The matrices a○○

du;x and c○○
du;x take the

following block diagonal form:

a○○

du;x ¼ p○
x;0 þ a

Xx
k¼1

p○

x;k þ r1;x; ð64Þ

c○○

du;x ¼ p○
x;0 þ c

Xx
k¼1

p○

x;k þ r2;x; ð65Þ

where we define

p○
x;0 ≔ j○i⊗xh○j⊗x;

p○
x;k ≔ j○…○●|fflfflfflfflffl{zfflfflfflfflffl}

k

○…○ih○…○●|fflfflfflfflffl{zfflfflfflfflffl}
k

○…○j; ð66Þ
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and the “reminders” r1;x and r2;x are nonzero only in the
subspaces defined by the projectors 1 −

P
x
j¼0 p

○
x;j.

Moreover,

kr1;xk ≤ a2 þ jbfj
1 − α

; for jaj > a2 þ jbfj
1 − α

; ð67Þ

and analogously

kr2;xk ≤ c2 þ jdej
1 − β

; for jcj > c2 þ jdej
1 − β

; ð68Þ

where α; β ∈ ½0; 1� are, respectively, the operator norms
(largest singular values) of the matrices�

c e

d g

�
;

�
a f

b g

�
: ð69Þ

Consider now a vertical strip x− × νþ with horizontal
transfer matrix a○○

du;x−
. Property 1 guarantees that, for

jaj > a2 þ jbfj
1 − α

; ð70Þ

we can make the replacement

a○○
du;x−

⟼ p○
x−;0

þ a
Xx−
k¼1

p○
x−;k

ð71Þ

with an error bounded in operator norm kr1;x−k by
a2 þ jbfj=ð1 − αÞ. The replacement (71) makes the calcu-
lation of correlations extremely easy. Let us illustrate this
by considering the diagram on the rhs of Eq. (32), which
becomes

ð72Þ

where in the second step we use the unitality relations (11)
to contract the vertical lines. Using the explicit form of the
one-dimensional transfer matrices

ð73Þ

ð74Þ

and of the ones depicted with orange gates that are obtained
by setting ε ¼ 0 in the above, we see that Eq. (72) is
nothing but the sum (38) of skeleton diagrams.
Taking into account the bound on the norm of kr1;xk, we

find that the error associated with the replacement (71) is
bounded by

O
��

a2 þ jbfj
1 − α

�
νþ
axþ−νþ

�
ð75Þ

so that Eq. (72) becomes exact in the limit xþ; νþ → ∞
with x̃þ fixed. This bound is obtained by replacing just one
of the vertical dual-unitary strips with the remainder r1;x.
Specifically, considering the relative error

Rðxþ; x−Þ ¼
���� h●xj●0ðtÞijsk − h●xj●0ðtÞi

h●xj●0ðtÞi
����; ð76Þ

where h●xj●0ðtÞi is the exact result and h●xj●0ðtÞijsk is
the skeleton expression [Eq. (38)], we get

Rðxþ; x−Þ ¼ O
��

a2 þ jbfj
1 − α

�
νþ
a−νþ

�
: ð77Þ

Thus, Eq. (38) gives a good approximation to the full result
when νþ is large enough.
A completely analogous reasoning holds for horizontal

strips ν− × xþ, whenever
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jcj > c2 þ jdej
1 − β

; ð78Þ

and ν− is large enough. In particular, for x−; ν− → ∞ with
x̃− fixed, we again find an exact statement.
We stress that in the above argument we never use the fact

that thedefectsaredisposedalongaregularsublattice:Wejust
use that their minimal separation ν̄� in one of the two
directions becomes large. Provided that the latter condition
applies, the correlations are sumsof skeletondiagrams. In the
case of irregular disposition of defects, however, one has to
sum over only the skeleton diagrams connecting the (irregu-
lar) subset of lattice sites containing defects. Hence, the
combinatorial factors differ from those in Eq. (38).
Finally, we note that all this admits a simple inter-

pretation in terms of the paths introduced in the previous
subsection. The different eigenvectors of the transfer
matrix can be seen as increasingly thicker horizontal
lines of length 1. Their contributions—the eigenvalues of
a○○
du;x—are obtained by complicated combinations of the

tiles (57), which can be interpreted as a complicated
“dressing.” In this language, Property 1 implies that if
Eq. (70) holds, the dominant weight is carried by the
“bare” propagator

ð79Þ

2. Unit density, small strength

Now let us consider a different perturbative limit: small
strengths ε ≪ 1 and fixed density. In particular, for defi-
niteness, we focus on the case of unit density δ ¼ 1, which
is the most interesting from the physical point of view.
Namely, we take all the gates in the diagram (32) to be
green and set

ð80Þ

with

wdu≔

0
BBB@
1 0 0 0

0 0 a b

0 c 0 d

0 e f g

1
CCCA; δwε≔ ε

0
BBB@
0 0 0 0

0 p 0 0

0 0 q 0

0 0 0 0

1
CCCA; ð81Þ

where we make sure that wdu þ δwε is a bona fide Uð1Þ-
averaged unitary gate by imposing that it becomes bisto-
chastic when conjugated with H ⊗ H (cf. the remark right
before Sec. IVA).
The advantage of the parametrization (80) is that in this

way—in the language of Sec. IVA—parameter ε “counts

the turns.” Namely, each fixed order in perturbation theory
is determined by the sum of all allowed paths with a fixed
number of turns. Even though this result is useful for
classifying possible terms of different perturbative orders,
the explicit evaluation of each order appears far from trivial.
Let us first consider the simplest case: the leading order

that is proportional to ε, when x ∈ Zþ 1
2
; y ∈ Z. It is given

by a single skeleton diagram:

ð82Þ

and there are no other diagrams of the same order.
Therefore, the relative error for ε → 0 goes as OðεÞ, even
for small x− or xþ.
In contrast, the first nontrivial order in the case x; y ∈ Z

and xþ ≫ x− > 1 is of the order of ε2 and has much more
complex structure. A simple set of contributions to this
order is given by skeleton diagrams of the form

ð83Þ

Still, many more diagrams contribute at the same order in
perturbation theory. For example, we have

ð84Þ

The crucial observation at this point is that there exists a
regime for the parameters of the gate wdu, where all these
“complicated” diagrams give negligible contribution when
both x− and xþ become large. Specifically, this situation
happens when both of the conditions discussed in the
previous section—Eqs. (70) and (78)—hold. This obser-
vation can be understood as follows. First, we note that the
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diagrams in Eq. (84) can be thought of as skeleton diagrams
with a dressed horizontal one-particle propagator. Then, we
observe that, as we are working at a fixed order in
perturbation theory, these dressed propagators are com-
posed of dual-unitary tiles only. We can then make use of
Property 1 to bound their contribution by

const

�
a2 þ jfdj

1 − α

�
x
; ð85Þ

where x ≫ 1 is the length of the corresponding segment of
the dressed propagator. We see that for large enough x this
contribution is exponentially suppressed with respect to the
“bare” line (∝ ax). If both conditions (70) and (78) hold,
this reasoning can be repeated at any fixed order in
perturbation theory to show that the skeleton diagrams
are leading when xþ and x− are both large.
To check the above reasoning, we perform a direct

numerical evaluation of the correlation function (13) and
compare it with the prediction (38), obtained by summing
all skeleton diagrams. The comparison is extremely encour-
aging: The deviations are typically undetectable on the
scale of the plot; see Fig. 3 for a representative example.
The technical details of numerical simulations are dis-
cussed in Appendix F.
Turning to a more quantitative analysis of the agreement,

we consider the relative error (76) where h●xj●0ðtÞi is
calculated numerically with no approximations while
h●xj●0ðtÞijsk is calculated using Eq. (38). The results
are reported in Figs. 4–6. Specifically, Fig. 4 concerns the
case of large xþ ¼ x−. We see that, when the “unperturbed
gate” wdu fulfills the conditions (70) and (78), the relative
error is always very small and appears to vanish with ε.
Interestingly, even if the predictions (38) for x ∈ Z and
x ∈ Zþ 1=2 are of different orders in ε, we observe almost
the same relative errors in the two cases. Lastly, an

important point highlighted by Fig. 4 is that the relative
error is of the order of one for any ε when the conditions
(70) and (78) are violated.
Our argument above relies on the fact that x− and xþ are

both large. When one of the two, say, x−, is fixed, we
expect the relative error to be Oðε0Þ in the case x; y ∈ Z
[OðεÞ for the case of integer and half-integer end points]
and bounded by Eq. (85) with y ¼ x−. For small x−, this
result can be directly verified by computing the exact
correlations through Eq. (18). For example, in the case of
x− ¼ 2 and x ∈ Z, we find

h●xj●0ðtÞi ¼ pqε2
�
xþ
1

�
axþ−1

�
1 −

bf
a2 þ bf − a

�

−
pqε2bf½axþ − ða2 þ bfÞxþ�

ða2 þ bf − aÞ2 : ð86Þ

FIG. 3. Exact correlations computed numerically (solid lines)
and the prediction of Eq. (38) (squares) for x ∈ Z for a quantum
circuit with elementary gate given by gate 2 of Table I and
maximal density of defects δ ¼ 1.

FIG. 4. Relative error Rðxþ; x−Þ [cf. Eq. (76)] for xþ ¼ x− as a
function of ε, with maximal density of defects δ ¼ 1. Full and
dashed lines, respectively, correspond to integer and half-odd-
integer end points (x ∈ Z;Zþ 1

2
), while different colors corre-

spond to different gates (specified in Table I). Note that the gate
corresponding to the black line does not fulfill the condition (70).
For each gate, we stop at the value of ε, at which the gate ceases to
be bistochastic.

FIG. 5. Relative error Rðxþ; x−Þ [cf. Eq. (76)] for x− ≪ xþ as a
function of ε. The gate is fixed to gate 2 from Table I for x ∈ Z
and density of defects δ ¼ 1.
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This result shows that the leading correction is a dressing of
the skeleton diagram in the “short direction” and gives

Rðxþ; 2Þ ≈
jbfj

ða2 þ bf − aÞ ; xþ ≫ 1: ð87Þ

This point is confirmed by our numerical results, as
illustrated in Fig. 5. For increasing values of x−, the order
zero contribution becomes increasingly small and is even-
tually dominated by the OðεÞ contributions.
Finally, an interesting question concerns how many

orders in ε one has to keep in the skeleton-diagram
expansion (38) in order to get an accurate result. This
question is considered in Fig. 6, where we compare the
relative errors obtained by (i) keeping all orders in the
expansion (38) and (ii) keeping only the leading order in ε.
We see that prediction (i) is much more accurate for larger
ε, even though the two predictions coincide for small
enough ε.

V. GENERIC GATES

In this section, we use a combination of numerical and
analytical arguments to show that the main mechanisms
observed in the minimal setting of the previous section
carry over to the case of generic clean quantum gates.
Under certain conditions on the unperturbed gate Wdu, the
correlations computed by summing all skeleton diagrams
still agree strikingly well with the exact numerical results.
To simplify our numerical studies, we consider the case of
qubits (d ¼ 2), where the double gate W is a 16 × 16
matrix.
We begin by briefly describing how to compute the

contribution (43) of all skeleton diagrams for the case of
fixed defects on regular sublattices. The rest of the gates are

dual unitary. First, we construct a single skeleton diagram
by drawing a zigzag line connecting the two operators on
the lattice (32) and multiply the appropriate one-dimen-
sional transfer matrices along the line [cf. Eq. (33)]. The
total contribution is obtained by summing the contributions
of all possible paths on the lattice connecting the two end
points and containing no left and down turns. In particular,
lþj (l−j ) in Eq. (43) are of the lengths of each horizontal
(vertical) segment, and the constraints (46) come from the
simple requirement that the sum of all horizontal (vertical)
segments is equal to xþ (x−) minus the number of turns.
Note that, because of the noncommutativity of the matrix
product, Eq. (43) is considerably harder to evaluate than
Eq. (38). The problem of its evaluation is addressed in
Appendix E.
Following the analysis of the previous section, we now

consider small densities of defects and investigate the
spectra of horizontal and vertical transfer matrices, A○○

du;x

and C○○
du;x, composed only of dual-unitary gates Wdu;η. We

remind the reader that, as discussed in Sec. II A, these
transfer matrices have the spectrum contained on the closed
unit disk and a “trivial” eigenvector—j○i⊗x—correspond-
ing to the eigenvalue 1. This state, however, does not affect
the correlation functions. One can see this result by
considering Eq. (18) and observing that j○i⊗x has zero
overlap with the states ja○…○i, j○…○bi, A○b

x j○…○i,
Ca○
x j○…○i. The relevant quantity for correlations is then

the next-to-leading eigenvalue. In analogy with the dis-
cussion in Sec. IV C 1, we conclude that if (i) the next-to-
leading eigenvalue λ1 of A○○

du;x has eigenvectors with
support one—i.e., it is of the form

j○…○|fflfflffl{zfflfflffl}
k

a○…○|fflfflffl{zfflfflffl}
x−k−1

i; k ¼ 1;…; x; ð88Þ

—and (ii) there is a finite gap (in magnitude) between λ1
and the rest of the spectrum, the skeleton diagrams give a
good approximation to the correlation functions for large
enough ν̄þ (minimal separation of the defects in the
horizontal direction). Relative errors are bounded by

const

�
λ2
λ1

�
ν̄þ
; ð89Þ

where λ2 is the third leading eigenvalue of A○○
du;x. Note that,

in the language of the previous section, this result still
corresponds to saying that the bare propagator carries the
dominant weight. Analogous statements hold for the
vertical direction, if one replaces A○○

du;x by C○○
du;x and ν̄þ

by ν̄−.
In this more complicated setting, we are not able to prove

a rigorous statement, such as Property 1, to determine the
set of gates for which (i) and (ii) hold. Nevertheless,
investigating the spectrum numerically, we find strong

FIG. 6. Relative errors Rðxþ; x−Þ (solid curves) and R1ðxþ; x−Þ
(dashed curves) versus ε. Rðxþ; x−Þ is computed using Eq. (76),
while R1ðxþ; x−Þ is computed by a modified version of Eq. (76)
where the skeleton-diagram contribution (38) is replaced by its
first nontrivial order in ε. The gate used for the numerical
experiments is gate 2 from Table I for x ∈ Z and density of
defects δ ¼ 1.
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evidence that a class of gates, for which the leading
nontrivial eigenvectors are of the form (88), exists; see
Fig. 7 (left). Moreover, focusing on this class, we isolate a
subclass that shows a finite gap: An example of the
probability distribution for the gap is reported in Fig. 7
(right) for two values of x (i.e., the length of the transfer
matrix). Finally, we remark that Fig. 7 (left) also shows a
rapid drop in the probability that a certain nontrivial
eigenvector has a leading eigenvalue, with the size of its
support. This result suggests that if (i) or (ii) does not hold,
the dominant contribution to the correlations is still given
by skeleton diagrams. In general, however, these diagrams
have “thickened” lines corresponding to dressed propaga-
tors: The width of the line corresponds to the support of the
leading eigenvector.
Finally, we consider maximal density δ ¼ 1 and small η.

In complete analogy with the discussion in Sec. IV C 2, we
decompose the gate Wη in two parts as follows:

ð90Þ

where Wdu;η is dual unitary and the only nonzero elements
of δWη (18 matrix elements in total) are the “turns’’

ð91Þ

Note that both the elements of Wdu;η and those of δWη,
depend on η in general. The difference is that for small η the
former are Oðη0Þ, while the latter are OðηÞ.
Equipped with the definition (90), we are now in a

position to repeat the argument of Sec. IV C 2 by formally

considering a perturbative expansion in the number of turns
(which at the first order is equivalent to that in η). We then
conclude that, if points (i) and (ii) above hold for both A○○

du;x

and C○○
du;x, Eq. (43) gives the leading contribution at each

fixed order in η when xþ and x− are both large. This result
is in agreement with our numerical findings: Representative
examples are reported in Figs. 8 and 9. Specifically, Fig. 8
(left) and Fig. 9 show excellent agreement between the
prediction of Eq. (43) and the exact numerical results for
two different examples.
(a) A symmetric quantum circuit with local gate

U ¼ ðu ⊗ uÞV
�
π

4
þ η;

π

4
þ η; 0.1

�
ðv ⊗ vÞ; ð92Þ

where V½fJig� is defined in Eq. (54), while u and v are
reported in Table II. This gate can be brought to the
form (30) with the dual-unitary part and perturbation
explicitly given by, respectively,

Udu ¼ ðu ⊗ uÞV
�
π

4
;
π

4
; 0.1

�
ðv ⊗ vÞ; ð93Þ

P ¼ ðv†σxvÞ ⊗ ðv†σxvÞ þ ðv†σyvÞ ⊗ ðv†σyvÞ: ð94Þ

We verify numerically that A○○

du;x (equal to C○○

du;x as the
gate is symmetric) constructed with the dual-unitary
part of the gate fulfills (i) and (ii).

(b) The kicked Ising chain [64,65]. Namely, we consider
the local gate [11,16]

U½J; B; h� ¼ UI½J; h�e−iBðσx⊗1þ1⊗σxÞUI½J; h�; ð95Þ

with

FIG. 7. Left: probability of increase of the first subleading eigenvalue of the transfer matrix A○○
du;x when increasing the size of A

○○
du;x from

x − 1 to x. The histogram is generated by considering 1000 matrices (100 for x ¼ 12, 13) at fixed J1;2 ¼ π=4; J3 ¼ 0.1 and Haar random
U(2) matrices ui; i ¼ 1; 2; 3; 4 [see the parametrization (53)] and searching for the largest eigenvalues of the transfer matrix up to
x ¼ 13. Right: probability distribution of the transfer matrix’s gap Δ ¼ λ1 − λ2, for the 148 cases, which show no increase of the first
subleading eigenvalue.
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UI½J; h� ¼ e−iJðσz⊗σzÞ−iðh=2Þðσz⊗1þ1⊗σzÞ: ð96Þ

The model is dual unitary for B ¼ J ¼ π=4, while here
we consider B ¼ J ¼ π=4þ η. In this case, the gate
can again be written in the form (30) with Udu ¼
U½π=4; π=4; h� (we do not report the explicit form of P
because it is unwieldy). Interestingly, we find that,
depending on parameter h, the transfer matrix A○○

du;x

(¼ C○○

du;x) can either fulfill (i) or not. Moreover, the
additional structure of the kicked Ising model (see
Sec. 5.3 of Ref. [13]) generates additional eigenvectors
associated to λ1 with support strictly larger than one
(although small). Therefore, even when (i) holds, (ii) is
not strictly valid. However, it is reasonable to assume
that the eigenvector with support 1 gives the leading
contribution, as it has the largest overlap with local

operators. This assumption is confirmed by our
numerical results (see Fig. 9): Considering a value
of h for which (i) holds, we find excellent agreement
between the prediction Eq. (43) and exact numerics.

More detailed information on the comparison between
Eq. (43) and the numerical results is reported in Fig. 8
(right) and in Fig. 10. In particular, the latter shows that for
fixed η and large xþ the relative error decreases with x−.
This decrease is in agreement with our expectations
[cf. Eqs. (85) and (89)] of an error bounded by

const

�
λ2
λ1

�
x−
: ð97Þ

In fact, Fig. 10 shows an even faster decay, suggesting that
the bound is not tight. Finally, from the black line in Fig. 8

FIG. 8. Left: correlation functions of operators a ¼ b ¼ σx at integer sites versus xþ at η ¼ 0.011109. Solid lines are numerical
results, and dashed lines are the predictions of Eq. (43). Right: relative errors versus η at different x−. A gate that does not fulfill Eq. (88)
is drawn in black. The results are for symmetric generic gates, as specified in Table II, with maximal density of defects δ ¼ 1.

FIG. 9. Correlation functions of operators a ¼ b ¼ σx at
integer sites versus xþ for a kicked Ising spin chain. Solid lines
are numerical results, and dashed lines are the predictions of
Eq. (43). The results are for a kicked Ising spin chain at
J ¼ B ¼ ðπ=4Þ þ 0.01, h ¼ 1.2, as defined in Eq. (95) with
density of defects δ ¼ 1.

FIG. 10. Relative error for the correlations among σx operators
at integer sites versus x− at large xþ and small η. The gray line
reports the upper bound (97). The results are for symmetric
generic gate fulfilling Eq. (88), as specified in Table II, with
density of defects δ ¼ 1. The point at x− ¼ 7 has a relative error
smaller than 0.3% and is not shown.
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(right), we see that if conditions (i) and (ii) are violated, the
agreement is immediately absent.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we studied correlation functions in per-
turbed dual-unitary circuits or, equivalently, in perturbed
dual-bistochastic Markov chains. We considered the prob-
lem for three increasingly more realistic (increasingly
complex) settings—clean systems with random defects,
noisy systems with fixed defects, and clean systems with
fixed defects—and identified a class of dual-unitary circuits
that is stable under perturbations. More precisely, when
these systems are perturbed, their correlations continue to
be given in terms of one-dimensional transfer matrices
(single-qudit maps) and, hence, to (generically) decay
exponentially. These exponentially decaying correlations
are continuous with respect to dual-unitarity-breaking
perturbations demonstrating the structural stability. The
main qualitative change induced by the perturbations is that
they allow the correlations to spread through the whole
causal light cone and not just along its edge, as occurs in the
pure dual-unitary case. One can intuitively think of the
perturbations as defects that permit the correlations “to
turn” in spacetime. Remarkably, the quantitative features of
the correlations are extremely well captured by a simple
“path-integral” formula, corresponding to the sum of
correlations over all one-dimensional paths within the
causal light cone that connect the end points. In conclusion,
this paper presents, to our knowledge, the first set of
theoretical results on the stability of the ergodic regime of
quantum many-body systems under generic perturbations
and opens the research arena of quantum many-body
ergodic theory.
The case of noisy systems with fixed defects turned out

to be an intriguing minimal model. It shows all the
physical features of the generic setting but simultaneously
allows for rigorous derivations. This case is not isolated
(see, e.g., Ref. [15]): Introducing a small degree of
randomness to isolate minimal settings appears to be a
fruitful route for accessing nontrivial information about
interacting many-body systems. In the minimal setting,
we identified four additional classes of circuits—besides
the dual-unitary ones—where correlation functions are
exactly solvable—i.e., the aforementioned path-integral
formula applies exactly. Systems in these classes are
generically strongly interacting and generate highly com-
plex dynamics. An obvious direction for future research is
to study them further, understanding, for example, their
spectral statistics and their nonequilibrium dynamics.
Moreover, it would be very interesting to understand
whether these classes can be defined in generic quantum
circuits.
Another outstanding question raised by our work con-

cerns what happens when one perturbs dual-unitary circuits
that are not in the stable class. One possibility, which seems

to be hinted by our numerical results, is that the correlation
functions continue to have a path-integral form but the
paths are thickened [66]. In other words, they are computed
in terms of transfer matrices for a chain of width n rather
than of width 1. If n does not scale with time—as we seem
to observe, in general—the physical picture remains very
similar to the one studied here and, in particular, all
correlations continue to decay exponentially. However, it
would be interesting to understand whether there exists a
class of circuits for which n grows with time. This class
could lead to a phase transition in the behavior of
correlations and, therefore, to richer physics.
We can immediately propose two generalizations of our

setup. First, instead of unitary quantum circuits, one can
consider circuits of completely positive maps. These
include the class of circuits with projective measurements
that is currently attracting substantial attention, as it dis-
plays measurement-driven phase transitions [49–51,67].
Specifically, it is straightforward to generalize the concept
of dual bistochasticity to dual quantum bistochasticity.
Second, our treatment can be directly extended to perturbed
dual-unitary (or dual-bistochastic) circuits in higher
spatial dimensions where generic circuits display non-
trivial complexity transitions [68]. In this case, we again
expect the correlations to be written as sums over one-
dimensional paths.
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APPENDIX A: DUAL-BISTOCHASTIC MARKOV
CIRCUITS

In this Appendix, we show that the object (12) can be
interpreted as the correlation function of a Markov
circuit, i.e., a discrete time classical Markov chain where
at each half time step the time evolution couples only
nearest neighbors with bistochastic matrices. To see this
interpretation, let us regard Eq. (12) as the fundamental
object, forgetting its origin in terms of the U(1) noise
averaged quantum circuit and focus on the following
setting.

(i) Each wire in the tensor network (12) has generic
dimension N ∈ N, not restricted to squares of
positive integers. In particular, we choose a certain
basis

fjαi∶α ¼ 1;…; Ng ðA1Þ

and interpret each state as a possible state of a
classical spin (or any abstract configuration of a
classical system). Thus, we now view our physical
system as a chain of 2L classical spins. The
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probability distributions over configurations of such
chain can be formally expanded in the product basis

fjα1;…; α2Li∶αi ¼ 1;…; Ng: ðA2Þ

Namely, we can write

jpðtÞi ¼
X

fαjg∈f1…Ng2L
pðt; fαjgÞjα1;…; α2Li; ðA3Þ

where the coefficient pðt; fαjgÞ gives the probability
that the system is in the configuration α1;…; α2L at
time t, and, hence,

pðt;fαjgÞ∈ ½0;1� and
X

fαjg∈f1…Ng2L
pðt;fαjgÞ¼1:

ðA4Þ

(ii) The state j○i has the following expansion in the
basis (A1):

j○i ≔ 1ffiffiffiffi
N

p
XN
α¼1

jαi: ðA5Þ

Namely, j○i is the flat sum of all possible configu-
rations of a single spin, and, apart from a normali-
zation factor, it represents the flat probability
distribution. In the context of classical stochastic
processes, such a state is known as the maximal
entropy state and is typically denoted by jωi.
Therefore, restoring the correct normalization, we
have

j○i ¼
ffiffiffiffi
N

p
jωi: ðA6Þ

(iii) The local two-body gate W is not unitary but
bistochastic in the tensor product of two bases
(A1). Specifically,

0 ≤ hαβjWjα0β0i ≤ 1; ∀ α; β; α0; β0;XN
α;β¼1

hαβjWjα0β0i ¼ 1 ¼
XN
α;β¼1

hα0β0jWjαβi;

∀ α0; β0: ðA7Þ

Therefore, W in Eq. (19) is now a Markov chain
propagator evolving probability distributions of the
configurations of a chain of 2L classical spins (or
any other discrete variable degrees of freedom).
More precisely, one can define

jpðtþ 1Þi ¼ WjpðtÞi ðA8Þ

as the time-evolved probability distribution.
The bistochastic property (A7) of the elementary local

gateW implies that the maximal entropy state is stationary:
Wjωi ⊗ jωi ¼ jωi ⊗ jωi. This result means that the uni-
tality relations (11) are satisfied even if the gate is not
unitary, and we recover the natural light-cone causal
structure leading to Eq. (13) in the thermodynamic limit.
In this language, Eq. (12) is the correlation function in

the maximal entropy state of two (diagonal) local observ-
ables

A ¼
X
α

Aαjαihαj; B ¼
X
α

Bαjαihαj; ðA9Þ

such that

Aj○i ¼ jai; Bj○i ¼ jbi; ðA10Þ
where jai ¼ P

α Aαjαi and jbi ¼ P
β Bβjβi are the states

appearing in Eq. (12). In other words, we can rewrite the rhs
of Eq. (12) as

hbxþyjayðtÞi ¼ N2Lhω…ωjBxþyWtAyjω…ωi; ðA11Þ
which is the expression for dynamical correlation functions
in classical Markov chains and classical cellular automata
[69–72].
Moreover, defining the “dual” local Markov gate W̃ by

hαβjW̃jα0β0i ¼ hβ0βjWjα0αi ðA12Þ
and requiring it to be bistochastic in the basis
fjαβi≡ jαi ⊗ jβig, the dual-unitality relations (20) are
also satisfied. This result immediately implies that—if both
W and W̃ are bistochastic—the correlations take the simple
form (29). Indeed, the simplification of the correlation
functions is based only on the diagrammatic relations (11)
and (20) without utilizing the unitarity of the gates. We
refer to bistochastic gates Wdu with this special property as
dual bistochastic.

1. Reduced gates as Markov circuits with N = 2

Hereby, we can now establish a direct connection with
the U(1)-averaged unitary gates studied in Sec. IV.
Consider the minimal case where each classical spin takes
only N ¼ 2 values and define j●i as the state orthogonal to
j○i, i.e.,

j●i ≔ 1ffiffiffi
2

p ðj1i − j2iÞ: ðA13Þ

Using the second requirement in Eq. (A7), it is immediate
to verify the following.
Property 2.—Let the gate w be bistochastic in the basis

fjαii ⊗ jαjig2i;j¼1, and then
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(a) w takes the form (35) when expressed in the basis
fj○○i; j●○i; j○●i; j●●ig. The explicit parametri-
zation of the matrix elements is reported in Appen-
dix B 2.

(b) If w is dual bistochastic, it takes the form (36) in the
basis fj○○i; j●○i; j○●i; j●●ig. The explicit para-
metrization of the matrix elements is again reported in
Appendix B 2.

(c) The matrix implementing the change of basis from
fj○○i; j●○i; j○●i; j●●ig to fjαii ⊗ jαjig is given
by H ⊗ H, where H is the Hadamard transformation
[cf. Eq. (37)].

APPENDIX B: PARAMETRIZATION OF THE
GATES (35) AND (36)

In this Appendix, we present an explicit parametrization
of the gates (35) and (36) depending on whether they are
obtained as U(1)-averaged (dual-)unitary double gates or as
conjugated (dual-)bistochastic ones.

1. U(1)-averaged (dual-)unitary double gates

To find a convenient parametrization, we note that the
elements of the gate (35) can be computed by evaluating

ho1; o2jwjo3; o4i ¼ tr½ðo1 ⊗ o2ÞŪ†ðo3 ⊗ o4ÞŪ�; o1; o2; o3; o4 ¼ 1; σz: ðB1Þ

Here, we define

Ū ¼ (uð0; β1; γ1Þ ⊗ uð0; β2; γ2Þ)V½fJig�(uð0; β3; γ3Þ† ⊗ uð0; β4; γ4Þ†); ðB2Þ

where uðα; β; γÞ is defined in Eq. (55) and V½fJig� in Eq. (54). Equation (B1) follows directly from the parametrization (53)
and the form (51) of the averaged gate.
In particular, explicit calculations yield

pε ¼ cosð2J1Þ cosð2J2ÞCð2Þ
3 Cð4Þ

3 þ cosð2J1Þ cosð2J3ÞCð2Þ
2 Cð4Þ

2 þ cosð2J2Þ cosð2J3ÞCð2Þ
1 Cð4Þ

1 ; ðB3Þ

qε ¼ cosð2J1Þ cosð2J2ÞCð1Þ
3 Cð3Þ

3 þ cosð2J1Þ cosð2J3ÞCð1Þ
2 Cð3Þ

2 þ cosð2J2Þ cosð2J3ÞCð1Þ
1 Cð3Þ

1 ; ðB4Þ

a ¼ sinð2J1Þ sinð2J2ÞCð2Þ
3 Cð3Þ

3 þ sinð2J1Þ sinð2J3ÞCð2Þ
2 Cð3Þ

2 þ sinð2J2Þ sinð2J3ÞCð2Þ
1 Cð3Þ

1 ; ðB5Þ

c ¼ sinð2J1Þ sinð2J2ÞCð1Þ
3 Cð4Þ

3 þ sinð2J1Þ sinð2J3ÞCð1Þ
2 Cð4Þ

2 þ sinð2J2Þ sinð2J3ÞCð1Þ
1 Cð4Þ

1 ; ðB6Þ

b ¼
X3

α;β;γ¼1

sinð2JβÞ cosð2JγÞEαβγCð2Þ
α Cð3Þ

β Cð4Þ
γ ; d ¼ −

X3
α;β;γ¼1

cosð2JβÞ sinð2JγÞEαβγCð1Þ
α Cð3Þ

β Cð4Þ
γ ; ðB7Þ

e ¼ −
X3

α;β;γ¼1

sinð2JαÞ cosð2JβÞEαβγCð1Þ
α Cð2Þ

β Cð4Þ
γ ; f ¼

X3
α;β;γ¼1

cosð2JαÞ sinð2JβÞEαβγCð1Þ
α Cð2Þ

β Cð3Þ
γ ; ðB8Þ

g ¼
X3
β¼1

Cð1Þ
β Cð2Þ

β Cð3Þ
β Cð4Þ

β þ cosð2J1Þ cosð2J2Þ
X2
α≠β¼1

Cð1Þ
β Cð2Þ

α Cð3Þ
β Cð4Þ

α þ sinð2J1Þ sinð2J2Þ
X2
α≠β¼1

Cð1Þ
β Cð2Þ

α Cð3Þ
α Cð4Þ

β

þ cosð2J1Þ cosð2J3Þ
X

α≠β¼1;3

Cð1Þ
β Cð2Þ

α Cð3Þ
β Cð4Þ

α þ sinð2J1Þ sinð2J3Þ
X

α≠β¼1;3

Cð1Þ
β Cð2Þ

α Cð3Þ
α Cð4Þ

β

þ cosð2J2Þ cosð2J3Þ
X

α≠β¼2;3

Cð1Þ
β Cð2Þ

α Cð3Þ
β Cð4Þ

α þ sinð2J2Þ sinð2J3Þ
X

α≠β¼2;3

Cð1Þ
β Cð2Þ

α Cð3Þ
α Cð4Þ

β ; ðB9Þ

where Eαβγ is the three-dimensional Levi-Civita symbol and we define

CðiÞ
1 ¼ sinðβiÞ cosðγiÞ; CðiÞ

2 ¼ sinðβiÞ sinðγiÞ; CðiÞ
3 ¼ cosðβiÞ; i ¼ 1; 2; ðB10Þ

CðiÞ
1 ¼ − sinðβiÞ cosðγiÞ; CðiÞ

2 ¼ sinðβiÞ sinðγiÞ; CðiÞ
3 ¼ cosðβiÞ; i ¼ 3; 4: ðB11Þ
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The parametrization of Eq. (36) follows by replacing J1 and J2 by π=4. Explicitly, we have

pε ¼ 0 ¼ qε; ðB12Þ

a ¼ Cð2Þ
3 Cð3Þ

3 þ sinð2J3ÞðCð2Þ
2 Cð3Þ

2 þ Cð2Þ
1 Cð3Þ

1 Þ; c ¼ Cð1Þ
3 Cð4Þ

3 þ sinð2J3ÞðCð1Þ
2 Cð4Þ

2 þ Cð1Þ
1 Cð4Þ

1 Þ; ðB13Þ

b ¼ cosð2J3ÞCð4Þ
3 ðCð2Þ

1 Cð3Þ
2 − Cð2Þ

2 Cð3Þ
1 Þ; d ¼ cosð2J3ÞCð3Þ

3 ðCð1Þ
1 Cð4Þ

2 − Cð1Þ
2 Cð4Þ

1 Þ; ðB14Þ

e ¼ cosð2J3ÞCð2Þ
3 ðCð1Þ

1 Cð4Þ
2 − Cð1Þ

2 Cð4Þ
1 Þ; f ¼ cosð2J3ÞCð1Þ

3 ðCð2Þ
1 Cð3Þ

2 − Cð2Þ
2 Cð3Þ

1 Þ; ðB15Þ

g ¼
X3
β¼1

Cð1Þ
β Cð2Þ

β Cð3Þ
β Cð4Þ

β þ
X2
α≠β¼1

Cð1Þ
β Cð2Þ

α Cð3Þ
α Cð4Þ

β þ sinð2J3Þ
� X
α≠β¼1;3

Cð1Þ
β Cð2Þ

α Cð3Þ
α Cð4Þ

β þ
X

α≠β¼2;3

Cð1Þ
β Cð2Þ

α Cð3Þ
α Cð4Þ

β

�
: ðB16Þ

Noting that

(uð0; β1; γ1Þ ⊗ uð0; β2; γ2Þ)V½fπ=4; π=4; J3g�(uð0; β3; γ3Þ† ⊗ uð0; β4; γ4Þ†)
¼ (uð0; β1; 0Þ ⊗ uð0; β2; 0Þ)V½fπ=4; π=4; J3g�(uð0; β3; γ3 − γ2Þ† ⊗ uð0; β4; γ4 − γ1Þ†); ðB17Þ

we can set

γ1 ¼ γ2 ¼ 0 ðB18Þ

and (B12)–(B16) further simplify to

pε ¼ 0 ¼ qε; ðB19Þ

a ¼ cosðβ2Þ cosðβ3Þ − sinð2J3Þ sinðβ2Þ sinðβ3Þ cosðγ3Þ; c ¼ cosðβ1Þ cosðβ1Þ − sinð2J3Þ sinðβ1Þ sinðβ4Þ cosðγ4Þ;
ðB20Þ

b ¼ cosð2J3Þ cosðβ4Þ sinðβ2Þ sinðβ3Þ sinðγ3Þ; d ¼ cosð2J3Þ cosðβ3Þ sinðβ1Þ sinðβ4Þ sinðγ4Þ; ðB21Þ

e ¼ cosð2J3Þ cosðβ2Þ sinðβ1Þ sinðβ4Þ sinðγ4Þ; f ¼ cosð2J3Þ cosðβ1Þ sinðβ2Þ sinðβ3Þ sinðγ3Þ; ðB22Þ

g ¼ cosðβ1Þ cosðβ2Þ cosðβ3Þ cosðβ4Þ þ sinðβ1Þ sinðβ2Þ sinðβ3Þ sinðβ4Þ cosðγ3Þ cosðγ4Þ
− sinð2J3Þ½sinðβ1Þ cosðβ2Þ cosðβ3Þ sinðβ4Þ cosðγ4Þ þ cosðβ1Þ sinðβ2Þ sinðβ3Þ cosðβ4Þ cosðγ3Þ�: ðB23Þ

2. Conjugated (dual-)bistochastic gates

Considering a 4 × 4 bistochastic matrix

B ¼

0
BBBBBBBB@

x11 x12 x13 1 −
P

j x1j

x21 x22 x23 1 −
P

j x2j

x31 x32 x33 1 −
P

j x3j

1 −
P

i xi1 1 −
P

i xi2 1 −
P

i xi3
P

ij xij − 2

1
CCCCCCCCA

ðB24Þ

parametrized by elements of a convex set

Rb ¼
	
ðx11; x12;…; x33Þ; xij ∈ ½0; 1�;

�
0 ≤

X
i

xij ≤ 1

�
∧
�
0 ≤

X
i

xji ≤ 1

�
; j ¼ 1; 2; 3



: ðB25Þ
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Conjugating Eq. (B24) with H ⊗ H, we obtain a gate of the form (35) with coefficients

pε ¼ x11 þ x13 þ x31 þ x33 − 1; a ¼ x11 þ x12 þ x31 þ x32 − 1; b ¼ 1 − x12 − x13 − x32 − x33; ðB26Þ

c ¼ x11 þ x13 þ x21 þ x23 − 1; qε ¼ x11 þ x12 þ x21 þ x22 − 1; d ¼ 1 − x12 − x13 − x22 − x23; ðB27Þ

e ¼ 1 − x21 − x23 − x31 − x33; f ¼ 1 − x21 − x22 − x31 − x32; g ¼ x22 þ x23 þ x32 þ x33 − 1: ðB28Þ

Instead, a dual-bistochastic matrix is written as

Bdb ¼

0
BBBBBB@

x11 x12 x13 1 −
P

j x1j
x21 1 − x21 − x12 − x11 x23 x11 þ x12 − x23
x31 x32 1 − x31 − x13 − x11 x11 þ x13 − x32

1 −
P

i xi1 x11 þ x21 − x32 x11 þ x31 − x23 x23 þ x32 − x11

1
CCCCCCA; ðB29Þ

the set of which is parametrized by a seven-dimensional convex set

Rdb ¼ fðx11; x12; x21; x13; x31; x23; x32Þ; ðx11; x12; x13; x21; 1 − x12 − x21 − x11; x23; x31; x32; 1 − x13 − x32 − x11 ∈ RbÞg:
ðB30Þ

In this case, the parametrization (B26)–(B28) simplifies to

pε ¼ 0; a ¼ x11 þ x12 þ x31 þ x32 − 1; b ¼ x31 þ x11 − x12 − x32; ðB31Þ

c ¼ x11 þ x13 þ x21 þ x23 − 1; qε ¼ 0; d ¼ x21 þ x11 − x13 − x23; ðB32Þ

e ¼ x13 þ x11 − x21 − x23; f ¼ x12 þ x11 − x31 − x32; g ¼ 1 −
X
k

ðxk1 þ x1kÞ þ x23 þ x32: ðB33Þ

APPENDIX C: GUE-AVERAGED GATE

In this Appendix, we treat analytically the problem
outlined in Sec. III considering correlations averaged over
random defects. Specifically, we take P in Eq. (30) to be
random matrices independently distributed at each space-
time point according to the Gaussian unitary ensemble, i.e.,

PGUEðPÞ ¼ N de−ðd
2=2Þtr½ðP−μ1ÞðP−μ1Þ†�; ðC1Þ

where N d is a normalization constant, d2 is the dimension
of P, and μ is the disorder mean, while the variance of
matrix elements σ2 is fixed to unity. This result is not a
restriction, as the “strength” of the disorder is already
controlled by the parameter η and all physical quantities
depend on η and σ only through η=σ.
We start by proving the following property.
Property 3.—The average of the doubled gate Wη

reads as

ðC2Þ

where EGUE½·� is the average over Eq. (C1) and KGUEðxÞ≡ EGUE½jtr½eixP�j2� is the spectral form factor of the Gaussian
unitary ensemble.
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Proof.—Since we have

EGUE½Wη� ¼ EGUE½ðe−iηP ⊗ eiηP
T Þ�Wdu; ðC3Þ

we can focus on the first term in the product:

M≡ EGUE½ðe−iηP ⊗ eiηP
T Þ�: ðC4Þ

We now observe thatM is invariant under conjugation with
U ⊗ U�, where U is a d2 × d2 unitary matrix and ð·Þ�
represents complex conjugation in the canonical basis (1).
The Schur's lemma implies

M ¼ αPsym þ βPantisym; ðC5Þ
where Psym and Pantisym are the projectors on the spaces of
the irreps in which the tensor product of two conjugated
fundamental representations of Uðd2Þ decomposes.
Specifically, these two representations are d4 − 1- and
one-dimensional, and in our notations we have

Psym ¼ 1− j○○ih○○j; Pantisym ¼ j○○ih○○j: ðC6Þ
The coefficients are readily computed by multiplyingM by
Psym and Pantisym, respectively, and taking the trace. This
result leads to

α ¼ tr½M� − 1

tr½Psym�
¼ KGUEðηÞ − 1

d4 − 1
; β ¼ 1: ðC7Þ

Plugging back into Eq. (C3) and using WduPantisym ¼
Pantisym, we obtain Eq. (C2). ▪
Since both terms on the rhs of Eq. (C2) fulfill the “dual-

unitality” conditions (20) and their coefficients sum to one,
the averaged gate fulfills Eq. (20) as well. Then the
correlations immediately reduce to the form (29), where
hajðA○○

du;1Þ2tjbi and hbjðC○○
du;1Þ2tjai are, respectively,

replaced by

ðC8Þ

and

ðC9Þ

Here, we distribute the defects along the regular sublattice
of Eq. (32) for a more convenient representation. The
treatment of more general (e.g., random) dispositions of
defects is completely analogous.
Expanding each averaged gate as in Eq. (C2), we

produce a sum of 2x̃� terms [cf. Eq. (39)]. As can be
directly verified using Eq. (11), only the term with no
j○○ih○○j gives a nontrivial contribution. Considering
that term, we directly find

EGUE½hbxþyjayðtÞi� ¼ modð2y; 2ÞδxþthbjðC○○
du;1Þ2tjai

�
KGUEðηÞ − 1

d4 − 1

�
x̃−

þmodð2yþ 1; 2Þδx−thajðA○○
du;1Þ2tjbi

�
KGUEðηÞ − 1

d4 − 1

�
x̃þ
; ðC10Þ

where KGUEðtÞ can explicitly be written as [73]

KGUEðtÞ ¼ −
Z

dxdyeityρc
2;d2

ðxþ y; xÞþ
����
Z

dxeitxρc
1;d2

ðxÞ
����2 þ d2; ðC11Þ

where

ρc1;nðxÞ ¼ Knðx; xÞ; ρc2;nðx; yÞ ¼ ½Knðx; yÞ�2; Knðx; yÞ ¼
e−ðx2þy2Þ=2

π1=22nðn− 1Þ!
HnðxÞHn−1ðyÞ−HnðyÞHn−1ðxÞ

x− y
; ðC12Þ

and HnðxÞ are the Hermite polynomials. In particular, for d ¼ 2 we find

KGUEðtÞ ¼ 4þ e−t
2=2

�
12 − 24t2 −

23

2
t4 þ 8

3
t6 −

25

96
t8 þ 1

96
t10

�
: ðC13Þ

We conclude by observing that the GUE average considered here is very different from the flat average over the Haar
measure on Uðd2Þ. Taking a Haar random perturbation R in Eq. (30) instead of eiηP immediately gives
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EUðd2Þ½Wη� ¼ EUðd2Þ½R† ⊗ RT � ¼ j○○ih○○j; ðC14Þ

where in the second step we use the right multiplication
invariance of the Haar measure and the last step is a trivial
instance of the known result on integrals over unitary
groups [74] [it can also be obtained from Eq. (C2) by
replacing KGUEðηÞ with KGUEð1Þ ¼ 1]. A direct conse-
quence of this result is that all correlations are trivialized by
the Haar average for any density δ of defects. Interestingly,
Eq. (C2) does not reproduce Eq. (C14) for η → ∞ since

lim
η→∞

KGUEðηÞ ¼ d2: ðC15Þ

This result can be justified by noting that, even though
Eq. (C1) becomes flat in this limit, it gives flat weights to
different variables compared to the Haar measure (roughly
speaking, P rather than eiP) and a flat weight for one does
not imply a flat weight for the other. As expected,
Eqs. (C10) and (C14) agree in the limit of infinite dimen-
sional matrices d → ∞.

APPENDIX D: PROOF OF PROPERTY 1

In this Appendix, we prove Property 1. We consider the
horizontal transfer matrix a○○

0;x , as the proof for the vertical
one, c○○

du;x, is totally analogous. Let us begin by introducing
the transfer matrix

ðD1Þ

and noting that fa○○
du;x; a

○●
du;xg fulfill the following recursive

relations:

a○○
du;x ¼ a○○

du;x−1 ⊗
�
1 0

0 0

�
þ a○○

du;x−1 ⊗
�
0 0

0 a

�

þ a○●
du;x−1 ⊗

�
0 0

0 b

�
; ðD2Þ

a○●

du;x ¼ a○●

du;x−1 ⊗
�
c e

d g

�
þ a○○

du;x−1 ⊗
�
0 0

0 f

�
; ðD3Þ

with

a○○
du;1 ¼

�
1 0

0 a

�
; a○●

du;1 ¼
�
0 0

0 f

�
: ðD4Þ

These relations are directly established by plugging a
resolution of the identity 1 ¼ j○ih○j þ j●ih●j in the
rightmost connecting wire of Eqs. (62) and (D1).
Using unitality (11) and dual unitality (20), it is

straightforward to prove that j○…○i is an eigenvector
of a○○

du;x with the eigenvalue 1 and

fj○…○●|fflfflfflfflffl{zfflfflfflfflffl}
k

○…○igxk¼1 ðD5Þ

are x eigenvectors of a○○
du;x corresponding to the eigenvalue

a. This result immediately proves the block structure of
Eq. (64). Therefore, to conclude the proof, we just need to
bound the norm of

r1;x ¼ a○○
du;x − p○

x;0 − a
Xx
k¼1

p○
x;k; ðD6Þ

where the projectors fp○
x;kgxk¼0 are defined in Eq. (66). We

begin by considering

λ1;x ≔ kr1;x − p○
x;0k; ðD7Þ

where kAk denotes the operator norm of matrix A. Using
Eq. (D2) leads to

λ1;x¼maxðλ1;x−1;kaa○○
du;x−1þba○●

du;x−1kÞ
¼maxðλ1;x−1;jaj;kaa○○

du;x−1−ap○
x−1;0þba○●

du;x−1kÞ; ðD8Þ
where in the second step we use that j○…○i is an
eigenvector of a○●

du;x−1 (with eigenvalue 0). Using the triangle
inequality for the operator norm on the rhs, we obtain

kaa○○
du;x−1−ap○

x−1;0þba○●
du;x−1k≤ jajλ1;x−1þjbjλ●x−1; ðD9Þ

where we define

λ●x−1 ≔ ka○●
du;xk: ðD10Þ

Thus, applying triangle inequality to Eq. (D3), we find

λ•x ≤ αλ•x−1 þ jfj; ðD11Þ

where we use that ka○○
du;xk ¼ 1 (this result can be proven by

the same reasoning as in Appendix A of Ref. [13]).
Furthermore, we denote by α the operator norm of the 2
by 2matrix in the first term on the rhs of Eq. (D3). Explicitly,
α can be computed by considering the largest singular value
of the matrix, which reads

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ e2 þ g2 þ d2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 þ e2 − g2 − d2Þ2 þ 4ðcdþ egÞ2

p
2

s
: ðD12Þ
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By means of the parameterizations (B19)–(B23) and
(B31)–(B33), one can explicitly verify that α ∈ ½0; 1�.
Using Eq. (D11), we see that λ•x is bounded by yx, which

is defined as the solution of

yx ¼ αyx−1 þ jfj; y1 ¼ jfj; ðD13Þ

and reads explicitly

yx ¼
jfj

1 − α
ð1 − αxÞ: ðD14Þ

Hence,

kaa○○
du;x−1 − aP○

x−1;0 þ ba○●
du;x−1k ≤ jajλx−1

þ jbfj
1 − α

ð1 − αx−1Þ ≤ jajλx−1 þ
jbfj
1 − α

; ðD15Þ

where in the last step we assume α < 1. Combining
everything, we get

λ1;x ≤ max

�
λ1;x−1; jaj; jajλ1;x−1 þ

jbfj
1 − α

�
: ðD16Þ

Considering now the range of parameters for which

a2 þ jbfj
1 − α

< jaj; ðD17Þ

we have that, for λ1;x−1 ≤ jaj, it follows λ1;x ≤ jaj. In
particular, since λ1;1 ¼ jaj, we conclude

λ1;x ≤ jaj ∀ x: ðD18Þ

Moreover, from Eq. (D15) we conclude that

kaa○○

du;x−1 − ap○
x−1;0 þ ba○●

du;x−1k ≤ a2 þ jbfj
1 − α

; ðD19Þ

which combined with Eq. (D8) implies

λ1;x ¼ jaj ∀ x: ðD20Þ

Now we define

λ2;x ≔ kr1;xk; ðD21Þ

and using Eq. (D2) we find

λ2;x ¼ maxðλ2;x−1; kaa○○
du;x−1 − ap○

x−1;0 þ ba○●
du;x−1kÞ:

ðD22Þ

At this point, we use the bound (D19), which combined
with λ2;1 ¼ 0 gives

λ2;x ≤ a2 þ jbfj
1 − α

: ðD23Þ

This concludes the proof of Property 1.
Note that the bound (D16) is useful even when the con-

dition (D17) is violated. Indeed, assuming jaj < λx < 1, we
have

λxþ1 ≤ max

�
λx; jajλx þ

jbfj
1 − α

�
: ðD24Þ

Since jaj < 1, this equation implies λx < m� for all x and
some finite m�. Whenever m� < 1, this result produces a
useful bound for the first nontrivial eigenvalue of a○○

du;x.

APPENDIX E: EVALUATION OF EQ. (43)

To evaluate Eq. (43), one first needs to construct all lists

flþ1 ;…; lþnþ1g; lþj ≥ 0; ðE1Þ

and

fl−1 ;…; l−ng; l−j ≥ 0; ðE2Þ

that satisfy the constraint (46). This construction is done
with a recursive algorithm. At the step k, we generate all
lists

fp1;…pkg; pj ≥ 0; ðE3Þ

that satisfy

Xk
j¼1

pj ¼ nk: ðE4Þ

If we are generating a list with a single element (k ¼ 1), this
element is set by the constraint p1 ¼ n1. Otherwise, we
generate lists by choosing all possible values for the last
element in pk ∈ ½0;…; nk� and solving the problem of
finding all lists fp1;…; pk−1g with the constraint
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Xk−1
j¼1

pj ¼ nk − pk ¼ nk−1: ðE5Þ

After all the lists are generated, we can evaluate Eq. (43).
For large x� and n, the above procedure becomes

difficult to implement. For instance, consider the n ¼ n0
in the first sum of Eq. (43): This term involves the
summation of

�
xþ
n0

��
x− − 2

n0 − 1

�
≈
�
xþx−
n0

�
n0

contributions, which becomes eventually impractical for
x�; n0 ≫ 1. This problem can be overcome by (i) truncating
the expansion (43) (this truncation leads to accurate results
for small enough η) or (ii) by approximating the higher
orders by substituting A○○

0;1 and C○○
0;1 with the projectors on

their largest nontrivial eigenvalues, which we, respectively,
denote by λ1;a and λ1;c. Thus, we can rewrite the contribution
of the higher orders in Eq. (43) exactly in the form Eq. (38),
with the sums running from a certain n ¼ nc (n ¼ nc − 1)
instead of 1 (0). The parameters are expressed as

pε ¼ hλ1;cjE1jλ1;ai; qε ¼ hλ1;ajE2jλ1;ci;
a ¼ λ1;a; c ¼ λ1;c; ðE6Þ

and there is an additional factor of hbjλ1;aihλ1;ajai
(hbjλ1;cihλ1;ajai) in front of it. [In the latter expression,
jai and hbj refer to initial and final operators, respectively,

whereas jλ1;ai and jλ1;ci refer to the leading eigenvectors (a
and c refer to the corresponding parameters of the reduced
gate).] If all l�j ≫ 1, this replacement gives a negligible
error; however, in the sum there are also terms with l�j ≈ 0

and using the projector is strictly speaking unjustified.
Nevertheless, this replacement gives a useful approxima-
tion, especially in the limit x� → ∞.

APPENDIX F: NUMERICAL METHODS AND
PARAMETERS OF THE GATES

Direct (brute force) numerical evaluations are performed
by exactly contracting the xþ × x− tensor network (13),
with the help of some basic functionalities of ITensor
Library [75]. We represent the green gates as ITensor
objects with the correct indices. To contract Eq. (13), we
start on the right side and contract the initial state by gates
in the last column one by one (first and last gates in the
column are also contracted with the ○ state). Then, we
continue in the same fashion with the remaining columns
and end up with contracting with the final state.
The leading part of the spectrum of the dual-unitary

transfer matrices is found using the power method, i.e., by
iteration of the dual transfer matrix on a random initial
vector, which is chosen to be (bi)orthogonal to the
previously computed leading (left and right) eigenvectors.
We circumvent the need to apply the adjoint dual-unitary
transfer matrix by noticing that, for the leading eigenvec-
tors of nontrivial support up to one, left and right eigen-
vectors coincide.
The parameters of the gates used in numerical experi-

ments are given in Tables I and II.

TABLE I. Parameters of the reduced gates, which are used in the figures. In the cases where ε is not stated, we use ε ¼ −0.002660,
−0.014746, and 0.001 for gates 1, 2, and 3, respectively. We use p ¼ q ¼ 1 [cf. Eq. (81)].

a b c d e f g

Gate 1 0.820 188 −0.013 672 8 0.820 188 −0.013 672 8 −0.013 672 8 −0.013 672 8 0.679 158
Gate 2 0.761 132 −0.025 732 0.761 132 −0.025 732 −0.025 732 −0.025 732 0.701 678
Gate 3 0.094 562 6 0.021 236 8 0.195 892 0.006 034 79 0.000 078 350 4 0.271 196 0.443 805
Gate 4 −0.714 396 −0.014 327 2 −0.174 808 0.139 193 −0.206 479 0.027 313 4 0.048 548 7
Gate 5 0.040 935 2 0.275 939 0.040 935 2 0.275 939 0.275 939 0.275 939 0.037 326 1

TABLE II. Parameters of the nonaveraged gates, which are used in the figures. The gates are parametrized as ðu ⊗ uÞV½fJig�ðv ⊗ vÞ,
with V½fJig� defined in Eq. (54). The parameters are set to J1 ¼ J2 ¼ ηþ π=4 and J3 ¼ 0.1.

Eigenvectors of
λ1 fulfill Eq. (88) u v

Yes
�
−0.229466 − 0.562418i 0.507409 − 0.611202i
0.316533þ 0.728586i 0.377401 − 0.475959i

� �
−0.500163 − 0.421942i −0.0342946 − 0.755398i
0.532173 − 0.537209i −0.653978 − 0.0226033i

�

No

�
−0.484203þ 0.476337i 0.207991þ 0.70384i
−0.194545þ 0.707674i −0.493189 − 0.467026i

� �
0.488082þ 0.160083i 0.0340135þ 0.857317i
0.197049þ 0.835058i 0.427305 − 0.285063i

�
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