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The concept of space evolution (or space-time duality) has emerged as a promising approach for
studying quantum dynamics. The basic idea involves exchanging the roles of space and time, evolving the
system using a space transfer matrix rather than the time evolution operator. The infinite-volume limit is
then described by the fixed points of the latter transfer matrix, also known as influence matrices. To
establish the potential of this method as a bona fide computational scheme, it is important to understand
whether the influence matrices can be efficiently encoded in a classical computer. Here we begin this quest
by presenting a systematic characterization of their entanglement—dubbed temporal entanglement—in
chaotic quantum systems. We consider the most general form of space evolution, i.e., evolution in a generic
spacelike direction, and present two fundamental results. First, we show that temporal entanglement always
follows a volume law in time. Second, we identify two marginal cases—(i) pure space evolution in generic
chaotic systems and (ii) any spacelike evolution in dual-unitary circuits—where Rényi entropies with index
larger than one are sublinear in time while the von Neumann entanglement entropy grows linearly. We
attribute this behavior to the existence of a product state with large overlap with the influence matrices. This
unexpected structure in the temporal entanglement spectrum might be the key to an efficient computational
implementation of the space evolution.

DOI: 10.1103/PhysRevX.13.041008 Subject Areas: Quantum Physics,
Quantum Information,
Statistical Physics

I. INTRODUCTION

The first two decades of the new millennium witnessed
extraordinary experimental progress inmeasuring dynamical
properties of quantummany-body systems. Experiments are
now able to probe, for instance, local relaxation of isolated
systems [1–3] and out-of-equilibrium transport [4–8] over
surprisingly long timescales. Theoreticians, however, can
very rarely provide independent predictions to compare with
these experiments, especially concerning dynamics beyond
intermediate timescale. Indeed, characterizing a quantum
many-body system out of equilibrium, or even simulating its
state on a classical computer, remains to date a formi-
dable task.
The situation is slightly more favorable in one dimen-

sion, where one can use an extension of the celebrated
DMRG algorithm [9,10] to provide a faithful representation

of the time-evolving quantum state [11]. The initial state is
represented as a matrix product state (MPS), and a suitable
evolution algorithm (e.g., (time-dependent)Density Matrix
Renormalization Group [12,13] or Time-Evolution Block-
Decimation [14,15]) finds an MPS approximation of the
state at time t for a given level of accuracy. The problem,
however, is that the amount of resources required for such
an approximation grows exponentially with the entangle-
ment of the state and, in the absence of localization or other
ergodicity-breaking mechanisms, the latter builds up very
quickly as time elapses. In practice this means that one
needs an exponentially growing amount of resources for an
accurate representation of the state. This “entanglement
barrier” is physical and cannot be avoided whenever one
tries to characterize the whole quantum state. The key
question, however, is whether or not it is necessary to
simulate the evolution of the whole quantum state to
compute its experimentally accessible properties, e.g., its
correlation functions.
In the course of the past decade several algorithms have

been proposed to circumvent the fast entanglement growth
of nonequilibrium states [16–26]. The common theme is to
sidestep the problem by exploiting the fact that one is
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typically only interested in the correlation functions of
special observables, for instance, those that are local in
space. A promising one, which motivates our work, is the
so-called “folding algorithm” or “transverse folding algo-
rithm” proposed in Ref. [26] (see also Refs. [27–31]),
whose main idea is to evolve the system in space, rather
than in time. Taking the one-point function in Fig. 1 as an
example, this means that one has to contract its tensor-
network representation horizontally, by means of an appro-
priate space transfer matrix rather than vertically using the
time evolution operator. The name of the algorithm derives
from the fact that this operation becomes much more
efficient when considering the “folded representation” of
the correlator, i.e., when folding the tensor network around
the center as shown in Fig. 1(b), which doubles the local
degrees of freedom but keeps the correlations short-ranged.
Physically, the vertical column of tensors beneath the
observable implements the unitary evolution of the sub-
system of interest—the one where the observable acts—
while the sections on its two sides encode the nonunitary
action exerted on the subsystem by the rest of the system,
i.e., the environment. For instance, in the example of Fig. 1
the system is a single spin (or qudit). Inspired by the
Feynman-Vernon influence functional approach [32],
Ref. [33] proposed to dub “influence matrices” the portions
of the tensor network describing the action of the envi-
ronment. Note that when the environment becomes very

large, the influence matrices become equal to the left and
right fixed points of the space transfer matrix T t; see Fig. 1.
The idea of exchanging space and time to describe

infinite systems at finite times proved to be very successful
and over the past few years has found interesting applica-
tions to the study of spectral statistics and quantum chaos
[34–39], entanglement dynamics [40–43], impurity prob-
lems [44], and even full-counting statistics of many-body
observables [45] and Loschmidt echo [46–48]. When
considered as a computational tool for computing correla-
tion functions, however, the folding algorithm has an
important limitation: it can only deal with cases where
the operator insertions break the translation symmetry in a
single spatial point, i.e., one-point functions and, more
generally, autocorrelations. In this way one cannot access,
for instance, generic two-point functions—such as those
needed to compute transport coefficients [49–51]—as they
feature two operators separated in both time and space.
Another outstanding question concerns the computa-

tional complexity of the folding algorithm. Namely, how
hard it is to implement this algorithm on a classical
computer for increasingly large times. To answer this
question one needs to understand what features of the
influence matrices have to be retained to correctly describe
expectation values of local operators and what is the
amount of resources required to do so. An intuitive estimate
can be obtained by studying their entanglement, dubbed
“temporal entanglement” [28,52]. Indeed, roughly speak-
ing, if the latter does not grow too fast one can efficiently
approximate the influence matrices with matrix product
states for arbitrarily high fidelity [55,56]. Following
Refs. [28,33], one can argue that temporal entanglement
should be small for generic systems. Indeed, the dephasing
caused by the environment tends to align corresponding
spins in the forward and backward copies (cf. Fig. 1)
producing configurations that are diagonal and hence
classical. Although plausible, this picture can be proven
only in a few special cases. These include certain special
chaotic quantum systems—dual-unitary circuits [57]—
prepared in a special family of initial states [40,58] and
in certain special classes of integrable models [30,59–62].
In generic cases the temporal entanglement is observed to
grow in time, even though its growth appears slower than
that of spatial entanglement [26,33].
In this work we fill both the aforementioned gaps: (1) We

extend the folding algorithm to compute generic two-point
functions and (2) we characterize the scaling of temporal
entanglement in generic quantum many-body systems.
The main idea for extending the folding algorithm is to

embed the two operators in the same system defined on a
timelike surface, or path, γ, see the illustration in Fig. 2, and
evolve it in the orthogonal spacelike direction. In a
relativistic field theory one can imagine to implement
our construction by boosting to a reference frame where
the operators are measured at the same position and then

(a)

(b)

FIG. 1. (a) One-point function of the local operator a after a
quantum quench and its tensor-network representation. Forward
and backward time sheets are, respectively, depicted in red and
blue. (b) The same one-point function of (a) after folding: in the
folded tensor network the number of local degrees of freedom is
doubled and the white circles at the top of the tensor network
denote a loop. The gray shaded box highlights the space transfer
matrix T t (acting from left to right on a lattice of t sites).
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use the usual folding algorithm. This setup allows us to
treat generic two-point functions, and also gives the option
to optimize the evaluation of one-point functions by
varying the path on which the influence matrices are
evaluated. Note that the extreme case of a timelike surface
corresponding with the light cone edge has been considered
in Ref. [63] and, for this case, Ref. [62] characterized the
complexity of the corresponding influence matrices for
integrable dual-unitary circuits.
To characterize the scaling of temporal entanglement, we

compute the entanglement entropies of the generalized
influence matrices hLγj and jRγi across contiguous bipar-
titions of γ. We, respectively, denote them by

SðαÞL;AðγÞ and SðαÞR;AðγÞ; ð1Þ

for subregion A and Rényi index α. Our findings are
summarized in Table I.
Overall we find that the temporal von Neumann entropy

(α ¼ 1) always grows linearly in time after a quench from a
generic initial state. Nevertheless, we find cases in which
Rényi entropies with index α > 1 (higher Rényi entropies
from now on) grow sublinearly. In particular, the higher
Rényi entropies of vertical influence matrices (the regular
ones) in any chaotic system are logarithmic in time, while
those of any influence matrix in a dual-unitary circuit are

bounded by a constant. In these cases the slope of growth of
von Neumann entropy is strictly smaller than that of regular
state entanglement. These statements are proven analyti-
cally for dual-unitary circuits, while in the case of generic
circuits they result from the combination of entanglement
membrane theory [64,65] and numerical observations.
The observed linear growth of von Neumann entangle-

ment entropy rules out an efficient high-fidelity approxi-
mation of the influence matrices via matrix product states
[56]. Our findings, however, suggest that there are physi-
cally relevant cases where the temporal entanglement
spectrum displays a strong separation of scales: There
are a few large (at most linearly decaying) Schmidt values
and many exponentially small ones. This remarkable
structure might be the key for an efficient implementation
of the folding algorithm.
In the following subsection, we sketch the key steps to

obtain the scalings in Table I and discuss their conse-
quences. A complete description of our setup begins in
Sec. II.

A. Summary of approaches and results

We consider generic quantum many-body systems with
local interactions modeled by local brickwork quantum
circuits [66]. This is a class of locally interacting systems in
discrete time that has recently played a key role in under-
standing many-body quantum dynamics. The enormous
complexity of the latter implies that the theoretical descrip-
tion, or even the mere numerical simulation, of quantum
matter out of equilibrium is practically possible only in the
short-time regime. Brickwork quantum circuits simplify the
picture by imposing strictly local interactions over a finite
time step and give rare examples where local observables
and information theoretical quantities can be determined at
all times. The results obtained in these systems, for
instance, through random averaging [64,67–70] and/or
space-time duality [40,58,63,71–77], have significantly
advanced our understanding of universal properties of
the dynamics. Applications include, for instance, operator
dynamics and information spreading [64,67–70,78–80],
statistical properties of the spectrum [34–39,81–84], and,
more broadly, thermalization [58–60,83,85–87]. We also
note that quantum circuits are vital tools for experimental

FIG. 2. Generalized influence matrices on a temporal slice γ.
The (anti)slope of the path γ is vγ ¼ Δx=t. When vγ ¼ 0, they
correspond to the regular influence matrices. A one-point or two-
point function can be evaluated by contracting the left state hLγj,
some relevant operators inserted along the path, and the right state
jRγi. The temporal entanglement is the larger among the
entanglement of hLγj and that of jRγi for a partition A; Ā on a
temporal slice.

TABLE I. Scaling of the temporal entanglement. We take the second Rényi entropy as a representative of higher
Rényi entropies. The maximum is taken over L, R states and the possible contiguous regions A on γ for a given slope
vγ . All the circuits have a brickwork architecture (see Sec. II). Only vertical cuts or dual-unitary circuits give
sublinear growth in higher Rényi entropy. Italic font denotes analytical results (obtained by membrane picture or
exact calculation), bold font denotes numerical evidence.

max½Sð1ÞL;AðγÞ; Sð1ÞR;AðγÞ� max½Sð2ÞL;AðγÞ; Sð2ÞR;AðγÞ�
Generic circuit (vγ ≠ 0) ∼t ∼t
Generic circuit (vγ ¼ 0) ∼t ≲ log t
Generic dual-unitary circuit ∼t ∼1
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simulation of quantum systems and quantum computation.
For instance, they can be used to demonstrate quantum
advantage [88–91], to perform randomized benchmarking
[92–95], randomized measurements [96–101], shadow
tomography [102–104], and, more generally, to study
nonequilibrium dynamics of Floquet systems [105,106].
The structure of these circuits look like a Suzuki-Trotter

[107,108] approximation of (local) Hamiltonian evolution,
but the unitary gates are not necessarily infinitesimal in
time or close to the identity: They can be arbitrary unitaries
(see the detailed illustration of our setup in Sec. II).

To understand the behavior of SðαÞL=R;AðγÞ in generic
circuits, we take the gates forming the brickwork structure
to be independent Haar random matrices. By averaging
over the random gates the calculation of entanglement
related quantities is mapped into that of the free energy of a
statistical mechanical model of emergent spins [64,65]. In
particular, we find that the averaged temporal purity,

exp
�
−Sð2ÞL=R;AðγÞ

�
; ð2Þ

is the difference of free energies of the same statistical
model subjected to different boundary conditions. By
minimizing the free energies we find domain-wall con-
figurations that give (cf. Sec. IV)

exp
�
−Sð2ÞL=R;AðγÞ

�
≃ e−v

ð2Þ
TE t log d; ð3Þ

where the linear coefficient vð2ÞTE ≥ 0 is determined by the
line tension EHðvÞ of the membrane separating the different
domains. The line tension is an intrinsic function of the
membrane, which, in translational invariant systems (at
least after disorder average), only depends on the space-
time slope v. Although the explicit expression is compli-
cated, we have a useful condition,

vð2ÞTE ¼ 0 ⇔ EHðvγÞ ¼ EHð0Þ; ð4Þ

where vγ is the antislope [109] of the path γ; see Fig. 2.
Equation (3) results in a lower bound of the typical

growth rates of the temporal entanglement entropies. In
particular, we have

Sð1ÞL=R;AðγÞ ≥ vð2ÞTE logðdÞt;

Sðα>1ÞL=R;AðγÞ ≥
1

2
vð2ÞTE logðdÞt: ð5Þ

In fact, following Ref. [69], we argue that this conclusion
can be applied to generic Floquet circuits even in the
absence of randomness. In this case the entanglement
dynamics is still described by an emergent statistical
mechanical model and the tension of the associated
membrane can be determined perturbatively, dressing the

membrane tension of the Haar random circuit [69]. In
practice this means that one can apply Eq. (5) without the
average by replacing EHðvÞ by EðvÞ. Therefore, for generic
Floquet circuits and generic paths γ, the temporal entan-
glement entropies with Rényi index α ≥ 1 grow linearly in
time [110].
Equation (4), however, also suggests that there are two

interesting marginal cases where temporal entanglement
entropies can be sublinear.

(I) Constant line tension, i.e.,

EðvÞ ¼ const: ð6Þ

(II) Vertical path, i.e.,

vγ ¼ 0: ð7Þ

Condition (I) provides a very stringent constraint. Indeed,
invoking general properties of the line-tension function
[111], one can conclude that a constant line tension has
to be equal to one. This in turn implies amaximal growth rate
of the regular spatial entanglement after a quantum quench
in the circuit. As shown in Refs. [69,112], circuits with this
property have to be dual unitary.
On the contrary, condition (II) does not involve the line-

tension function; it only requires the temporal surface to be
vertical (i.e., it holds for regular influence matrices). This
means that, intriguingly, the vanishing of the linear coef-
ficient at vγ ¼ 0 should occur for generic circuits.
The two marginal cases (I) and (II) are studied in detail in

Secs. V and VI. There we show that in both cases higher
Rényi entropies (α > 1) display a sublinear growth in time.
Nevertheless, their von Neumann entropy (α ¼ 1) grows
linearly (second and third rows of Table I). Namely, one
cannot evaluate the scaling of von Neumann entropy via a
replica trick as the replica limit does not commute with the
large-time limit. Interestingly, a similar discrepancy in the
scaling of Rényi entropies was also observed in
Refs. [113,114] for the behavior of the “regular” spatial
entanglement in circuits with conservation laws.
At the level of entanglement spectrum the mechanism

driving the observed sublinear scaling is the same in both
cases (I) and (II): the influence matrices have large overlap
with a product state of the form jΨ0

Ai ⊗ jΨ00̄
Ai on A and Ā.

Then, an immediate application of Eckart-Young’s theorem
[115] implies that the reduced density matrices,

ρL;γ;A ¼ trĀðjLγihLγjÞ
khLγjk2

; ρR;γ;A ¼ trĀðRγihRγjÞ
kjRγik2

; ð8Þ

have at least one slowly decaying eigenvalue. This eigen-
value determines the slow growth of higher Rényi entro-
pies. Meanwhile, we find exponentially many other
eigenvalues of ρL=R;γ;A that decay exponentially fast with
time t. This produces a linearly growing entanglement
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entropy Sð1ÞL=R;AðγÞ. Figure 3 shows the separation of scales
in the entanglement spectrum of the temporal state in two
representative examples.
In this situation onemight be inclined to conclude that the

singular states corresponding to the large Schmidt values
represent the dominant part of the state. The linear growth of
the vonNeumann entropy, however, excludes the possibility
of constructing a high-fidelity approximation of the state by
keeping a polynomial number of Schmidt eigenvectors.
Nevertheless, if the objective is to only approximate special
observables, for instance, the one-point function tr½ρ0axðtÞ�,
the answer might be different. More generally, it is interest-
ing to ask how much physically relevant information can be
extracted faithfully from the first few Schmidt eigenstates in
cases with such a strong separation of scales.We leave these
questions to future research.
The rest of this paper is laid out as follows. In Sec. II we

introduce the precise setting considered in this work. In
Sec. III we discuss the folding algorithm and explain its
extension to nonvertical cuts. In Sec. IV we determine the
scaling of temporal entanglement in generic quantum
circuits using the entanglement-membrane approach of
Refs. [64,65,69]. The two marginal cases with sublinear
growth of higher Rényi entropies are analyzed in Secs. V
and VI. In particular, in Sec. V we discuss the scaling of
temporal entanglement in dual-unitary circuits evolving
from generic initial states, while in Sec. VI we study the
scaling of regular temporal entanglement, i.e., of the

influence matrix on the vertical cut, in generic circuits.
In Sec. VII we compare the growth of temporal entangle-
ment and that of regular state entanglement. Our conclu-
sions and final remarks are reported in Sec. VIII.

II. SETTING

We consider the quantum dynamics generated by local
quantum circuits acting on a chain of 2L qudits (d internal
states) placed at half integer positions. These circuits
have nearest-neighbor interactions, and are often dubbed
“brickwork” quantum circuits. The operator performing
one step of evolution alternatively evolves the even and odd
sublattices:

U ¼ U1U2: ð9Þ

Here we introduced

U1 ¼ ⨂
x∈ZL

Ux;xþ1=2; U2 ¼ ⨂
x∈ZLþ1=2

Ux;xþ1=2; ð10Þ

with Ux;xþ1=2 acting nontrivially, as the d2 × d2 unitary
matrix U, only on the qudits at positions x and xþ 1=2.
The matrix U is known as “local gate” and specifies the
local interactions. Local gates can in principle be different
at each space-time point, i.e.

U ↦ Uðt; xÞ; ð11Þ

representing a disordered system undergoing aperiodic
quantum dynamics. In contrast, in the special case where
all local gates coincide, the quantum circuit constitutes a
clean (two-site shift invariant), periodically driven system.
A useful property of the local gate, which we use later to

identify quantum circuits with similar dynamical features,
is its entangling power. Roughly speaking, the latter is a
measure of the ability of the gate to entangle two qubits
[116]. Normalizing it to be in [0, 1], the entangling power
can be expressed as [116]

pðUÞ¼ d4þd2− trðURUR†Þ2− tr½ðUSÞRðUSÞR†�2
d2ðd2−1Þ : ð12Þ

Here UR indicates the gate obtained by rotating the original
gate U by a right angle

hljjURjkii ¼ hkljUjiji; i; j; k; l ¼ 0;…; d − 1; ð13Þ

and S denotes the SWAP gate,

hijjSjlki ¼ δi;kδj;l: ð14Þ

Here we are interested in the evolution of the system
for t > 0. At t ¼ 0 the system is prepared in a generic
“pair-product” state,

FIG. 3. Schmidt values λi for the bipartition of hLγj in two
subsystems of equal size for t ¼ 5. The y axis reports the number
of Schmidt values within a small bin centered on λi. The top panel
corresponds to the marginal case (I) [cf. Eq. (6)] while the bottom
panel corresponds to the marginal case (II) [cf. Eq. (7)].
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jΨ0i ¼
1

dL=2
⨂
L

x¼1

�Xd−1
i;j¼0

mijjii ⊗ jji
�
; ð15Þ

where fjiigd−1i¼0 is a basis of the configuration space of a
single qudit—the “local” Hilbert space. The matrixm, with
elements mij, fulfills

tr½mm†� ¼ d; ð16Þ

which ensures that jΨ0i is normalized to one. We consider
general pair-product states, rather than simple product
states, to keep the staggered structure of the brickwork
quantum circuit. Note that a product state is recovered by
the choice

mij ∝ δi;i0δj;j0 ; i0; j0 ∈ f0;…; d − 1g; ð17Þ

while generically one can think of Eq. (15) as a product
state which has been subject to half a step of evolution.
The evolution in a quantum circuit can be conveniently

illustrated using a tensor-network-inspired graphical rep-
resentation [117]. In particular, depicting the components
of the local gate and the initial state matrix as

ð18Þ

we can represent the state of the system at time t as follows:

ð19Þ

where we considered t ¼ 3. As illustrated in the above
diagram, we depicted the periodic boundary conditions by
connecting left and right boundaries, and used the con-
vention that when legs of different tensors are joined
together the index of the corresponding local space is
summed over. Moreover, we drop the indices to represent
the full vector rather than its components. We will use this
convention whenever it does not lead to confusion.
Let us consider the evolution of the reduced density

matrix of a finite region A. Representing it diagrammati-
cally, we have

ð20Þ

where we took A ¼ f1; 3=2; 2; 5=2g and introduced a
diagrammatic representation for the Hermitian conjugate
of the local gate,

ð21Þ

and the complex conjugate of the initial state matrix,

ð22Þ

Using this representation we can depict the unitarity of the
local gate with the following diagrammatic relations

ð23Þ

To simplify the diagrams it is convenient to fold them in
two. In particular, folding the blue part of the circuit
underneath the red one, we can represent the reduced
density matrix in Eq. (20) as follows,

ð24Þ

where we introduced the double gate,
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ð25Þ

the double initial-state matrix,

ð26Þ

the loop state,

ð27Þ

and, finally, the shorthand notation,

jAj ≔ ðno of sites in AÞ: ð28Þ

In the above equations ⊗r denotes the tensor product
between different copies or replicas of the time sheet
(different from⊗which is the one between different spatial
sites in the same copy).
In this folded representation, the unitarity relations (23)

are depicted as

ð29Þ

Moreover, since the double gate is itself unitary, we also have

ð30Þ

where we introduced

ð31Þ

III. GENERALIZED FOLDING ALGORITHM AND
GENERALIZED TEMPORAL ENTANGLEMENT

A standard class of observables in quantum circuits are
correlation functions of local operators. In particular, let us
focus on nonequilibrium dynamical two-point functions of
the form

Cabðx1; x2; t1; t2Þ ¼ tr½ρ0ax1ðt1Þbx2ðt2Þ�; ð32Þ

where we took t2 ≥ t1 ≥ 0, ax ≔ axð0Þ and bx ≔ bxð0Þ are
local operators, and ρ0 ¼ jΨ0ihΨ0j is the initial state
[cf. Eq. (15)]. Note that Eq. (32) contains nonequilibrium
one-point functions as a special case that is obtained by
setting ax ¼ 1.

In fact, the upcoming discussion will also be applicable
to the case where ρ0 is the infinite-temperature state, which,
in generic situations, is the only stationary state of the
system. In this case the correlation takes the following
equilibrium form:

Ceq
abðx1; x2; tÞ ¼ tr½ax1bx2ðtÞ�: ð33Þ

Because of the strict light cone structure of the quantum
circuit, the correlation function (32) is nontrivial (i.e.,
causally connected) only if [see Fig. 5(b)]

j⌈x1⌉ − ⌈x2⌉j ≤ t1 þ t2: ð34Þ

while Eq. (33) only if

j⌈x1⌉ − ⌈x2⌉j ≤ t: ð35Þ

For the sake of definiteness from now on we assume
x2 < x1 and x1; x2 ∈ZL, while to lighten the notation we
drop the dependence of the correlation on x1, x2, t1, t2.
Considering this case we can represent Eq. (32)

diagrammatically as

ð36Þ

where, for simplicity, we assumed that ax and bx act
nontrivially only on one site, we depicted them as

ð37Þ

and set

ð38Þ

Let us now illustrate how the diagram (36) can be evaluated
using the folding algorithm of Ref. [26]. The starting point
is to represent it in terms of transfer matrices “in space.”
Namely, one introduces three different transfer matrices
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ð39Þ

so that the diagram (36) can be written as

Cab ¼ tr½T 1 � � � T x2−1T
ðbÞ
x2 T x2þ1 � � �

T x1−1T
ðaÞ
x1 T x1þ1 � � � T L�; ð40Þ

where we consider the generic case of nontranslational
invariant circuits. We remark that the space transfer
matrices in Eq. (39) are matrix product operators
(MPOs) with finite bond dimension χ ¼ d2.
The next step is to note that unitarity can simplify

products of transfer matrices. To illustrate this point, let us
write down the product of 2t2 transfer matrices [T x in
Eq. (39)]. In diagrams it takes the following form:

ð41Þ

Unitarity [cf. Eq. (30)] allows us to cancel all the gates
above the red dashed lines and propagate the bullets to the
legs crossing the dashed lines. We therefore have the
following rank-1 decomposition,

T y1 � � � T y2t2
¼ jRy1ihLy2t2

j; ∀ yj; ð42Þ

where we introduced the following vectors on the folded
time lattice,

ð43Þ

ð44Þ

This means that, for L > x2 − x1 þ 2t2, Eq. (51) can be
written as

Cab ¼ hLx1−1jT ðaÞ
x1 T x1þ1 � � � T x2−1T

ðbÞ
x2 jRx2þ1i: ð45Þ

This representation sheds light on the physical interpreta-
tion of the two vectors hLxj and jRxi. These objects encode
the effect of the rest of the system on the subsystem of
size x2 − x1 where ax and bx act. Since their role is
analogous to that of the influence functional of Feynman
and Vernon [32], they have been dubbed “influence
matrices” [33]. Note that in the translational invariant case
one can use Eq. (42) to show that hLxj and jRxi are the
unique fixed points, i.e., eigenvectors corresponding to
eigenvalue one, of the space transfer matrix T (which is x
independent in translational invariant circuits).
The representation (45) is the main instrument of the fold-

ing algorithm. Assuming that one can find an efficient MPS
representation for the influence matrices (see Sec. III B),
Eq. (45) gives a way to compute two-point functions as
matrix elements of an MPO—the product of x2 − x1 þ 1
space transfermatrices—between twoMPSs. Since the bond
dimension of the MPO is bounded by d2ðx2−x1þ1Þ, this
operation can be performed efficiently for small distances
x2 − x1. On the other hand, the computation becomes rapidly
unfeasible when the distance increases. This represents a
serious limitation as, for instance, two-point functions for
arbitrary distances fulfilling Eq. (34) are needed to compute
transport coefficients in linear response [49–51]. To circum-
vent this problem we propose an alternative method for
contracting the diagram in Eq. (36): Instead of contracting it
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in the space direction, we contract it in a more general
spacelike direction such that the two points lie on the same
timelike surface; see the macroscopic-scale illustration in
Fig. 2; an example in terms of the associated tensor network
is depicted instead in Fig. 4. The only relevant macroscopic
feature of the timelike surface is its the space-time slope vγ .
A more precise lattice definition is given in Sec. III A, while
in Sec. III B we discuss the computational complexity of
encoding the influence matrices in an MPS.

A. Generalized folding algorithm

For a precise definition of the generalized folding algo-
rithm it is useful to distinguish between twodifferent regimes:

(I) 0 ≤ x2 − x1 ≤ t2 − t1,
(II) t2 − t1 < x2 − x1 ≤ t2 þ t1.

Note that regime (II) only arises out of equilibrium: the
equilibrium correlation in Eq. (33) exists only in the regime
(I). Moreover, regime (I) is also the only regime arising for
nonequilibrium one-point functions.

1. Regime (I)

In this regime there exists a path γ̃ connecting a and b
that is entirely contained in the causal light cone emanating

from a; i.e., it goes from a to bwithout ever “turning back.”
We call this kind of paths timelike paths, because all the
space-time points they reach are causally connected.
To specify γ̃ we start from the gate below b and move

down in discrete jumps; see Fig. 5(a). At each jump we
reach one neighboring gate: either the one at southeast or
the one at southwest. Using the variable γ̃i ¼ � to keep
track of whether on the ith step we jump on the left or on
the right, we can represent the path by means of the
following sequence,

γ̃ ¼ fγ̃1;…; γ̃Ng; ð46Þ

where N ¼ 2ðt2 − t1Þ − 1 is the length of the path. For
instance,

γ̃ ¼ f−;þ;þ;þ;þg ð47Þ

is the path depicted in red in Fig. 5(a). The path γ̃ can be
extended to a path γ that reaches the initial state by
concatenating it with another timelike path ˜̃γ from
ðx1; t1Þ to ðy; 0Þ for some y∈ ½x1 − t; x1 þ t�. The total
length of the path γ, i.e., the total number of jumps, is
then 2t2. For instance, in the example of Fig. 5 one can
consider

γ ¼ f−;þ;þ;þ;þg ○ fþ;−;þg; ð48Þ

where ○ denotes the composition operator. The average
slope of a given path γ is given by

vγ ¼
1

jγj
Xjγj
i¼1

γi; ð49Þ

where jγj is the length of the path. As mentioned before, vγ
is the only bit of information required for a coarse grained
description of the path.
Since the path γ does not turn back, we can use it to

“slice” the diagram of the correlation function. Namely, we

FIG. 4. Folded tensor-network representation of a dynamical
two-point function of two operators a and b after a quantum
quench. The tensor network can be contracted using nonvertical
transfer matrices that follow the timelike path γ and propagate in
the spacelike direction orthogonal to γ. The two different transfer
matrices used are highlighted in the boxes.

(a) (b)

FIG. 5. Diagrammatic representation of the path to contract correlation functions. Panels (a) and (b) depict examples of paths used in
the contraction of the correlation functions in the regimes I and II, respectively. Dashed lines help to identify the transfer matrix and time
slices to cut open the diagram.
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subdivide it in a number of timelike slices by cutting the
bonds in a direction parallel to γ (see the black dashed lines
in Fig. 5) and connect them with suitably defined transfer
matrices. In particular, for the configuration in Fig. 5(a) the
transfer matrices are given by

ð50Þ

In this way we can write Eq. (36) as

Cab ¼ tr½T γ;1 � � � T γ;x1−1T
ðabÞ
γ;x1 T γ;x1þ1 � � � T γ;L�: ð51Þ

This expression can again be simplified using the unitarity
of the gates. In particular, we again have

T γ;y1 � � � T γ;y2t2
¼ jRγ;y1ihLγ;y2t2

j; ∀ yj; ð52Þ

where we introduced the generalized or “boosted” influ-
ence matrices:

ð53Þ

ð54Þ

Therefore, for L > 2t2, we find

Cab ¼ hLγ;x1−1jT ðabÞ
γ;x1 jRγ;x1þ1i: ð55Þ

As opposed to Eq. (45), this expression can always be
efficiently contracted if hLγ;xj and jRγ;xi admit an efficient
MPS representation.

2. Regime ðIIÞ
In this regime there is no timelike path connectinga andb.

This means that we cannot embed both a and b in the same
“thin” transfer matrix as done in Eq. (55). The best strategy
in this case is to slice the diagram (36) using transfermatrices
corresponding to the path γ̄ ¼ γlc ○

˜̃γ, where

γlc ¼ fþ; � � � ;þg ð56Þ
is the fastest path allowed by causality (i.e., on the edge of
the light cone) and ˜̃γ is an arbitrary timelike path between the
initial state and a [cf. Fig. 5(b)]. Repeating the above
analysis we find that for L > x2 − x1 þ t2 þ t1 the correla-
tions can be expressed as

Cab ¼ hLγ̄;x1−1jT ðaÞ
γ̄;x1T γ̄;x1þ1 � � �

T γ̄;x2−t2þt1−1T
ðbÞ
γ̄;x2−t2þt1 jRγ̄;x2−t2þt1þ1i; ð57Þ

where we introduced

ð58Þ

We see that the expression (57) involves the product of

n ¼ x2 − x1 − t2 þ t1 þ 1 ð59Þ

transfer matrices, which means 0 ≤ n ≤ 2t1. This has two
immediate implications. First, the representation (57) gives
an advantage over Eq. (45) because it involves fewer transfer
matrices. Second, when both x2 − x1 and t1 are large the
contraction of Eq. (57) becomes inefficient.

B. Generalized temporal entanglement

In extreme summary, the upshot of the previous sub-
section is that an efficient representation of the generalized
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influence matrices does indeed lead to an efficient compu-
tational scheme for the calculation of correlation functions
in many physically relevant cases [118]. This motivates us
to investigate whether an efficient representation of the
generalized influence matrices is possible. In particular,
here we assess whether these objects admit an efficient
MPS representation by computing their entanglement. This
is the fundamental question to which the rest of this paper is
devoted.
The entanglement of the influence matrices is computed

in three steps.
(i) We define reduced density matrices corresponding

to an arbitrary nondisjoint bipartition AĀ of the
lattice along the path γ:

ρH;γ;A ¼ trĀ
jHγ;xihHγ;xj
kjHγ;xik2

; H ¼ L;R: ð60Þ

(ii) We compute their Rényi entropies,

SðαÞH;AðγÞ≔SðαÞðρH;γ;AÞ; H¼L;R; α∈R; ð61Þ

where we introduced the function

SðαÞðρÞ ≔ 1

1 − α
log tr½ρα�: ð62Þ

(iii) We maximize them over all possible bipartitions AĀ
where A is a contiguous region.

Before proceeding we note that

ρL;γ;AðWÞ ¼ ρR;γ̄;AðW0Þ; ð63Þ

where we highlighted the dependence on the double gate
(25), introduced

ð64Þ

and denoted by γ̄ ¼ f−γ1;…;−γ2t2g the mirror image of
the path γ with respect to the vertical line passing through b.
In the following we will use this relation to focus only on

the entanglement properties of one of hLγ;xj and jRγ;xi: the
remaining case can be easily inferred from Eq. (63) upon
replacingW withW0. Therefore, from now on we will only
look at the entanglement of hLγ;xj, and, to lighten the
notation, we set

ρL;γ;A ↦ ργ;A; SðαÞL;AðγÞ ↦ SðαÞA ðγÞ: ð65Þ

Moreover, we also drop the dependence of hLγ;xj on the
point x at which it is computed, i.e.,

hLγ;xj ↦ hLγj: ð66Þ

IV. TEMPORAL ENTANGLEMENT
IN GENERIC UNITARY CIRCUITS

In this section we specify the unitary gates in Eq. (18) to
be (independent) Haar random matrices. We consider the
temporal entanglement of the state in Eq. (53) for a typical
realization of the disorder and in the long time limit. In our
analysis we focus on initial states in product form; i.e., we
take m as in Eq. (17). Indeed, we expect that the choice of
the initial state, as long as it is short-range entangled, does
not affect the general scaling of entanglement in a random
circuit.
The use of the Haar random unitaries follows from the

philosophy of randommatrix theory. By dispensing with all
system-specific details, these strongly chaotic gates allow
for analytic calculations while retaining the universal
properties of entanglement in strongly interacting systems.
Recently, there have been various applications of random
unitary circuits to explain aspects of quantum chaos and
other nonequilibrium features of generic quantum systems;
see, for instance, Refs. [64,67,82,119–125] and the review
[66] for a more comprehensive list of references.
The (Rényi) entanglement in a random unitary circuit is

described by a statistical mechanical model written in terms
of permutation degrees of freedom [65,111,126]. The
von Neumman entropy is at the replica limit of the model.
The permutations originate from pairings of the unitary
evolution with its time reversal. To be more specific, let us
consider the example of the nth Rényi entropy, with
N ∋ n ≥ 2, of ρAðtÞ: the regular density matrix reduced
to a subregion A [cf. Eq. (20)]. In each copy of the time-
evolved reduced density matrix ρAðtÞ, there is one forward
and one backward time sheet [cf. Eq. (24)]. Therefore, in
total, there are n forward and n backward time sheets.
When performing random averaging over the gates, each
copy of a given gate and its Hermitian conjugate are paired
in a fashion similar to the Wick theorem of the free fields.
The boundary conditions for the Rényi entropies are
domain walls between different types of pairings. If we
view the pairings as spin degrees of freedom, the effective
statistical mechanical model describing the entanglement is
in the ordered phase, and the domain wall continues to
exist in the bulk, possibly splitting in a cascade of more
elementary domain walls. The (Rényi) entanglement
entropy is given by the free energy of these generically
interacting domain walls. All these microscopic details can
be encoded in a coarse grained line tension of the domain
wall, which gives rise to the growth rate of entanglement in
the long time limit.
In the upcoming subsections we obtain the general

scaling of temporal entanglement in three steps
(1) We show that the boundary conditions to evaluate

the purity of hLγj correspond to domain walls in the
statistical problem (Sec. IVA).

(2) Averaging over the random unitary gates, we show
that the minimal-energy configurations are those
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where the domains penetrate in the bulk. Minimizing
the free energies by means of the line-tension
formalism we find a linear growth of temporal
entanglement (Sec. IV B).

(3) Recalling the arguments of Ref. [69] we infer that
the domain-wall picture can be applied also to a
single realization of random circuit (without averag-
ing) or, equivalently, to systems without randomness
(Sec. IV C).

A technical note: in the upcoming calculations we consider
the state hLγj, with the (anti)slope v ≥ 0; see Fig. 7. Indeed,
the v ≥ 0 condition gives rise to nontrivial domain-wall
configurations. In the case v < 0 our analysis can be
applied to jRγi.

A. Boundary conditions for temporal entanglement

The expression of the nth Rényi entropy contains n
copies of the forward and backward evolution by the
circuit. The pairings emerge naturally on the boundary
when contracting copies of these circuits to evaluate Rényi
entropies, with or without random averaging.
Let us illustrate this idea in the example of the purity

tr½ρ2AðtÞ� of the quantum state ρAðtÞ; see Fig. 6(a). To form
the reduced density matrix ρAðtÞ, we take partial trace in
each copy of ρðtÞ. The partial trace operation is denoted as a
contraction of the corresponding indices from the forward
and backward copies of the circuit. Multiplying two copies
of ρAðtÞ and taking the trace, we obtain the SWAP con-
traction in region A. In this quantity, there are two copies of
the unitary gate U and two copies of U�. There are two
ways to contract them, which we denote as 1 and
(12) permutations:

ð67Þ

The top boundary thus has a domain-wall boundary
condition between 1 and (12) permutations.
Temporal entanglement is defined for an “operator state,”

namely a state in the folded space. Therefore, the ket itself
involves a forward and a backward evolution: see, e.g.,
Eq. (53). The permutation boundary conditions are the
same if we were to consider an operator state on a spatial
slice, which have been computed explicitly in Ref. [80]. For
completeness, we repeat the derivation for the second
Rényi entropy for the operator state hLγj. The boundary
conditions involve permutations in the symmetric group S4.
The purity of a subregion on the temporal slice is

trAðtrĀðjLγihLγjÞ2Þ
hLγjLγi2

: ð68Þ

Here we choose the initial product state in the diagrams to
be normalized to 1, which is different from the m state in
Eq. (18). To be consistent with the random circuit literature,

we choose to normalize the boundary condition as shown in
Fig. 6 for upward pointing legs. For downward pointing
legs, we use permutations normalized as the loop state as in
Eq. (27). The temporal Rényi-2 entropy thus has two terms,

Sð2ÞA ðγÞ ¼ − logðtrA½trĀðjLγihLγjÞ2�Þ þ 2 logðhLγiÞ; ð69Þ

where the second term is twice the Rényi-2 entropy of AĀ.
The boundary conditions for the first term is shown in
Fig. 6(b).

B. Entanglement in terms of domain-wall line
tension: Disorder average

In Fig. 6, we see that pairings (permutations) emerge
naturally as boundary conditions when evaluating entan-
glement-related quantities. In fact, in quantum chaotic

(a)

(b)

FIG. 6. Permutation boundary conditions for (a) the state purity
tr½ρ2AðtÞ� and (b) the operator purity trA½trĀðjLγihLγjÞ2�. The dots
at the bottom represent a generic product initial state. Red gates
are forward evolution u; blue gates are backward evolution u�.
(a) The top boundary conditions implement the partial trace, the
matrix multiplication of ρA with itself and the trace in Ā. Right:
region A has boundary condition 1, region Ā has boundary
condition (12). (b) The top boundary conditions are permutation
elements in S4. They are, respectively, given by 1, (12)(34), and
(14)(23). We consider a general contiguous partition. The ratio of
size jAj and the total size jAj þ jĀj is set to be r∈ ½0; 1�.
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systems these pairings are also the dominant degrees of
freedom in the interior of the multilayer unitary evolution.
One simple way to introduce pairings in the bulk is through
random averaging of the gate over Haar ensemble. Indeed,
the latter are the only degrees of freedom surviving the
average.
Taking the purity diagram in Fig. 6(a) as an example,

each four-layer gate after random averaging can only give a
tensor of 1 or (12) as the output at its bottom legs. Hence we
can label the gate with “spin” variables taking values in 1 or
(12). The 1 and (12) can form contiguous domains
connecting to the 1 and (12) on the boundary. We label
a general domain wall between a pairing σ on the left and a
pairing μ on the right as σ−1μ. The domain wall between 1
and (12) is thus 1−1ð12Þ ¼ ð12Þ. Because of constraints
from unitarity and locality of the interactions, this (12)
domain wall can only wander within the light cone and
cannot branch. The entanglement is the free energy, or
tension, of the domain wall. Since disorder fluctuations are
negligible over large enough scales, the system is asymp-
totically translationally invariant and the domain wall
macroscopically should be a straight line. Using v to
denote the inverse of the domain wall’s slope, we can
write the Rényi entropy at leading order as

− log tr½ρ2AðtÞ� ≃ seqmin
v
EHðvÞt; ð70Þ

where � � � denotes the average over Haar random gates,
EHðvÞ is the line tension of a domain wall in the Haar
random circuit [127],

EHðvÞ ¼
log d2þ1

d þ 1þv
2
log 1þv

2
þ 1−v

2
log 1−v

2

log d
; ð71Þ

and seq is the infinite temperature equilibrium entropy log d
(we recall that d is the local Hilbert space dimension). For a
generic product initial state, the domain-wall end point at
the bottom is not fixed and the Rényi entropy is obtained by
minimizing over different slopes.
Since the random circuit is left-right symmetric after

disorder averaging, the minimum in Eq. (70) is taken at
v ¼ 0, i.e., a vertical line; see Fig. 7(a). This gives a linear
growth where the line tension is the entanglement growth
rate, which is called entanglement velocity [128].
Let us now consider the entanglement of the operator

state hLγj. In particular, we consider the following averaged
version of it:

S̄ð2ÞA ðγÞ ≔ − log trA½trĀðjLγihLγjÞ2� þ log ðhLγjLγiÞ2: ð72Þ

As noted above, this quantity involves permutations in S4.
In this case the leading contribution is again given by
suitable domain walls; however, differently from before

these domain walls will involve multiple elementary
transpositions.
For instance, let us consider the second term on the right-

hand side of Eq. (72):

F2ðtÞ ≔ − log ðhLγjLγi2Þ: ð73Þ

The boundary condition is 1 on subsystem B and (12)(34)
on subsystem AĀ [cf. boundary conditions of the first term
in Fig. 6(b)]. Hence it has two commutative domain walls at
the intersection of B and AĀ. These two domain walls are
independent; each of them go vertically down to the bottom
[Fig. 7(b)] and give a contribution of EHð0Þt. And thus the
second term corresponds to twice the state Rényi entropy:

F2ðtÞ ≃ 2seqEHð0Þt: ð74Þ

The boundary conditions of the first term in Eq. (69)
contain four domain walls. There are two commutative
transpositions (14)(23) at the tip of the diagram (cut
between B and AĀ), and other two transpositions (13)
(24) at the entanglement cut between A and Ā. The two
transpositions (14)(23) alone are independent, so are (13)
(24). If the two sets do not meet at an intermediate time
slice before reaching the bottom boundary, we can sepa-
rately minimize their free energies. The equilibrium con-
figuration is that all the domain walls go down vertically
[Fig. 7(c)], giving total free energy,

(a) (b)

(c) (d)

FIG. 7. Domain-wall configurations for puritylike diagrams.
(a) Domain wall for purity trðρ2AÞ. The single domain wall [a
transposition (12)] undergoes a random walk down to the bottom
boundary. The size fluctuation is

ffiffi
t

p
, which is subleading to t and

ignored in other panels. (b) Domain walls for ðtrρ2AÞ2. The two
transpositions are independent. (c) Configurations when the two
sets of domain wall dot no interact. (d) The two sets of domain
wall meet in a middle time slice. The three segments have time
duration t1, t2, and t0, and antislopes v1, v2, and 0 respectively.
The antislope of the right edge of the triangle is v. The green
vertex represents the fusion. It can have a nontrivial weight, but
only affects the free energy by an Oð1Þ amount.
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F1;vertðtÞ ≔ − log ftrA½trĀðjLγihLγjÞ2�g
≃ 2seqEHð0Þtþ 2seqEHð0Þð1 − rÞt; ð75Þ

where r∈ ½0; 1� is the ratio of size jAj and total size
jAj þ jĀj. The difference with F2ðtÞ in Eq. (74) is then
EHð0Þt: This gives us the following upper bound,

S̄ð2ÞA ðγÞ≲ 2ð1 − rÞEð0Þt: ð76Þ

If the two sets meet in the middle, the domain walls can
fuse to different permutations according to the group
multiplication rules. For example, if (13)(24) and (14)
(23) completely fuse together, the domain wall becomes
ð13Þð24Þ × ð14Þð23Þ ¼ ð12Þð34Þ. We see that the number
of domain walls reduces to two, thus reducing the energy
cost. For this reason a configuration like the one displayed
in Fig. 7(d) can compete for the minimal free energy.
We now set up the minimization problem assuming the

two sets to have (anti)slope v1 and v2 before they meet in
the middle. After the fusion, the resulting domain wall (12)
(34) is composed by two independent components. They
cost free energy 2EHð0Þt0 for the remaining duration of t0.
The vertex can have a nontrivial weight, but, as long as it is
not zero, it only brings in a Oð1Þ correction and can be
neglected when considering the leading order free energy in
the long time limit. The geometry is depicted in Fig. 7(d).
Therefore, we can write the free energy as

F1;Yðt; t0Þ ≃ 2seq½EHðv1Þt1 þ EHðv2Þt2 þ EHð0Þt0�; ð77Þ

where t0, t1, and t2 are the duration of the two sets of
domain walls and satisfy the geometric relations. The
subscript Y denotes the merging configuration.

v1 ¼
x
t1
; v2 ¼

x − rvγt

t2
: ð78Þ

To parametrize time, we set

t0 ¼ r0t; t1 − t2 ¼ rt; t1 þ t0 ¼ t; ð79Þ

where r∈ ½0; 1� is the ratio of size jAj with respect to
jAj þ jĀj, and r0 ∈ ½0; 1 − r� is the portion of the merged
domain wall. r0 ¼ 0 corresponds to merge at the bottom;
r0 ¼ 1 − r corresponds to taking v1 ¼ vγ , i.e., merge
immediately when available. To minimize F1ðt; t0Þ, we
first fix t0 and vary x. The implicit x derivative gives

E0
H

�
x
t1

�
þ E0

H

�
x −

vγrt

t2

�
¼ E0

Hðv1Þ þ E0
Hðv2Þ ¼ 0: ð80Þ

For a reflection symmetric system the physical solution is

v1 ¼ −v2; ð81Þ

namely, the two sets of domain walls in Fig. 7(d) meet
symmetrically from left and right toward each other.
The minimization with respect to t0 depends on the

explicit form of the line-tension function. In particular, an
explicit calculation for the case of the random circuit line
tension EH is carried out in Appendix A. The resulting
expression of mint0 F1;Yðt; t0Þ is piecewise continuous in v
and depends on d. Nevertheless, it is still linear in t
[cf. Eq. (A6)]. Combining with the linear bound in
Eq. (76), we conclude that in a Haar random circuit,

S̄ð2ÞA ðγÞ ≃ seqv
ð2Þ
TE;Ht: ð82Þ

where the temporal Rényi entanglement velocity vð2ÞTE;H > 0.

The explicit expressions of vð2ÞTE;H for Haar random circuit
can be found in Eq. (A12).

C. Typical circuit without averaging

In this subsection, we argue that the line-tension for-
malism discussed above can be applied to the calculation of
temporal entanglement in generic chaotic circuits without
introducing disorder averaging. The recipe is to replace
EHðvÞ with a “dressed” line-tension function EðvÞ charac-
terized by the following general properties [111],

EðvÞ ≥ jvj; E00ðvÞ ≥ 0; EðvÞ ¼ Eð−vÞ; ð83Þ

where the last one follows from the parity symmetry of the
system.
The basic arguments follow Ref. [69], where the concept

of line-tension function is generalized to nonrandom
circuits and we will briefly recall them here. The key
observation is that the pairings between a unitary gate and
its Hermitian conjugate continue to dominate the configu-
ration sum, or “path integral,” that determines the Rényi
entropies. Indeed, these are real positive quantities that do
not suffer from phase cancellation. A single domain wall,
such as (12), will be dressed by nonpairing degrees of
freedom, but only perturbatively to have an Oð1Þ width.
Our problem is slightly more complicated than the one

discussed in Ref. [69] because the contributions generating
temporal entanglement involve composite domainwalls [for
instance, a domain wall (123) can appear]. Nevertheless,
the two sets of domain walls (14)(23) and (13)(24) have the
same dressed line-tension function EðvÞ when they do not
interact. Indeed, (14)(23) can be mapped to (12)(34) by
relabelling the third and fourth copies of the unitary and its
complex conjugate—it is a symmetry of the multireplica
dynamics if we look at the patch of (14)(23) alone. The
symmetry no longer holds when the two sets of domain
walls meet each other and interact. This process, however,
only dresses the interaction vertex in Fig. 7(d), which
introduces an order Oð1Þ correction to the free energy.
Below the interaction vertex, the two sets of domain walls
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fuse to (12)(34), which again has the same line-tension
function EðvÞ. This justifies the use of a single line-tension
function EðvÞ to characterize the scaling of the temporal
Rényi-2 in Eq. (69).
Specifically, following the steps discussed in the pre-

vious section, we obtain

Sð2ÞA ðγÞ ≃ seqv
ð2Þ
TEt; ð84Þ

where the temporal Rényi entanglement velocity is deter-
mined by

vð2ÞTE ¼ min½ min
r0 ∈ ½0;r�

F ðr0Þ; 2ð1 − rÞEð0Þ�: ð85Þ

The parameters r0 and r are defined in Eq. (79) and

F ðr0Þ ¼ 2½E½v1ðr0Þ� − Eð0Þ�ð1 − r0Þ ð86Þ

þ2E½v1ðr0Þ�ð1 − r0 − rÞ: ð87Þ

In this case, the remaining minimization over r0 cannot be
performed explicitly as the minimum depends on the
precise form of the line tension. However, we can show
that for Eð0Þ > 0,

min
r0 ∈ ½0;r�

F ðr0Þ ¼ 0 ⇔ EðvγÞ ¼ Eð0Þ; ð88Þ

which implies generic linear growth of the temporal
Rényi-2 entropy apart from marginal cases.
We begin to prove this property by noting that the two

terms in Eqs. (86) and (87) are both non-negative,

½E½v1ðr0Þ� − Eð0Þ�ð1 − r0Þ ≥ 0;

E½v1ðr0Þ�ð1 − r0 − rÞ ≥ 0; ð89Þ

in the relevant range r0 ∈ ½0; r�, because of the convexity
and parity of line-tension function. Indeed, these two
properties imply that the function is either constant or
has a unique local minimum in v ¼ 0, i.e.,

EðvÞ ≥ Eð0Þ > 0; ∀ v: ð90Þ

In fact, the above inequality indicates that Eq. (89) can both
be zero for generic r only if r0 ¼ r and

EðvγÞ ¼ Eð0Þ: ð91Þ

Noting that the reversed implication is obvious, we con-
clude the proof.
In fact, due to the general properties (83) of the line-

tension function, Eq. (91) admits solution only in two
cases: either constant line-tension function [Eq. (6)] or

vγ ¼ 0 [Eq. (7)]. These are the two marginal cases
mentioned in Sec. I A.

V. TEMPORAL ENTANGLEMENT IN CHAOTIC
DUAL-UNITARY CIRCUITS

In this section we consider the first of the two marginal
cases identified in Eq. (91): the one in which the line-
tension function is constant. As discussed in Sec. I A
[cf. the discussion around Eq. (6)], this situation can only
be realized when the local gates forming the time evolution
operator in Eq. (10) are dual unitary [57]. In terms of our
diagrammatic representation, the dual-unitarity condition
means that the gates fulfill

ð92Þ

in addition to the standard unitarity conditions (23).
Without additional fine-tuning, the gates fulfilling
Eqs. (23) and (92) are quantum chaotic [35,57,71].
Imposing the condition (92) enables one to make

a number of exact statements concerning dynamics
and spectral properties of the quantum circuit
[34,35,38,40,58,62,63,71–73,75,76,78,79,85,86]. In par-
ticular, dual-unitary circuits have been shown to admit a
class of “solvable” initial states for which one can compute
exactly the full time evolution of any local subsystem [58].
For solvable initial states the generalized influence matrices
hLγj and jRγi [cf. Eqs. (54) and (53)] take the following
product form:

hLγj ¼ h○j⊗jγj; jRγi ¼ j○i⊗jγj; ð93Þ

where j○i is the loop state of Eq. (27). This form immedi-
ately implies a strictly vanishing temporal entanglement.
Here, however, we are interested in the behavior of

temporal entanglement for generic, nonsolvable, initial
states. Specifically—recalling that for the family of initial
states Eq. (15) considered here the solvable instances
correspond to the cases where the matrix m is unitary
[77]—we consider the case where m is not unitary.
Since the time evolution in a chaotic system should not

depend on the initial configuration, one might expect that
the behavior of solvable states is somewhat representative
of the generic situation. Namely, that the temporal entan-
glement is always small for dual-unitary circuits. In fact, as
we now discuss, this intuition turns out to be incorrect:
Even though higher temporal Rényi entropies are bounded
by a sublinear function of time (in agreement with our
entanglement-membrane analysis of the previous section),
the von Neumann temporal entanglement entropy is
always linear for non-fine-tuned dual-unitary circuits.
In the upcoming subsections we show these facts by
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analyzing separately the cases of higher Rényi entropies
and von Neumann entropy.
For simplicity, in the main text we consider paths γ ¼ AĀ

with constant slope vγ . This means that the slope is the same
in both A and Ā. This assumption is lifted in Appendixes B
and Cwherewe present the most general form of our results.

A. Bound on temporal higher Rényi entropies

In this subsection we show that higher temporal Rényi
entropies are sublinear in time, in agreement with the
entanglement membrane analysis of the previous section.
More precisely, we prove the following bound,

Sðα>1ÞA ðγÞ ≤ α

α − 1
log

�
dτAPðτ=2Þ
PðτĀ=2Þ

�
; ð94Þ

where A, Ā correspond to a contiguous bipartition of the 2t
legs of the influence matrix,

ð95Þ

τA (τĀ) is the number of up-pointing legs in A (Ā) fulfilling

τA þ τĀ ¼ ð1þ vγÞt≡ τ; ð96Þ

while

PðtÞ ¼ tr½ρ½0;∞ÞðtÞ2� ð97Þ

is the purity of the “regular” reduced density matrix
ρ½0;∞ÞðtÞ [cf. Eq. (24)] corresponding to a half-infinite
subsystem ½0;∞Þ with open boundary conditions.
To prove Eq. (94) we proceed in two steps, which are

detailed in Appendix B.
Step 1. General bound on higher Rényi entropies.—We

take advantage of the unitarity of the gates and of the
Eckart-Young theorem [115] to bound the temporal Rényi
entropies in terms of the norm of the state hLγj:

SðαÞA ðγÞ ≤ α

α − 1
log

�hLĀjLĀi
hLγjLγi

�
: ð98Þ

Step 2. Dual-unitary case.—Specializing the treatment to
the dual-unitary case we can relate hLγjLγi to the spatial
purity [cf. Eq. (97)]. In particular, we find

hLγjLγi ¼ dτPðτ=2Þ: ð99Þ

Plugging it into Eq. (98) we obtain Eq. (94).
The physical interpretation of Eq. (94) is immediate: in

dual-unitary circuits the growth of higher temporal Rényi
entropies is controlled by that of spatial purity. If the initial
state is solvable, then the purity is minimized to d−2t and
the temporal entanglement is zero. For more general,
nonsolvable states the purity is no longer strictly d−2t,
but—since dual-unitary circuits maintain a maximal entan-
glement velocity [77]—it can only acquire subexponential
corrections. This implies that all higher temporal Rényis are
sublinear in time.
To make further progress we introduce the following

assumption.
Assumption 1.—For any generic dual-unitary circuit

evolving from a non solvable state, we have

PðtÞ ≃ Ct
d2t

; ð100Þ

where ≃ denotes the leading order in the asymptotic
expansion for large times and C > 0 a time independent
constant.
The scaling in Eq. (100) can be proven by averaging each

dual-unitary gate of the circuit over random single qubit
rotations of its legs (see Ref. [77] and Appendix D). Thus,
we expect it to hold for typical dual-unitary circuits: This is
in agreement with our numerical investigations, as shown
in Fig. 8 for some representative examples.

FIG. 8. Evolution of d2tPðtÞ − d2ðt−1ÞPðt − 1Þ as a function of t
for homogeneous dual-unitary circuits with different entangling
power p [cf. Eq. (12)]. If the scaling (100) holds, this quantity
should saturate to the constant C=2. We considered d ¼ 2 and
parametrized the gates as described in Appendix E. Note that C
grows upon decreasing p: this is consistent with the fact that at
the noninteracting point p ¼ 0 the purity decays with an
exponent λ < 2 log d.
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As discussed in Appendix D we expect the case C ¼ 0 to
hold only for solvable initial states, for which PðtÞ ¼ d−2t

and the temporal entanglement is identically 0 for any
bipartition [58]. The discussion in Appendix D, however,
also shows that these states are “unstable” from the point of
view of purity scaling: for any arbitrary small perturbation
of a solvable state one has Eq. (100) with C > 0 and the
behavior of temporal entanglement is the one we dis-
cuss here.
Using Assumption 1 and considering an appropriate

scaling of the bipartition,

r≡ jAj
2t

< 1; ð101Þ

it is immediate to show that the higher Rényi entropies
saturate to a constant [129],

SðαÞA ðγÞ ≃ α

α − 1
logð1 − rÞ: ð102Þ

A direct numerical test of Eq. (102) is not straightfor-
ward as we have only access to short times. Therefore, we
can only consider gates for which the asymptotic form
Eq. (100) is attained early. With this restriction the bound
appears convincingly obeyed. For instance, in Fig. 9 we
consider a comparison between Eq. (102) and the four gates
of Fig. 8 with higher entangling power.

B. Linear growth of temporal entanglement entropy

In Sec. VA, we showed that the higher Rényi entropies
are bounded by a constant for any partition with ratio r < 1.
However, since Rényi entropies are nonincreasing func-
tions of the Rényi index, this result only provides a lower
bound for the temporal entanglement entropy, i.e.,

SAðγÞ ¼ lim
α→1

SðαÞA ðγÞ: ð103Þ

In this subsection, we show that SAðγÞ in a typical dual-
unitary circuit grows linearly in time for nonsolvable initial
states.
Denoting again by r the ratio between the number of legs

in region A and the total [cf. Eq. (101)], we can bound
SAðγÞ from above and below,

sðrÞt log d ≤ SAðγÞ ≤ sðrÞt log dþOðlog tÞ; ð104Þ

with the same function:

sðrÞ ¼
( ð1þ vγÞr2 r∈ ½0; 2

vγþ3
�

4ð1−rÞ½ð2þvγÞr−1�
1þvγ

r∈ ð 2
vγþ3

; 1�:
ð105Þ

The logðtÞmargin in Eq. (104) is subleading with respect to
the linear scaling of sðrÞt log d and therefore the latter
determines the long timescaling of SAðγÞ.
In the derivation of the upper bound, we only use

Assumption 1. For the lower bound, we additionally
employ Assumption 2.
Assumption 2.—The membrane picture of entanglement

holds for the second Rényi entropy of the state in Eq. (119).
This assumption is in line with general expectations from

the membrane theory [69] and can be verified numerically.
A representative example is reported in Fig. 10. We see that,
even though there are strong deviations for short times,
the numerical results seem to approach themembrane theory
predictions as time increases (see Appendix C 3 for a more
thorough discussion of the validity of this assumption).

FIG. 9. Growth of Sð∞Þ for the state Lγ , taken with vγ ¼ 1, for
gates of various entangling power p, compared with the asymp-
totic bound given by Eq. (102), for a fixed value of r ¼ 1=3.

FIG. 10. Slope of the entanglement entropy of the matrices ρk
as a function of k, for various values of l≡ Āþ k accessible
numerically. The dashed line represents the asymptotic profile of
the curve according to Eq. (123) as per Assumption 2. The path
chosen is the one at the edge of the lightcone.
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We sketch the proof in three steps.
Step 1. Reduction.—First we observe that the entangle-

ment of a state, for a given bipartition, is unaffected by the
action of unitary matrices acting locally on the two separate
bipartitions. Thanks to this observation and the dual
unitarity of the gates, we can consider a simplified version
of our state hLγj ↦ hLγ0 jwhere the new path γ0 corresponds
to the edges of the light cones of the two bipartitions (see
the detailed derivation in Appendix C 1). This is easily
understood graphically by looking at the diagram below
and noting that the area in red corresponds to matrices that,
when viewed horizontally, are unitary. Therefore, removing
them will not affect its entanglement.

ð106Þ

After this operation we end up with some bullet states on
the top of region A, which do not entangle with any other
part of the system: They can also be removed without
affecting the result.
To sum up, as far as the entanglement is concerned, we

can reduce hLγj to the following state,

ð107Þ

in which region A has τA ¼ ð1þ vγÞjAj=2 sites and region
Ā has jĀj sites.
Step 2. Lower and upper bounds.—We define τA þ 1

orthogonal projectors in region A:

P0 ¼ j○ih○j ⊗ j○ih○j ⊗ � � � j○ih○j ⊗ 1Ā;

P1 ¼ j○ih○j ⊗ j○ih○j ⊗ � � � ð1d2 − j○ih○jÞ ⊗ 1Ā;

Pk ¼ j○ih○j⊗τA−k ⊗ ð1d2 − j○ih○jÞ1⊗k−1
d2

⊗ 1Ā;

PτA ¼ ð1d2 − j○ih○jÞ ⊗ 1d2 ⊗ � � � 1d2 ⊗ 1Ā: ð108Þ

In words, the projector has three different actions, which we
highlight by different colors in the following graphical
equation:

ð109Þ

The kth projector Pk keeps the bottom k − 1 sites (blue)
intact, projects each of the top τA − k sites (red) to a bullet
state and the kth site (green) to the orthogonal complement
of the bullet state.
One can easily verify that the projectors are orthogonal

and form a complete basis, i.e.,

PiPj ¼ δijPi;
XτA
k¼0

Pk ¼ 1A ⊗ 1Ā: ð110Þ

These projectors decompose jLγ0 i into τA þ 1 states, which
are orthogonal in A. Namely,

trAðPijLγ0 ihLγ0 jPjÞ ¼ 0; i ≠ j: ð111Þ

The reduced density matrix,

ρĀ ¼ 1

hLγ0 jLγ0 i
trAðjLγ0 ihLγ0 jÞ; ð112Þ

is then written as a classical mixture of τA þ 1 reduced
density matrices,

ρĀ ¼
XτA
k¼0

pkρk; ð113Þ

where the classical probability is

pk ¼
trðPkjLγ0 ihLγ0 jÞ

hLγ0 jLγ0 i
; ð114Þ

and the reduced density matrices are

ρk ¼
trAðPkjLγ0 ihLγ0 jÞ
trðPkjLγ0 ihLγ0 jÞ

: ð115Þ

The concavity lower bound and mixing upper bound of
SðρĀÞ confine the von Neumann entropy to the following
interval:

XτA
k¼0

pkSðρkÞ≤SAðγÞ≤
XτA
k¼0

pkSðρkÞ−
XτA
k¼0

pk logpk: ð116Þ

The Shannon entropy of the classical probability pk is at
most logðτA þ 1Þ ∼Oðlog tÞ. Therefore, we conclude that

XτA
k¼1

pkSðρkÞ ≤ SAðγÞ ≤
XτA
k¼1

pkSðρkÞ þOðlog tÞ; ð117Þ

where we also removed k ¼ 0 from the summation
since Sðρ0Þ ¼ 0.
Step 3. Evaluation of

PτA
k¼1 pkSðρkÞ.—We evaluate pk in

Appendix C 2 using Assumption 1. The asymptotic expres-
sion reads as

FOLIGNO, ZHOU, and BERTINI PHYS. REV. X 13, 041008 (2023)

041008-18



pk ¼
( 1

ð1þvγÞt k ≠ 0

jĀj
2t k ¼ 0:

ð118Þ

In Fig. 11 we compare this expression with the exact
numerical evaluation of pk for short times. We see that for
the cases where Eq. (100) holds at short times the agree-
ment is excellent.
According to Eq. (115), ρk can be viewed as the reduced

density matrix of the pure state,

ð119Þ

where the first τA − k sites are (projected by Pk to be) bullet
states, and we inserted on the kth site (counted from the
bottom of A) a projector indicated by a black square:

ð120Þ

By using the bound of Hilbert space dimension, we can
write

SðρkÞ ≤ min½2ðk − 1Þ log dþ logðd2 − 1Þ; 2jĀj logðdÞ�
≃ 2 minðk; jĀjÞ logðdÞ; ð121Þ

where we considered a scaling limit where k; jAj; t are taken
to infinity and the relative ratios kept constant. Plugging
back into Eq. (117) we find the following upper bound:

XτA
k¼1

pkSðρkÞ≲ 2 logðdÞ
ð1þ vγÞt

XτA
k¼1

minðk; jĀjÞ

≃
8t logðdÞ
1þ vγ

Z
rð1þvγÞ=2

0

dxminðx; 1 − rÞ

¼ sðrÞt logðdÞ: ð122Þ

Using Assumption 2, we can evaluate SðρkÞ using the
membrane picture, as detailed in Appendix C 3, to find

SðρkÞ ≃minðk; jĀjÞ2 logd: ð123Þ

This means that SðρkÞ saturates the trivial bound in
Eq. (121), leading to Eq. (104).
As for the bound in the previous subsection, an inde-

pendent numerical test of Eq. (105) is hampered by the fact
that our numerical investigations are restricted to short
times. At the accessible times SðρkÞ are typically far from
their asymptotic form and the Shannon entropy of pk is
non-negligible. This is demonstrated in Fig. 12 where we
plot the exact numerical evaluations of SAðγÞ and the lower
and upper bound in Eq. (116): the two bounds should
collapse for large times but are still rather far at the maximal
accessible times. To circumvent this complication, we plot
the difference of SAðγÞ at two subsequent time steps from
finite-time numerics and extrapolate to t → ∞. We find a
fair agreement with Eq. (105); see Fig. 13. Interestingly, the
finite-time effects seem not to affect the maximal slope of
the temporal entanglement entropy, which is in good
agreement with Eq. (105) even at short times; see Fig. 14.

FIG. 11. pk computed for various gates corresponding to
different entangling powers p, for a state hLγj with vγ ¼ 1, t ¼
7 and a bipartition corresponding to r ¼ 1=2. We show the
asymptotic behavior in black, according to Eq. (102) derived
from Assumption 1.

FIG. 12. Slope of the entanglement entropy as a function of the
ratio r, for various values of t accessible numerically, in the case
vγ ¼ 1. The lower and upper bounds are found evaluating
numerically Eq. (116).
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VI. TEMPORAL ENTANGLEMENT OF THE
VERTICAL STATE

In this section, we consider the second marginal case of
Eq. (91) in which the timelike surface is vertical ðvγ ¼ 0Þ
and the chaotic quantum circuit is arbitrary. Namely, we
look at the scaling in jγj ¼ 2t of the temporal entanglement
of the original influence matrix for generic circuits.
We find that higher Rényi entropies grow logarithmically

in time:

SðαÞA ðγÞ ∼ logðtÞ; α > 1: ð124Þ

We begin by showing the sublinear growth via a direct
application of the Eckart-Young strategy employed in
Appendix B 1. Specifically, we use the upper bound,

SðαÞA ðγÞ ≤ α

1 − α
log

½hLγjðjΨAi ⊗ jΨĀiÞ�2
hLγjLγihΨAjΨAihΨĀjΨĀi

≔
2α

1 − α
log rt; ð125Þ

by means of the overlap of the state hLγj and a factorized
state hΨAj ⊗ hΨĀj.
To find a product state with large overlap we employ the

membrane theory. Specifically, we consider the state

hΨAj ⊗ hΨĀj ¼ hLγ=2j ⊗ hLγ=2j; ð126Þ

which is depicted in Fig. 15(b). Assuming the circuit to be
Haar random, the norm of these states are determined by
the line tension at v ¼ 0 as follows,

hLγjLγi ∼ exp½−EHð0Þ logðdÞt�;
hΨAjΨAi ∼ exp½−EHð0Þ logðdÞt=2�;
hΨĀjΨĀi ∼ exp½−EHð0Þ logðdÞt=2�; ð127Þ

FIG. 13. Slope of the entanglement entropy for the state hLγj,
obtained by taking finite differences of SAðγÞ for two subsequent
time steps. Given the discrete nature of the states, only some
rational values of r are allowed at each time, so we interpolated
between those in order to take the difference. In blue, we show an
extrapolation of these data in the limit t → ∞, which we
ultimately compare with the asymptotic prediction, in black
[obtained from Eq. (105)]. The extrapolation is attained by
observing that, due to the logarithmic form of the corrections
to SAðγÞ, for large enough twe haveΔtSAðγÞ ≃ Aþ B=t, where A
is the desired asymptotic value. Then, we performed a linear fit of
the data in 1=t to estimate A.

FIG. 14. Maximal entanglement of the influence matrix on the
diagonal path γlc [cf. Eq. (56)] versus the length of the path jγlcj
for different values of the entangling power p. The entanglement
reported is the maximum attained among all the possible non-
disjoint bipartitions. The gates are parametrized as explained in
Appendix E. The asymptotic growth seems to be independent of
the entangling power. The initial p-dependent transient is larger
for smaller values of p. This is consistent with the fact that for
p ¼ 0 the gates are SWAPs and hLγlc j is a product state for all
initial states Eq. (15). The black dashed line corresponds to the
theoretical prediction of the growth, as in Eq. (105), plus an
arbitrary constant chosen for convenience.

(a) (b)

FIG. 15. (a) The vertical state. (b) A tensor product state on A
and Ā. The state is written as a tensor product of two vertical
states defined on a time lattice with half of the sites.
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where we recall [cf. Eq. (71)]

EHð0Þ ¼
logðd2 þ 1Þ − log 2d

log d
: ð128Þ

The average of the overlap is

hLγjðjΨAi ⊗ jΨĀiÞ ∼ exp½−EHð0Þ logðdÞt�: ð129Þ

The estimation in Eq. (129) relies upon evaluating the
random averaging in Fig. 16(c), where the region in which
the two states differ is only populated by the permutation 1.
Thus, the minimal free-energy configuration continues to
have a domain wall going vertically down. Combining
Eqs. (127) and (129) we find

r̄t ¼
jhLγjðjΨAi ⊗ jΨĀiÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hLγjLγi hΨAjΨAi hΨĀjΨĀi
q ¼ OðtαÞ; ð130Þ

The exponent α can be found by studying the subleading
contributions from the randomwalk of the domain wall. All
the domain walls in Fig. 16 are subject to the noncrossing
condition at the right boundary. If we view from bottom to
top, this is the random walk that first hit x ¼ 0 (the

coordinate of the right boundary) for t ¼ 0 (the final time
when viewing from bottom to top). The probability dis-
tribution for this process is known as the Lévy-Smirnov
distribution and reads as

pðxÞ ¼ x

t3=2
e−x

2=t: ð131Þ

The three independent averages inside the square root in the
numerator of Eq. (130) [one in Fig. 16(a), the other two in
Fig. 16(b)] correspond to a free boundary condition at the
bottom, each of which contributes a polynomial factor t−1=2

(integrate the Lévy-Smirnov distribution in x). For the
average of the overlap, the green region in Fig. 16(c)
represents the missing part in hψAjhψ Āj compared with
hLγj. It can only produce 1, which becomes the boundary
condition of the lower triangle and bottom rim of the top
triangle in Fig. 16(d) (the boundary condition for the
bottom rim after random averaging is j○i tensor product
with the vectorized density matrix of the initial state in the
folded space. Once we project this state in the space
spanned by 1 and (12), as prescribed by the Haar average
of the gates, it becomes j○○i, i.e., a 1 boundary). The
lower triangle contributes a t−1=2 factor as we argued above.
Instead, because of the 1 boundary condition at the bottom
rim, the domain wall in the top triangle is penalized by a
factor of 1=d when it further moves to the left. Thus the
domain wall is pinned to a slope of v ¼ 0. We end up with a
t−3=2 factor in the Lévy-Smirnov distribution for the pinned
domain wall. Putting it all together, we have

r̄t ≃
t−3=2t−1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t−1=2t−1=2t−1=2
p ¼ t−5=4: ð132Þ

These random wall arguments can be made more precise by
solving a set of recursive relations of the averaged terms in
Eq. (130); see Appendix F. The prediction (132) is
compared with exact solution of the recursive relations
in Fig. 17. The power-law decay of r̄t suggests that also rt
in Eq. (125) should decay as a power law, leading
to Eq. (124).
On the other hand, a direct numerical evaluation is still

compatible with a linear growth in time of SAðγÞ; see
Fig. 18. Interestingly, we see that for certain choices of
gates the growth of temporal entanglement entropy is
slower than the lower bound for dual-unitary circuits
(see Sec. V B). This indicates that dual-unitary circuits
do not produce an extremal temporal entanglement growth.

VII. TEMPORAL VERSUS SPATIAL
ENTANGLEMENT

Having argued that temporal entanglement grows lin-
early after a quench in generic quantum circuits, the natural
question is whether its growth is faster or slower than that
of “spatial entanglement,” i.e., regular state entanglement.

(a) (b)

(c) (d)

FIG. 16. The domain-wall analysis that produces Eqs. (127)
and (129). (a) hLγ jLγi: the dominant configuration is one
domain wall going down vertically at equilibrium.
(b) ðhΨAj ⊗ hΨĀjÞðjΨĀi ⊗ jΨAiÞ: the two parts of the product
state factorize so there are two independent vertical domain walls
with half the size of (a). (c) hLγjðjΨAi ⊗ jΨĀiÞ: the green region
is where hLγ j and hΨĀj ⊗ hΨAj differ. It has only one copy of
u × u�, which, upon averaging, generates a patch of 1. The
domain wall will avoid the green region and goes down vertically.
(d) The green region after average provides the 1 boundary
conditions for the two dashed lines in (c) (see main text for the
bottom rim of the upper triangle; also see Appendix F). The top
triangle has a pinned domain wall ending at the rightmost point,
the bottom triangle still host a free random walk.
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This question can be addressed precisely in the case of
dual-unitary circuits. Indeed, for these circuits we have that
state entanglement grows at the maximal possible speed for
generic initial states [77], i.e.,

SspðtÞ ≃ 2t logd: ð133Þ

On the other hand, we can use our asymptotic result of
Sec. V B to see that

SAðγÞ≲max
r

SðrÞt ¼ ð1þ vγÞt
ð2þ vγÞ

log d ≤
2t
3
log d; ð134Þ

where in the first step we computed the maximum of
Eq. (105) and in the second we used that it is monotonic
in vγ .
Comparing Eqs. (133) and (134) we see that the temporal

entanglement is lower than the spatial entanglement for
every path γ. Our numerical investigations suggest that, for
small enough vγ , temporal entanglement grows slower than
spatial entanglement also in generic quantum circuits. For
instance, in Fig. 19 we report a comparison between the
entanglement of the vertical state (vγ ¼ 0) and that of the
regular time-evolving state for different times: We see that
the former has a consistently smaller growth rate for all the
gates considered. When the slope of the path is increased,
however, the growth of temporal entanglement appears to
match that of state entanglement. See, for instance, the
comparison between spatial entanglement and temporal
entanglement of the diagonal path (vγ ¼ 1) reported
in Fig. 20.

VIII. DISCUSSION

In this work we studied spacelike propagation
approaches to quantum nonequilibrium dynamics. The
main idea is to compute the time evolution of relevant
observables by exchanging the roles of space and time. For

FIG. 17. Polynomial decay of r̄t. According to Eq. (F29) we
show the asymptotic expected behavior∝ t−5=4 as a dotted line. In
the calculation we considered sites of local dimension d and an
initial product state.

FIG. 18. Growth of the entanglement entropy for the vertical
cut state hLγj, given random choices of the dual-unitary gate (kept
constant in space and time) with entangling power p. We
considered the contiguous bipartition AĀ of γ yielding the
maximum entanglement. The entangling power is computed
according to Eq. (5) in Ref. [130], which has been normalized
by a factor ðdþ 1Þ=ðd − 1Þ in order to have p∈ ½0; 1�. The black
line represents the growth of Sð1ÞA ðγÞ in dual-unitary circuits
[Eq. (105)].

FIG. 19. Comparison between the growth of spatial and
temporal entanglement along the vertical path for generic unitary
gates. The continuous lines report temporal entanglement of
unitary gates with different entangling power (normalized such
that p∈ ½0; 1�) while the dashed lines report the corresponding
state entanglement. The plot suggests a faster asymptotic growth
for the spatial entanglement.
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large enough volumes, the “dual system” living in the time
direction—also known as space-time swapped system
[43,45]—reaches (left and right) stationary states dubbed
“influence matrices” [33]. Since in many-body systems
characterizing a stationary state is often easier and more
efficient than characterizing a time-evolving state at inter-
mediate times, spacelike propagation approaches are par-
ticularly promising and are attracting an increasing amount
of attention [26–30,34,40–45,57–62,87,131,132].
Here we studied whether these ideas can be used to

devise an efficient computational scheme to access corre-
lation functions of local operators in generic systems. Our
starting point has been the “folding algorithm” of Ref. [26],
which uses the above idea to compute autocorrelation
functions of local operators in one-dimensional quantum
systems. The algorithm represents the time-evolving
expectation value as a two-dimensional tensor network
and proceeds by embedding the local operator in a system
on the vertical time lattice which is then evolved in the
space direction. To also access two-point functions between
causally connected operators, we generalized the folding
algorithm by considering propagation in a generic space-
like direction, i.e., in any direction in the two-dimensional
space-time forming an angle α smaller than π=4 with the
space direction. The idea is to consider the system on the
lattice along a timelike slice, or path, connecting the two
points and evolve it in the orthogonal spacelike direction.
We then investigated the efficiency of the generalized

folding algorithm by computing the scaling in time of
the temporal entanglement, i.e., the entanglement of
the influence matrices [28]. Performing a comprehensive
investigation in chaotic quantum circuits, we showed that for

generic spacelike evolutions (or states on timelike slice) the
entanglement of the influence matrices grows linearly in
time, preventing an efficient classical storing. However, we
also showed that the volume-law scaling of temporal
entanglement is much more subtle than one might expect
due to the nontrivial structure of the temporal entanglement
spectrum. Indeed, we found physically relevant cases where
it separates into a few large Schmidt values (decaying atmost
polynomially in time) and many small ones (decaying
exponentially). This means that the growth of temporal
entanglement cannot be characterized via a replica trick.
More specifically, we identified two cases where all

temporal Rényi entropies with index larger than one grow
sublinearly in time: (i) standard space evolution (the one of
the original folding algorithm of Ref. [26], where the
timelike surface is vertical) in generic quantum circuits and
(ii) any spacelike evolution in dual-unitary circuits. This
phenomenon is very similar in nature to the sub-ballistic
scaling of spatial Rényi entropies observed in circuits with
diffusive conservation laws [113,114]. As in the latter case,
the time-evolving state has large overlap with a product
state over a spatial bipartition of the system; in our case, the
influence matrices have large overlap with a product state
(which we identified) over a temporal bipartition of the
system. This means that the reduced density matrix has a
small number of slowly decaying eigenvalues controlling
the scaling of higher Rényi entropies.
On the other hand, we showed that the von Neumann

temporal entanglement entropy grows linearly in time in
both the cases (i) and (ii), but it has a strictly smaller rate
of growth compared to regular state entanglement.
Specifically, while for generic circuits we argued for a
linear growth based on the absence of physical constraints
and we characterized it numerically, for dual-unitary
circuits we were able to provide a closed form expression
for the slope of growth. This expression is always nonzero
and smaller than the slope of growth of state entanglement.
We stress that a strictly positive growth rate of temporal
entanglement in dual-unitary circuits is particularly sur-
prising because—due to their maximally fast dephasing
[58,83]—these systems are expected to be the chaotic
system generating the lowest temporal entanglement [33].
We also emphasize that, to the best of our knowledge, this
is the first analytical account of the noncommutativity of
replica and large-time limit generating different scalings of
Rényi entropies.
Combined with the results of Ref. [62], our findings

suggest that the behavior of temporal entanglement after a
quantum quench is a dynamical chaos indicator; i.e., it
discriminates between integrable and chaotic dynamics.
Indeed, while Ref. [62] provided evidence for a generic
sublinear scaling of temporal entanglement in integrable
models, here we showed that it grows linearly in chaotic
systems (modulo some generiticity assumption on the
initial state). This scenario is in agreement with the

FIG. 20. Comparison between the growth of spatial and
temporal entanglement along the diagonal path for generic
unitary gates. The continuous lines report temporal entanglement
of unitary gates with different entangling power (normalized such
that p∈ ½0; 1�) while the dashed lines report the corresponding
state entanglement.
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characterization put forward in Ref. [133], which proposed
volume-law spatiotemporal entanglement as the defining
feature of quantum chaotic systems. From this point of
view, temporal entanglement seems to behave similarly to
the operator space entanglement of local operators
[16,134–136]—another conjectured dynamical chaos indi-
cator [71,72,137,138].
Our work opens several directions for future research.

An obvious one is to understand whether it is possible to
exploit our findings on the structure of the temporal
entanglement spectrum to devise efficient computational
schemes. In particular, the fact that influence matrices have
a large product-state component might be used to extract
information on the large-time dynamics of certain special
observables.
Another compelling question is to confirm our numerical

observation that the von Neumann entropy of the standard
influence matrix grows linearly in time for generic circuits,
but its growth is slower than that of regular state entangle-
ment. Because of the noncommutativity of large-time and
replica limits this cannot be achieved by a direct application
of the entanglement membrane approach. Indeed, in this
case the membrane approach can only describe higher
Rényi entropies and not von Neumann: one cannot perform
the analytic continuation. One possible strategy is to use the
approach developed here for dual-unitary circuits: decom-
pose the reduced density matrix as a convex combination
and use data processing inequality and convexity of the von
Neumann entropy to bound it.
Finally, a further avenue for future research is to assess

the performance of our generalized folding algorithm in
nonergodic systems, like nearly integrable ones, where the
temporal entanglement grows slowly. This could provide a
very efficient way to extract numerically linear transport
coefficients and, more generally, characterize nonlinear
transport in such systems. For instance, it could be applied
to the characterization of anomalous transport in integrable
systems with non-Abelian charges [139].
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APPENDIX A: MINIMIZATION OF THE
FREE-ENERGY TERM FOR HAAR

RANDOM CIRCUIT

Here we explicitly carry out the minimization of
F1;Yðt; t0Þ with respect to t0 using the random circuit line
tension in Eq. (71). We recall that, setting v1 ¼ −v2 in
Eq. (77), we have

F1;Yðt; r0Þ
≃ 4seqt

h
EH(v1ðr0Þ)

h
1 − r0 −

r
2

i
þ EHð0Þ

r0
2

i
; ðA1Þ

where

v1ðr0Þ ¼
rvγ

2 − r − 2r0
∈
�

r
2 − r − 2r0

vγ; vγ

�
; ðA2Þ

and we use r0 ¼ t0=t∈ ½0; r�. The expression of the free
energy in this case is

F1;Yðt; r0Þ − F2ðtÞ ≃ 2seqt½fEH(v1ðr0Þ) − EHð0Þgð1 − r0Þ
þ EH(v1ðr0Þ)ð1 − r − r0Þ�: ðA3Þ

We now solve this final minimization using the explicit
random circuit line tension EH. We set the r0 derivative of
the above expression to zero,

EHð0Þ − 2EHðv1Þ þ 2v1E0
Hðv1Þ ¼ 0; ðA4Þ

and find that the equation is solved for v1 ¼ vd, where

vd ≔
d − 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 1

p : ðA5Þ

The derivative ∂r0F1;Yðt; r0Þ is negative for v1 ∈ ½0; vdÞ and
positive for v1 ∈ ðvd; 1�. So v1 ¼ vd is the minimal for
v1 ∈ ½0; 1�. However, since v1 ∈ ½ðr=2 − rÞvγ; vγ�, depend-
ing on the choice of r, the free energy falls into three cases:

min
r0 ∈ ½0;r�

F1;Yðt; r0Þ − F2ðtÞ

≃ 2seqt

8>><
>>:

r½EHðvγÞ − EHð0Þ� vγ ∈ ½0; vdÞ
r½EHðvdÞ vγ

vd
− EHð0Þ vdþvγ

2vd
� vγ ∈ ½vd; 2−rr vd�

ð2 − rÞEHð r
2−r vγÞ − EHð0Þ vγ ∈ ð2−rr vd; 1�:

ðA6Þ

To obtain S̄ð2ÞA ðγÞ, we further compare this minimum with
the free energy of decoupled configurations in Fig. 7, i.e.,
2seqtð1 − rÞEð0Þ from Eq. (76).
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We first note that

ð2 − rÞEH

�
r

2 − r
vγ

�
− EHð0Þ ≥ ð1 − rÞEHð0Þ; ðA7Þ

due to EðvÞ ≥ Eð0Þ. So for the case of vγ ∈ ðð2 − r=rÞvd; 1�
the Y-shaped configuration can never dominate. Physically,
the minimal for the Y shape here corresponds to taking
r0 ¼ 0, which represents two tilted sets of domain walls
meeting at the very bottom. Its free energy can always be
lowered if all the domain walls go down vertically.
Then we compare the expression for vγ ∈ ½vd; ð2 −

rÞvd=r� and 2seqtð1 − rÞEð0Þ. Setting

r

�
EHðvdÞ

vγ
vd

− EHð0Þ
vd þ vγ
2vd

�
≤ ð1 − rÞEHð0Þ; ðA8Þ

gives vγ ≤ ð2 − rÞv0d=r, where

v0d ≔
1

2

log d2þ1
2d

arctanhðvdÞ
: ðA9Þ

We have v0d ≤ vd and limd→∞ðv0d − vdÞ ¼ 0. For vd <
ð2 − rÞv0d=r to hold, we require r ≤ 2v0d=ðvd þ v0dÞ.
Finally, the case of vγ ∈ ½0; vdÞ. For the Y-shaped

configuration to dominate, we should have

r½EHðvγÞ − EHð0Þ� ≤ ð1 − rÞEHð0Þ: ðA10Þ

This requires r ≤ EHð0Þ=EHðvγÞ.
In summary, we conclude that Haar random circuits have

S̄ð2ÞA ðγÞ ≃ seqv
ð2Þ
TE;Ht; ðA11Þ

where

vð2ÞTE;H

¼

8>>>>>>>><
>>>>>>>>:

2r½EHðvγÞ−EHð0Þ� r≤ EHð0Þ
EHðvγÞvγ<vd

2ð1−rÞEHð0Þ r> EHð0Þ
EHðvγÞvγ<vd

2r
h
EHðvdÞvγvd−EHð0Þvdþvγ

2vd

i
r≤ 2v0d

vdþv0d
vγ≥vd

2ð1−rÞEHð0Þ r>
2v0d

vdþv0d
vγ≥vd:

ðA12Þ

APPENDIX B: RÉNYI ENTROPIES
IN DUAL-UNITARY CIRCUITS

In this appendix we present the detailed calculations
leading to the bounds on temporal higher Rényi entropies
discussed in Sec. VA.

1. Upper bound on temporal Rényi entropies
for generic quantum circuits

In this subsection we bound SðαÞA ðγÞ in terms of the norm
of the state hLγj. We begin by writing the Schmidt
decomposition of the state hLγj between the region A
and the rest Ā. Namely,

hLγjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihLγjLγi
p ¼

XminðdjAj;djĀjÞ

r¼1

ΛrhArjA ⊗ hBrjĀ; ðB1Þ

where fjAriAg and fjBriĀg are orthogonal states, while the
Schmidt values fΛrg fulfill

0 ≤ Λr ≤ � � � ≤ Λr−1;
XminðdjAj;djĀjÞ

r¼1

Λ2
r ¼ 1: ðB2Þ

The integer

n ¼ min f rjΛr ¼ 0g ðB3Þ

is referred to as the Schmidt rank of the state.
Next, we invoke the Eckart-Young theorem [115] to

bound from below the largest Schmidt value. To this end we
first recall the statement of the theorem
Theorem 1 (Eckart-Young).—The scalar product of an

unnormalized state jΦni of Schmidt rank n over the
bipartition BB̄ and a normalized state jΦki with rank
k < n fulfills the following lower bound,

jhΦnjΦkj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiXk
j¼1

Λ2
j

vuut ; ðB4Þ

where fΛrg are the Schmidt values of jΦni. The state
saturating the bound is unique up to a global phase and
reads as

jΦ�
ki ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k
j¼1 Λ2

j

q Xk
r¼1

ΛrjariB ⊗ jbriB̄; ðB5Þ

where fjariBg and fjbriB̄g are sets of orthogonal states.
This formulation of the Eckart-Young theorem can be

directly proven using the von Neumann trace inequal-
ity [140].
Using Theorem 1 we have that the largest Schmidt value

Λ1 of any state jΦni fulfills

Λ1 ≥ jhΦnjΦ1i; ðB6Þ

for any normalized product state jΦ1i. Specializing the
theorem to our case, we consider a bipartition of the 2t sites
in τA on the top and τĀ ¼ 2t − τA on the bottom halves.

TEMPORAL ENTANGLEMENT IN CHAOTIC QUANTUM CIRCUITS PHYS. REV. X 13, 041008 (2023)

041008-25



In particular, we fix

τA
2t

≡ r; ðB7Þ

and consider the following product state in this bipartition,

hL̃j ¼ h○j⊗τA ⊗ hLγĀ
j; ðB8Þ

where γĀ is the second part of the path γ, which comprises
τĀ steps. Using only the unitarity of the gates, it is
immediate to see that the scalar product of the state with
τA j○i states leads to a cancellation of the first τA diagonal
rows. Namely,

ðB9Þ

So that we find

Λ1 ≥
hLγjL̃iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hLγjLγihL̃jL̃i
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hLγĀ

jLγĀ
i

hLγjLγi

s
: ðB10Þ

This gives

max
A

Sð∞Þ
A ðγÞ ¼ − logΛ2

1 ≤ log
hLγĀ

jLγĀ
i

hLγjLγi
: ðB11Þ

Next, we use the known inequality [141],

SðαÞðρÞ ≤ α

α − 1
Sð∞ÞðρÞ; α > 1; ðB12Þ

fulfilled by the function in Eq. (62), to obtain Eq. (98).

2. Norm of hLγjLγi for dual-unitary circuits

Here we compute hLγjLγi in the special case of dual-
unitary circuits. Using the dual-unitarity relations for
double gates,

ðB13Þ

one can easily show that

ðB14Þ

where we introduced the diagonal path [cf. Eq. (56)],

γlc ¼ fþ;þ; � � � ;þg; ðB15Þ
with length τ ¼ ð1þ vγÞt and denoted by N τ the norm
of hLγlc j.
We now observe that the latter quantity is directly related

to spatial entanglement. Indeed, computing the purity of the
regular density matrix ρAðtÞ [cf. Eq. (24)] and choosing
A ¼ ½t − x;∞�, we find

PðtÞ ¼ 1

d2t
N 2t: ðB16Þ

Combining this equation with Eqs. (B14), (B11), and (B12)
we recover the bound in Eq. (94).

APPENDIX C: LINEAR GROWTH OF
TEMPORAL ENTANGLEMENT ENTROPY

IN DUAL-UNITARY CIRCUITS

In this appendix we present the detailed calculations
leading to the bound on temporal entanglement entropy
discussed in Sec. V B.

1. Reduction

Consider a generic bipartition of a state Lγ, γ ¼ γA ○ γĀ:

ðC1Þ
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Now we observe that, since the entanglement is invariant
under local unitary transformations, the entanglement
between A and and Ā is not changed by the transformation,

hLγj ↦ hLγjðU†
A ⊗ U†

Ā
Þ; ðC2Þ

for any unitary matrices UA and UĀ acting, respectively,
only in A and Ā. We consider the transformations UA and
UĀ removing the largest number of gates; in the example
shown in Eq. (C1), this corresponds to

ðC3Þ

where ia=ja correspond to the ath digit of i=j in base d2.
The corresponding hLγ0 j state has the following form,

ðC4Þ

where we highlighted the new paths γ0A and γ 0̄A forming the
edge of hLγ0 j. This new state has now effectively τA ¼
jAjð1þ vAÞ=2 sites in the bipartition jAj, since the remain-
ing product bullet states are disentangled with the rest.

2. Evaluation of pk
Let us evaluate hLγ0 jPkjLγ0 i in order to compute

Eq. (114). We are considering states hLγ0 j as the one shown
in Eq. (C4), corresponding to a path (we ignore the bullet
states disentangled from the rest),

γ0 ¼ fþ;þ; � � � ;þg|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
τA

○ f−;−; � � � ;−g|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
jĀjð1−vĀÞ=2

○ fþ;þ; � � � ;þg|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
jĀjð1þvĀÞ=2

; ðC5Þ

of total length τA þ jĀj.
Graphically, it is easy to see that, using the unitarity of

the gates, any scalar product of the type hLγjðj○i⊗xÞ, where
the x bullet states are applied from the top, deletes the first x
main diagonal of the state hLγj:

ðC6Þ

ðC7Þ

where with γnx we indicate the path γ, where the first x
jumps have been deleted. Using the definition of the
projectors Pk in Eq. (108), we then find

hLγ0 jPkjLγ0 i
¼ hLγ0nτA−kjLγ0nτA−ki − hLγ0nðτA−kþ1ÞjLγ0nðτA−kþ1Þi; ðC8Þ

for k > 0, and

hLγ0 jP0jLγ0 i ¼ hLγ0nτA jLγ0nτAi: ðC9Þ

Finally, using Eq. (B14) and the shape of γ0 in Eq. (C5),
we find

hLγ0 jPkjLγ0 i ¼ N jĀjð1þvĀÞ=2þk −N jĀjð1þvĀÞ=2þk−1;

hLγ0 jP0jLγ0 i ¼ N jĀjð1þvĀÞ=2: ðC10Þ

Using again Eq. (B14), we also have

hLγ0 jLγ0 i ¼ N ð1þvγÞt; ðC11Þ

where we used the fact that

jAj 1þ vA
2

þ jĀj 1þ vĀ
2

¼ 1þ vγ
2

2t: ðC12Þ

Finally, usingAssumption 1, we find the asymptotic scaling,

hLγ0 jPkjLγ0 i ∼ C > 0; ðC13Þ

hLγ0 jP0jLγ0 i ∼ CjĀj 1þ vĀ
2

> 0; ðC14Þ

hLγ0 jLγ0 i ∼ Cð1þ vÞt; ðC15Þ
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which, putting back in the definition of pk in Eq. (114),
gives

pk ¼
8<
:

1
ð1þvγÞt k ≠ 0

jĀjð1þvγĀ Þ
2ð1þvγÞt k ¼ 0

; ðC16Þ

in the main text we considered a coarse grained constant
slope for the path γ, which corresponds to the substitution,
in Eq. (C16), vγA ¼ vγĀ ¼ vγ , that leads to Eq. (118).

3. Entropy of the state jLki
via membrane approach

In this appendix we use the entanglement membrane
approach to compute the second Rényi entropy of the state
in Eq. (119) which we call hLkj and repeat the expression
here:

ðC17Þ

The projector (black box) is 1d2 − j○ih○j. By using
the dual-unitary property, the action of the j○ih○j is
equivalent to replacing the left boundary state via a solvable
EPR state:

ðC18Þ

Therefore this is the part to be projected out. We decom-
pose the initial state on the bottom left of the diagram into a
component of the solvable state (EPR state) and a remain-
der term (box state):

ðC19Þ

From Eq. (C18), hLkj can be simplified to

ðC20Þ

We then closely follow the discussion of Sec. IV B. The
evaluation follows exactly as in Eq. (69) when the state hLγj
is replaced by hLkj; namely,

Sð2ÞðjLkiÞ ¼ F1ðxÞ − F2ðxÞ; ðC21Þ

with

F1ðxÞ ¼ − logðtrA½trĀðjLkihLkjÞ2�Þ; ðC22Þ

and

F2ðxÞ ¼ −2 log trðjLkihLkjÞ: ðC23Þ

Here A is the subsystem formed by the top τA sites (of
which the top τA − k sites are decoupled product states
though, so it is as if A contained only k sites for what
concerns entanglement calculations).
The calculation follows the same lines as the one

outlined in Sec. IV B with one main difference: since
the square state

ðC24Þ

in the bottom left corner of jLki is orthogonal to the loop
state j○i, its fourfold copy is orthogonal to the identity
permutation in S4. This means that the optimal domain-wall
configurations are not those reported in Fig. 7 but, instead,
look like those reported in Fig. 22. This gives

F1ðxÞ ¼ F2ðxÞ þ 2 minðk; jĀjÞ log d; ðC25Þ

where we used that for dual-unitary circuits the line tension
is equal to one. Plugging in Eq. (C21) and using the
monotonicity in α of the Rényi entropies we arrive
at Eq. (123).
In Fig. 21, we checked the validity of Eq. (123), by

comparing the maximum value of Sð1ÞðρkÞ as a function of
l≡ kþ jĀj (i.e., the number of sites defining the corre-
sponding Hilbert space) for vγ ¼ 1. From the membrane
theory [cf. Eq. (123)] we expect an asymptotic growth of
the peak to be equal to

sup
k;

kþjĀj¼const

minðk; jĀjÞ logðd2Þ ¼ kþ jĀj
2

logðd2Þ

¼ l logðdÞ: ðC26Þ

This prediction agrees with the data for the higher values of
the entanglement power p. For lower values of the
entangling power we expect the asymptotic form to arise
at larger system sizes. The growth rate of the sup in
Eq. (C26) is actually a necessary and sufficient condition
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for the validity of Eq. (123). This is because, using the
positivity of mutual information one has:

jSðρðlÞk Þ − SðρðlÞk−1Þj ≤ logðd2Þ; ðC27Þ

where we stressed for clarity that here we consider a density
matrix with l sites and a bipartition (on which entangle-
ment is defined) with k;l − k sites. Combining Eq. (C27)
with Eq. (C26), one must have

SðρlkÞ ¼ minðk;l − kÞ logðd2Þ þ oðkÞ þ oðlÞ; ðC28Þ

which is indeed Eq. (123).

APPENDIX D: ASYMPTOTIC BEHAVIOR OF PðtÞ
UNDER RANDOM DUAL-UNITARY GATES

In this appendix we characterize the asymptotic behavior
of the purity in dual-unitary circuits with random local

gates. In particular, following Ref. [77] we consider local
gates of the form

uþðτ; xÞ ⊗ u−ðτ; xÞ ·U · vþðτ; xÞ ⊗ v−ðτ; xÞ; ðD1Þ

whereU is a fixed two-site dual-unitary gate and u�; v� are
random single-site matrices ∈UðdÞ distributed independ-
ently in the space-time. In this setting, Ref. [77] proved
that if

pðUÞ ≥ d2 − 1

d2

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dþ 2

p
�

ðD2Þ

[cf. Eq. (12)], then

dxEu½Pðx=2Þ� ≤ Aþ Bx; A; B ≥ 0; ðD3Þ

where Eu½·� is the average over u drawn from the full
U⊗4LtðdÞ group (Haar average).
Here we want to show that for nonsolvable states

dxEu½Pðx=2Þ� is bounded by a linearly growing function
also from below. Namely,

dxEu½Pðx=2Þ� ≥ Cx: ðD4Þ

Defining the convenient auxiliary quantity,

Mx ¼ dxPðx=2Þ − dx−1Pðx=2 − 1=2Þ; ðD5Þ

our goal is to show

lim
x→∞

Eu½Mx� ¼ Eu½M∞� > 0: ðD6Þ

This proves Assumption 1 in the random dual-unitary
setting.
First, we note that Eu½Mx� can be related to the function

Qx—introduced in Eq. (85) of Ref. [77]—as follows:

Eu½Mx� ¼ dx
c − 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − 1

p Qx: ðD7Þ

Here the parameter c is defined in terms of the initial state
matrix m [cf. Eq. (15)]:

c ¼ 1

d
tr½ðmm†Þ2�∈ ½1; d�: ðD8Þ

In particular, the value c ¼ 1 corresponds to a unitary initial
state matrix m, i.e., a solvable initial state. In this case,
noting that Qx is finite for c ¼ 1, Eq. (D7) gives Mx ¼ 0.
This is the expected result for solvable states: the norm of
hLγj is equal to one and its increment Mt� is zero. From
now on we consider c > 1 and argue that in this case
Eu½Mx� is always strictly larger than zero.

FIG. 21. Entanglement entropy for the matrix ρk, obtained by
maximizing the value over all possible choices of k, keeping τ ¼
jĀj þ k fixed, for generic dual-unitary gates of different entan-
gling power, local Hilbert space dimension d ¼ 2, and vγ ¼ 1.

(a) (b)

FIG. 22. Domain-wall configuration giving the leading con-
tribution to Eq. (C22). (a) When k < jAj, the two domain walls
(14)(23) split into four domain walls ð12Þð34Þ × ð13Þð24Þ. Two
of them go to the left to contract with the orthogonal states. The
other two (12)(34) go to the right and cancel with the two domain
walls at the interactions of A and Ā. (b) The domain walls at the
tip do not split. They go to the left to contract with the orthogonal
states.
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We begin by noting that a direct application of Eq. (86)
of Ref. [77] gives

Eu½Mx� ¼ Eu½M�x0 þ
Xx

i¼x0þ1

Si: ðD9Þ

Here we introduced

Sx ¼ dx
c − 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − 1

p Rx; ðD10Þ

where Rx is the function defined in Eq. (87) of Ref. [77].
Next, using Eq. (103) of Ref. [77] we conclude

jSxj ≤ Aax; ðD11Þ

where p is the entangling power of U [cf. Eq. (12)] and we
introduced

λ ¼ ð1 − pÞ2 þ p2

d2 − 1
; ðD12Þ

a ¼ dþ c
dþ 1

dλ; ðD13Þ

A ¼ ðc − 1Þ2
ðdþ cÞ2

dþ 1

d − 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 − 1

d2λ3

s
: ðD14Þ

For high enough values of the entangling power,

p > p̄ðdÞ ¼ d2 − 1

d2

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dþ 2

p
�
; ðD15Þ

it is immediate to verify that a < 1 for any value of c in the
range ½1; d�, which allows us to find an upper bound for
Eu½Mx�. Namely,

Eu½Mx� ≤ Eu½Mx0 � þ
X
i

jSij

≤ Eu½Mx0 � þ
A

1 − a
ax0þ1: ðD16Þ

This bound was first presented in Ref. [77]. Our goal here is
to bound Eu½Mx� also from below, showing that it is always
strictly larger than 0. To this end we combine Eqs. (D9),
(D11), and the triangle inequality to write

Eu½Mx� ≥ Eu½Mx0 � −
X
i

jSij

≥ Eu½Mx0 � − A
ax0þ1 − axþ1

1 − a
: ðD17Þ

For p fulfilling the bound (D15) one has a < 1. This
implies that, if we find an x0 such that

Eu½Mx0 � > A
ax0þ1

1 − a
; ðD18Þ

then

lim
x→∞

Eu½Mx� ¼ Eu½M∞� > 0: ðD19Þ

In order to get some intuition it is useful to consider two
limiting cases. First, we fix the values of x, p, d, and restrict
ourselves to a neighborhood of the solvable case, which
corresponds to c ¼ 1. We choose the neighborhood to be
small compared to the other parameters, so that we can treat
everything perturbatively around the lowest nontrivial order
of the solvable case:

c∈ ½1; 1þ ϵ�; ϵ ≪
1

x
; 1 − a: ðD20Þ

In this situation, it is easy to see that

Eu½Mx� ¼ Oðc − 1Þ; A ¼ O½ðc − 1Þ2�; ðD21Þ

which immediately imply the validity of condition (D18) if
c ≠ 1. This shows that some properties of the solvable case
are not stable under perturbations.
The other useful limit is d ≫ 1, which makes the

expressions (D14) and (D13) much easier to handle. We
consider Eu½M4� at leading order in d, expanded at the first
relevant order for 1 − p. We consider gates with entangling
power close to the one of the Hadamard gate, or larger,
meaning that

1 − p ⪅ Oðd−1Þ: ðD22Þ

The asymptotic expression at the lowest relevant order is

Eu½M4� ¼ ðc − 1Þ½1þ cð1 − pÞ� > ðc − 1Þ
¼ Oðd0Þ: ðD23Þ

Expanding Eqs. (D14) and (D13), we find

A ¼ ðc − 1Þ2
ðdþ cÞ2

d3

½ð1 − pÞ2d2 þ 1�3=2 ⪅ Oðd3Þ; ðD24Þ

a ¼ dþ c
d

ð1 − pÞ2d2 þ 1

d
¼ Oðd−1Þ: ðD25Þ

Putting together everything in condition (D18), we see
the left-hand side is Oðd0Þ and the right-hand side is
Oðd−2Þ, so the condition is respected. Finally, to address
the general case, we compute Eu½Mx0 � numerically for a
high value of x0, showing that the bound (D18) holds for a
nontrivial interval of entangling powers.
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In particular, we consider the case d ¼ 2. In this case, the
values of the entangling power p fulfilling the bound (D15)
are given by

2

3
> p > p̄ð2Þ ≈ 0.4438; ðD26Þ

where we used that for d ¼ 2 the maximal attainable value
of p is 2=3 [77].
Computing Eu½Mx� for x ¼ 20, we verify the inequality

(D18) holds for any c if we pick p in the interval

2

3
> p ≥ n̄ ≈ 0.47660548: ðD27Þ

Note that, to verify the equality for p close to p̄ðdÞ one
would need to consider arbitrarily large values of x0. Indeed
the denominator ð1 − aÞ−1 diverges at p ¼ p̄ðdÞ. As an
example, we show in Fig. 23 the value of Aax0þ1=ð1 − aÞ
versus Eu½Mx0 �, for x0 ¼ 20 as a function of c.

APPENDIX E: PARAMETRIZATION
OF DUAL-UNITARY GATES FOR
NUMERICAL EXPERIMENTS

To produce the data presented in plots involving dual
unitary gates (i.e., Figs. 8–14), we parametrized the gates as
in Eq. (D1), with fixed one-site unitaries u�; v�:

uþ ¼
�

0.204 − 0.971i −0.108 − 0.068i

0.125þ 0.0254i −0.524þ 0.842i

�
; ðE1Þ

u− ¼
� −0.279 − 0.921i 0.238þ 0.132i

−0.272þ 0.017i −0.649þ 0.710i

�
; ðE2Þ

vþ ¼
�−0.025 − 0.367i −0.921 − 0.127i

0.908 − 0.202i 0.005þ 0.368i

�
; ðE3Þ

v− ¼
�
0.380 − 0.321i 0.436þ 0.750i

0.807þ 0.318i 0.260 − 0.424i

�
; ðE4Þ

and two-site dual-unitary given by

UðpÞ ¼

0
BBB@

e−iJðpÞ 0 0 0

0 0 −ieiJðpÞ 0

0 −ieiJðpÞ 0 0

0 0 0 e−iJðpÞ

1
CCCA; ðE5Þ

where

JðpÞ ¼ arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3p
2

r �
; ðE6Þ

and p∈ ½0; 1�. Using the definition of entangling power in
Eq. (12) one can immediately verify that

p½UðpÞ� ¼ p: ðE7Þ

APPENDIX F: RECURRENCE RELATION
FOR hLγjLγi

In this appendix we consider the Haar averages in
Eq. (130). A doubly folded averaged unitary is projected
on two-dimensional local vector space, spanned by the
normalized vectors

j○2i ¼
j1i
d

; j□2i ¼
jð12Þi
d

; ðF1Þ

where jð12Þi; j1i refer to the permutation vectors repre-
sented in Fig. 6(a).
Moreover, a Haar averaged unitary gate fulfills the

following relations:

ðF2Þ

Here, we choose a specific normalization for the initial state
such that

FIG. 23. Eu½Mx0 � and Aðax0þ1=1 − aÞ versus c for x0 ¼ 20,
p ¼ n̄, and d ¼ 2. Note the linear and quadratic growth around
c ¼ 1 according to Eq. (D21).

TEMPORAL ENTANGLEMENT IN CHAOTIC QUANTUM CIRCUITS PHYS. REV. X 13, 041008 (2023)

041008-31



ðF3Þ

We can define the quantity

ðF4Þ

with y ≤ xþ 1. It is immediate to see that

hLγtþ1
jLγtþ1

i ¼ At;tþ1: ðF5Þ

Using Eqs. (F2) and (F3), one finds the following recur-
rence relations:

Ax;y ¼

8>>><
>>>:

d2

d2þ1
ðAx−1;y−1 þAx;y−1Þ y ¼ xþ 1

d2

d2þ1
ðAx−1;y þAx;y−1Þ 0 < y ≤ x

ð 2d2

d2þ1
Þx y ¼ 0:

ðF6Þ

The treatment for the average hLγjjLγ=2i ⊗ jLγ=2i is
similar: the average corresponds to the diagram

ðF7Þ

The top diagram can be expressed again with recursive
relation, defining the quantity Bx;y:

ðF8Þ

which fulfills

Bx;y ¼

8>><
>>:

d2

d2þ1
ðBx−1;y−1 þ Bx;y−1Þ y ¼ x

d2

d2þ1
ðBx−1;y þ Bx;y−1Þ y < x

1 y ¼ 0:

ðF9Þ

Equation (130) can then be expressed in terms of these
quantities as (assuming a generic bipartition of the temporal
state at time t in t ¼ t1 þ t2)

r̄t ¼
Bt1;t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
At2;t2þ1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
At;tþ1At1;t1þ1

p : ðF10Þ

Interestingly, we can map the recurrence relation (F6) in
a different problem. First, we slightly change normalization
by defining

Ax;y ¼ Ãx;y

�
d2

d2 þ 1

�
xþy

; ðF11Þ

then the quantity Ãx;y can be thought of as the number of
paths connecting the two black dots in the following grid,
without crossing the dashed line y ¼ xþ 2 and in the
minimum number of steps:

ðF12Þ

Each path gains a weight 1þ 1=d2 every time it touches the
top boundary and a factor 2 for every crossed red link of the
bottom boundary. To compute the asymptotic scaling of
this quantity we can ignore the 1þ 1=d2 weight, which
does not change the scaling for d large enough, since the
number of paths touching the top boundary exactly p times
is exponentially suppressed in p with respect to the total
number of paths, which balances the�

d2 þ 1

d2

�
p

ðF13Þ

weight (this holds for d > 1). This statement can be made
more precise using Theorem 2 of Ref. [142]. It is possible
to show then that the number of paths touching the
boundary p times is the following (the convention is to
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set a binomial coefficient to 0 if the top argument is lower
than the bottom one, or the latter is < 0):�

xþ y − p
x

�
−
�
xþ y − p
xþ 2

�
; ðF14Þ

so that, considering the appropriate weight for these paths,
and setting x ¼ y − 1 ¼ t (we ignore the weights for the
red links on the bottom for the sake of this argument), the
total is

Xt

p¼0

��
2tþ 1 − p

t

�
−
�
2tþ 1 − p

tþ 2

���
1þ 1

d2

�
p
: ðF15Þ

Studying the asymptotic scaling of this sum (using the
Stirling formula and approximating the sum with an
integral, expanded around the maximum), we can see
the scaling at leading order in t is unaffected as long as
d > 1. We can call an the number of paths connecting ðx; yÞ
to ðn; 0Þ, then we can write

Ãx;y ∼
Xx
n¼0

ðan − anþ1Þ2n; ðF16Þ

with

an ¼

8>><
>>:

ðxþy−n
x−n Þ − ðxþy−n

xþ3
Þ 0 ≤ n ≤ x; n ≤ y − 3

ðxþy−n
y Þ 0 ≤ n; n ≥ y − 2

0 n < 0; n > x:

ðF17Þ

In particular, we can rewrite Eq. (F10) as

Xx
n¼0

ðan − anþ1Þ2n ¼ a0 þ
Xx
n¼1

an2n−1; ðF18Þ

and find an asymptotic expression for an using Stirling’s
formula [we take ðx; yÞ ¼ ðt; tþ 1Þ]:

an2n−1∼
1

2
f

�
n
t

�
;

fðzÞ ¼ 2ztffiffiffiffiffiffiffi
2πt

p ð2− zÞð2−zÞt
ð1− zÞð1−zÞt

�
6

t
þ 2z− z2þO

�
z
t

��
: ðF19Þ

Finally, we can estimate the sum in Eq. (F18) with an
integral, computed with the saddle point approximation:

Xt

n¼1

an2n−1 ¼ O

�
t
Z

∞

0

fðzÞdz
�
: ðF20Þ

We expand log½fðzÞ� around its minimum z0, at the leading
orders in t:

z0¼
ffiffiffi
2

t

r
−
11

4t
þo

�
1

t

�
;

d logðfÞ
dz






z¼z0

¼O

�
1ffiffi
t

p
�
;

d2 logðfÞ
dz2






z¼z0

¼−tþoðtÞ;

log½fðz0Þ�¼ t logð4Þ− logðtÞþ1

2

�
log

�
4

π

�
−1

�
: ðF21Þ

Using the saddle point approximation, for large t we find

Z
∞

0

fðzÞdz ∼ 4t

t−3=2
2ffiffiffiffiffi
eπ

p
Z

∞

−
ffiffi
2

p e−x
2=2dx; ðF22Þ

which gives

At;tþ1 ¼ O

��
2d2

d2 þ 1

�
2t

t−1=2
�
: ðF23Þ

We can compute Bt;t with a similar approach: in this case
we need to consider the paths connecting a point ðx; yÞ to
the origin without crossing the line x ¼ yþ 1. As before,
we approximate this quantity by ignoring the weights
obtained touching the top boundary 1þ 1=d2. We can
then write

Bx;y ¼ O

��
d2

d2 þ 1

�
xþy Xx

n¼0

bn

�
d2 þ 1

d2

�
n
�
; ðF24Þ

where bn is the number of paths connecting ðx; yÞ to ðn; 1Þ:

bn ¼

8>><
>>:
ðxþy−n−1

y−1 Þ− ðxþy−n−1
xþ1

Þ 0≤ n≤ x;n≤ y− 2

ðxþy−n−1
y−1 Þ 0≤ n≤ x;n≥ y− 1

0 n< 0;n > x:

ðF25Þ

As before, we estimate the sum (F24) with an integral, in
the case ðx; yÞ ¼ ðt; tÞ:

Bt;t ¼ O

�
t
Z

∞

0

gðzÞdz
�
;

g

�
n
t

�
∼ bn

�
d2 þ 1

d2

�
n

;

gðzÞ ¼
�

d2

d2 þ 1

�
zt 1

t
ffiffiffiffiffiffiffi
2πt

p ð2 − zÞð2−zÞt
ð1 − zÞð1−zÞt ½4þ 2zþOðz2Þ�:

ðF26Þ

The difference with the previous case is that g0ðzÞ ≠ 0 in the
domain we are interested in, as long as d > 1. The
maximum value attained is gðz ¼ 0Þ; thus we can estimate
the integral expanding logðgÞ around z ¼ 0 at first order,
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Z
∞

0

gðzÞdz ∼ g2ð0Þ
g0ð0Þ ¼ Oð4tt−5=2Þ; ðF27Þ

finding the scaling

Bt;t ¼ O
��

2d2

d2 þ 1

�
2t

t−3=2
�
: ðF28Þ

Plugging Eqs. (F23)–(F28) into Eq. (F10), we find

r̄t ¼ Oðt−5=4Þ: ðF29Þ
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ẼðvÞ ¼ Ẽð−vÞ]. In the absence of this property Eq. (4)
takes a different form, but our conclusion about linear
growth of temporal entanglement continues to apply.

[111] C. Jonay, D. A. Huse, and A. Nahum, Coarse-Grained
Dynamics of Operator and State Entanglement, arXiv:
1803.00089.

[112] T. Zhou and A.W. Harrow, Maximal Entanglement Veloc-
ity Implies Dual Unitarity, Phys. Rev. B 106, L201104
(2022).

[113] T. Rakovszky, F. Pollmann, and C.W. von Keyserlingk,
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[117] J. I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete,
Matrix Product States and Projected Entangled Pair
States: Concepts, Symmetries, Theorems, Rev. Mod. Phys.
93, 045003 (2021).

[118] This is always true for two-point functions on equilibrium
states [cf. (33)] (which encode linear response coefficients
[51]) and one-point functions. For nonequilibrium two-
point functions this is the case away from the regime
t2 − t1 < x2 − x1 ≤ t2 þ t1.

[119] A. Nahum, S. Vijay, and J. Haah, Operator Spreading
in Random Unitary Circuits, Phys. Rev. X 8, 021014
(2018).

[120] M. Žnidarič, Exact Convergence Times for Generation of
Random Bipartite Entanglement, Phys. Rev. A 78, 032324
(2008).

[121] A.W. Harrow and R. A. Low, Random Quantum Circuits
Are Approximate 2-Designs, Commun. Math. Phys. 291,
257 (2009).

[122] J. Emerson, Y. S. Weinstein, M. Saraceno, S. Lloyd,
and D. G. Cory, Pseudo-Random Unitary Operators for
Quantum Information Processing, Science 302, 2098
(2003).

[123] B. Skinner, J. Ruhman, and A. Nahum, Measurement-
Induced Phase Transitions in the Dynamics of Entangle-
ment, Phys. Rev. X 9, 031009 (2019).

[124] Y. Li, X. Chen, and M. P. A. Fisher, Measurement-Driven
Entanglement Transition in Hybrid Quantum Circuits,
Phys. Rev. B 100, 134306 (2019).

[125] A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith,
Unitary-Projective Entanglement Dynamics, Phys. Rev. B
99, 224307 (2019).

[126] A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Quantum
Entanglement Growth under Random Unitary Dynamics,
Phys. Rev. X 7, 031016 (2017).

[127] Here we use EH to denote the line tension for the average
purity decay (annealed average). The expression is exact.
The line tension for the average second Rényi entangle-
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