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Dynamic Reconfiguration of Brain Functional
Network in Stroke

Kaichao Wu, Beth Jelfs, Katrina Neville, Seedahmed S. Mahmoud, Wenzhen He* and Qiang Fang*

Abstract— The brain continually reorganizes its func-
tional network to adapt to post-stroke functional impair-
ments. Previous studies using static modularity analysis
have presented global-level behavior patterns of this net-
work reorganization. However, it is far from understood
how the brain reconfigures its functional network dynam-
ically following a stroke. This study collected resting-state
functional MRI data from 15 stroke patients, with mild (n
= 6) and severe (n = 9) two subgroups based on their
clinical symptoms. Additionally, 15 age-matched healthy
subjects were considered as controls. By applying a mul-
tilayer temporal network method, a dynamic modular struc-
ture was recognized based on a time-resolved function
network. The dynamic network measurements (recruitment,
integration, and flexibility) were calculated to characterize
the dynamic reconfiguration of post-stroke brain functional
networks, hence, revealing the neural functional rebuilding
process. It was found from this investigation that severe
patients tended to have reduced recruitment and increased
between-network integration, while mild patients exhibited
low network flexibility and less network integration. It’s also
noted that previous studies using static methods could
not reveal this severity-dependent alteration in network
interaction. Clinically, the obtained knowledge of the di-
verse patterns of dynamic adjustment in brain functional
networks observed from the brain neuronal images could
help understand the underlying mechanism of the motor,
speech, and cognitive functional impairments caused by
stroke attacks. The present method not only could be used
to evaluate patients’ current brain status but also has the
potential to provide insights into prognosis analysis and
prediction.

Index Terms— Dynamics, fMRI, Functional network,
Stroke;

I. INTRODUCTION

STROKE is a common neurological disorder that can
significantly impair cognitive and motor functions. Nev-

ertheless, due to brain plasticity, the stroke brain can adjust
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its network architecture to adapt to structural damage and
compensate for the lost functions [1], [2]. The brain functions
are fulfilled by a set of functionally specialized modules, i.e.,
distributed brain regions that interact and cooperate with each
other, either within modules or between modules, in response
to the functional demands of the external environment [3], [4].
Therefore, the altered functional network of the stroke brain
implies that it is reconfiguring its modular structure to support
the post-stroke plasticity [5].

In this regard, functional neuroimaging data, particularly
resting-state functional MRI, have contributed enormously
to understanding the reorganization mechanisms of network
modules underpinning post-stroke plasticity and brain adapt-
ability [6]–[8]. A frequent observation is the reduction of
the functional network’s modularity after a stroke [9]–[12].
Modularity is a graph measure of how well a network can
be divided into smaller modules that describes the structure
of the network [13]. This reduction in modularity reflects the
decreased segregation between different functional domains
and integration within domains, to some extent explaining the
post-stroke clinical deficits [11], [14]. The reduced modularity
usually lasts a few weeks to a month after the stroke, follow-
ing which the modular brain network gradually recovers, in
parallel with the functional improvement (e.g., improvements
in language [9] and attention [15]).

Nevertheless, of note that these findings typically rest on
a static representation or a single brain network built from
an entire resting-state functional MRI scan. Recently, dy-
namic functional network connectivity analysis (DFNC) has
recently gained popularity due to its capacity to delineate
spontaneous variation of functional connectivity [16]–[19].
Hence, while static construction is valuable and productive,
the growing body of DFNC studies on time-varying net-
works suggests that the temporal dynamics of the modular
brain should be assessed [20], [21]. In addition, the time
dependence of the modularity recovery implies that the dy-
namic reconfiguration of the brain networks could be the
root source of decreased or increased static modularity thus
further emphasizing the need to evaluate post-stroke module
dynamics. Furthermore, the brain’s dynamic reconfiguration
has been proven to be a promising avenue for creating novel
biomarkers of diseases, such as attention-deficit/hyperactivity
disorder [22] schizophrenia [23], temporal lobe epilepsy [24]
and depression [25]. However, if and how the brain network
dynamically reconfigures itself following a focal stroke, par-
ticularly under different levels of clinical severity, remains not
fully understood.
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Fig. 1. Spatial mapping of predefined 32 ROIs and 8 corresponding networks for multilayer dynamic analysis. Default mode network (DMN): the
medial prefrontal cortex (MPFC), precuneus cortex (PCC), bilateral lateral parietal (LP); sensorimotor network (SMN): superior, bilateral lateral;
visual network (VIS): medial, occipital, bilateral lateral; salience network (SAN): anterior cingulate cortex (ACC), bilateral anterior insula (AI), rostral
prefrontal cortex (RPFC), and supramarginal gyrus (SMG); dorsal attention network (DAN): bilateral frontal eye field (FEF) and intraparietal sulcus
(IPS); frontoparietal network (FPN): the bilateral lateral prefrontal cortex (LPFC) and posterior parietal cortex (PPC); language network (LN): bilateral
inferior frontal gyrus (IFG) and posterior superior temporal gyrus (pSTG); and cerebellar network (CE): anterior, posterior.

Therefore, this study investigated the dynamic reconfigu-
ration of functional brain networks in stroke patients with
different degrees of clinical symptoms. We hypothesize that
the post-stroke brain dynamic readjusts its functional network
topology according to clinical severity. The hypothesis is
twofold: first, the brain functional network of stroke patients
undergoes dynamic changes. If these changes do happen,
they can be evidenced by highly significant alterations in
the measurements that characterize dynamic reconfiguration
following a stroke. Second, the dynamic behaviors of the brain
functional network exhibit highly significant alteration be-
tween subgroups, i.e., reconfiguration pattern differs between
patients with distinct degrees of clinical symptoms.

To verify this hypothesis, the brain fMRI data from 15
stroke subjects with two degrees of clinical severity (mild:
6 and severe: 9) and 15 age-matched healthy controls were
analyzed with the help of the developed multilayer network
model [6]. The results demonstrate that the post-stroke human
brain reorganizes its functional networks to adapt to stroke
damage. This network reconfiguration after stroke will also be
modulated according to the degree of stroke attacks. Besides,
the static network exhibits differences across patients with
different levels of severity; however, it cannot reflect the
dynamic process of the brain network adjusting itself to
compensate for the functional injuries. Together, these results
reveal the brain dynamic behaviors in seconds and shed new
light on the mechanisms underlying post-stroke brain network
reorganization.

II. MATERIALS AND METHODS

TABLE I
DEMOGRAPHICS AND CLINICAL CHARACTERISTICS OF PARTICIPANTS.

Stroke patients

(n = 15)

Healthy controls

(n = 15)
P-value

Age, years 63.8 (47-81) 68.6 (61-81) 0.18

Sex, %female 4 7 0.17

Mean FD 0.033 (0.01-0.05) 0.088 (0.02-0.11) 0.99

Days since stroke 23.06 (14-42) — —

NIHSS 7.26 (1-20) — —

Lesion volume(ml) 13.01 (0.91, 63.55) — —

Values are presented as mean (range) unless otherwise stated. FD: framewise displacement

A. Participants

The stroke samples examined in this study were from fifteen
ischemic stroke patients admitted to the 1st affiliated hospital
of Shantou University Medical College (SUMC, mean age
63.8 years with a standard deviation of 11.68 years, 4 male/11
females, mean day of MRI scan post-stroke is 23.06 with a
standard deviation of 4.32). The patients were recruited from
a study approved by the medical research ethics committees
of the named hospitals, and all participants signed informed
consent.

Patients with the National Institutes of Health Stroke Scale
(NIHSS)>5 were assigned to a severe subgroup; otherwise,
they were assigned to the mild subgroup [26]. In addition,
fifteen age-matched healthy samples from our previous re-
search served as control groups [27] (7 male and 8 female,
mean age 68.6 years with a standard deviation of 6.4 years).
Demographics and clinical characteristics of participants can
be seen in Table I.
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B. MRI Acquisition

MRI data were acquired on a Discovery standard 3.0 T
scanner using an 8-channel head coil at the MRI center
of SUMC. The high-resolution T1 anatomical images were
acquired with a multi-planar rapidly acquired gradient echo
sequence with 1 mm isotropic voxels, a 256 × 256 matrix
size, and a 9-degree flip angle (129 slices, repetition time
(TR) = 2250 ms, Time of echo (TE) = 4.52 ms). With the
T1, the lesion profile of all patients has been created as a
lesion overlap map (the details and corresponding lesion map
can be seen in Supplementary Material A).

Resting-state functional MRI was collected after the
anatomical scan using single-shot gradient-echo EPI sequence:
TR = 2,000 ms; TE = 30 ms; flip angle = 90; field of view
= 240× 240 mm2; matrix size = 64× 64; number of slices =
25; and voxel size = 3.43× 3.43× 5.0 mm3 with no gap; and
210 volumes acquired in 7 min.

C. FMRI Data Preprocessing and Head Motion Control

The functional MRI scans were processed using a cus-
tomized pre-processing pipeline in the CONN functional
connectivity toolbox [28] in conjunction with the Statistical
Parametric Mapping software package (SPM12) [29]. For all
subjects, the first 10 functional volumes were removed to elim-
inate the effects of unstable magnetization and thus to obtain
a steady blood oxygenation level-dependent activity signal.
The remaining 200 images were corrected for slice timing
and head motion and then normalized to Montreal Neurologic
Institute (MNI) space. The non-smoothed functional images
were finally fed into the default denoising pipeline to eliminate
confounding effects and temporal band-pass filtering.

The head motion effect was controlled in functional con-
nectivity analysis by calculating the individual framewise dis-
placements (FD). Participants with a maximum displacement
exceeding 1.5 mm and a maximum rotation above 1.5 degrees
were excluded. In practice, no subjects exceeded these criteria,
so non were excluded. In addition, 24 motion parameters,
calculated from the six original motion parameters, were
regressed out as nuisance covariates. Finally, there was no
significant group difference in mean FD when comparing the
15 stroke patients with the 15 healthy controls.

D. Functional Connectivity Estimation

Functional connectivity is estimated by calculating the Per-
son’s correlation coefficient between pairwise time series of
spatially distinct brain regions. These regions are generated
from anatomically or functionally parcelled brains, also known
as brain parcels [22]. This study used a functional brain
parcellation provided by CONN to investigate the changing
network configuration due to stroke lesions. This parcellation
runs from CONN’s group ICA (independent component anal-
ysis) of the HCP dataset (497 subjects) which comprises 32
regions of interest (ROIs), covering the whole-brain area and
being formed by eight large-scale networks/systems (details
can be seen in Fig. 1). The set of ICA spatial maps can
be mapped onto each subject’s fMRI BOLD data to derive

one representative timeseries per ROI. Then, for N ROIs,
a N × N functional connectivity matrix A can be created,
where each entry Ai is a pairwise Person’s coefficient between
ROIs i and j. To eliminate the bias, Fisher’s Z-transformation
was applied to the functional connectivity matrices to obtain
normally distributed Z-scores, and only the positive values
were retained in the further connectivity analysis.

E. Static Modularity
Static modularity is a theoretical graph metric measuring

the segregation between distinct brain function systems [30].
As suggested in previous studies [10], [31], Newman’s method
was implemented in the Brain Connectivity Toolbox for the
static modularity calculation [32]. Considering that simply
binarizing the network with a threshold value might cause
the loss of information of rich community structure, static
modularity was calculated at edge densities ranging from 4
to 20% with the symmetric treatment of negative weights that
are consistent with references [10], [31], [33]. The modularity
calculated at each edge density was tested to see if there were
significant differences between subgroups (mild vs. severe,
severe vs. control, mild vs. control). To eliminate the bias that
results from differences in correlation magnitudes across indi-
viduals, the average values across densities with a significant
group effect were used as the final static modularity.

F. Multilayer Modularity
The multilayer modularity analysis was conducted on each

subject with the following steps (the detailed flowchart can be
seen in Fig. 2):

Dynamic functional connectivity estimation. Multilayer
modularity calculation for dynamics analysis starts with dy-
namic functional network connectivity (DFNC) estimation.
The BOLD time series extracted from the denoised fMRI data
were first processed with a common sliding window scheme to
obtain temporal slices (see Fig. 2A). The tapered window was
used, which was obtained by convolving a rectangle (equal to
the window size) with a Gaussian (σ = 3). While the optimal
choice of window width setting in the sliding window scheme
is still under debate, prior studies have provided evidence
that the number of communities fluctuates narrowly with a
window width of 100s (50 TR) [4], [34]. In this paper, the
window width was opted for 50 TR and a step size of 1
TR [35](The alternative option with a window width of 20 TR
has been shown in Supplemental Material C). By calculating
the pairwise Pearson’s correlation coefficient of time series
within a window, the sliding windows formed a series of
functional connectivity matrixes, and then Fisher’s z-transform
was applied to these matrixes to estimate the time-varying
functional connectivity of the brain network.

Multilayer modular network detection. Using the time-
varying functional network estimated by DFNC, a multilayer
modular network can be detected as follows: first, the dy-
namical functional connectivity matrices of stroke patients and
healthy controls were concatenated along the diagonal to pro-
duce their initial community profile (obtaining a matrix with
4, 768 × 4, 768, where 4, 768 = 149 × 32, being the number
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Fig. 2. Flowchart of the multilayer dynamics analysis framework. A. Dynamic functional connectivity estimation: the regional BOLD signal
extracted from denoised fMRI data was decomposed by a sliding window, forming a time-varying function network.B. Multilayer temporal network
detection: The estimated time-varying function network matrixes per subject, including patients and healthy controls, were connected to generate
the initial module profile; next greedy algorithm was applied for community detection, through maximizing a multilayer modularity maximization
function. The generated community assignments (CA) were then projected to the original functional connectivity matrixes to reconstruct the
graph representation of the functional network with a time-varying module structure; C. Multilayer dynamics analysis: three measurements
characterizing the network reconfiguration were finally computered. The arrows indicate the direction of data flow.

of sliding windows and the size of each window respectively).
Then, a Louvain-like greedy community detection algorithm
was applied to each subject’s initial profile for dynamic com-
munity optimization introduced by [36]. Specifically, for each
subject, this algorithm optimizes the multilayer modularity
partition by maximizing the modularity quality function, which
is defined as:

QM =
1

2µ

∑
ijlr

[(Aijl − γlMijl) δlr + δijωjlr] δ (gil, gjr),

(1)
where

• Aijl is the weight of the edges between nodes i and j at
layer l;

• Mijl is the connection expected in the created null model,
which is defined by the widely used Newman-Girvan null
model [4].

• Mijl =
kilkjl

2ml
, where kjl is the weighted degree of node

j in layer l, that is the sum of the weights of the edges
connected to node j in layer l;

• ml is the total nodal weighted degrees in layer l;

• µ = 1
2

∑
ij (kjr + cjr) is the sum of the weights of the

dynamic functional connectivity matrix;
• cjr =

∑
l ωjrl and ωjrl defines the inter-slice connections

which is the connection strength between node j in layer
l and node j in layer r.

• δij denotes the Kronecker δ-function, where δij = 1 if
i = j, otherwise 0;

• gil and gjr represent the community node i is assigned
to in layer l and node j in layer r respectively;

• δ (gil, gjr) = 1 if gir = gjl, otherwise 0;
The parameters γ and ω are the intra-layer and inter-layer
coupling parameters, controlling the number of modules de-
tected in layers and across layers. Inspired by [4], [15], [35],
a grid-search method was used to find the optimal γ − ω pair
across the range of γ ∈ [0.9, 1.0, 1.1] and ω ∈ [0.5, 0.75, 1.0]
to maximize the dynamic modularity. The results of the choice
of these two parameters can be seen in Supplementary Ma-
terial(B). Finally, the final values of the two hyperparameters
were determined to be 0.9 and 1.0 respectively.

The final optimization associates the modularity partition
information to each sliding window. Hence, for the 149 sliding
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windows of each subject obtained in the multilayer resolution,
there would be 149 community assignment (CA) vectors; the
length of each CA vector is N , corresponding to the number
of predefined ROIs, and the value of the CA vector represents
the community that ROI assigned. The obtained CA vectors
were then projected to the time-varying functional connectivity
network to construct graph matrixes G =

{
GCAi
i

}n

i=1
. n

is the number of sliding windows and Gi ∈ RN×N is the
graph representation of the function connectivity matrix at
timepoint i, indicating the functional connectivity network
with time-varying module structure. After reconstruction, a
multilayer modular network with a complex and rich com-
munity modularity structure spanning the time-varying layers
can be obtained (see Fig. 2 B for the flowchart).

Multilayer temporal dynamics analysis. For each par-
ticipant from the two different subgroups, three temporal
measurements: recruitment, integration, and flexibility, were
calculated to characterize the multilayer network dynamics
based on the detected dynamic community structure (Fig. 2
C).

Recruitment and integration quantify the alteration of dy-
namic functional interaction within and between brain func-
tional systems. Precisely, recruitment is measured by the frac-
tion of layers in which ROIs from the same functional system
are assigned to the same community [10]. The recruitment of
a given predefined functional system S is defined as:

RS =
1

nS

∑
i∈S

∑
j∈S

Pij , (2)

where nS is the number of ROIs belonging to the system
S; Pij is the allegiance matrix of the multilayer modular
networks, which is defined as :

Pij =
1

T

T∑
t=1

atij (3)

atij = 1 if in layer t nodes i and j are assigned to the
same community, and 0 otherwise. Similar to recruitment, the
integration of a given predefined functional system S is defined
as:

IS =
1

N − nS

∑
i∈S

∑
j /∈S

Pij . (4)

The system of interest is highly functionally integrated when
its functional regions are frequently assigned to the same
community as other regions. Therefore, to quantify this, an
integration coefficient can also be defined between different
functional systems [37]. The integration between functional
system Sk and Sl is calculated as:

ISkSl
=

1

nSk
nSl

∑
i∈Sk

∑
j∈Sl

Pij . (5)

The higher the between-system integration, the stronger the
functional coordination between systems. This study inves-
tigated both within-system and between-system integration
alterations caused by stroke lesions.

Flexibility characterizes the community stability of a system
in multilayer resolution [11]. The flexibility of a system

corresponds to the average number of times that its brain
regions change module allegiance. The system S’s flexibility
is defined as:

FS =
1

ns × (T − 1)

∑
i∈S

T∑
t=1

bi, (6)

where nS is the number of regions belonging to the system S,
T is the multilayer resolution, and bi = 1 if in the next layer
t+ 1 the node i is assigned to a different community.

Noting that random effects in the Louvain-like greedy
community detection algorithm exist in multilayer community
detection [36], the multilayer modularity optimization was run
100 times for each subject. The mean of the corresponding
dynamic measures from the 100 repetitions served as their
final values. Besides, a rewiring approach [20], [38] was used
for the normalization of these dynamic measures. Specifically,
a null distribution was created from 1000 randomly rewired
function connectivity matrices. The recruitment, integration,
and flexibility are then divided by the mean of corresponding
measurements calculated from the null distribution(z-score
¿2)to obtain normalized values.

G. Statistical Analysis

A 2-sample t-test (control covariates: age, sex, and FD ) was
performed on the static functional connectivity and modularity
to determine if there were functional network changes between
patient groups and controls. In addition, a three-level one-
way ANOVA (level of significance p < 0.05) was performed
to investigate if there were static modularity differences in
healthy controls and mild and severe patients. In case of
significant ANOVA results, post hoc t-tests (mild patients,
severe patients, and controls) were performed. Correction for
multiple comparisons was always applied whenever testing
more than one hypothesis simultaneously (false discovery rate
(FDR) correction p < 0.05).

III. RESULTS

A. Whole Brain Static Modularity Alteration

Fig. 3 shows the static modularity for each group and each
density. As expected, the edge density also has significant
effects on the whole brain functional network modularity
(F (16) = 28.63, p < 0.0001). Comparing the different
edge densities, at only 5 densities, was the modularity signif-
icantly different between mild, severe, and control subgroups
(p0.04 = 0.011, p0.05 = 0.009, p0.06 = 0.014, p0.07 =
0.008, p0.08 = 0.014). In general, the stroke patients had
much lower functional network modularity (F (2) = 47.25,
p < 0.0001), suggesting that the brain tends to have a less
segregated functional network after stroke. The final static
modularity also indicates that both the mild patients (p = 0.02,
Bonferroni corrected) and the severe patients (p = 0.04,
Bonferroni corrected) have lower network segregation than
healthy controls. However, the significant effect on the static
modularity was not detectable between the groups of mild and
severe patients.
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Fig. 3. The static modularity alteration. Left. Modularities across edge densities are shown for mild, severe, and healthy controls. Dots represent
the mean value; error bars represent 95% confidence intervals, Right. The final static modularity difference between different subgroups; horizontal
lines indicate group means, and asterisks represent significant differences at p < 0.05 Bonferroni corrected, ns denotes no significance.

Fig. 4. Brain regions exhibiting significant differences in ANOVA results
for A. recruitment, B. integration, and C. flexibility. The colorbar indicates
the range of p−value. The deeper the color the less the p−value.

B. Significant Brain Region Reconfiguration

Static modularity reflects the average state that functional
brain networks exhibit. However, the modular organization
is not static but instead fluctuates constantly in response
to the brain’s functional demands, especially demands that
have dramatic changes, such as when facing brain deficits.
Three measures were produced to characterize this dynamic
process based on the detected multilayer modular network.
Fig. 4 shows the brain regions with significant differences
in these measurements using three-level one-way ANOVA
analysis results. According to the network parcellation, those
brain regions with significant differences in recruitment are

distributed across four networks: SMN, SAN, VIS, and LN
(Fig. 4A, refer to Fig. 1 for their definitions and brain
location.). The brain regions with significant differences in
integration mainly reside in SAN and VIS (Fig. 4B). Brain
regions with significant differences in flexibility are distributed
primarily in network SAN and CE (Fig. 4C).

C. Trends in Network Reconfiguration Based on Stroke
Severity

The brain regions which showed significantly different
measurements between groups imply that the brain networks
reconfigure themselves after stroke. Next, we examined how
dynamic reconfiguration is exhibited in brain functional net-
works and whether these configuration patterns differ between
patients with different stroke severity.

First, the between-group differences in recruitment are ex-
amined. The mild and severe patients show that most brain
regions decline in recruitment compared to healthy controls.
Severe patients exhibit more regions with declined recruit-
ment compared to healthy controls than do the mild patients,
implying that the number of regions with decreased recruit-
ment increases as stroke severity grows. This inference was
reinforced when solely comparing mild patients and severe
patients, where the severe patients showed lower recruitment in
ACC (t = −2.225, p = 0.044), left anterior insula (t = 2.664,
p = 0.019) and right SMG (t = −2.546, p = 0.024) than the
mild patients. Fig. 5 illustrates the distribution of these regions
with significant differences between subgroups. As nodal-level
recruitment significantly differs, so the recruitment in large-
scale systems exhibits differences (F = 15.29 p < 0.0001). Post
hoc comparison shows the mild patients had lower recruitment
in VIS (t = −4.973, p < 0.0001) and LN (t = −2.342,
p = 0.030), and the severe patients in SMN, SAN and LN
compared to healthy controls (FDR corrected p < 0.05).

Next, the group difference in integration between controls,
mild patients, and severe patients was tested with the results
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Fig. 5. Results of post-hoc tests to examine the differences in recruitment between groups with distinct clinical symptoms (∗p < 0.05 two-sided,
FDR corrected). The brain maps on the left indicate the significantly different areas between subgroups, and the color bar represents the t statistic,
indicating the direction alteration. The boxplot on the right shows the network alteration between subgroups. DMN: Default mode network. SMN:
sensorimotor network. VIS: Visual network. SAN: salience network. DAN: dorsal attention network. FPN: frontoparietal network. LN: language
network, CE: cerebellar network.

shown in Fig. 6. The post hoc comparison indicates that
severe patients have higher integration in the anterior insula
(t = 2.762, p = 0.011), right and left SMG (left: t = 2.886,
p = 0.009. right: t = 2.869, p = 0.009), and lateral visual
area (t = 2.618, p = 0.016) compared to controls. Neither
mild patients and controls nor mild patients and severe patients
differed in this aspect. In terms of integration between brain
functional networks, the integration between DMN and CE
(F = 4.54, p = 0.019), SMN and CE (F = 3.66, p = 0.039),
VIS and LN (F = 4.18, p = 0.026), DAN and CE (F = 4.71,
p = 0.017), FPN and CE (F = 3.45, p = 0.04) was
significantly altered. Post hoc t-tests, contrasting mild patients
and healthy controls, revealed a stroke-induced decrease in
integration between DMN and CE (t = −2.124, p = 0.036)
but an increase between VIS and LN (t = 2.208, p = 0.040),
DAN and CE (t = 2.757, p = 0.013). In contrast, severe
patients comprised a decrease in integration between DMN
and CE (t = −2.653, p = 0.015), FPN and CE (t = −2.899,
p = 0.008), but an increase between SMN and CE (t = 3.345,
p = 0.003), VIS and LN (t = 2.213, p = 0.037), and DAN and
CE (t = 2.218, p = 0.037) when compared to healthy controls
(p < 0.05, FDR-corrected). Mild and severe patients did not
feature significant differences in between-network integration
after correction for multiple comparisons. Fig. 6A. illustrates
the details on the integration of altered network pairs.

Lastly, we investigated the between-group difference in
flexibility. While a significant effect in flexibility was not
detected when contrasting severe patients and healthy controls,
mild patients featured significantly different flexibility in brain
regions and functional networks compared to both controls and
severe patients. In particular, the majority of the significantly
altered areas resided in the salience and cerebellum functional
domains. For example, mild patients have lower flexibility in

the left RPFC than both other groups (to controls: t = −4.078,
p = 0.0006; to severe patients: t = −2.648, p = 0.020). The
lower flexibility in the mild patients was also exhibited in
the anterior cerebellum when contrasting with controls (t =
−2.433, p = 0.025) and in the right insula when contrasting
with severe patients (t = −2.039, p = 0.038). A similar trend
between groups is also observed in terms of functional network
flexibility. Mild patients not only featured less flexibility in
SAN than severe patients (t = −2.410, p = 0.032) but also
lower flexibility in SAN (t = −2.842, p = 0.010) and CE
(t = −2.714, p = 0.035) than controls. Notably, flexibility in
SAN did not go down further as severity increased. When
compared to mild patients, increased SAN flexibility was
observed in severe patients. The box plot in Fig. 6B shows
the two networks (SAN and CE) with significantly different
flexibility. Severe patients and controls did not differ in this
regard.

Collectively, patients, no matter which level of severity,
show remarkably consistent reduced recruitment compared to
healthy controls. This reduction seems to exhibit continuity, as
lower recruitment was observed in severe patients compared to
mild patients. On top of that, the post-stroke dynamic recon-
figuration can be represented by pairwise network integration
instead of within-network integration. The mild and severe
patients shared increased DMN-CE and decreased VIS-LN
and DAN-CE integration. Regarding flexibility, this dynamic
network measure has a significant group difference in SAN
and CE. Of note is that SAN flexibility displays a U-shaped
curve as severity rises, which exhibits a converse trend against
SAN recruitment.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3371097

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



8 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

Fig. 6. Post-hoc test results examining the differences in the (A) integration and (B) flexibility between groups with distinct clinical symptoms. The
brain maps indicate the significantly different areas between subgroups, and the color bar represents the t statistic, indicating the direction alteration.
The colored tiles on the left in A represent between-network integration with significant effects (∗p < 0.05 FDR corrected.). The boxplot on the
right shows the network alteration between subgroups (∗p < 0.05 FDR corrected). DMN: Default mode network. SMN: sensorimotor network. VIS:
Visual network. SAN: salience network. DAN: dorsal attention network. FPN: frontoparietal network. LN: language network, CE: cerebellar network.

IV. DISCUSSION

In this study, the dynamic functional network changes were
modeled across three groups of patients: healthy, mild stroke,
and severe stroke, by using a multilayer network method.
Based on the inherent dynamics of the brain in a resting state,
the post-stroke multilayer function networks were constructed,
and three measures (recruitment, integration, flexibility) char-
acterizing the brain network reconfiguration after a stroke
were calculated. Given the trends observed in these measures
across the three states of participants, we can learn that mild
and severe patients exhibit different reconfiguration patterns
(a summary of the reconfiguration patterns can be seen in
Fig. 7). Mild stroke patients can be summarized as having a
reduction in recruitment in VIS and LN, decreased DMN-CE
and increased VIS-LN and DAN-CE integration, and declined
SAN and CE flexibility. In contrast, severe patients were
characterized by reduced SMN, SAN, and LN recruitment.
In addition to the same integration trend as in mild patients,
severe patients were also observed to have raised SMN-CE
and lower FPN-CE integration additionally. To the best of our
knowledge, this is the first study applying a multilayer network
model and evaluating multiple dynamic measures to explore
the dynamic reconfiguration of the functional brain network
following a stroke. We believe these findings could underpin
post-stroke functional plasticity and reorganization and may
enable new insight into rehabilitation strategies to promote
recovery of function.

A. Whole Brain Static Modularity Across Stroke Patients
with Different Levels of Severity

In post-stroke patients, the value of static modularity is
lower than in healthy controls. This result was consistent with
previous studies providing evidence that modularity in resting-
state post-stroke patients is reduced [11], [31]. There was no
significant group effect detected in stroke patients regarding
static modularity, but a much higher value can be observed
in severe patients. Despite there being no direct evidence
proving that the relationship between modularity and post-
stroke severity fits a U-shape of the curve (modularity vs.
severity), such a plausible relationship has been depicted in
previous dynamic functional connectivity analyses for acute
stroke patients. For example, mild patients prefer to stay in a
densely connected brain state characterized by a lower level
of modularity than severe patients [14]. However, studies on
post-stroke recovery also present a linear relationship between
modularity and behaviors: modularity continually increases as
the severity of clinical symptoms alleviates until it reaches a
normal level. Duncan et al. [9] reported that aphasia patients
with improved narrative production following therapy had
increased modularity. A recent study of large-scale stroke
patients by Siegel et al. [31] demonstrated that two weeks after
stroke, patients’ functional deficits had been alleviated, and
in parallel with this function recovery, the modular structure
reemerged and was enriched. These two distinctly different
trends in modularity can be explained by differences between
the between-person and the within-person effects. Within-
person effects emphasize the trend over a certain period for
a specific group, while between-person effects fuse multiple
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differences that the groups exhibit [39].

B. Functional Segregation and Integration in dynamic
reconfiguration of brain function network

The human brain can be parcelled into various functional
domains. Functional segregation refers to the independent
processing ability of the locally isolated domain to define
specific brain functions (when it comes to cooperation between
the distributed domains, it refers to functional integration). The
modular brain organization is not static but instead fluctuates
constantly in response to brain functional demands, even in a
resting state. Hence, it is more reasonable to conclude post-
stroke functional segregation and integration trends from the
dynamic measures than from the static modularity.

First, there was reduced recruitment within functional net-
works in both mild and severe patients suggesting that VIS
and LN in mild patients, SMN, SAN, and LN in severe
patients tend to process information in an isolated state.
Given the bodily functional deficits related to these functional
domains, this isolation might correlate with the specific sever-
ity of clinical symptoms. Particularly, severe patients were
found to have significantly lower recruitment in SAN than
mild patients, suggesting that patients with higher clinical
symptoms have much lower SAN segregation. Next, results
show that the pairwise integration between functional domains
has been significantly altered. Regardless of patient groups,
increased integration between VIS and LN and between DAN
and CE, and decreased integration between DMN and CE
can be observed. The post-stroke integration changes suggest
that the stroke lesions alter the information transfer between
domains instead of within the domain. Besides, it is worth
noting that severe patients show more integration alteration
than mild patients. This alteration presents a link between
the interaction-between-domain and the level of post-stroke
clinical symptoms, suggesting that between-domain interaction
could potentially be a new biomarker for stroke severity.
Interestingly, results also show that the between-network in-
teraction alteration follows a specific balancing mechanism:
some pairwise integrations increase while others decrease.

Collectively, stroke groups with different severity levels
express distinct dynamic patterns, however, for either the mild
or severe patients, the recruitment and integration trend sug-
gests a trade-off between network segregation and integration:
segregation increases between some systems, and integration
increases or decreases between others.

C. The Association between Network Flexibility and
Stroke Impairment

As a measure developed on the time-varying network, the
flexibility in this study emphasizes the temporal variations in
the network configuration. The higher the flexibility, the more
frequently the network engages in between network interac-
tions. The lower flexibility found in mild patients indicates that
the role of two networks in brain communication is decreasing,
which explains the post-stroke cognitive deficit [40]. As there
are no networks with significantly different flexibility in severe
patients, we can make no conclusions regarding the flexibility

level being dependent on the severity level. Nevertheless,
network flexibility has been found to be associated with verbal
creativity [41], attention [42], fatigue [43], depression [25],
and high-order cognitive functions [44]. These studies confirm
the neurobiological basis of network flexibility during adaptive
brain processes. Hence, it is natural to speculate that flexibility
is positively correlated with stroke severity. This alleged rela-
tionship supports a post-stroke neuron bypass theory [45], i.e.,
through network reorganization, the neurons bypass the brain
regions with deficits and attempt to form new connectivity.
These newly forming pathways drive the switching rate to
fluctuate wildly to an optimal connectivity pattern. However, if
the flexibility could foresee the exacerbation or improvement
of brain function after a stroke still needs to be verified. [46].
In the future, it is worth trying to acquire long-term post-stroke
behavioral markers to investigate the link between flexibility
and brain function.

D. Limitations
The current research still has some limitations for further

consideration. First, the sample size of our study was rela-
tively small; hence, independent studies with large cohorts of
patients will be crucial for the validation of our conclusions.
Second, we optimized the multilayer modularity with the
grid-search method across a range of γ ∈ [0.9, 1.0, 1.1] and
ω ∈ [0.5, 0.75, 1.0]. Such a method has a risk of falling the
trap of local optimal. Besides, recent studies suggest that the
γ = 1.0 and ω = 2.5 can achieve the highest test-retest
reliability of modularity. The value of γ is already in our
candidate range and hence a broader range of ω and more
flexible combinations might be worthwhile for future studies.
Third, in this study, the brain parcellation of 32 ROIs was only
considered, which covers fewer hubs in subcortical regions.
Whether subcortical regions have network reconfiguration is
still poorly known. In the future, fine-grained brain parcellation
such as 264 ROIs provided by Power et al. [47] and 300-ROI
parcellation provided by Schaefer et al. [48] can be explored
further to enhance the understanding of the readjustment both
in the cortical and subcortical networks.

CONCLUSION

In this study, a multi-layer network analysis-based method
was utilized to study the dynamic changes in the brains of
stroke patients with different severity levels. The indistinguish-
able network reconstruction pattern with severity dependencies
demonstrates the potential of this dynamic method in capturing
essential features of clinical symptoms of a stroke. Patients
with severe deficiencies tend to reduce recruitment and in-
crease integration between networks. However, patients with
mild defects have lower network flexibility. These observations
provide clear evidence for brain network reconstruction after
stroke, whereas the static method cannot do. Therefore, this
study expands the resting state fMRI-based functional connec-
tivity analysis methods for post-stroke patients. Notably, the
degree of functional impairment after stroke seems related to
differences in dynamic network reorganization patterns among
stroke patients. In clinical practice, these findings could help
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Fig. 7. Summary of the reconfiguration patterns of stroke patients with different degrees of symptoms. (A) Mild: a reduction in recruitment in
VIS and LN, decreased DMN-CE and increased VIS-LN and DAN-CE integration, and declined SAN and CE flexibility. (B) Severe: reduced SMN,
SAN, and LN recruitment. In addition to the same integration trend as in mild patients, severe patients were also observed to have raised SMN-CE
and lower FPN-CE integration. The legend of corresponding symbols is presented in the figure. DMN: Default mode network. SMN: sensorimotor
network. VIS: Visual network. SAN: salience network. DAN: dorsal attention network. FPN: frontoparietal network. LN: language network, CE:
cerebellar network.

observe the transition from a severe to a mild state during
stroke patients’ rehabilitation process. Moreover, the proposed
dynamic method could assist clinicians in performing accurate
prognosis assessments or be used as a brain status monitoring
method while conducting the therapeutic intervention.
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S. Kheilholz, A. Kucyi, R. Liégeois, M. A. Lindquist, and A. R.
McIntosh, “Questions and controversies in the study of time-varying
functional connectivity in resting fMRI,” Network Neuroscience, vol. 4,
no. 1, pp. 30–69, 2020.

[18] M. G. Preti, T. A. Bolton, and D. Van De Ville, “The dynamic functional

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3371097

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



KAICHAO WU et al.: DYNAMIC RECONFIGURATION IN STROKE 11

connectome: State-of-the-art and perspectives,” NeuroImage, vol. 160,
pp. 41–54, 2017.

[19] K. Wu, B. Jelfs, K. Neville, and J. Q. Fang, “fmri-based static and dy-
namic functional connectivity analysis for post-stroke motor dysfunction
patient: A review,” arXiv preprint arXiv:2301.07171, 2022.

[20] K. Finc, K. Bonna, X. He, D. M. Lydon-Staley, S. Kühn, W. Duch, and
D. S. Bassett, “Dynamic reconfiguration of functional brain networks
during working memory training,” Nature Communications, vol. 11,
no. 1, pp. 1–15, 2020.

[21] S. Tian, Y. Sun, J. Shao, S. Zhang, Z. Mo, X. Liu, Q. Wang, L. Wang,
P. Zhao, and M. R. Chattun, “Predicting escitalopram monotherapy
response in depression: the role of anterior cingulate cortex,” Human
Brain Mapping, vol. 41, no. 5, pp. 1249–1260, 2020.

[22] G. Michelini, L. J. Norman, P. Shaw, and S. K. Loo, “Treatment
biomarkers for ADHD: Taking stock and moving forward,” Translational
Psychiatry, vol. 12, no. 1, pp. 1–30, 2022.

[23] G. Gifford, N. Crossley, M. J. Kempton, S. Morgan, P. Dazzan, J. Young,
and P. McGuire, “Resting state fMRI based multilayer network config-
uration in patients with schizophrenia,” NeuroImage: Clinical, vol. 25,
p. 102169, 2020.

[24] X. He, D. S. Bassett, G. Chaitanya, M. R. Sperling, L. Kozlowski, and
J. I. Tracy, “Disrupted dynamic network reconfiguration of the language
system in temporal lobe epilepsy,” Brain, vol. 141, no. 5, pp. 1375–1389,
2018.

[25] S. Han, Q. Cui, X. Wang, L. Li, D. Li, Z. He, X. Guo, Y. Fan, J. Guo, and
W. Sheng, “Resting state functional network switching rate is differently
altered in bipolar disorder and major depressive disorder,” Human Brain
Mapping, vol. 41, no. 12, pp. 3295–3304, 2020.

[26] A. K. Bonkhoff, M. Schirmer, M. Bretzner, M. Etherton, and N. S. Rost,
“Abnormal dynamic functional connectivity is linked to recovery after
acute ischemic stroke,” Human Brain Mapping, no. 3, 2021.

[27] K. Wu, B. Jelfs, S. S. Mahmoud, K. Neville, and J. Q. Fang, “Tracking
functional network connectivity dynamics in the elderly,” Frontiers in
Neuroscience, vol. 17, 2023.

[28] S. Whitfield-Gabrieli and A. Nieto-Castanon, “CONN: A functional
connectivity toolbox for correlated and anticorrelated brain networks,”
Brain Connectivity, vol. 2, no. 3, pp. 125–141, 2012.

[29] W. D. Penny, K. J. Friston, J. T. Ashburner, S. J. Kiebel, and T. E.
Nichols, Statistical parametric mapping: the analysis of functional brain
images. Elsevier, 2011.

[30] J. S. Siegel, A. Z. Snyder, L. Ramsey, G. L. Shulman, and M. Cor-
betta, “The effects of hemodynamic lag on functional connectivity and
behavior after stroke,” Journal of Cerebral Blood Flow & Metabolism,
vol. 36, no. 12, pp. 2162–2176, 2016.

[31] J. S. Siegel, B. A. Seitzman, L. E. Ramsey, M. Ortega, E. M. Gordon,
N. U. Dosenbach, S. E. Petersen, G. L. Shulman, and M. Corbetta, “Re-
emergence of modular brain networks in stroke recovery,” Cortex, vol.
101, pp. 44–59, 2018.

[32] M. Rubinov and O. Sporns, “Complex network measures of brain
connectivity: Uses and interpretations,” NeuroImage, vol. 52, no. 3, pp.
1059–1069, 2010.

[33] C. Favaretto, M. Allegra, G. Deco, N. V. Metcalf, J. C. Griffis, G. L.
Shulman, A. Brovelli, and M. Corbetta, “Subcortical-cortical dynamical
states of the human brain and their breakdown in stroke,” Nature
Communications, vol. 13, no. 1, pp. 1–17, 2022.

[34] H. Liu, K. Hu, Y. Peng, X. Tian, M. Wang, B. Ma, Y. Wu, W. Sun,
B. Liu, A. Li et al., “Dynamic reconfiguration of human brain networks
across altered states of consciousness,” Behavioural Brain Research, vol.
419, p. 113685, 2022.

[35] D. S. Bassett, M. A. Porter, N. F. Wymbs, S. T. Grafton, J. M. Carlson,
and P. J. Mucha, “Robust detection of dynamic community structure in
networks,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 23, no. 1, p. 013142, 2013.

[36] P. J. Mucha et al., “Community structure in time-dependent, multiscale,
and multiplex networks,” Science, vol. 328, no. 5980, pp. 876–878,
2010.

[37] D. S. Bassett, M. Yang, N. F. Wymbs, and S. T. Grafton, “Learning-
induced autonomy of sensorimotor systems,” Nature Neuroscience,
vol. 18, no. 5, pp. 744–751, 2015.

[38] S. Maslov and K. Sneppen, “Specificity and stability in topology of
protein networks,” Science, vol. 296, no. 5569, pp. 910–913, 2002.

[39] P. J. Curran and D. J. Bauer, “The disaggregation of within-person
and between-person effects in longitudinal models of change,” Annual
Review of Psychology, vol. 62, p. 583, 2011.

[40] B. Rao, S. Wang, M. Yu, L. Chen, G. Miao, X. Zhou, H. Zhou,
W. Liao, and H. Xu, “Suboptimal states and frontoparietal network-
centered incomplete compensation revealed by dynamic functional net-
work connectivity in patients with post-stroke cognitive impairment,”
Frontiers in Aging Neuroscience, vol. 14, 2022.

[41] Q. Feng, L. He, W. Yang, Y. Zhang, X. Wu, and J. Qiu, “Verbal creativity
is correlated with the dynamic reconfiguration of brain networks in the
resting state,” Frontiers in Psychology, vol. 10, p. 894, 2019.

[42] J. M. Shine, O. Koyejo, and R. A. Poldrack, “Temporal metastates
are associated with differential patterns of time-resolved connectivity,
network topology, and attention,” Proceedings of the National Academy
of Sciences, vol. 113, no. 35, pp. 9888–9891, 2016.

[43] R. F. Betzel, T. D. Satterthwaite, J. I. Gold, and D. S. Bassett, “Pos-
itive affect, surprise, and fatigue are correlates of network flexibility,”
Scientific Reports, vol. 7, no. 1, pp. 1–10, 2017.

[44] M. Pedersen, A. Zalesky, A. Omidvarnia, and G. D. Jackson, “Multilayer
network switching rate predicts brain performance,” Proceedings of the
National Academy of Sciences, vol. 115, no. 52, pp. 13 376–13 381,
2018.

[45] A. Crofts, M. E. Kelly, and C. L. Gibson, “Imaging functional recov-
ery following ischemic stroke: Clinical and preclinical fMRI studies,”
Journal of Neuroimaging, vol. 30, no. 1, pp. 5–14, 2020.

[46] C. L. Gallen and M. D’Esposito, “Brain modularity: A biomarker of
intervention-related plasticity,” Trends in Cognitive Sciences, vol. 23,
no. 4, pp. 293–304, 2019.

[47] J. D. Power, A. L. Cohen, S. M. Nelson, G. S. Wig, K. A. Barnes, J. A.
Church, A. C. Vogel, T. O. Laumann, F. M. Miezin, B. L. Schlaggar
et al., “Functional network organization of the human brain,” Neuron,
vol. 72, no. 4, pp. 665–678, 2011.

[48] A. Schaefer, R. Kong, E. M. Gordon, T. O. Laumann, X.-N. Zuo, A. J.
Holmes, S. B. Eickhoff, and B. T. Yeo, “Local-global parcellation of
the human cerebral cortex from intrinsic functional connectivity mri,”
Cerebral cortex, vol. 28, no. 9, pp. 3095–3114, 2018.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3371097

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


	Introduction
	Materials and Methods
	Participants
	MRI Acquisition
	FMRI Data Preprocessing and Head Motion Control
	Functional Connectivity Estimation
	Static Modularity
	Multilayer Modularity
	Statistical Analysis

	Results
	Whole Brain Static Modularity Alteration
	Significant Brain Region Reconfiguration
	Trends in Network Reconfiguration Based on Stroke Severity

	Discussion
	Whole Brain Static Modularity Across Stroke Patients with Different Levels of Severity
	Functional Segregation and Integration in dynamic reconfiguration of brain function network
	The Association between Network Flexibility and Stroke Impairment
	Limitations


