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An integrated machine learning and metaheuristic approach for advanced 
packed bed latent heat storage system design and optimization 
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A B S T R A C T   

To tackle the challenge of waste heat recovery in the industrial sector, this research presents a novel design and 
optimization framework for Packed Bed Latent Heat Storage Systems (PBLHS). This features a Deep Learning 
(DL) model, integrated with metaheuristic algorithms. The DL model was developed to predict PBLHS perfor
mance, trained using data generated from a validated Computational Fluid Dynamics (CFD) model. The model 
exhibited a high performance with an R2 value of 0.975 and a low Mean Absolute Percentage Error (<9.14%). To 
enhance the ML model’s efficiency and optimized performance, various metaheuristic algorithms were explored. 
The Harmony Search algorithm emerged as the most effective through an early screening and underwent further 
refinement. The optimized algorithm demonstrated its capability by rapidly producing designs that showcased an 
improvement in total efficiency of up to 85% over available optimized experimental PBLHS designs. This 
research underscores the potential of ML-integrated approaches in laying the groundwork for generalized design 
frameworks for TES systems, offering efficient and effective solutions for waste heat recovery.   

1. Introduction 

Core industries are essential for the current global economic struc
ture but represent some of the toughest sectors to sustainably decar
bonize [1]. Ambitious goals have been set by the European Union to cut 
industrial carbon emissions by 42% by 2030 [2]. Based on estimates, the 
industrial sector consumes 27% of the entire energy and contributes 
30% of heat-related CO2 emissions in the EU [3]. Notably, 70% of the 
energy need stems from thermal processes in industries, making up 
18.9% of the total EU energy demand [4]. These processes release vast 
amounts of waste heat, with roughly 400 TWh/year or one-fifth being of 
high-grade quality, which translates to good recovery and reuse poten
tial [5]. 

Consequently, waste heat recovery (WHR) stands out as an emerging 
solution for energy-intensive sectors [6]. Among various WHR tech
niques, thermal energy storage (TES) is promising in bridging the gap 
between waste heat generation and subsequent consumption needs [7]. 
TES efficiently tackles the spatial and temporal discrepancies observed 
in methods like heat pipes, recuperators and regenerators. Its adaptive 
framework fine-tunes process parameters to enhance output efficiency, 
curbing losses associated with startups and partial operations [7]. Such a 

design proves advantageous in terms of capital costs, especially when 
contrasted with other WHR technologies like Organic Rankine Cycle 
systems or thermoelectric generators [8]. 

TES is primarily categorized into sensible, latent, and thermochem
ical; the latter remains in its developmental phase, mostly focused on 
materials-level research [9]. Sensible TES (STES) stands as a time-tested 
technology, boasting a history spanning centuries [9]. It leverages 
affordable, reliable and stable performance. However, its drawbacks 
include a rapid decline in temperature during its heat release phase 
(discharge) and a relatively low energy density [9]. On the other hand, 
Latent Heat TES (LHTES) is based on the capability of a substance, 
commonly known as a phase change material (PCM), to absorb or dispel 
heat at a constant temperature during its phase transition. Its potential 
has garnered immense research focus lately, with significant applica
tions emerging in fields like solar energy harnessing, peak power and 
WHR [10]. LHTES showcases limited temperature variation through its 
charge/discharge phases and an energy density that surpasses that of 
STES [10]. Yet, PCMs come with challenges: they exhibit subpar thermal 
conductivity, subcooling, susceptibility to corrosion and an often large 
change in volume during phase transition [11]. These challenges impact 
the efficiency of LHTES on individual devices as well as on a system 
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level. Addressing these challenges is feasible by integrating them within 
a porous framework predominantly made up of heat-resistant sub
stances (i.e. refractory materials) [12,13]. The resulting material is 
termed as a Composite Phase Change Material (CPCM). Beyond their 
application in LHTES, CPCMs are also fit for combined STES-LHTES 
configurations. These integrated TES systems have been identified as 
highly promising future solutions [14]. 

PCM encapsulation significantly boosts charging/discharging effi
ciency [11]. CPCMs resolve the issue of PCM leakage, improve PCM 
handling and compatibility and increase their heat transfer area. 
Moreover, they enable PCM deployment in direct heat transfer systems 
[15]. These systems often have reduced thermal resistance due to 
eliminating an intermediary heat exchanger, leading to superior heat 
transfer [14]. Furthermore, with the heat transfer fluid (HTF) serving as 
the storage medium, storage tank designs can capitalize on beneficial 
thermal stratification, enhancing the overall system’s efficiency [14]. 
This enhancement, in turn, amplifies the system’s exergy, especially 
during dormant periods [16]. Direct systems often consist of fewer 
components than their indirect counterparts, resulting in a more 
economical capital investment [17]. 

A notable example of an indirect TES system is the packed bed. When 
packed beds integrate CPCMs, they are termed as packed bed latent heat 
storage systems (PBLHS). PBLHS present a straightforward and effective 
technology suitable for diverse temperature ranges. This flexibility al
lows for its integration with both high-temperature applications like 
small concentrated solar power plants (CSP) or waste heat emissions 
from steel manufacturing processes, and low-temperature applications, 
such as solar thermal systems or waste heat streams [16]. The extensive 
application scope, overall efficiency, and cost-effective setup of PBLHS 
have drawn increasing interest in this technology [18]. 

PBLHS research traces back to the late 1980s. Ananthanarayanan 
and colleagues formulated a computational model to forecast heat ex
change within a packed bed containing encapsulated Al–Si PCMs, 
streamlining its application as an almost-isothermal heat recuperator 
[19]. Concurrently, Beasley and Ramanarayanan conducted experi
mental studies on a PBLHS that featured a bed with encapsulated 
paraffin wax. Their research delved into the effective heat transfer co
efficient across various Reynolds numbers [20]. Additionally, in that 
period, Yagi and Akiyama undertook initial experiments on PBLHS 
utilizing encapsulated metals, targeting waste heat recovery tasks at 
500K [21]. 

Fast-forwarding to more recent times, an interesting theoretical 
exploration by Wu et al. revolved around cascaded PBLHS designs. The 
study identified that systems incorporating numerous cascaded PCMs 
have improved charging efficiency. In another work, Liu et al. explored 
3D modelling of PBLHS, highlighting the pivotal influence of radial 
porosity on heat transfer and PCM melting time. The authors further 
showcased that aspect ratio optimization can improve system perfor
mance [22]. Grabo et al. investigated a PBLHS with non-spherical 
capsule designs using a validated CFD model. These geometries 
offered up to a 20% increase in storage capacity and a reasonable 
thermal power output of approximately 4 kW [23]. Wang et al. devel
oped a transient two-dimensional dispersion-concentric model to model 
a PBLHS. Results show that radial gradient arrangement significantly 
enhances heat transfer performance and reduces system pressure drop 
with a maximum overall energy efficiency of 84.16% [24]. Dong et al. 
proposed a novel PBLHS design with a biomimetic vein hierarchical 
structure. The latter improved temperature distribution, heat transfer 
area, and thermal response compared to the conventional uniform 
structure [25]. Nekoonam and Ghasempour, using a 2D model and 
employing a Genetic Algorithm, optimized the thermal conductivity of 
PCMs in solar-integrated PBLHS designs. They maximised the stored 
energy by tuning inlet temperature and flow rate [26]. El Sihy et al. 
investigated numerically a PBLHS in terms of the number of PCMs and 
their arrangement, latent heat, and capsule size with respect to system 
performance. Their results highlighted improved performance with 

certain PCM configurations, a significant impact of latent heat, and su
perior behaviour with smaller capsule sizes [27]. Manente et al. devel
oped an algorithm to enhance heat recovery from a steel industry’s flue 
gas stream, focusing on steam or electricity production. They found that 
a PBLHS, in combination with organic Rankine or Kalina cycles, pro
duced the most steam and electricity. Investment had a payback period 
of seven years, making it more profitable than high-cost tank-based 
storage units [28]. Wu et al. adeptly utilized CFD to evaluate the effect of 
various parameters on the performance of a PBLHS and noted the effect 
of inlet velocity and temperature [29]. Alptekin and Ezan used an 
in-house 1D transient model to study a latent heat TES unit in Izmir, 
Turkey. They determined optimized HTF flow rates and capsule sizes for 
better efficiency under varying solar conditions. Integrating a heat pump 
and specific PCM types further enhanced performance [30]. He et al. 
employed a lab-built platform and a one-dimensional transient model to 
optimize a two-layered packed-bed heat storage (OT-PTES) system. 
They highlighted key factors like capsule size, PCM melting temperature 
difference, and volume ratio, achieving enhanced charging and dis
charging efficiencies in their design [31]. Mao and Cao employed a 3D 
concentric-dispersion model to investigate the influence of capsule sizes 
in three-layered packed beds for optimizing CSP plants. Their study 
demonstrated that varying capsule geometries significantly impacted 
heat transfer and thermal performance [32]. Mohammadnejad and 
Hossainpour employed Comsol multi-physics for a CFD study on packed 
beds with encapsulated PCMs. Exploring layer configurations and 
porosity, they identified setups improving performance by 29.2% [33]. 
Zhang et al. used the finite volume method (FVM) to study cascaded 
latent heat storage packed beds with varied capsule diameters. They 
found variable diameter capsules improved heat and exergy storage 
capacities by up to 10.68% compared to equal diameters [34]. Aziz et al. 
applied the effectiveness-number of transfer units (ε-NTU) method to 
optimize a packed-bed system with spherical PCMs. By varying param
eters like tank dimensions and sphere counts and sizes, they pinpointed 
configurations maximizing energy storage effectiveness [35]. A recent 
review of PBLHS was conducted by He et al. The authors delved into 
design optimization, capsule shapes, packing methods, and operational 
strategies [18]. 

Conclusively, a thorough review of relevant literature reveals that 
the majority of research conducted on PBLHS modelling involves clas
sical finite element models (FEM) or analytical models. The prevalent 
use of FEM in PBLHS research, while precise, presents limitations such as 
computational expense and time-intensiveness, restricting their utility 
in expansive, real-time applications. Additionally, FEM’s adaptability is 
constrained, often necessitating extensive modification to fit varying 
operational scenarios. Conversely, analytical models offer flexibility but 
at the cost of precision, as they rely on assumptions that may not align 
with the complexities of actual conditions. 

Machine learning (ML), emerging as a compelling alternative, miti
gates these issues with its ability to handle large datasets and with 
greatercomputational efficiency, providing a balanced approach to ac
curacy and computational demand in TES system modeling. ML has 
shown great potential in solving intricate problems across diverse do
mains [36]. When compared to FEM and analytical models, ML has 
considerably lower computational requirements, with no substantial 
trade-off in accuracy, resulting in a more efficient solution-providing 
approach [37]. This is because unlike FEM and analytical models, AI 
operates with approximate models, delivering solutions through 
near-accurate reasoning. Despite this it is able to properly manage un
certainty and imprecision [16]. This is due to the rise of more robust 
computing resources, and advancements in algorithms and techniques 
for data analysis. 

These features have made ML a pretty promising approach for TES 
modelling. Numerous studies have emerged in solar collectors [38], air 
conditioning [39], TES material discovery [40], concentrated solar 
power [41] and space heating among [42] others. In a study conducted 
by Ermis et al., they explored the performance of a finned-tube LTES 
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system that utilized ice as a PCM. They found that ML was able to better 
predict the performance compared to traditional modelling methods and 
linear and polynomial fitting techniques [43]. In another work, Hof
mann et al. modelled the performance of a packed bed regenerator using 
both a 1-D model and a grey-box model reinforced by ML. They 
demonstrated that while the traditional 1D physical model is robust, the 
ML model offers significant advantages in terms of efficiency and 
adaptability, especially when ample data is available [44]. A recent 
thorough review for ML applications in TES has been conducted by He 
et al. [37]. 

In terms of PBLHS, two very recent works have employed ML to 
predict performance. The first one is that of Li and Lv [45]. The authors 
used Latin Hypercube Sampling (LHS) and numerical simulations to 
generate a training dataset. They then employed the Light Boosting 
Machine (LGBM) method to analyze the impact of key factors on PBTESS 
performance. Their findings highlighted the significance of parameters 
like HTF flow rate, tank dimensions, and PCM phase change temperature 
on various performance metrics. Post-optimization using the naive 
Bayes algorithm, they observed substantial improvements in heat 
release time, heat storage, and material utilization rates. However, 
despite significantly improving heat metrics, the study had limitations. 
It only assessed an inlet heat stream range of 100 ◦C and a single order of 
magnitude for the inlet flow rate. Additionally, the research didn’t 
incorporate a cascade system, well known for enhancing TES perfor
mance [46]. Anand et al. conducted the second work, which evaluated 
various ML models, including LR, SVR, KNN, DT, RF, and XGB, to assess 
a PBLHS system’s performance, particularly its charging and discharg
ing times. They found the XGB model resulted in the highest R2 value of 
0.982 and the lowest error metrics. The study also delved into the impact 
of various thermo-physical properties and operating parameters on the 
system’s performance. For instance, changes in thermal conductivity, 
latent heat, and density significantly influenced charging and dis
charging times. However, while the study showcased the potential of 
data-driven approaches in PBTES performance analysis, there were 
notable limitations. A notable concern was overfitting, exacerbated by 
the use of a narrow data range with excessively high resolution, such as 
second-digit temperature accuracy. This approach not only posed 
overfitting risks but also impacted data quality, as high-resolution data 
can overlap with measurement errors. Consequently, this led to 
increased computational demands due to the need for processing a large 
number of data points, affecting the overall efficiency of the model 
training process. Additionally, the study’s scope was limited to a 
25–100 ◦C temperature range, and extrapolation beyond this could be 
problematic. Notably, this work also did not employ a cascade system. In 
summary, while the current research offers valuable insights into PBLHS 
system analysis using ML models, it’s essential to consider its limitations 
and the context in which the models are applied [45]. 

Conclusively, in the face of rising industrial carbon emissions, WHR 
emerges as a crucial solution. TES, and especially LHTES, offers a 
promising avenue. While PCMs have their challenges, encapsulation 
techniques have led to enhanced efficiency and performance in PBLHS. 
Traditional modelling of PBLHS, such as finite element models, has its 
limitations. ML presents a promising alternative, as evidenced by recent 
studies. However, current ML research on PBLHS is narrow in scope, 
often missing out on broader temperature ranges and cascade systems. 
In conclusion, while PBLHS holds significant potential for wWHR, 
expanding ML-integrated research is pressing to harness its capabilities. 
Building on the identified research gap, this study explores a cascade 
PBLHS using advanced deep learning ML methods. This investigation is 
distinct from prior research and encompasses more advanced techniques 
and an extensive temperature and flow rate spectrum. Moreover, it in
corporates dynamic properties of PCMs based on their specific melting 
points. This approach offers a comprehensive and realistic design solu
tion for TES systems, poised to advance the current state-of-the-art 
significantly. 

2. Methods 

2.1. Model definition 

The modelling analysis utilized the computational fluid dynamics 
(CFD) platform, COMSOL Multiphysics. 

Pertaining to the model, several foundational assumptions were 
incorporated. First, the domain packed with PCM capsules is treated as a 
continuous, unified, and isotropic porous environment. Second, any 
radiation-driven heat transfer within the tank is overlooked, and no 
intrinsic heat sources are present. Third, fluid dynamics within the tank 
are presumed stable, with no mass deposition or generation occurring. 
Fourth, the potential thermal expansion effects of the CPCM or the 
tank’s materials aren’t taken into account. For the solid walls interfacing 
with the fluid domain, a “no-slip” condition was applied, ensuring zero 
fluid velocity at these boundaries. Similarly, the standard no-slip 
formulation was adopted within the porous medium, treating the solid 
matrix as impermeable barriers where fluid cannot slip. 

The “Free and Porous Media Flow” interface is employed to compute 
fluid dynamics within the packed bed, utilizing the Navier-Stokes 
equation for compressible flow. The momentum equation was repre
sented as: 

1
εp

ρ(u ⋅∇)u=∇ ⋅ (− pI +K) −

(

μκ− 1 + βρ|u| +Qm

εp
2

)

u + F (1)  

Where, εp is the porosity (dimensionless), ρ denotes fluid density (kg/ 
m3), u is the fluid velocity (m/s), and ∇ is the gradient operator, p stands 
for fluid pressure (Pa), I is the identity matrix, K accounts for external 
force effects, μ represents dynamic viscosity (Pa⋅s), κ indicates the 
permeability of the porous medium (m2), β is a drag coefficient 
(dimensionless), Qm refers to the source term (kg/m3⋅s for the mass 
source; W/m3 for the heat source), and F is the volume force (N/m3). 

Given the conditions of high Reynolds number (Re > 10) or elevated 
Knudsen numbers (Kn > 0.1), typical of packed bed flow, Darcy’s law 
was deemed unsuitable. Therefore, the non-Darcian flow model, relying 
on the Ergun equation, is employed, for which the drag coefficient and 
permeability are defined as: 

β=
1.75

dp

(
ε3

p

)

(
1 − εp

)

ε3
p

(2) 

And 

k=
d2

p

150
ε3

p
(
1 − εp

)2 (3) 

The mass conservation/continuity is expressed as: 

ρ ⋅∇⋅u = Qm (4) 

At the inlet, measures were taken to ensure that the fluid entered the 
domain without any sideways or tangential flow; all fluid flow was 
directed perpendicularly to the inlet boundary. The total volumetric 
flow rate was established based on integration over the inlet boundary, 
considering the radial position and the normal component of flow ve
locity at each point. For the outlet conditions, the boundary stress was 
regulated to ensure a controlled exit of the fluid. Additionally, a 
mechanism was in place at the outlet to suppress any backflow, main
taining the outlet pressure above ambient value. In the simulation, 
gravity was explicitly modelled with a direction opposite to the charging 
flow. Furthermore, the Boussinesq approximation was employed to 
efficiently simulate thermal convection. 

The thermal dynamics within the packed bed were simulated using 
the “Heat Transfer in Solids and Fluids” interface in COMSOL Multi
physics. The equation was expressed as: 

ρCpu ⋅∇T +∇⋅q = Q (5) 
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Where Cp represents the specific heat capacity at constant pressure (J/ 
(kg⋅K)) T is the temperature (K), q stands for the heat flux (W/m2), 
which is defined through the relation q = − k∇T, where k is the thermal 
conductivity(W/(m⋅K)). Finally, Q is a volumetric heat source(W/m3). 

For the fluid domain, the equation is the same as Eq. (5) but also 
includes a term for heat source due to viscous dissipation (Qvd) after Q. 
The air density is modelled according to the ideal gas equation. A linear 
discretization scheme was chosen to solve the above equations, ensuring 
numerical stability and precision. 

A Local Thermal Nonequilibrium (LTNE) approach was employed to 
accurately account for potential temperature disparities between the 
fluid and solid phases within the porous medium. The heat transfer in 
the fluid phase within the porous medium is represented by: 

ρf Cp,f u ⋅∇Tf +∇⋅qf = Qs,f + εpQf + εpQp + εpQvd (6)  

Where 

qf = −
(
εpkf + kdisp

)
∇Tf (7)  

Where f denotes the fluid phase and disp the dispersion. 
The heat transfer in the solid phase (CPCM) is expressed as: 

∇ ⋅ qs = − Qs,f + θsQs (8)  

Where s denotes the solid phase 
The heat exchange term between the fluid and solid phases is given 

by: 

Qs,f = Sbhsf
(
Ts − Tf

)
(9)  

With the specific surface area Sb defined as 

Sb =
6θs

dpe
(10)  

Where dpe is the diameter of the spherical CPCMs in the packed bed in 
(m) 

And the heat transfer coefficient hsf defined as: 

hsf =

[

dpe

(
1

kf Nu
+

1
ks

)]− 1

(11)  

Where Nu is the Nussel number. 
The properties of the CPCM and its phase change were modelled 

using the following relationships: 
An average value for each phase defines the density of the CPCM. 
The specific heat capacity of the solid CPCM Cp,s is represented by: 

Cp,s = θ1Cp,1 + θ2Cp,2 + L1→2
∂am

∂T
(12)  

Where θ1 and θ2 are the volume fractions of the two phases of the CPCM 
(solid and liquid), 

Cp,1 and Cp,2 are the are the specific heat capacities of the two phases, 
L1→2 is the latent heat associated with the phase transition from phase 1 
to phase 2, and am is the mean volume fraction, given by: 

am =
1
2

θ2 − θ1

θ1 + θ2
(13) 

The thermal conductivity of the CPCM, is described as: 

ks = θ1k1 + θ2k2 (14) 

At the tank inflow, the heat flux is determined by the enthalpy 
change from a reference state. This enthalpy change, represented by ΔН, 
is determined by integrating the specific heat at constant pressure over 
the temperature range from a reference ambient temperature to the local 
inlet temperature. 

The losses from the side of the tank are modelled as a specific heat 

flux q0 across the boundary defined as: 

q0 = h (Tamb − T) (15)  

Where Tamb is the ambient temperature, and h, is the heat transfer co
efficient between the tank and the ambient surroundings determined 
from an experimental formula [47]. 

The problem-solving methodology involves first addressing the free 
porous media flow in a stationary phase, decoupling the flow from heat 
transfer to ensure robust initial conditions. Subsequently, heat transfer 
dynamics in solids and fluids are solved in a time-dependent phase, 
incorporating non-isothermal flow effects. To solve the presented 
problem, the Parallel Direct Solver (PARDISO) is employed, tailored for 
efficiently handling large sparse matrices typical of finite element ana
lyses. The solver settings were optimized with automatic preordering 
and scheduling methods to improve computational efficiency, 
leveraging techniques such as row preordering, reuse of preordering, 
Bunch-Kaufman pivoting, and multithreading for forward and backward 
substitution. The solver was set with a relative tolerance of 0.0001 to 
ensure numerical accuracy. For the time-dependent step, a timestep of 
0.5 min was used to adequately capture the system’s transient 
behaviour. 

Given these considerations, the tank’s structure is interpreted as axi- 
symmetric, enabling the packed-bed region’s representation as a porous 
environment with radial variations in porosity. The entire tank is 
streamlined into a two-dimensional axi-symmetric model for simulation 
to enhance computational efficiency. 

The total heat stored within the TES tank is ascertained based on the 
heat transferred to TES tank during the charging processes. Specifically, 
the heat contribution by air (heat transfer fluid) is expressed as: 

Qcharge = ˙mair × τ ×
∑N

n=1

(
TinletCp,air,inlet − ToutletCp,air,outlet

)
(16)  

Where mair represents the mass flow rate of the air (kg/s), τ the timestep 
of the simulation (s) and inlet and outlet denote the entrance and exit of 
the TES tank. For the discharging process this is: 

Qdischarge = ˙mair × τ ×
∑N

n=1

(
ToutletCp,air,outlet − TinletCp,air,inlet

)
(17) 

It should be noted that the value of the Cp of the air is adjusted based 
on the temperature using linear fittings available in the COMSOL Ma
terial’s Library. 

The charging (ηch) and discharging efficiency (ηdis) of the PBLHS is 
then denoted as: 

ηch =
Qcharge

Qin
(18)  

and 

ηdis =
Qdischarge

Qmax
(19)  

Where Qmax is the maximum theoretical energy that can be captured by 
the PBLHS. This encompasses three components: the energy retained by 
the CPCM, the energy retained by the carbon steel tank, and the energy 
retained by the HTF. Consequently, it can described as: 

Qmax =Qtank + QHTF + QCPCM (20) 

The energy retained by the tank, HTF and CPCM is then expressed 
respectively as: 

Qtank =msteelCp,steel
(
Tentry,avg − Tinit

)
(21)  

and 

QHTF =VflowρflowCp,flow
(
Tentry,avg − Tinit

)
(22) 
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and 

QCPCM =mCPCMCp,solid
(
Tentry,avg − Tm

)
+mCPCMht + mCPCMCp,liquid

(
Tm

− TCPCM,final
)

(23)  

Where, msteel and mCPCM is the total mass of the steel and CPCM, 
respectively; Tinit denoted the initial temperature; Vflow the flowrate of 
air; ρflow the density of air; Tm, and TCPCM,final, denote the melting point 
temperature and the final temperature of the CPCM, respectively. Cp,solid 

and Cp,liquid denote the specific heat capacities of the solid and liquid 
phases of the CPCM, respectively, while Cp,steel stands for the specific 
heat capacity of stainless steel; ht the latent heat during solid liquid 
phase transition. 

The thermophysical properties of the CPCM are obtained from 
literature studies. These of air are obtained as a function of temperature 
through correlations provided in the literature that match the operating 
conditions of the PBLHS presented here [48]. These are: 

For the density: 

ρf

(
kg/m3

)
= 7.487× 10− 7T6

f − 2.68× 10− 13T5
f + 3.898× 10− 10T4

f

− 3.025× 10− 7T3
f + 0.0001421T2

f − 0.04642Tf + 12.81 (24)  

And for the specific heat capacity under constant pressure,  

The total efficiency (ηtotal) of the PBLHS is then determined as fol
lows: 

ηtotal = ηch⋅ηdis (26)  

2.2. Data generation 

An extended database is required to obtain a generalized ML-based 
model that can predict the design and performance of a PBLHS sys
tem. To this end, a large-scale parametric analysis was conducted using 
the model described in the previous section. The investigated parame
ters are reported in Table 1. These involve all the important parameters 
when designing a PBLHS system for TES/WHR. These range from 
geometrical ones like aspect ratio and insulation thickness to material 
ones such as the CPCM particle size or its thermal properties. 

One innovation of this work, as opposed to the previously reported in 

the literature, is that the system is treated as a cascade with 3 CPCMs. 
Since the inlet of the system is at the top of the tank, the melting point of 
these CPCMs is selected sequentially from highest (top layer) to lowest 
(bottom layer). A temperature constrain was placed (<600 ◦C) so that 
the operating temperatures are in a range where PCMs are typically 
chemically stable. 

A critical aspect of PBLHS optimization involves tailoring the melting 
point of PCMs to match the specific requirements of the particular waste 
heat stream. However, selecting a PCM with an optimal melting point 
for a given temperature range inherently involves choosing a material 
with a distinct specific heat capacity (Cp). The variability of PCM Cp with 
respect to melting point is visualized in Fig. 1. 

This variability in Cp is crucial, as different materials—each with 
certain values—are required to optimally cover the extensive tempera
ture range of 25 ◦C–600 ◦C. To accurately account for these changes the 

material properties are incorporated in this model as a function of their 
melting point. This approach ensures that the generated dataset reflects 
the real-world performance of PCMs across the targeted temperature 
spectrum. 

In the case of Cp to account for the variations resulting from different 
PCM compositions, the mixing theory is employed. Using the mixing 
theory the effective Cp of CPCMs can be calculated by considering the 
contributions of each component material. The equation used in this 
theory is as follows: 

Table 1 
Evaluated variables in the deep learning model.  

Variable Description Symbol Units Lower Bound Upper Bound 

Storage Tank Diameter ds m 0.15 6 
Inlet Diameter din m 0.1 2 
Particle Radius dp m 0.01 0.25 
Inlet Volumetric Flowrate V_in m3/s 0.1 6 
Insulation Thickness s_ins m 0.01 1 
Storage Tank 1 Length LI m 0.1 5 
Storage Tank 2 Length L2 m 0.1 5 
Storage Tank 3 Length L3 m 0.1 5 
Charging Time t_charging h 1 8 
Discharge Time t_discharge h 1 28 
Initial Temperature T0 ◦C − 5 30 
External Temperature T ext ◦C − 5 30 
Melting Point of CPCM1 T_m1 ◦C 0.1 550 
Melting Point of CPCM2 T_m2 ◦C 0.1 500 
Melting Point of CPCM3 T_m3 ◦C 0.1 500 
Upstream Temperature Tu ◦C 0.1 650  

Table 2 
PCMs selected for the data generation process and reference for their properties.  

Phase Change Material type Temperature (◦C) Reference 

Paraffin RT Series 50–100 Company website 
LiNO3–NaNO3–KNO3–Ca(NO3)2 98–147 [49–51] 
NaNO2–KNO3 138–220 [51–53] 
NaNO3–KNO3 220–334 [51,54–56] 
Li2CO3–Na2CO3–K2CO3 397–600 [57,58]  

Fig. 1. Variation of specific heat capacity with temperature for different PCMs 
selected for data generation process. Reference for their properties are 
in Table 2. 

cpf (J / kgK)= 3.756 × 10− 10T4
f − 1.042 × 10− 6T3

f + 0.0009458T2
f − 0.1178Tf + 1023 (25)   
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CCPCM
p =

∑(
xi ⋅ Cp,i

)
(27)  

Where CCPCM
p the specific heat capacity of the CPCM, Σ represents the 

summation over all components in the composite, xi, mass fraction of 
component i in the composite and Cp,i, the specific heat capacity of 
component i. 

This equation enables us to systematically evaluate how the blending 
of different PCMs and matrix materials, such as MgO, influences the 
overall Cp of the composite. MgO was selected as the matrix material for 
all the CPCMs as it is currently the most frequently reported skeleton 
material and is performing quite well [11]. By applying this theory, the 
thermal behavior of CPCMs can be predicted with greater accuracy, 
facilitating PBLHS systems design which is finely tuned to the demands 
of various waste heat streams. The latent heat is obtained in a similar 
manner. 

For the thermal conductivity Li and Ding recently conducted an 
extensive evaluation of various known empirical formulas for the pre
diction of the thermal conductivity of CPCMs [59]. They identified that 
of known relationships that of Ratcliffe performs best [60]. To this end, 
this was employed to predict the effective thermal conductivity values 
using the respective thermal conductivity of the PCM, depending on its 
melting point, and that of MgO, referenced from the literature [61]. In 
COMSOL software, the temperature-dependent thermal conductivity for 
each PCM was inputted as an interpolation function. It should be noted 
that the melting point of the PCM for each layer had at least one degree 
of difference from the other ones. 

As mentioned, the properties of the CPCMs are defined as a function 
of their respective melting points. To accomplish this, a thorough 
literature investigation was conducted to identify PCMs in the temper
ature range examined in this work that are compatible with MgO. These 
are presented in Table 2. 

In Fig. 2, a snapshot of the model is depicted. The tank exhibits three 
distinct layers, flanked by two free-flow regions representing the space 
between the flanges and the primary packed bed section. The depicted 
lengths of the PCM layers are representative; in actual simulations, these 
lengths are variable. It should be noted that the charging occurs with a 
direction opposite to discharging in order to maximize efficiency. 

The effectiveness of the prediction model was contingent on the 
uniformity of the data sampling process. To achieve this uniformity, a 
significant number of diverse parameter combinations representing the 
entire spectrum of possible combinations were randomly selected. 
Among the various methods available for this purpose, Latin Hypercube 
Sampling (LHS), was identified as the most commonly utilized modern 
experimental design technique [62]. LHS is adept at uniformly sampling 
multiple parameter combinations, ensuring a robust dataset for the 
predictive model. 

In this study, 832 datasets were generated using LHS. After elimi
nating datasets with potential errors and outliers, 620 were retained for 
training the machine learning model (Fig. 3). An initial selection 
included close to 10.000 individual cases; however, the R2 values did not 
significantly differ from those derived from the smaller dataset (<3%). 
Each case was resolved to 2 decimal places. However, for many vari
ables, this level of precision exceeds practical measurement capabilities, 
especially considering the limitations of measurement devices in TES 
systems such as temperature readings from thermocouples. Prior studies 
have used datasets encompassing over 20.000 cases, which may be 
excessive. 

2.3. Machine learning model 

Deep learning (DL) provides a robust tool for predicting heat storage 
and extraction in PBLHS. This is another advantage of the current study 
as opposed to the state-of-the-art where regression ML is employed. With 
its multi-layered neural networks, DL excels in representing hierarchical 
features and automatically learning them from raw data. This allows for 

higher data abstraction, yielding superior generalization to unseen data. 
Moreover, deep models facilitate end-to-end learning and transfer 
learning, where knowledge from one task can be more easily applied to 
another. 

To characterize the PBLHS’s behavior, a thorough investigation is 
conducted by solving the 2D-axisymmetric fluid dynamics and heat 
transfer equations for each data point in the generated dataset. This 
leads to determining the heat stored and extracted across different 
scenarios. 

DL techniques are then employed. Two distinct neural networks are 
trained using the dataset. One network predicts the heat stored, while 
the other predicts the heat extracted by the system. These networks are 
trained to learn the intricate relationships between the input variables 
(Tables 1 and 2) and the corresponding heat storage/extraction values 
(Eqs. (17) and (18)). The model’s input variables are categorized into 

Fig. 2. Visualization of variables examined in the neural network.  
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Fig. 3. Scatter plots of 620 points used for training a machine learning model, sampled via Latin Hypercube Sampling.  

Fig. 4. The neural network used to evaluate the PBLHS, with inputs for system parameters, and outputs for heat stored and extracted, incorporating dropout and 
regularization techniques. 
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three groups: Design Variables, Time Variables, and Temperature Vari
ables. Design Variables include storage tank diameter, inlet diameter, 
particle radius, inlet volumetric flow rate, insulation thickness, and 
lengths of three storage tanks. Time Variables encompass charging and 
discharge times, while Temperature Variables involve parameters like 
initial temperature, external temperature, melting points of phase 
change materials (CPCM), and upstream temperature. 

Following data generation, the specific neural network architecture 
was designed. The complexity and nuances of the PBLHS guided the 
decision to choose a deep architecture with increasing layer sizes 
(Fig. 4). The primary objective centred on balancing model complexity 
with generalization capacity. Each layer and parameter was designed to 
address specific challenges in predictive modelling, such as overfitting 
and capturing intricate input-output relationships. 

To optimize the predictive performance of the neural network ar
chitecture, preprocessing was imperative, including the standardization 
of input features using a StandardScaler. The standardized inputs are 
categorized into X_train_scaled and X_test_scaled. Due to the complexity 
of the PBLHS, with variables of varying scales it helps to place variables 
on a common scale as it enables the neural network to weigh each input 
more effectively. 

The final neural network architecture begins with a dense layer of 
2048 units using ReLU activation, transitioning through layers of 1024, 
256, 64, and 16 units, with appropriate regularizations, including 
dropout layers and L2 penalty. ReLU activation was employed for 
nonlinear transformations. L2 regularization was used to control over
fitting. The final layer, a single unit, outputs continuous values suitable 
for regression tasks. This comprehensive architecture is engineered for 
balance, regularization, and feature extraction, enabling robust gener
alization to unseen data. 

The coefficient of determination (R2) is applied to evaluate the 
trained neural networks’ accuracy. Furthermore, the Mean Absolute 
Percentage Error (MAPE) was also chosen as a metric for quantifying 
discrepancies. MAPE is calculated as: 

MAPE =
1
n

∑n

i=1

⃒
⃒
⃒
⃒
Actuali − Predictedi

Actuali

⃒
⃒
⃒
⃒ ⋅ 100 (28)  

Where, n is the number of data points and Actuali and Predictedi repre
sent the true and predicted values at the ith data point respectively. 

Furthermore, the residuals, which are the differences between the 
predicted and actual values, are subjected to a Shapiro-Wilk test. This 
test checks whether the residuals follow a normal distribution, a crucial 
assumption in many statistical analyses. 

2.4. Optimization protocol 

PBLHS, presents multilevel challenges that depend on a large num
ber of variables. Optimizing such a system requires traversing an 
expansive solution space to determine maximal configurations. Given 
these complexities, traditional optimization methods can be computa
tionally demanding. 

Metaheuristics transcend traditional heuristics by offering advanced, 
often stochastic, strategies for problem-solving. These algorithms have 
an innate capability to navigate broad solution spaces efficiently, 
thereby uncovering high-quality solutions. In this work, an array of 
metaheuristic optimization algorithms are employed, each chosen based 
on their unique strengths relevant the problem domain. Each of these 
algorithms was integrated with the neural network model described 
above. This combination capitalizes on the neural network’s capability 
to estimate heat extraction values rapidly, thus offering the meta
heuristics a swift approximation of system behaviour. This expedites the 
optimization process and ensures a thorough evaluation of each algo
rithm’s adaptability and efficiency. These algorithms are: 

2.4.1. Harmony Search 
The Harmony Search (HS) algorithm is an innovative optimization 

methodology, conceptualized by Z.W. Geem and colleagues in the early 
2000s [63]. This algorithm draws inspiration from the musical process 
of searching for a harmonious melody. Just as a composer experiments 
with combinations of notes to achieve an aesthetically pleasing har
mony, the HS algorithm explores the solution space of an optimization 
problem to find the best possible solution. This approach has been 
successfully applied to various fields, such as groundwater modeling, 
structural design, energy dispatching, water network distribution, 
vehicular routing, and function optimization, among others. Its effec
tiveness is partly due to its ability to mimic the improvisation of musi
cians, translating this into the mathematical process of finding globally 
optimized solutions yi+1 based on the existing solution yi can be 
expressed as: 

yi+1 = yi + H × (2× random number − 1) (29)  

where, random_number is a randomly generated value within the range 
[0,1], and H represents the bandwidth, which determines the extent of 
local solution variations. 

To enhance the variety of solutions and prevent convergence to local 
optima, a randomization factor is introduced: 

Rnew =Rmin +(Rmax − Rmin) × random number (30)  

where, Rnew denotes the new randomized component, with Rmax and Rmin 
defining the upper and lower bounds, respectively. The likelihood of 
implementing a purely random search is: 

Prand = 1 − Paccept (31)  

where Prand is the probability of selecting a completely random solution, 
and Paccept is the probability of accepting the new solution based on 
certain criteria within the algorithm. Consequently, the actual proba
bility of applying pitch adjustment in the solution is quantified as: 

Padjust =Paccept × Rnew (32)  

Where Padjust is the probability of adjusting the current solution to a new 
value, influenced by the degree of randomness Rnew 

The HS algorithm includes a mechanism to fine-tune solutions, 
analogous to adjusting musical pitch. Typically, adjustments to the pitch 
are made in a linear fashion, although the theoretical framework allows 
for nonlinear modifications. Through these components, the HS algo
rithm dynamically balances between explorative random searches and 
exploitative pitch adjustments to iteratively converge on the optimal 
solution. 

2.4.2. Genetic alogrithm (GA) 
The Genetic Algorithm (GA) is a search heuristic that is inspired by 

Charles Darwin’s theory of natural evolution. This algorithm reflects the 
process of natural selection where the fittest individuals are selected for 
reproduction in order to produce offspring of the next generation. The 
GA technique is routinely used to generate high-quality solutions to 
optimization and search problems by relying on bio-inspired operators 
such as mutation, crossover, and selection. 

The fundamental concept of the GA is designed to simulate the sur
vival of the fittest among individual solutions over consecutive gener
ations. For each generation, a new set of approximations is created by 
the process of selecting individuals according to their level of fitness in 
the problem domain and breeding them together using operators bor
rowed from natural genetics. This process leads to the evolution of 
populations of individuals that are better suited to their environment 
than the individuals that they are made from, just as in natural 
adaptation. 

A typical GA cycle includes the following steps, which can be rep
resented in a pseudocode format. 
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1. Initialization - Generate an initial population of candidate solutions 
randomly.  

2. Fitness Evaluation - Evaluate each candidate’s fitness in the 
population.  

3. Selection - Select candidates based on their fitness scores for 
reproduction.  

4. Crossover - Breed new candidates through crossover (recombination) 
of parents.  

5. Mutation - Mutate new candidates at random.  
6. Replacement - Replace the current population with the new 

generation. 

Mathematically, the GA can be modelled using the following 
expressions: 

Let P(t) represent the population at generation t, the process of 
creating a new generation P(t+1) can be expressed as: 

P(t+ 1)= crossover(selection(P(t))) (33)  

P(t+ 1)=mutation(P(t+ 1)) (34)  

where, selectionP(t) function chooses the fitter individuals from P(t), 
crossover function breeds new individuals by combining aspects of the 
selected individuals, and mutation function introduces variations. 

The fitness of each individual I in the population is evaluated using a 
fitness function f: 

fitness(I)= f (I) (35) 

The selection process can be represented as: 

I′= select(P(t)) (36)  

where I′ is the individual selected from the population P(t). 
The crossover and mutation operations introduce the genetic di

versity and are defined as: 

Inew = crossover(I1, I2) (37)  

Imutated =mutation(Inew) (38)  

Where I1 and I2 are parent individuals, Inew is the offspring after cross
over, and Imutated. 

is the offspring after mutation. 
These equations and operators guide the GA towards the discovery of 

optimal or near-optimal solutions by exploring and exploiting the search 
space in a manner akin to biological evolution. 

2.4.3. Ant Colony Optimization (ACO) 
Ant Colony Optimization (ACO) is a probabilistic technique for 

solving computational problems which can be reduced to finding good 
paths through graphs. This algorithm is inspired by the behavior of ants 
in finding paths from their colony to food sources. The pioneering work 
by Dorigo in the early 2000s introduced this innovative approach, which 
has since been applied to various complex problems, from routing to 
scheduling and beyond [64]. 

In the ACO algorithm, a number of artificial ants build solutions to 
the optimization problem and improve them by mimicking the way real 
ants find the shortest paths to food. Each ant explores the search space 
and probabilistically selects the next state based on the pheromone trails 
and the heuristic information (e.g., the distance to the destination). 

The pheromone value on path e from node i to node j for ant a, which 
reflects the learned desirability of choosing that path, can be expressed 
as follows: 

Δτa
ij =

1
La if ath ant travels from edge i to g, otherwise 0 (39)  

where La is the length of the tour constructed by ant a. The shorter the 

tour, the larger the amount of pheromone deposited, inversely propor
tional to the tour length. 

The residual pheromone on path e from node i to node j after all ants 
have completed their tours and before the new pheromone is laid down 
is given by: 

τr
ij =

∑m

a=1
τa

ij (40)  

where m is the total number of ants. The updated pheromone trail, 
considering the evaporation rate, is then: 

τnew
ij =(1 − ρ)⋅τij + τr

ij (41)  

where ρ is the evaporation rate. If ρ is set to 1, all pheromone evaporates 
before new pheromone is added; if it is set to 0, there is no evaporation. 

The Ant Colony Optimization algorithm utilizes a heuristic desir
ability ηij, which is defined as the inverse of the distance Li,j between 
nodes i and j, to guide the search towards shorter paths: 

ηij =
1

Li,j
(42)  

With this heuristic. the probability that ant a in node i chooses to move 
to node j is calculated by: 

Pa
ij =

(
τij
)α⋅
(
ηij
)β

∑(
τij
)
⋅
(
ηij
) (43)  

where α and β are parameters that control the influence of the phero
mone trail and the heuristic information, respectively, and ηij is the 
heuristic desirability of moving from node i to node j. 

This probability equation integrates both the learned experience of 
the ants, represented by the pheromone trails, and the problem-specific 
heuristic. 

The objective is to find the shortest path P, which is the sequence of 
nodes with the maximum product of pheromones and heuristic desir
ability, represented as: 

P= argmax
P

(
∏

(i,j)∈P

(
τij ⋅ ηij

)
)

(44)  

where, the product inside the maximization is taken over all edges (i, j)
that are part of the path P, and the argmax function selects the path that 
maximizes this product, fulfilling the goal of the optimization process. 

These formulas highlight the essence of the ACO algorithm, where 
ants iteratively construct solutions and simulate the laying down of 
pheromones to guide subsequent ants, converging over time to the 
shortest or most optimal path. 

2.4.4. Wind-Driven Optimization (WDO) 
The Wind-Driven Optimization (WDO) algorithm is a nature-inspired 

metaheuristic optimization algorithm that simulates the motion of air 
particles in the atmosphere to solve optimization problems. Introduced 
by Bayraktar et al., in 2013, the WDO algorithm is recognized for its 
group-based iterative approach to global optimization, offering a bal
ance of exploration and exploitation to efficiently converge towards 
global optima and avoiding premature convergence to local minima 
[65]. 

The WDO algorithm models the dynamics of air particle movement 
using the following update equations for velocity and position: 

The new velocity of an air particle is computed by considering the 
current velocity, the gravitational force, the effect of air particle mass 
(rank), and the Coriolis force. The mathematical representation of the 
new velocity vnew is given by: 
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vnew =(1 − α)vcur − gvcur +

(
RT
i
− 1
)
(
xopt − xcur

)
+ cotherdim

cvotherdim
cur

i
(45)  

where, vnew is the new velocity, vcur is the current velocity, α is the 
friction coefficient, g is the gravitational acceleration, RT is a factor 
involving the universal gas constant and temperature, i represents the 
rank of air molecules, xopt is the current optimal position, xcur is the 
current position, votherdim

cur is the velocity component of air particles in this 
dimension influenced by any other dimensions and c is the Coriolis force 
coefficient, expressed as: 

c= − 2
[
Ω

̅̅̅̅̅̅̅
PR′

√ ]
(46)  

Where c is the Coriolis force coefficient, Ω represents the rotational ef
fect, and PR′ is a modified term that includes the product of pressure and 
a modified gas constant. This term is used in the velocity update equa
tion of the Wind-Driven Optimization algorithm. 

The new position of the air particle is then updated based on its new 
velocity: 

xnew = xcur + vnewΔt (47) 

This equation updates the current position xcur by adding the product 
of the new velocity vnew and the time interval Δt, effectively simulating 
the displacement of the air particle within the search space. 

The WDO algorithm utilizes these update rules iteratively, simu
lating the natural process of wind movements to distribute air particles 
throughout the search space, thereby searching for the optimal solution 
to the given problem. The algorithm’s performance has proven effective 
in various fields, particularly in electrical engineering applications as 
demonstrated by its initial application. 

3. Results and discussion 

3.1. CFD model validation and independence testing 

The CFD model employed in this work has already been validated by 
the COMSOL team using the data from the work of Nallusamy et al. with 
water as the HTF [66]. Furthermore, in a more recent work, Rabbi and 
Asif again validated the model using the same data, which found that 
despite minor differences in PCM properties and potential heat transfer 
variables, numerical results closely aligned with experimental data, with 
errors under 3%. 

Nevertheless, to ensure the robustness of the proposed model, which 
uses air as the HTF, further validation was undertaken using two distinct 
studies: one at medium-high temperature and another at low. This 

approach demonstrated the model’s capacity to simulate the physics 
across the specified temperature range accurately. 

The primary objective was to assess the disparity between the 
simulated temperature profiles and the corresponding experimental 
data. To achieve direct comparison, spline interpolation was utilized to 
enable a direct comparison despite differences in temporal resolution 
between experimental and simulation datasets. 

For the first study chosen for validation, the setup features a cylin
drical storage tank which was established by Bellan et al. [67]. The tank 
is made of carbon steel and houses 770 capsules, each with an average 
diameter of 0.0275 m and yielding a tank porosity of 0.345. The packed 
bed section is 0.254 m long, flanked by two 0.127 m free flow regions, 
and the inlet diameter measures 0.22 m. The external tank surface is 
shielded with a 0.1524 m thick insulation layer. During the charging 
process, the inlet temperature was maintained at 326 ◦C, with an initial 
temperature of 286 ◦C. Conversely, for the discharging process, the 
initial temperature was set at 326 ◦C, and the inlet temperature was 
reversed to 286 ◦C. The flowrate was consistently held at 110 m3/h 
throughout these operations. Given the uncertainty in experimental 
tests, the simulation results almost overlap with the experimental ones 
for this study (Fig. 5). The largest noted error is at 230min, which is 
1.63%. The average experimental-to-simulation error is 0.46%. 

The second validation study was based on experimental data by M.A. 
Izquierdo-Barrientos et al. Their setup utilized a well-insulated packed 
bed (glass-wool, 2 cm thickness) filled with GR50 spheres with a 
diameter of 1.64 mm [67]. The packed bed section had dimensions of 
200 mm in both length and height. Air, channelled through a sieve at the 
bottom of the bed, was introduced at an inlet temperature of 65 ◦C with 
an initial bed temperature set at 15 ◦C. For the discharge phase, the 
temperature was 27 ◦C. The employed air mass flow rate was 450 l/min. 
A marginal deviation is noted during the charging phase, with simula
tions suggesting a minor lag near full charge. 

Conversely, the discharging phase is well-represented in the simu
lations, with slight variations in the gradient of the phase change 
plateau. The most significant divergence is during the charging phase at 
the 0.64 h mark, with a temperature difference of 9.2 ◦C. Nevertheless, 
the average error is 4.47%, which demonstrates good agreement. 

To ensure the model’s accuracy, a sensitivity analysis was conducted 
to validate the impact of grid and timestep resolution on the results. The 
2nd case, exhibiting the highest error, served as the benchmark for 
comparing experimental and simulation data. Timestep independence 
was examined at intervals of 0.05, 0.1-, and 0.5-min. Grid independence 
was evaluated by adjusting the mesh resolution using COMSOL’s stan
dard presets: coarse, coarse, normal, fine, and extrafine. Despite the 
computational load increasing substantially when transitioning from a 

Fig. 5. Comparison of experimental with simulated data Right: First study [67] and Left: Second study [68].  
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coarse to an extrafine grid, the error only reduced from 5.1% to 2.34%. 
Timestep variations showed a minimal impact, with a mere 0.38% error 
reduction observed in the 0.5-min interval. 

3.2. Neural network evaluation 

The scatter plots of both charge and discharge data sets provide 
comprehensive insights into the performance of the deep learning model 
(Fig. 6). 

The model demonstrates a good capacity to predict outcomes across 
various energy scales for the charge data, which represents the storage 
process. A substantial portion of the data aligns closely with the 45-de
gree identity line, indicating the model’s adeptness at capturing the 
fundamental dynamics of PBLHS. Nevertheless, some variations become 
evident, especially in higher value ranges. It’s crucial to note that out
liers, especially at the higher energy scales, suggest that room remains 
for further optimization. This can be potentially achieved through future 
continual refinement in model training. 

The case is similar for the discharge data. Most points cluster around 
the identity line, suggesting effective predictions for most scenarios. 
However, the model still has instances, especially in the higher ranges, 
where it tends to either overpredict or underpredict. 

The deep learning model’s ability to predict across diverse scales is 
overall noteworthy. Its adaptability indicates a promising utility in 
guiding systems’ design and performance assessment for both specific 
and general engineering applications in various scales and operational 
conditions. 

The model’s adaptability and performance across various scales are 
also underlined by the resulting R2 values: 0.975 for charge and 0.974 
for discharge. Such values indicate a significant alignment between the 
model’s predictions and the actual data, capturing over 97% of the 
variability for both charging and discharging processes. 

Further to the R2, the neural network (NN) accuracy was assessed 
using the MAPE metric. This involved comparing the discrepancy be
tween the calculated and predicted values for each case. The average 
MAPE for both charging and discharging cycles was ±9.17%. While this 

level of accuracy is acceptable, it could potentially be enhanced by 
expanding the dataset, especially in regions characterized by outlier 
values. 

In evaluating the residuals’ distribution of the NN models, the 
Shapiro-Wilk test was administered to ascertain the normality of the 
data. The results of the NN Charge and NN Discharge residuals indicated 
p-values of 0.2738 and 0.1367, respectively (Table 3). Given that both p- 
values surpass the pre-determined significance threshold of 0.05, the 
test fails to reject the null hypothesis, implying that the residuals do not 
significantly deviate from a normal distribution. Effect sizes of 0.084 
and 0.098 for the NN Charge and NN Discharge residuals, respectively, 
further underline this conclusion, suggesting that any deviation from 
normality is marginal. This adherence to the normal distribution among 
residuals is crucial, reinforcing the validity of the NN model and meeting 
fundamental assumptions prevalent in regression analyses. 

Transitioning to the residuals of the model’s predictions, similar 
observations are noted (Fig. 7). Examining the charge data’s standard
ized residuals reveals an alignment with a standard normal distribution, 
predominantly centred around zero, indicating no consistent prediction 
bias. Yet, mid-range deviations in the − 0.7 to − 0.3 and 0.6 to 1 intervals 
suggest slight potential patterns not fully captured by the model. Simi
larly, a central clustering around zero emerges in the discharge data, 
emphasizing balanced predictions. A pronounced peak around the − 0.2 
region suggests a higher-than-expected frequency of residuals. Extreme 
residuals in both datasets, especially in distant regions like − 2, 2, and 
beyond, align closely with the standard normal curve, which highlights 
the model’s ability to minimize anomalous predictions. 

3.3. Feature significance 

A permutation importance technique was employed to understand 
the intricate dynamics of heat capture/extraction during the charging/ 
discharging of the PBLHS. This is a method tailored for discerning 
feature significance within deep neural networks. At its core, this 
method shuffles a chosen feature’s values while keeping the rest of the 
data intact, assessing how such alterations impact the neural network’s 
performance. The resulting performance changes, quantified using the 
R2 metric, quantify the prominence of that feature. The R2 range is from 
0 (indicating no model fit) to 1 (signifying perfect data fit). In this way, 
the variance in each respective variable can be gauged. This approach 
highlighted the critical features and illuminated the model’s inner 
workings, enhancing its transparency. 

In terms of the discharge phase, the heat captured, denoted as Qcharge, 
directly represents the energy stored in the PBLHS (Fig. 6). It is evident 
that the magnitude of heat captured during the charging phase, is a 
primary determinant of the heat that can be extracted during 
discharging. 

The Discharge time, tdischarge, is the duration over which the system 
releases accumulated heat. Extended discharge phases ensure the 
extraction of a more significant portion of stored heat. 

The storage tank’s diameter stands out as the most important 
geometrical variable within the system, ranking third in importance. 
Visualizing the cascade system makes it evident that a larger diameter 
directly augments the volume of each layer, amplifying the total storage 
capacity. This amplification is because the tank’s diameter impacts all 
three storage layers. A boost in total storage capacity offers greater 
potential for captured heat during the charging phase. This is realized 
through an enhanced thermal gradient, promoting more efficient heat 
transfer, a more extensive heat transfer area, and an overall larger 

Fig. 6. Actual values predicted by the CFD model compared to values predicted 
by the deep neural network. 

Table 3 
Shapiro wilk test results.  

Dataset Name Sample Size Shapiro Wilk Test Statistic W p-value Significance level Normality interpretation Effect size 

NN Charge Residuals 120 0.9848 0.2738 0.05 Not Rejected 0.084 
NN Discharge Residuals 120 0.9825 0.1367 0.05 Not Rejected 0.098  
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storage volume. The system’s cascade design, characterized by a 
sequence from higher to lower melting points from the inlet to the 
outlet, provides more context for the importance rankings. The zone 
with the highest melting point, likely due to its elevated threshold, 
might not achieve a full phase transition, particularly in non-optimal 
scenarios. This leads to potential underutilization of its latent heat 
storage capability. This is why the L2 and L3 are higher than L1. 

Importance rankings also highlight the significance of storage tank 
lengths (notably L2 and L3) over specific melting points. This trend 
suggests a potential leaning towards sensible heat storage rather than 
latent heat in typical operational conditions. The reduced ranking of the 
melting point of CPCM1 supports this observation. 

A point of interest is the limited importance ascribed to the inlet 
diameter. One might assume that the inlet diameter would significantly 
influence flow rate and heat exchange dynamics. However, results 
indicate potential underlying complexities in the system’s behaviour. 
The volumetric flow rate becomes crucial given the specific flow con
ditions, perhaps overshadowing the direct effects of inlet diameter 
alterations. 

Lastly, the role of insulation, gauged by its thickness, holds moderate 
importance within the analyzed operational conditions. Its significance 
might increase in scenarios characterized by extended idle states, which 
subject the system to larger heat losses. However, such idle periods were 
outside the scope of this analysis. 

Looking at the charging phase, the Inlet Volumetric Flowrate stands 
out as the most prominent variable (Fig. 8). This is because its influence 
directly extends to the fluid’s velocity, stemming from the momentum 
equation. A spike in this flow rate elevates fluid velocity, boosting the 

convective heat transfer between the inlet fluid and the PCM capsules in 
the packed bed. This enhancement in heat transfer is significant, given 
that the convective term scales with fluid velocity. 

The charging time introduces another layer of intricacy. It’s not just 
about how high the temperature can get but how long the system can 
maintain it. A more extended charging process ensures that more heat 
gets accumulated. This continuous accumulation emphasizes that while 
the role of the inlet upstream (charging) temperature (Tu) might wane as 
the process advances and the temperature difference between the CPCM 
and the air narrows, the influence of charging time remains constant. 

Tu is an important variable during the charging phase. Alongside the 
volumetric flowrate, it dictates the available heat for capture. When the 
capturing process starts, the temperature gradient between the inlet 
fluid and the PCMs is high, amplifying the heat transfer. However, as the 
charging advances, this difference starts to taper, causing a potential 
decline in the instantaneous heat transfer rate. This is a reasonable 
explanation as to why its significance is not as high as the flow rate or 
the charging time. 

The diameter of the storage tank (ds) determines the basic heat 
storage capacity of the system by defining the total storage volume. 
However, when its influence is compared to the flow rate, charging time 
or upstream temperature, it is evident why it would rank lower, as these 
variables directly affect the rate and efficiency of heat transfer. 
Conversely, merely increasing the storage tank diameter doesn’t assure a 
proportional increase in heat capture. While a larger tank offers greater 
heat storage potential, its effectiveness depends on factors like the rate 
of heat transfer and the temperature gradient driving that transfer. 
Additionally, being a static parameter doesn’t provide the same 

Fig. 7. Histogram of Standardized Residuals for the charge data (a) and the discharge data (b).  

Fig. 8. Feature importance plot for the charge data (a) and the discharge data (b).  
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operational adaptability as the other dynamic parameters. 
Along the same narrative and due to their lesser impact on the total 

storage capacity, as explained above, the storage tank lengths (L2 and 
L3) have even less influence. 

A notable observation is the varied influence of the PCM melting 
points during charging and discharging. Tm1 is dominant in charging, 
while Tm2 is during discharging. This can be largely attributed to 
sequential melting and thermal stratification. During charging, the heat 
transfer fluid may first engage with CPCM1. Conversely, in discharging, 
the temperature gradient within the system is reversed and most prob
ably favours CPCM2. This interplay of melting sequence and thermal 
gradient shapes the differential significance of these melting points. 

Conversely, while the inlet diameter may seem pivotal to flow rate 
and heat exchange, its influence gets overshadowed by other dominant 
factors. Lastly, the Insulation Thickness confirms that the investigated 
scenarios are more inclined towards active heat exchange dynamics. 

3.4. Optimization through metaheuristic algorithms 

A series of diverse metaheuristic algorithms fit for this type of vari
able space is utilized to identify optimal designs that maximize heat 
capture and extraction. For each of these, the most pivotal task is 
achieving a fine balance between exploration and exploitation. 

Exploration, in this context, is the effort to fully examine all the 
territories of the solution space, while exploitation is optimizing within 
already known areas. Exploitation often dictates an algorithm’s effi
ciency, gravitating it towards the best solutions, whereas exploration 
ensures comprehensiveness, ensuring no potential solution is left un
touched. As an initial study, three specific scenarios were examined for 
each algorithm: the first emphasizing a broad exploration, the second 
pivoting towards intensive exploitation, and the third seeking a 
harmonious blend of the two. An analysis of the preliminary optimiza
tion outcomes generated reveals several patterns and considerations. 

A preliminary data scan shows that each algorithm uniquely ma
nipulates and optimizes the design variables (Table 4). For instance, the 
spread in the ds values between different runs of the same algorithm 
(like GA1, GA2, and GA3) suggests that there’s a broad exploration of 
potential solutions. However, certain consistent values within runs of a 
single algorithm hint at a deliberate exploitation of perceived optimal 
zones. In contrast, the ACO method leans more towards convergence. 
ACO’s tendency to choose paths marked as promising is observable in 
the relatively clustered results across its runs, especially for parameters 
like ds. 

Although some remarks can be made it is evident that the data 
doesn’t exhibit any consistent pattern. For instance, with the Harmony 
Search (HS) series, while HS1’s parameters, such as Tu at 357.45 ◦C, 
suggest exploration and HS2’s value of 281.51 ◦C implies exploitation, 

HS3 doesn’t neatly fit into a median ‘balanced’ category as one might 
expect. Instead, it exhibits a unique mix of exploration and exploitation 
tendencies. GA is quite similar. While one might expect GA3 to fall be
tween GA1 and GA2 consistently, the data suggests otherwise. Similar 
observations are made for the ACO and WDO series. Individual algo
rithm versions within these series sometimes defy a clear progression 
from exploration to exploitation. 

On examining variability, the HS series, especially between HS1 and 
HS2, shows significant differences, underscoring HS’s adaptability. The 
GA series, notably between GA1 and GA3, showcases its capacity for 
exploration and balance. The ACO series shows consistency. While WDO 
shows few anomalies, such as the remarkably high din value in WDO1. 
Such outliers might stem from the inherent stochastic nature of the 
algorithm. 

Building on this observation, an intriguing aspect is illustrated 
through the data presented in Table 4, which reveals the model’s stra
tegic use of cascade features. This is particularly pronounced in cases 
such as WDO3 and HS3. Here, we observe that one layer, L1, is markedly 
shorter than L2 or L3. This disparity in layer lengths exemplifies the 
model’s dynamic approach to design optimization: it not only explores 
various combinations to pinpoint the most efficient design but also 
intelligently discerns when a two-layer system, as opposed to a three- 
layer one, might suffice. Such discernment reflects a ‘backward 
design’ philosophy—understanding that at times, the exclusion of an 
additional layer could lead to a more optimal outcome. The model, 
therefore, not only proposes configurations but also critically evaluates 
the necessity of each component within the broader context of system 
efficiency. 

Next up, the relationship between computational time and the 
objective of maximizing heat extraction is investigated where there is an 
inherent relationship between exploration and exploitation (Fig. 9). 

GA1 and GA3, required longer computational times, but their cor
responding heat extraction values varied notably. This suggests that 
while GA3 may have adopted a more balanced strategy between 
exploration and exploitation, GA1 leaned more towards exploration, as 
it consumed substantial time but didn’t achieve the highest extraction 
values. GA2, however, had the lowest computational time and highest 
heat value, suggesting that an exploitation-rich search can be more 
fitting for how this algorithm tackles this problem. 

On the other hand, ACO1 despite having a higher computational 
time than ACO3, did not have a higher extracted heat amount. This 
suggests that a balanced approach can be more efficient for these al
gorithms when looking at similar problems. 

WDO1 and 3, although having the largest computational times also 
showcased the second and third-highest heat extraction values. On the 
other hand, WDO2 consumed less time but yielded the lowest extraction 
value, which perhaps means that an exploitation approach is the worst 

Table 4 
Neural network enhanced metaheuristics optimization results.  

Optimal Value GA1 GA2 GA3 ACO1 ACO2 ACO3 WD01 WDO2 WD03 HS1 HS2 HS3 

ds 2.06 2.97 1.99 2.53 2.93 1.4 2.9 1.14 2.83 2.51 1.09 2.21 
din 0.43 0.55 0.95 0.41 0.22 0.76 9.67 0.54 0.75 0.31 0.51 0.99 
dp 0.021 0.11 0.026 0.023 0.4 0.054 0.01 0.8 0.01 0.19 0.06 0.055 
V_in 5.39 5.53 5.36 5.46 5.5 5.98 5.96 3.47 6 5.47 4.89 5.97 
TO 34.76 − 3.76 7.97 14.68 19.42 1.89 19.31 − 1.86 − 1.79 6.2 29.36 31.88 
s_ins 0.38 0.16 0.93 0.92 0.03 0.23 0.01 0.34 0.01 0.17 0.81 0.18 
L1 1.47 3.06 4.41 2.79 5.33 5.82 0.75 2.89 0.1 5.13 5.55 3.39 
L2 5.18 2.84 3.46 3.06 5.32 5.66 1.13 4.44 4.66 2.42 5.11 5.63 
L3 4.7 5.85 3.43 5.69 2.92 3.27 5.91 0.63 3.78 5.46 0.95 5.39 
t_charge 8.11 9.72 8.82 7.88 9.56 9.48 10 6.87 10 9.29 9.74 9.79 
t_discharge 19.72 10.7 3.52 14.48 17.2 19 4.72 19.82 10.97 19.28 19.37 18.57 
T ext 14.65 − 4.95 27.72 9.54 24.49 4.45 18.61 25.89 28.87 26.69 5.56 2.07 
T_ml 351.43 89.04 445.13 206.69 219.99 323.9 459.74 472.64 497.02 485.25 367.29 483.09 
T m2 441.32 449.94 422.89 417.89 447.01 202.79 413.04 472.32 496.81 461.81 447.99 483 
T m3 413.92 381.87 392.48 394.01 446.99 285.23 105.41 236.77 162.23 461.81 447.99 470.02 
T_u 294.82 276.26 372.73 394 313.31 285.24 363.17 273.65 150.3 357.45 281.51 364.56  
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for this type of algorithm in this specific design space. 
HS algorithms were by far the best timewise. HS1, with a relatively 

short computational time of 85.96 s, and achieved an impressive heat 
extraction of 66.81 GJ. It’s more balanced HS3 version showed the best 
value yet at 79 GJ with roughly only 3 times the computational demand. 

HS algorithms emerge as clear frontrunners for optimizing this spe
cific problem. An exhaustive grid search was executed to refine the HS 
algorithm’s performance, focusing on determining the optimal hyper
parameter configuration. 

Key hyperparameters, including the number of harmonies, 
maximum iterations, harmony memory consideration rate, and pitch 
adjustment rate, were varied methodically. This systematic approach 
ensured a comprehensive exploration, top-tier optimization perfor
mance, and efficient use of computational resources. 

The optimal hyperparameter configuration resulted in an objective 
function value of 95.9 GJ. This is impressive as its almost three times 
what is reported by WDO2, the worst-performing algorithm. It un
derscores the importance of methodical hyperparameter tuning in 
unveiling top-performing solutions in intricate engineering contexts like 
the one at hand. 

3.5. A short case study 

To highlight the proposed methodology’s effectiveness, this section 
compares it with results from other studies (Table 5). The data used for 
this comparison has been extracted from various literature sources, 
reflecting different setups and temperature conditions. Overall, it can be 
seen that the model has a distinct edge in all 4 presented scenarios. It 

should be noted that particularly cases 1 to 3 represent already experi
mentally optimized results. 

In the comparative analysis, the optimized neural network (NN) 
model showcased improvements across all four metrics - stored energy, 
extracted energy, charging efficiency, and total efficiency - when 
compared with experimental data from various studies. The most 
notable enhancements were consistently observed in case 4, demon
strating the maximum enhancement across all metrics. 

For stored energy, scenario 4 exhibited a remarkable 66.14% in
crease over its experimental counterpart. The second highest improve
ment in this category was observed in scenario 2, with a 26.52% 
increase. Similarly, in terms of extracted energy, scenario 4 again led 
with an impressive 84.26% enhancement, followed by scenario 2 
showing a significant 23.96% increase. 

The disparities in efficiencies were equally notable. In charging ef
ficiency, scenario 4 showed a substantial improvement of 67.13%, while 
scenario 2 followed with a 28.35% increase. Total efficiency followed 
this pattern, with scenario 4 achieving an 85.55% enhancement over the 
experimental data, and scenario 2 witnessing an 26.25% improvement. 
The difference between experimental and modelled outcomes, particu
larly in efficiency metrics, sheds light on the potential improvements 
traditional PBLHS designs could realize through modern machine 
learning-enhanced approaches. 

The optimized model’s performance was closely examined also in 
terms of PCM operating temperatures during the four experimental 
scenarios. The general trend observed from the model’s predictions was 
an increase in the total length of the tanks, aimed at achieving an 
improved aspect ratio beneficial for heat transfer. To optimize thermal 
gradient utilization, the model strategically incorporated additional 
PCMs with lower melting points. 

For instance, in the first scenario, the model extended the packed bed 
height from 260 mm in the original study to 430 mm and introduced a 
second PCM with a melting point of 419 ◦C to exploit the maximum Cp, 
as illustrated in Fig. 1. This approach leverages the predominant role of 
sensible heat over latent heat in the energy storage process, considering 
the significant proportion of latent heat lost due to the encapsulation 
process. However, this selection, primarily based on thermophysical 
benefits rather than cost-effectiveness, resulted in a PCM composition 
that, while having a higher Cp, also entailed increased costs due to a 
greater lithium content. Subsequently, the model added a layer of KNO3 
with a melting point of 334 ◦C, above the initial environmental tem
perature, to leverage additional latent heat content. 

In the second scenario, the model implemented a seemingly coun
terintuitive approach by increasing the length and reducing the diam
eter of the tank, then adding three PCMs with melting points of 310 ◦C, 
303 ◦C, and 292 ◦C. This configuration was designed to maximize energy 
density and thermal gradient capture, despite appearing illogical from a 

Fig. 9. Comparison of algorithms evaluated in terms of the execution time (a) and the objective function value (b).  

Table 5 
Comparative analysis of experimental and modelled results across different 
scenarios.  

Reference 1 [69] 2 [67] 3 [31] 4 [70] 

Experimental 
Charging Temperature (◦C) 465 326 375 65 
Flow Rate (m3/s) 0.0129 0.03056 0.00862 0.00750 
Charging Duration (hours) 1.0 3.33 5.0 3.0 
Discharge Temperature (◦C) 325 286 50 30 
Discharge Duration (hours) 1.33 3.33 3.33 2.0 
Stored Energy [MJ] 7.44 3.96 26.41 2.54 
Extracted Energy [MJ] 6.48 3.84 25.59 2.16 
Charging efficiency [%] 91.5 72.3 76.4 50.5 
Total efficiency [%] 79.7 70.1 74 42.9 
Modelled 
Stored Energy [MJ] 7.66 5.01 31.11 4.22 
Extracted Energy [MJ] 7.12 4.78 28.37 3.98 
Charging efficiency [%] 93.6 92.8 90.3 84.4 
Total efficiency (%) 87.0 88.5 82.4 79.6  
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conventional design perspective. 
The third scenario followed a similar logic, with the model extending 

the tank length and incorporating three PCMs with melting points of 
283 ◦C, 187 ◦C, and 53 ◦C, aiming to further exploit the thermal 
gradient. 

The final scenario saw the model doubling the tank length and 
integrating two PCMs at 50 ◦C and 52 ◦C. This case highlighted some 
limitations, as the materials with melting points below these tempera
tures were not inputted in the model, suggesting that even lower melting 
points could potentially yield higher efficiencies. 

It is important to note that all proposed scenarios were validated 
using CFD simulations, with the heat extracted values being within 5.6% 
of the model’s predictions. However, the model often failed to achieve a 
melting fraction of unity during the charging phase, which subsequently 
affected the discharging phase. This underlines the need for further 
modeling to seek a better balance between melting fraction and thermal 
inertia capture during discharging. 

These promising findings across the four key TES performance var
iables highlight the significant potential of applying deep learning 
techniques to optimize traditional PBLHS designs. The consistent out
performance in all scenarios underscores the model’s capability in 
handling a wide range of operating conditions effectively. 

3.6. Charging/discharging Efficiency Trends 

The significance of assessing the model’s performance across a range 
of energy data cannot be understated. It’s essential as it confirms the 
model’s consistency in different operational scenarios. Considering the 
variability in waste heat streams’ temperature, flow rate, and duration 
for both charging and discharging phases, a direct analysis can be 
challenging. To address this, the total energy value of the stream using 
equation (16) and setting Toulet as T0 (ambient temperature), with the 
properties of air referenced from equations (25) and (26) for density and 
specific heat capacity, respectively. By generating over 100 data points 
and clustering them into energy intervals of 25 GJ, and ensuring a 
minimum of 6 values per bracket with weighted averages, the 
complexity of the data is managed correctly. 

In analyzing these clusters, discharge efficiency is consistently higher 
than charging efficiency (Fig. 10). This is in line with the expectation 
that the model is optimized to maximize heat extraction, a process that 
often sees higher efficiency in discharging than in charging due to the 
inherent difficulty in finding equilibrium in these systems. 

A correlation analysis between the PBLHS’s efficiency and opera
tional parameters reveals insightful trends. The correlation coefficients 
indicate a moderate negative correlation between the flow rate (V_in) 
and efficiency, with values of − 0.341 for charging and − 0.218 for dis
charging. This suggests that as the flow rate increases, the system’s 
ability to charge efficiently decreases more significantly than its ability 
to discharge. The higher impact on charging can be attributed to the 
model’s prioritization of discharge efficiency, where the design adap
tations to minimize the effects of flow rate are less aggressive and 
secondarily due to increased thermal inertia that doesn’t allow the 
medium to equilibrate with the heat source or sink quickly. 

For the inlet temperature (Tu), the positive correlation coefficients 
are 0.133 for charging and 0.08 for discharging, indicating a less pro
nounced effect. The inlet temperature has a direct influence on the 
thermal gradient, which is more critical during the charging phase, as it 
drives the heat transfer into the storage medium. During discharging, 
the effect is secondary as the system is primarily concerned with 
extracting the stored heat. 

The duration of the heat stream (t_charging), which was taken to be 
equal to t_discharging, shows the strongest negative correlation with the 
system’s efficiency, with coefficients of − 0.548 for charging and − 0.363 
for discharging. This implies that extended durations are particularly 
detrimental to charging efficiency, likely due to accumulating losses 
over time. In the charging phase, the temperature rise is initially steep, 
which then tapers off, leading to a compounding effect on losses. 
Conversely, during discharging, the temperature rapidly decreases to
wards ambient levels, reducing the heat loss over time and resulting in a 
less strong correlation. 

These coefficients reveal that the model’s performance in terms of 
charge efficiency is more sensitive to operational parameters compared 
to discharge efficiency. The effects are especially more pronounced 
during charging because the model is less optimized to mitigate these 
influences. Specifically, the inlet temperature of the waste heat stream 
greatly affects the charging phase due to its significant role in estab
lishing the necessary thermal gradient for heat transfer. In contrast, its 
effect during discharging is less impactful. The correlation analysis, 
coupled with the feature importance study, demonstrates that the design 
of the PBLHS is adept at handling variations during discharging, but 
there remains room for striking a balance in improvement during the 
charging phase to enhance overall efficiency. 

4. Conclusions 

Addressing the urgent need for efficient WHR in industries with high 
carbon emissions, this study introduces an innovative approach in TES. 
An novel approach for advanced design and optimization of PBLHS is 
presented. This leverages DL coupled with metaheuristics. The key 
takeaways are.  

1. Model Performance and Validity: The developed deep learning 
model’s adaptability across various scales was highlighted by the 
resulting R2 values of 0.975 for charge and 0.974 for discharge, 
capturing over 97% of the variability for both processes. This was 
accompanied by a reasonable MAPE of <9.14%.  

2. Feature Significance: A permutation importance technique was 
employed to discern feature significance within the deep neural 
networks. For the discharge phase, the heat captured was a signifi
cant feature, as it directly represents the dynamics of heat capture/ 
extraction during the charging/discharging processes. For the 
charging phase, the inlet volumetric flowrate was noticeably 
important. This is because it influences the fluid’s velocity, 
enhancing the convective heat transfer between the air and the PCM 
capsules. 

3. Optimization through Metaheuristic Algorithms: An array of al
gorithms was employed to identify optimal designs that maximize 
heat capture and extraction. The HS algorithm emerged as the most Fig. 10. Efficiency comparison for charged and discharged energy.  
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effective. Its performance was further refined through an exhaustive 
grid search. The optimal hyperparameter configuration achieved an 
objective function value of 95.9 MJ, almost three times higher than 
that reported by the WDO, the least effective algorithm. This un
derscores the importance of methodical hyperparameter tuning in 
intricate engineering contexts.  

4. Comparative Analysis: The model is also compared with four 
experimental scenarios. In terms of energy storage and efficiency, the 
model consistently surpassed the experimental benchmarks. This 
was particularly noted in terms of total efficiency.  

5. Efficiency Trends: A comprehensive analysis indicates a higher 
discharge efficiency over charge efficiency, a deliberate result of the 
model’s optimization for heat extraction. Flow rate inversely affects 
charging efficiency more than discharging. Heat stream durations 
negatively impact efficiency, while inlet temperature has a more 
nuanced effect on the system’s performance. Results are in alignment 
with feature importance study. 

Conclusively, this research presents, for the first time, a novel 
approach that couples DL with metaheuristics to optimize PBLHS. This 
innovative method yields rapid designs that significantly advance the 
state of the art in TES. It is anticipated that this approach can be 
extended to other TES configurations in the future. Looking ahead, it is 
crucial for the model to incorporate cost considerations to facilitate 
more pragmatic decisions in the selection of PCMs or structural mate
rials. Additionally, further refinement is essential, especially for sce
narios involving higher magnitudes of energy, particularly in the context 
of heat storage—a distinct challenge compared to heat extraction, where 
the model currently demonstrates exceptional proficiency. 
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