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Quantum dynamics of a collection of atoms subjected to phase
modulation has been carefully revisited. We present an exact
analysis of the evolution of a two-level system (represented
by a spinor) under the action of a time-dependent matrix
Hamiltonian. The dynamics is shown to evolve on two
coupled potential energy surfaces (PESs): one of them is
binding, while the other one is scattering type. The dynamics
is shown to be quasi-integrable with nonlinear resonances.
The bounded dynamics with intermittent scattering at random
moments presents a scenario reminiscent of Anderson and
dynamical localization. We believe that a careful analytical
investigation of a multi-component system that is classically
non-integrable is relevant to many other fields, including
quantum computation with multi-qubit systems.

1. Introduction
Evolution in the fields of ultracold atoms and quantum physics
in the past few decades has led to the recognition of these
fields as a huge well-acclaimed arena for the exploration of
popular subjects like quantum chaos [1], Feshbach resonances
[2–12], ultracold atomic mixtures [13–18], atom interferometry
[19–33], atomic clocks [34–44], quantum diffraction [45,46] and
quantum thermodynamics [47–50]. This is due to the rich
internal structures, longer de Broglie wavelengths and tunable
long-range interactions of ultracold atoms. Furthermore, the
research in the regime of lower temperatures has also been
extended to these molecules [51,52]. Apart from these recent
developments, there has been a sustained effort to realize
parallels between atomic and condensed matter physics [53].
One of the ideas pursued with great interest is the localiza-
tion of states in disordered systems, pioneered by Anderson
[54]. Due to a common-sense analogy between disorder and
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chaos, a connection between the localization of wavefunctions of classically chaotic systems and the
disordered lattices of infinite [55] and finite extent [56] was brought out. Even in matter waves, the
phenomenon of localization has been experimentally demonstrated [57].

Many years ago, an experiment carried out by the group led by Raizen [1] demonstrated the
dynamical analogue of Anderson localization in a system of cold atoms. In this experiment, approxi-
mately 100 000 23Na atoms were trapped in a spherical volume of radius 300 µm at a temperature of
17 µK. At the end of the preparation step, the cooling lasers were turned off and a modulated standing
light field was switched on for 10 µs. The Hamiltonian describing the interaction of a sodium atom of
mass m at position x and momentum p with the light field is given by [58]

(1.1)H0 = Hel + p2

2m + eFcos {kL[x − ΔLsinωt]}cosωLt .

Here, Hel denotes the interaction of valence electrons with an atom. The last term denotes the electric
dipole interaction of the electromagnetic field with an electron. The laser frequency and wavenumber
are denoted by ωL and kL, respectively, and ω is the modulation frequency. Standing waves are
generated by directing two counter-propagating laser beams into the trap and the modulation is
achieved by passing one beam through an electro-optical phase modulator. The beam is made to strike
a mirror in a cavity of length ΔL that is moving with the modulation frequency, ω. The laser frequency
was chosen close to the D2 line of sodium. The electronic Hamiltonian can be reduced to a two-level
system written on the basis of a ground state |g⟩ = (0, 1)T and an excited state, |e⟩ = (1, 0)T, such that
a general state with complex amplitudes ψ+ and ψ− in the respective two levels can be written asψ = ψ+ |e⟩ + ψ−|g⟩. Taking the energy average of the two states as zero energy, the matrix elements ofHel and eF together give

(1.2)Hel = ℏω0
2 σz  ;   eF = ℏΩσx ⟹  Hel + eF =

ℏω0/2 ℏΩℏΩ −ℏω0/2
,

where the transition frequency between these two levels is denoted by ω0, Ω denotes the Rabi
frequency coupling the two states by electric dipole interaction and σ′s are the Pauli matrices. Thus, H0
may be written as

(1.3)H0 = p2

2mI + ℏω0
2 σz + ℏΩcos {kL[x − ΔLsinωt]}cos(ωLt)σx,

where I denotes an identity matrix.
After we present the general Hamiltonian below, in §2, we present the Hamiltonian under rotating

wave approximation (RWA). Within this approximation, the case of adiabatic perturbation for the two
cases of small and large detuning is considered. In §3, the exact solution for this matrix Hamiltonian is
given. The method transforms the dynamics under the matrix Hamiltonian to dynamics on potential
energy surfaces (PESs). Classical dynamics reveals the presence of nonlinear resonances in §4. The
classical system obeys the Kolmogorov–Arnold–Moser (KAM) theorem [59] and hence is
quasi-integrable [60]. In a related context of the quantum Rabi model, a discussion on integrability [61]
and symmetries [62] has been presented relatively recently.

Special solutions are discussed as they have been used to analyse experiments carried out by
different groups. For each case discussed at the quantum mechanical level, we also present classical
phase space pictures and show that this atomic system presents a very interesting and deep instance
of the association of quasi-integrability and dynamical localization. The phase space pictures exhibit
certain misleading features in the approximated Hamiltonian, compared with the exact Hamiltonian
obtained by systematic expansion in powers of ℏ.

1.1. General Hamiltonian
We now transform to a frame which is rotating with ωL about the z-axis in a spin space,

(1.4)ψrot = exp iωLσzt/2 ψ .

Substituting ψ in the Schrödinger equation, iℏ∂ψ/∂t = H0ψ, we have the equation for the rotated
wavefunction,
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(1.5)Hrot = p2

2mI + ℏ(ω0 − ωL)
2 σz + ℏΩcos {kL[x − ΔLsinωt]} ×

× cos(ωLt)eiωLσzt/2σxe−iωLσzt/2 .

Using the standard identity, eiωLσzt/2σxe−iωLσzt/2 = σxcosωLt − σysinωLt, we have the transformed
Hamiltonian,

(1.6)Hrot = p2

2mI + ℏ(ω0 − ωL)
2 σz + ℏΩ

2 cos {kL[x − ΔLsinωt]} ×

× [σx(1 + cos 2ωLt) − σysin 2ωLt] .

This is the general Hamiltonian for the physical situation described above where there are terms
oscillating with twice the ωL.
2. Rotating wave approximation
The Schrödinger equation for Hrot is usually solved under the RWA [58,63]. Here, the terms oscillating
with frequency 2ωL are neglected. This leads to a simplified Hamiltonian,

(2.1)HrotRWA = p2

2mI + ℏΩeff(σzcosα + σxsinα),

where

(2.2)Ωeff = 1
2[(ω0 − ωL)2 + Ω2cos2 {kL(x − ΔLsinωt)]}]1/2,

tanα = Ωcos[kL(x − ΔLsinωt)]ω0 − ωL .

Let us rotate the state of this Hamiltonian further in the spin space by an angle ( − α/2) about the y-axis,
to obtain a new state, ψ′ = ψ′ + |e⟩ + ψ′ − |g⟩ = exp(iασy/2)ψrot

(2.3)ψ′ =
cos(α/2)eiωLt/2ψ+ + sin(α/2)e−iωLt/2ψ−
−sin(α/2)eiωLt/2ψ+ + cos(α/2)e−iωLt/2ψ− ,

in which the second term is diagonal. Consequently, the equation satisfied by ψ′ is

(2.4)iℏ∂ψ′
∂t = − ℏ2 ∂α∂t σyψ′ + eiασy/2Hrot

RWAe−iασy/2ψ′ = Heff
RWAψ′ .

However, this will transform the kinetic term as [64]

(2.5)eiασy/2p2Ie−iασy/2ψ′ = pI − ℏA 2ψ′ = Π2ψ′,

(2.6)A = σy
2
∂α
∂x = −kLδLΩsin[kL(x − ΔLsinωt)]σy

2 δL2 + Ω2cos2[kL(x − ΔLsinωt)] .

where I is an identity matrix. Now, we can use the well-known identity

(2.7)eiα(n̂ . σ→)σ→e−iα(n̂ . σ→) = σ→cos 2α + n̂ × σ→sin 2α + n̂(n̂ . σ→)(1 − cos 2α) .

While the ‘potential’ part of the Hamiltonian becomes diagonal with these unitary transformations,
the kinetic term modifies to (pI − ℏA)2. This has terms of order 1, ℏ and ℏ2; thus, an asymptotic
semiclassical expansion appears in a natural manner [65–67]. The asymptotic expansion parameterℏ [64] is small compared with the relevant classical action.1 It is worth noting that this powerful
method has been successfully used to obtain the ‘exact’ ground states for deuteron [68] and triton [69].
Moreover, we would like to recall that the semiclassical trace formula for oscillator potentials gives

1We can make a rough estimate of relevant classical action by considering the product of momentum of the trapped sodium
atom and the size of the trap. With the values corresponding to the experiment [1]. The momentum corresponding to 17 µK is
approximately 4.23 × 10−27 kg m s−1. In a spherical trap of radius, 300 µm, the ratio of ~ to the action is estimated to be about 10− 5. If
the atom remains in a smaller region, this ratio would still be at least 10− 4 or so. A semiclassical expansion is certainly justified.
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the exact level density, where one performs an asymptotic expansion of the energy-dependent Green
function or propagator in powers of ℏ [70].

Furthermore, since A has non-zero diagonal matrix elements, there is a possibility of a geometric
phase appearing in the state of the atoms as the system evolves. This is indeed due to the cavity
modulation. Dimensionally, ℏA/e is a magnetic vector potential. Heff

RWA can be written as

(2.8)Heff
RWA = Π2

2m + ℏΩeffσz − ℏ2 ∂α∂t σy,
(2.9)

= p2

2m + ℏ2

8m ∂α
∂x 2 I + ℏΩeffσz + −ℏ2 ∂α∂t − ℏ2 ∂α∂x pm + iℏ2

2m ∂α∂x σy .

Except for terms of order O(ℏ2), each of the terms can make a significant contribution. At this point,
one of the possible simplifications occurs if α is slowly varying with time. This leads us to consider
applying the adiabatic approximation, which we will discuss now.

2.1. Adiabatic variation
We may neglect the term ℏσydα/dt. Here, we invoke the classical correspondence of dx/dt and p/m by
writing2

(2.10)ℏσydαdt → ℏ∂α∂x pmσy + ℏ∂α∂t σy,
which is small for an adiabatic variation. The adiabatic Hamiltonian is

(2.11)Had
RWA = 1

2m p2 + ℏ2

8m ∂α
∂x 2 I + ℏΩeffσz + iℏ2

2m ∂α∂xσy .

It is important if the detuning is small or large. This is because

(2.12)∂α
∂x = −

kLδLΩ sin[kL(x − ΔLsinωt)]δL
Ω

2
+ cos2[kL(x − ΔLsinωt)] ; ∂α

∂t =
ω δL

Ω sin[kL(x − ΔLsinωt)]cosωtδL
Ω

2
+ cos2[kL(x − ΔLsinωt)] .

So either for small or large detuning,

(2.13)δL ≪ Ω or δL ≫ Ω ⇒ ∂α
∂t , ∂α∂x → 0.

2.1.1. Small detuning

Here, ω0 ∼ ωL, thus tanα → ∞ or α ∼ π/2. Considering equation (2.13) and keeping the terms up to
O(ℏ), the adiabatic Hamiltonian further simplifies to

(2.14)Had, s
RWA = p2

2mI + ℏΩeffσz .

Using the smallness of detuning, we may expand it binomially to obtain

(2.15)Had, s
RWA, ± = p2

2m ± ℏΩ
2 cos[kL(x − ΔLsinωt)] 1 + (ω0 − ωL)2

2Ω2cos2[kL(x − ΔLsinωt)]
+ O ω0 − ωL

Ω

3
.

These provide the two PESs on which the two-level system evolves, connected by tunnelling. This can
be seen by the fact that the intersection of the two curves occurs when Ωeff is zero, leading to

2By classical correspondence, we assume the validity of Ehrenfest’s theorem.
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(2.16)x = ΔL sinωt + π
2kL + ilog 1 − δL2

2Ω2 −
δL
2Ω

≃ ΔL sinωt + π
2kL − i 2δL

2Ω ,

for small detuning. The binding part of the potential in equation 2.15 supports eigenvalues. However,
since the Hamiltonian is periodic in time, the eigenvalues are quasi-energies. Owing to the imaginary
part, these are more precisely ‘quasi-energy resonances’.

2.1.2. Large detuning

We consider the case where we have the RWA and adiabatic approximation but δL ≫ Ω. Then, we have
the Hamiltonian,

(2.17)Had, l
RWA =

p2/2m + ℏΩeff 0

0 p2/2m − ℏΩeff
.

This can be decomposed into two Hamiltonians

(2.18)Had, l
RWA, ± = p2

2m ± ℏδL
2 1 + Ω2

2δL2 cos2[kL(x − ΔLsinωt)] + O Ωω0 − ωL 3
.

The potential energy curves intersect when

(2.19)x(t) = n + 1
2
πkL + ΔL sinωt .

Here, the intersection points are real where the real part is the same as for small detuning. The
potential energy curves support sharp quasi-energies.

3. Exact solution
We now return to equation (1.6) and lift all the approximations considered in the last section. The
Hamiltonian is written as

(3.1)Hrot = p2

2mI +
a bb∗ −a ≡ p2

2mI + M,

where a = ℏ(ω0 − ωL)/2, b = b1 + ib2, with

(3.2)b1 = ℏΩ
2 cos[kL(x − ΔLsinωt)](1 + cos 2ωLt),b2 = ℏΩ
2 cos[kL(x − ΔLsinωt)]sin 2ωLt .

The matrix denoted by M in equation (3.1) can be diagonalized by matrix S to get the diagonal matrix,J. These matrices are

(3.3)S =
(a − a2 + b1

2 + b2
2)(b1 + ib2)b1

2 + b2
2

(a + a2 + b1
2 + b2

2)(b1 + ib2)b1
2 + b2

2

1 1

and

(3.4)J =
− a2 + b1

2 + b2
2 0

0 a2 + b1
2 + b2

2
.

We define ψ1 = S−1ψrot with iℏ∂ψrot/∂t = ℋψrot. The equation for the time evolution of ψ1 is

(3.5)iℏ∂ψ1
∂t = − iS−1∂S

∂t ψ1 + S−1 p2

2mISψ1 + Jψ1 .
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Now, S−1p2S = (S−1pS)2 = (p − iℏS−1∂S/∂x)2. Here, we again have a vector potential which is an artificial
gauge field.

The Hamiltonian is thus written as an expansion [64,68]

(3.6)H = H0 + ℏH1 + ℏ2H2

with H0 has a simple form

(3.7)H0 = p2

2mI +
− a2 + b1

2 + b2
2 0

0 a2 + b1
2 + b2

2
.

Writing ψ1 = (ψ1
( + )   ψ1

( − ))T with the superscript T denoting the transpose, we have written the state with

two components. The classical Hamiltonians corresponding to the states, ψ1
( ± ) are

(3.8)H0
( ± ) = p2

2m ± ℏ(ω0 − ωL)
2 1 + 4Ω2

(ω0 − ωL)2 cos2[kL(x − ΔLsinωt)]cos2ωLt 1/2

.

Usually, ψ1
( + ) is subjected to a binding potential and ψ1

( − ) is evolving on a scattering potential. There are

two PESs, ± a2 + b1
2 + b2

2 on which the full two-component wavefunction, ψ1, evolves. The PESs meet at
the solution of

(3.9)a2 + b1
2 + b2

2 = 0.

The solution is

(3.10)x = ΔLsinωt + 1kLcos−1 ±i (ω0 − ωL)
2Ω sec(ωLt)

= ΔLsinωt + π
2kL + i 1kL log 1 ∓ δL

2Ωsec(ωLt) + δL2
8Ω2 sec2(ωLt) .

For small detuning (δL ≪ Ω), the potential curves intersect at

(3.11)x = ΔLsinωt + π
2kL ∓ i δL2Ωsec(ωLt) ± i δL3

48Ω3 sec3(ωLt) .

The complex value of crossing the PESs implies the tunnelling of atoms. The tunnelling across these
surfaces where the underlying dynamics is nonlinear has some very interesting related phenomena
like resonance-assisted tunnelling [71], which have been recently experimentally realized [72].

Figure 1a,b shows these crossings along the complex position plane. We note that the crossing gap
at the null imaginary position plane vanishes as one reaches closer to the resonance (at small detuning)
and remains wide open at large detuning.

In equation (3.8), for large detuning, Ω2/(ω0 − ωL)2 ≪ 1, a Taylor expansion immediately yields

(3.12)H0, l( ± ) = p2

2m ± ℏ(ω0 − ωL)
2 1 + 2Ω2

(ω0 − ωL)2 cos2[kL(x − ΔLsinωt)]cos2ωLt .

Among the two Hamiltonians, H0, l( − ) is binding; it can be seen that the second term in the Taylor
expansion of cos[kL(x − ΔLsinωt)] along with an overall negative sign will make this roughly parabolic

for small arguments, at least. For the same reason, H0
( + ) is a scattering potential. The differences in

Poincaré sections, obtained by slicing phase space evolution in the time intervals of the modulation
period T = 2π/ω for various cases can be seen in figure 2a–d that are evaluated using numerical
simulations (using Runge–Kutta order 4) for the classical equation of motions for Hamiltonians
obtained from equations (3.8); (3.12); (2.17) and (2.18), respectively. We found that the three-island
ring which is present in both unapproximated case and RWA + Adiabatic case vanishes if we make a
binomial approximation implying that the origin of this resonance is purely arising because of higher
order terms of equations (3.12) and (2.15). We also note that the chaos is more apparent in the binomial
case but less severe in all other cases.

We now study the classical mechanics of these Hamiltonians.
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4. Quasi-integrability
In this section, we study the classical dynamics of the Hamiltonians obtained above under different
approximations.

We begin with the exact Hamiltonian, namely, equation (3.6) and consider only H0
( − ) in equation

(3.8). We make the following transformations to convert it to a dimensionless form almost similar to
[63]:

(4.1)t → tω  ,  x → x
2kL  ,  p → Mωp

2kL  ,  H0
−→ Mω2H0

−

4KL2λ = 2kLΔL ,  γ = ωLω  ,  η = ΩδL 2
 ,  K = ℏkL2Ω2

2Mω2δL ,

(a)
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Figure 1. PES at (a) large detuning (δL ≫ Ω) and (b) small detuning (δL ≪ Ω). At large detuning, the gap shrinks allowing a
larger region for space for crossing the PES.
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Figure 2. Comparison of Poincaré sections for Hamiltonians under different approximations for the case of large detuning for the same
set of parameters used in figure 3. (a) Shows the unapproximated case corresponding to the exact solution. (b) Shows the application
of binomial approximation to the exact solution. (c) Corresponds to the RWA + Adiabatic approximation and (d) corresponds to the
RWA + Adiabatic + Binomial approximation. Initial conditions and number of evolution steps are kept the same for all cases here.
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where η is the strength of Rabi resonance and δL = ω0 − ωL is the detuning of laser. The simplified
Hamiltonian yields

(4.2)H0
− = p2

2 − 4Kη 1 + 2η(1 + cos(x − λsin t))cos2 γt 1
2 .

Now, using the same transformations (equation (4.1)), we write the Hamiltonians for large detuning,
neglecting the constant terms,

(4.3)H0, l− ≃ p2

2 − 4Kcos(x − λsin t)cos2 γt,
(4.4)Had, l

RWA, − ≃ p2

2 − Kcos(x − λsin t) .

This clearly implies a drastic change in the equation if γ ≫ 1, thus even if we use ⟨cos2 γt⟩ = 1/2, the
second term contributes to double compared with the contribution coming from the usual case with
adiabatic and RWA.

In order to understand the underlying phase space structure, we initialize 1000 ultracold atoms
(purple dots) in one of the islands in the Poincarè section taken in steps of modulation time period T
as shown in figure 3a and look at its stroboscopic evolution in multiples of the modulation time period.
We found that after each modulation period, atoms move from one island to another lying around the
same larger elliptic-like orbit (figure 3b). Similarly, we found that the number of islands is equal to (or
twice if n is even) the number of modulation periods n for the marked islands in figure 3c. In other
words, these islands satisfy Torbit = nT or Ωorbit/ω = 1/n.

To study the origin of these patterns in resonance structures, we write the dimensionless
Hamiltonian equation (4.4) in action-angle variables. Let us write one of the RWA Hamiltonians as a
perturbed harmonic oscillator

(4.5)H0, l
RWA, − = p2

2 + Kx2

2 − Kcos(x − λsin t) + Kx2

2 ,

(4.6)= Hh . o . + ϵΔH,

where ϵ is introduced for book keeping (eventually, we shall put ϵ = 1). Using the oscillator action-angle

variables, (J, θ), with x = JπΩsin(θ) and p = JΩπ cos(θ) with K = Ω2, the Hamiltonians are

(4.7)Hℎ . o . = ΩJ
2π ,

(4.8)ΔH = − Ω2cos JπΩsin θ − λsin t − JΩ2π sin2 θ .

We use the classical time-dependent perturbation theory [59] to calculate the associated action of this
Hamiltonian up to first order in perturbation. For this, we transform the action variables in a way that
the new Hamiltonian H̄ is only a function of the new action variable J̄  alone. We obtain

(4.9)⟨ΔH⟩ = 1
2π ∫  02πdt 1

2π ∫  02πdθΔH(J, θ, t)
= − Ω2J0

J̄
Ωπ J0(λ) − J̄Ω

4π
(4.10)H̄(J̄) = ΩJ̄

2π − ϵΩ2J0
J̄

Ωπ J0(λ) − ϵ J̄Ω
4π

where J0( . ) is the cylindrical Bessel function of order zero. The new frequency is

(4.11)Ω′(J̄) = 2π∂H̄
∂J̄ = Ω(1 − ϵ/2) − 2ϵπΩ2J0′

J̄
Ωπ J0(λ)

where prime on the Bessel function denotes a derivative with respect to its argument.
We subtract this ϵ⟨ΔH⟩ from ϵΔH to obtain the oscillating part ϵ{ΔH}. For calculating the integral, we

expand the potential term using Jacobi–Anger expansion [73] eizsinθ = ∑n = − ∞

+∞ Jn(z)einθ:
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(4.12){ΔH} = − ∑n,m = − ∞

∞
Ω2Jn J̄

Ωπ Jm(λ)cos(nθ̄ −mt) + J̄Ω
4π cos 2θ̄

(4.13)≡ ∑n,m = − ∞

∞
ΔHn,m(J̄ , θ̄, t) + J̄Ω

4π cos 2θ̄,

where both n,m are non-zero. The change in action ϵΔS can be calculated as

4.14)ϵΔS = − ∫ tdtϵ{ΔH}

(4.15)= ∑n,m = − ∞

∞ ϵΔSn,m(J̄ , θ̄, t) + ϵJ̄Ω
8πΩ̄(J̄)

sin 2θ̄,

where

(4.16)ϵΔSn,m = −ϵΩ2nΩ̄(J̄) −mJn J̄
Ωπ Jm(λ)sin(nθ̄ −mt) .

Consequent to the above,

(4.17)J̄ = J − ϵ∂ΔS∂θ (J, θ, t) ;  θ̄ = θ + ϵ∂ΔS∂J (J, θ, t) .

The new action-angle variables can be calculated up to first order as

(4.18)J̄ = J + ϵ nΩ2nΩ̄(J) −mJn J
Ωπ Jm(λ)cos(nθ −mt) − ϵ JΩ4π cos 2θ,

(4.19)θ̄ = θ + ϵ −Ω2nΩ̄(J) −mJn′ J
Ωπ Jm(λ)sin(nθ −mt) + ϵΩ

8πΩ̄(J̄)
sin 2θ .

Thus, we have obtained the action with resonant denominators which leads to the resonant condition

(4.20)nΩ̄(J̄) = mω,

where ω is the modulation frequency and Ω̄(J̄) is the frequency of the orbit; ω is obtained when we
substitute the actual time, t, in place of dimensionless time from equation (4.1). This explains the
observed pattern in figure 3: the orbital periods are the integral multiples of the modulation period at
the resonance. The strength of (n, m)th resonance is determined by the product of two Bessel functionsJn( J /Ωπ) and Jm(λ). Using the first-order correction in the frequency Ω(J), we plot it as a function of J
in figure 4. We see that only the 1:3 resonance is allowed under first-order correction. This means that
all other resonances in figure 3 must originate from the higher-order perturbation terms in correction
for Ω̄ and J̄ . That explains the dominance of primary islands in (n,m)=(3,1) resonance and the presence
of secondary islands in other resonances.

For the expression without binomial approximation equation (4.4), where in figure 2, we saw
(3,1) resonance to be dominantly present, but without binomial approximation (equation 2.17), this
resonance is suppressed and does not appear. This can lead to significant corrections for both quantum
and classical equations despite being in a large detuning limit. Similarly, very high-ordered resonances
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(b) (c)

Figure 3. Poincaré sections taken in steps of the modulation period using the same parameter as in [1]. (a) 1000 ultracold atoms
(purple dots) are loaded in one of the islands of stability in the Poincaré section taken in steps of the driving period T. (b) Stroboscopic
evolution of the ultracold atoms reveals that they evolve with period 4T. (c) Similarly, loading on different islands of stability shows the
existence of 3T, 11T/3, 4T and 5T periods predominantly.
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are enhanced by binomial approximation as the chaotic regime can be seen enhanced around the edges
for this case.

5. Dynamical localization
Let us imagine that we prepare the initial state of the atoms as a localized wavepacket. As the system
evolves, the wavepacket spreads. The wavefunction of the two-state system is shown to evolve, in all
versions of description, on a pair of PESs. The form of these potentials readily supports the bounded
dynamics of one of the potentials. The complex intersection points provide paths for tunnelling. The
succession of these two dynamical features leads to the localization of the wavepacket. The physics
of this is nothing but the well-known argument by Mott & Twose [74] and Anderson [54], adapted in
recent times in quantum chaos [55,56].

6. Conclusions
When a collection of atoms is subjected to phase modulation, the quantum and classical dynamics
are dictated by several frequencies. The quantum dynamics of the two-level systems has been studied
in the past where the main result was the observation of dynamical localization by Raizen’s group
[1]. The theoretical analysis of the system has been carried out under various approximations and
discussed at a didactic level [63]. Here, we perform the analysis of this system by using successive
unitary transformations on the off-diagonal part of the Hamiltonian in the process of diagonalization,
as explained in §3. We have worked with the transformed Hamiltonian which is diagonal to O(1).
Our analysis, following earlier works in chemical physics and nuclear physics, explained in detail in
a comprehensive review [64], shows that the dynamics of the two-state system take place on coupled
PESs. The connection between the two surfaces occurs via tunnelling and the underlying classical
dynamics is shown to be quasi-integrable of the KAM type. This is brought out by the Poincaré
surfaces of sections where we note the presence of elliptic and hyperbolic points, typically paraphrased
as dynamics occurs in the mixed-phase space with ‘stable islands in the stochastic sea’. A detailed
understanding of dynamics is interesting and illuminating.

Let us comment about the usage of the term ‘exact’. Upon diagonalization of the potential matrix,
there appears a ‘vector potential’ in the kinetic energy term, leading to terms in orders of Planck’s
constant. The transformed Hamiltonian is [(p − ℏA)2/2 + v]. The important point is that (p2/2m + v)I is
diagonal whereas the other terms of orders ℏ and ℏ2 are not diagonal. Our objective is to diagonalize
the Hamiltonian matrix. At this step, the diagonalization is up to O(1). This process can be repeated
by diagonalizing the off-diagonal terms in A.p and A.A by successive unitary transformations. In
principle, this process can be repeated ad infinitum, leading to complete diagonalization.

The approximated analysis has certain appeal insofar as tunnelling between islands is seen clearly.
However, to establish the existence of islands and tunnelling, we show that the onset of islands of
stability can be seen from the first-order perturbation theory.

0.40

0.35

0.30

Ω (J)

0.25

200 400 600 800 1000
J

Figure 4. First order correction in Ω(J). Only those resonances whose frequency ratio Ω(J):ω (ω=1 here) intersect with Ω(J)
are allowed.
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As explained above, the analysis reveals a vector potential that is related to an artificial gauge field.
We believe that knowing the form of this could be useful for experiments with cold atoms and in
developing the fields of Hamiltonian engineering, quantum sensing and quantum interference. We
have not developed these aspects here.

As referred to in the Introduction, our results add to the discussion of integrability in matrix models
for atomic systems, in particular to the work on the quantum Rabi model [61]. In the future, by adding
nonlinear terms to incorporate interactions that allow the control of atomic states, these works could be
useful for critical quantum metrology [75]. The control of states of multi-qubit systems [76] and their
protection [77] belongs to the present theme in a rather compelling manner.
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