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Quantum dynamics of a collection of atoms subjected to phase
modulation has been carefully revisited. We present an exact
analysis of the evolution of a two-level system (represented
by a spinor) under the action of a time-dependent matrix
Hamiltonian. The dynamics is shown to evolve on two
coupled potential energy surfaces (PESs): one of them is
binding, while the other one is scattering type. The dynamics
is shown to be quasi-integrable with nonlinear resonances.
The bounded dynamics with intermittent scattering at random
moments presents a scenario reminiscent of Anderson and
dynamical localization. We believe that a careful analytical
investigation of a multi-component system that is classically
non-integrable is relevant to many other fields, including
quantum computation with multi-qubit systems.

1. Introduction

Evolution in the fields of ultracold atoms and quantum physics
in the past few decades has led to the recognition of these
fields as a huge well-acclaimed arena for the exploration of
popular subjects like quantum chaos [1], Feshbach resonances
[2-12], ultracold atomic mixtures [13-18], atom interferometry
[19-33], atomic clocks [34-44], quantum diffraction [45,46] and
quantum thermodynamics [47-50]. This is due to the rich
internal structures, longer de Broglie wavelengths and tunable
long-range interactions of ultracold atoms. Furthermore, the
research in the regime of lower temperatures has also been
extended to these molecules [51,52]. Apart from these recent
developments, there has been a sustained effort to realize
parallels between atomic and condensed matter physics [53].
One of the ideas pursued with great interest is the localiza-
tion of states in disordered systems, pioneered by Anderson
[54]. Due to a common-sense analogy between disorder and

© 2024 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
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chaos, a connection between the localization of wavefunctions of classically chaotic systems and the [
disordered lattices of infinite [55] and finite extent [56] was brought out. Even in matter waves, the
phenomenon of localization has been experimentally demonstrated [57].

Many years ago, an experiment carried out by the group led by Raizen [1] demonstrated the
dynamical analogue of Anderson localization in a system of cold atoms. In this experiment, approxi-
mately 100 000 *Na atoms were trapped in a spherical volume of radius 300 um at a temperature of
17 pK. At the end of the preparation step, the cooling lasers were turned off and a modulated standing
light field was switched on for 10 ps. The Hamiltonian describing the interaction of a sodium atom of
mass m at position x and momentum p with the light field is given by [58]

2
Hy =He1+2p—m+chos {kr[x — ALsin wt]}cos wyt . (1.1)

Here, H, denotes the interaction of valence electrons with an atom. The last term denotes the electric

* sosyjewinof/Bio SunsyqndGanosiefos

dipole interaction of the electromagnetic field with an electron. The laser frequency and wavenumber
are denoted by w;, and k;, respectively, and w is the modulation frequency. Standing waves are
generated by directing two counter-propagating laser beams into the trap and the modulation is
achieved by passing one beam through an electro-optical phase modulator. The beam is made to strike
a mirror in a cavity of length AL that is moving with the modulation frequency, w. The laser frequency
was chosen close to the D; line of sodium. The electronic Hamiltonian can be reduced to a two-level
system written on the basis of a ground state |g)=(0,1)" and an excited state, le)=(1,0)", such that

a general state with complex amplitudes " and ¥ in the respective two levels can be written as

€0SLET :LL DS uadp 20s°Y

Pp=9"le)+9 | g). Taking the energy average of the two states as zero energy, the matrix elements of
Hgj and eF together give

_ han

Hel P

o, ; eF=hQo, = Hg+eF= 1.2)

hawo/2 QY
hQ  —hwy/2)

where the transition frequency between these two levels is denoted by wy 2 denotes the Rabi
frequency coupling the two states by electric dipole interaction and &’s are the Pauli matrices. Thus, Hy
may be written as

2
Ho= zp—ml + @az + 1Qcos {k;[x — ALsin wt]}cos(wyt)o, (1.3)
where I denotes an identity matrix.

After we present the general Hamiltonian below, in §2, we present the Hamiltonian under rotating
wave approximation (RWA). Within this approximation, the case of adiabatic perturbation for the two
cases of small and large detuning is considered. In §3, the exact solution for this matrix Hamiltonian is
given. The method transforms the dynamics under the matrix Hamiltonian to dynamics on potential
energy surfaces (PESs). Classical dynamics reveals the presence of nonlinear resonances in §4. The
classical system obeys the Kolmogorov—Arnold-Moser (KAM) theorem [59] and hence is
quasi-integrable [60]. In a related context of the quantum Rabi model, a discussion on integrability [61]
and symmetries [62] has been presented relatively recently.

Special solutions are discussed as they have been used to analyse experiments carried out by
different groups. For each case discussed at the quantum mechanical level, we also present classical
phase space pictures and show that this atomic system presents a very interesting and deep instance
of the association of quasi-integrability and dynamical localization. The phase space pictures exhibit
certain misleading features in the approximated Hamiltonian, compared with the exact Hamiltonian
obtained by systematic expansion in powers of #.

1.1. General Hamiltonian
We now transform to a frame which is rotating with w;, about the z-axis in a spin space,
Pror = exp(iowpot/2)). (1.4)

Substituting 3 in the Schrodinger equation, i70y/dt = Hyp, we have the equation for the rotated
wavefunction,



2 —
Hyot = 2l’_ml + Maz +1Qcos {ky[x — ALsin wt]} x (1.5)

iwyo,t/2 —iwyo,t/2
x cos(wyt)e L% g LT,

Using the standard identity, “:7*’g¢ “1%#

Hamiltonian,

=o.coswit - oysinwit, we have the transformed

M=) o D otk [x - ALsinwf]] x (1.6)

2
Hrot= p_I+ 2

2m 2

x [o(1 + cos 2wy t) - oysin 2wy t] .

This is the general Hamiltonian for the physical situation described above where there are terms
oscillating with twice the wy.

2. Rotating wave approximation

The Schrodinger equation for H, is usually solved under the RWA [58,63]. Here, the terms oscillating
with frequency 2wy, are neglected. This leads to a simplified Hamiltonian,

2
HRWA = f—ml + WQef(0,c08 ot + o8in ), @.1)
where
Quit = (@0 - @) + Ocos” [ky(x - ALsin )]} 2.2)
tan o = Qcos[ky(x — ALsin wt)] .
Wy — Wy,

Let us rotate the state of this Hamiltonian further in the spin space by an angle ( - «/2) about the y-axis,

to obtain a new state, ' =9 " le)+9 1 g) = exp(ioo,/2) Py

ith/2¢+ + sin(a/2)e_imLt/2¢‘

_ cos(a/2)e 23)
W+ cos(a/2)e iy '

'

—sin(a/ 2)eimLt/2

in which the second term is diagonal. Consequently, the equation satisfied by 9’ is

. a‘(,D’ h 0a ’ iaoy/2 L  RWA —iaay/2 RWA _;/
hw= ‘EEW/’ +e Y Hp' e VP =Hey ¢ (2.4)

However, this will transform the kinetic term as [64]

eiacry/zpzle_iacry/zw, _ (pI _ hA)zl,b' _ sz', (2.5)
_oy0a _ —k;.6;Qsin[k;(x — ALsin wt)]o, . 2.6)
2 ox 2(5L2 + Q%cos?[ky(x - ALsin cot)])
where I is an identity matrix. Now, we can use the well-known identity
et )G o il ) = G cos D+ 1t x & sin2a+ AR . & )(1 - cos 2a) . 2.7)

While the ‘potential” part of the Hamiltonian becomes diagonal with these unitary transformations,

the kinetic term modifies to (pI—hA)Z. This has terms of order 1, # and hz; thus, an asymptotic
semiclassical expansion appears in a natural manner [65-67]. The asymptotic expansion parameter
7 [64] is small compared with the relevant classical action.! It is worth noting that this powerful
method has been successfully used to obtain the ‘exact’ ground states for deuteron [68] and triton [69].
Moreover, we would like to recall that the semiclassical trace formula for oscillator potentials gives

'We can make a rough estimate of relevant classical action by considering the product of momentum of the trapped sodium
atom and the size of the trap. With the values corresponding to the experiment [1]. The momentum corresponding to 17 pK is
approximately 4.23 x 10 kg m s™. In a spherical trap of radius, 300 pm, the ratio of ~ to the action is estimated to be about 10°°. If

the atom remains in a smaller region, this ratio would still be at least 10™* or so. A semiclassical expansion is certainly justified.

*sosjeunof/Bao Suysygndanosjefo
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the exact level density, where one performs an asymptotic expansion of the energy-dependent Green
function or propagator in powers of # [70].

Furthermore, since A has non-zero diagonal matrix elements, there is a possibility of a geometric
phase appearing in the state of the atoms as the system evolves. This is indeed due to the cavity

modulation. Dimensionally, #A/e is a magnetic vector potential. Hyy ** can be written as

I 70
HE'™ = 5+ hQutio, ~ 5570, (28)
2.9)
hz dar)? _hda_ hdap ik’ da
2m 8m\ox T+ 7Qe0 + 23t 20xm  2mox|”

* sosyjewinof/Bio SunsyqndGanosiefos

Except for terms of order O(h?), each of the terms can make a significant contribution. At this point,
one of the possible simplifications occurs if « is slowly varying with time. This leads us to consider
applying the adiabatic approximation, which we will discuss now.

2.1. Adiabatic variation

€0SLET :LL DS uadp 20s°Y

We may neglect the term %o, da/dt. Here, we invoke the classical correspondence of dx/dt and p/m by
writing?

da

ho, 9% o, haa p aoc

Lo+ nSro, (2.10)

which is small for an adiabatic variation. The adiabatic Hamiltonian is

2 2
RWA _ n° (o in” oa
Had 2m SWL(ax) I+ 7CQeiio; Imox’Y (211)
It is important if the detuning is small or large. This is because
da kL%sin[kL(x — ALsin wt)] da coi)—Lsin[kL(x — ALsin wt)]cos wt .
o (5L)2 2 . ’ KT 2 : ’ @12)
)"+ cos?[ky (x — ALsin of)] (5) + cos?ky (x - ALsin wt)]
So either for small or large detuning,
oa du
6p<Q or 6,>»>Q = T 0. (2.13)

2.1.1. Small detuning

Here, wy ~ w;, thus tana — e or a ~ 7/2. Considering equation (2.13) and keeping the terms up to
O(h), the adiabatic Hamiltonian further simplifies to

2
HRYA = 2P_m1 + Q0 . (2.14)
Using the smallness of detuning, we may expand it binomially to obtain

(o — wp)’
200%cos?[ky(x — ALsin wt)]

os[kr(x — ALsin wt)]|1 + (2.15)

These provide the two PESs on which the two-level system evolves, connected by tunnelling. This can
be seen by the fact that the intersection of the two curves occurs when Qg is zero, leading to

*By classical correspondence, we assume the validity of Ehrenfest’s theorem.



x = ALsinwt + 5-— +ilog

7 08
2kp, 200 20
:ALsincot+L—i\/§5L

2k, 20

(2.16)

for small detuning. The binding part of the potential in equation 2.15 supports eigenvalues. However,
since the Hamiltonian is periodic in time, the eigenvalues are quasi-energies. Owing to the imaginary
part, these are more precisely ‘quasi-energy resonances’.

2.1.2. Large detuning

We consider the case where we have the RWA and adiabatic approximation but &, > ). Then, we have
the Hamiltonian,

2
/2m + hQ) 0
B = [P ot . 2.17)
0 p/2m - hQe
This can be decomposed into two Hamiltonians
2 Ko Q2 Q 3
RWA, = _ p~  hor|, Q" 5 AT
Hag,1 m t— 1+ 26%COS [kr(x — ALsin wt)]| + O((wo — CUL) ) (2.18)
The potential energy curves intersect when
x(t) = (n + 1)l +ALsinot . (2.19)
2)ky,

Here, the intersection points are real where the real part is the same as for small detuning. The
potential energy curves support sharp quasi-energies.

3. Exact solution

We now return to equation (1.6) and lift all the approximations considered in the last section. The
Hamiltonian is written as

pZ a b pZ
Hyot = 2ml+(b* _a) = 2mI+M’ (3.1)
where a = Ai(wg — wr)/2, b = by +ib,, with
10 .
b= Tcos[kL(x — ALsin wt)](1 + cos 2wy t), (3.2)

b, = @cos[kL(x — ALsin wt)]sin 2wyt .

The matrix denoted by M in equation (3.1) can be diagonalized by matrix 8 to get the diagonal matrix,
J. These matrices are

(a—ya®>+ b3 +b3)(b1+iby)  (a++a®+b3+b3)(by +iby)

8= b} +b3 b?+ b3 (33)
1 1

and

—Ja®+ b2 + b3 0

J= (34)

0 Ja@+ b+ b3
We define 1, = 8 ', with ihdi,,/0t = Hip,or. The equation for the time evolution of ¥ is

0P . 108 1 p?
lhw = iS Elpl +8 mlS% + 31,01 . (35)

€0SLET :LL DS uadp 20s°Y
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Now, 8§ p’8 = (b’_lp(S)2 =(p- in8 108/ ax)z. Here, we again have a vector potential which is an artificial n
gauge field.
The Hamiltonian is thus written as an expansion [64,68]

H = Hy+ hHy + h*H, (3.6)

with Hy has a simple form

Hy= -1+

2m 0 Ny

Writing ¢, = (¢§” 1/)57 ))T with the superscript T denoting the transpose, we have written the state with

(3.7)

P [+ bl 0 )

sosy/Jewnol/bio Buysygndanosiefos

two components. The classical Hamiltonians corresponding to the states, ¥{*) are

+ p2 h(co - co[)( 4Q2 12

(—) — 0 2 . 2

H, =—=% 1+ Ccos k[ x — ALsin wt)]cos wrt . 3.8
0 2m 2 k ( 0 L)2 [ ( )] ( )

Usually, (s subjected to a binding potential and P is evolving on a scattering potential. There are

two PESs, £1/a” + b% + b% on which the full two-component wavefunction, ¢;, evolves. The PESs meet at
the solution of

€0SLET :LL DS uadp 20s°Y

A +bi+b}=0. (3.9)
The solution is
x = ALsinwt + icos’1 +i Msec(w t) (3.10)
kr, 20 L ’

=8 L0 2
+msec(th) @sec (wrt)

_ . T .1
= ALsin wt+2—kL+lk—Llog

For small detuning (6, < Q), the potential curves intersect at

3

x = ALsinwt + = sec(wrt) 1 oL
480

_. 6
2k, T 120

5 sec(wyt) . (3.11)

The complex value of crossing the PESs implies the tunnelling of atoms. The tunnelling across these
surfaces where the underlying dynamics is nonlinear has some very interesting related phenomena
like resonance-assisted tunnelling [71], which have been recently experimentally realized [72].

Figure 1a,b shows these crossings along the complex position plane. We note that the crossing gap
at the null imaginary position plane vanishes as one reaches closer to the resonance (at small detuning)
and remains wide open at large detuning.

In equation (3.8), for large detuning, Q%/(wy - w;)* < 1, a Taylor expansion immediately yields

2 2
() _ D h(coo—coL){ 20 2 . 2
Hy/=+—+ 1+ cos“[kr(x — ALsin wt)]cos” wyt|. 3.12
0,1 2m 2 \ (COO _ COL)2 [ L( )] L ( )

Among the two Hamiltonians, H((),_l) is binding; it can be seen that the second term in the Taylor
expansion of cos[k;(x — ALsin wt)] along with an overall negative sign will make this roughly parabolic

for small arguments, at least. For the same reason, Hi is a scattering potential. The differences in
Poincaré sections, obtained by slicing phase space evolution in the time intervals of the modulation
period T =2m/w for various cases can be seen in figure 2a—d that are evaluated using numerical
simulations (using Runge-Kutta order 4) for the classical equation of motions for Hamiltonians
obtained from equations (3.8); (3.12); (2.17) and (2.18), respectively. We found that the three-island
ring which is present in both unapproximated case and RWA + Adiabatic case vanishes if we make a
binomial approximation implying that the origin of this resonance is purely arising because of higher
order terms of equations (3.12) and (2.15). We also note that the chaos is more apparent in the binomial
case but less severe in all other cases.
We now study the classical mechanics of these Hamiltonians.



Re (V(x))
Re (V(x))

Im (x) 5 Im (x) 5

Figure 1. PES at (a) large detuning (&7, >> () and (b) small detuning (&7, << €2). At large detuning, the gap shrinks allowing a
larger region for space for crossing the PES.
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Figure 2. Comparison of Poincaré sections for Hamiltonians under different approximations for the case of large detuning for the same
set of parameters used in figure 3. (a) Shows the unapproximated case corresponding to the exact solution. (b) Shows the application
of binomial approximation to the exact solution. (c) Corresponds to the RWA + Adiabatic approximation and (d) corresponds to the
RWA + Adiabatic + Binomial approximation. Initial conditions and number of evolution steps are kept the same for all cases here.

4. Quasi-integrability

In this section, we study the classical dynamics of the Hamiltonians obtained above under different
approximations.

We begin with the exact Hamiltonian, namely, equation (3.6) and consider only HY) in equation

(3.8). We make the following transformations to convert it to a dimensionless form almost similar to
[63]:

Ma*Hy
2
L
Q )2 hk20)?

3" 2Mats,

t X Mwp
t_)w/x_)ZkLr p_) sz II—FO_)

(4.1)

l=2kLALI V=%/ 77=(

£0SLET unguad())ogy SOS.J./.i;lilnO[/ﬁJO‘.fgl.J.!.l..iS!|qnd/(19.!5(.).su|ékal. H




where 7 is the strength of Rabi resonance and 8, = wy—w; is the detuning of laser. The simplified n
Hamiltonian yields

- p2 4K . 2 %
Hy =5 - T[1 +27(1 + cos(x - Asin t))cos’ yt]?.. (4.2)

Now, using the same transformations (equation (4.1)), we write the Hamiltonians for large detuning,
neglecting the constant terms,

2
Hg, =~ % - 4Kcos(x — Asin t)cos? yt, 4.3)
2
Ha(" ™ = % - Kcos(x - Asint). (4.4)

sosy/Jewnol/bio Buysygndanosiefos

This clearly implies a drastic change in the equation if ¥ > 1, thus even if we use (cos®yt) =1/2, the
second term contributes to double compared with the contribution coming from the usual case with
adiabatic and RWA.

In order to understand the underlying phase space structure, we initialize 1000 ultracold atoms
(purple dots) in one of the islands in the Poincare section taken in steps of modulation time period T
as shown in figure 34 and look at its stroboscopic evolution in multiples of the modulation time period.
We found that after each modulation period, atoms move from one island to another lying around the
same larger elliptic-like orbit (figure 3b). Similarly, we found that the number of islands is equal to (or
twice if n is even) the number of modulation periods n for the marked islands in figure 3c. In other
words, these islands satisfy Towit = T or Qomir/w = 1/n.

€0SLET :LL DS uadp 20s°Y

To study the origin of these patterns in resonance structures, we write the dimensionless
Hamiltonian equation (4.4) in action-angle variables. Let us write one of the RWA Hamiltonians as a
perturbed harmonic oscillator

2 2 2
= Hy.o. +€AH, (46)

where ¢ is introduced for book keeping (eventually, we shall put € = 1). Using the oscillator action-angle

variables, (J, 6), with x = J%sin(@) and p = ,/%cos(e) with K = (%, the Hamiltonians are

QJ
Hy . =El 4.7)
AH = - chos(1 }%sin 6 - Asin t) - gsin2 6. (4.8)

We use the classical time-dependent perturbation theory [59] to calculate the associated action of this
Hamiltonian up to first order in perturbation. For this, we transform the action variables in a way that
the new Hamiltonian H is only a function of the new action variable J alone. We obtain

3 1 27 1 2~
(AH) = EL thL d6AH(J, 6, 1) (4.9)
) ’ T _ jQ
e QT o ([T ), O

where Jy(.) is the cylindrical Bessel function of order zero. The new frequency is

Q'(J) = 27166_? -Q(1-¢/2)- 2en9215(\/§)10(x) 4.11)

where prime on the Bessel function denotes a derivative with respect to its argument.
We subtract this (AH) from eAH to obtain the oscillating part e{AH}. For calculating the integral, we

+oo
expand the potential term using Jacobi-Anger expansion [73] /" = D Tu(2)e":
nE e



@ @

o113 : 3T
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Figure 3. Poincaré sections taken in steps of the modulation period using the same parameter as in [1]. (@) 1000 ultracold atoms
(purple dots) are loaded in one of the islands of stability in the Poincaré section taken in steps of the driving period T. (b) Stroboscopic
evolution of the ultracold atoms reveals that they evolve with period 4T. (¢) Similarly, loading on different islands of stability shows the
existence of 3T, 117/3, 4T and 5T periods predominantly.

B 5y + 220825
{AH} = n,mZ=—mQ ]n( Qn)]m(/l)cos(n@ mt)+4ﬂC0526 (4.12)

AH, (T, 6,0) + %Cos 26, (4.13)

0o
n,m=

where both n, m are non-zero. The change in action €AS can be calculated as

t
eAS= - f dte{AH) 4.14)
- - eJQ .
= eAS,, ,(J,6,t)+ — 26, 4.15
X eBSunll 60 g asin (4.15)
where
-e()? T s
€AS, = nQ(;ﬂJ”(‘ ,m)lm(/l)sm(ne —mt). (4.16)
Consequent to the above,
=_ . OAS A 0AS
J=17 GW(J, 6,t); 6= 9+€W(], 6,t). 4.17)

The new action-angle variables can be calculated up to first order as

= nQy’ [T o JQ

J=J+ em],l( G)Jm(l)cos(ne mt) €47 08 26, (4.18)
- -0? AT . B e .
6=0+ em n( m)]m(/l)sm(ne mt) + 87000) sin26. (4.19)

Thus, we have obtained the action with resonant denominators which leads to the resonant condition
nQJ) = mw, (4.20)

where w is the modulation frequency and Q(J) is the frequency of the orbit; w is obtained when we
substitute the actual time, ¢, in place of dimensionless time from equation (4.1). This explains the
observed pattern in figure 3: the orbital periods are the integral multiples of the modulation period at
the resonance. The strength of (n, m)th resonance is determined by the product of two Bessel functions
Ju(yJ/Qm) and J,,(1). Using the first-order correction in the frequency Q(J), we plot it as a function of J
in figure 4. We see that only the 1:3 resonance is allowed under first-order correction. This means that
all other resonances in figure 3 must originate from the higher-order perturbation terms in correction
for Q and J. That explains the dominance of primary islands in (n,m)=(3,1) resonance and the presence
of secondary islands in other resonances.

For the expression without binomial approximation equation (4.4), where in figure 2, we saw
(3,1) resonance to be dominantly present, but without binomial approximation (equation 2.17), this
resonance is suppressed and does not appear. This can lead to significant corrections for both quantum
and classical equations despite being in a large detuning limit. Similarly, very high-ordered resonances

€0SLE7 SLL Dsuadp 05y sosyfeunobioBuysygndiaaposieior g
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Figure 4. First order correction in C3(J). Only those resonances whose frequency ratio C3(J): w (cw=1 here) intersect with Q(J)
are allowed.

are enhanced by binomial approximation as the chaotic regime can be seen enhanced around the edges
for this case.

5. Dynamical localization

Let us imagine that we prepare the initial state of the atoms as a localized wavepacket. As the system
evolves, the wavepacket spreads. The wavefunction of the two-state system is shown to evolve, in all
versions of description, on a pair of PESs. The form of these potentials readily supports the bounded
dynamics of one of the potentials. The complex intersection points provide paths for tunnelling. The
succession of these two dynamical features leads to the localization of the wavepacket. The physics
of this is nothing but the well-known argument by Mott & Twose [74] and Anderson [54], adapted in
recent times in quantum chaos [55,56].

6. Conclusions

When a collection of atoms is subjected to phase modulation, the quantum and classical dynamics
are dictated by several frequencies. The quantum dynamics of the two-level systems has been studied
in the past where the main result was the observation of dynamical localization by Raizen’s group
[1]. The theoretical analysis of the system has been carried out under various approximations and
discussed at a didactic level [63]. Here, we perform the analysis of this system by using successive
unitary transformations on the off-diagonal part of the Hamiltonian in the process of diagonalization,
as explained in §3. We have worked with the transformed Hamiltonian which is diagonal to O(1).
Our analysis, following earlier works in chemical physics and nuclear physics, explained in detail in
a comprehensive review [64], shows that the dynamics of the two-state system take place on coupled
PESs. The connection between the two surfaces occurs via tunnelling and the underlying classical
dynamics is shown to be quasi-integrable of the KAM type. This is brought out by the Poincaré
surfaces of sections where we note the presence of elliptic and hyperbolic points, typically paraphrased
as dynamics occurs in the mixed-phase space with ‘stable islands in the stochastic sea’. A detailed
understanding of dynamics is interesting and illuminating.

Let us comment about the usage of the term ‘exact’. Upon diagonalization of the potential matrix,
there appears a ‘vector potential” in the kinetic energy term, leading to terms in orders of Planck’s
constant. The transformed Hamiltonian is [(p - #A)?/2 +V]. The important point is that ( p?/2m+v)l is

diagonal whereas the other terms of orders # and #” are not diagonal. Our objective is to diagonalize
the Hamiltonian matrix. At this step, the diagonalization is up to O(1). This process can be repeated
by diagonalizing the off-diagonal terms in A.p and A.A by successive unitary transformations. In
principle, this process can be repeated ad infinitum, leading to complete diagonalization.

The approximated analysis has certain appeal insofar as tunnelling between islands is seen clearly.
However, to establish the existence of islands and tunnelling, we show that the onset of islands of
stability can be seen from the first-order perturbation theory.
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As explained above, the analysis reveals a vector potential that is related to an artificial gauge field. [l
We believe that knowing the form of this could be useful for experiments with cold atoms and in
developing the fields of Hamiltonian engineering, quantum sensing and quantum interference. We
have not developed these aspects here.

As referred to in the Introduction, our results add to the discussion of integrability in matrix models
for atomic systems, in particular to the work on the quantum Rabi model [61]. In the future, by adding
nonlinear terms to incorporate interactions that allow the control of atomic states, these works could be
useful for critical quantum metrology [75]. The control of states of multi-qubit systems [76] and their
protection [77] belongs to the present theme in a rather compelling manner.

Ethics. This work did not require ethical approval from a human subject or animal welfare committee.
Data accessibility. This article has no additional data.
Declaration of Al use. We have not used Al-assisted technologies in creating this article.
Authors’ contributions. R.G.: conceptualization, data curation, formal analysis, investigation, methodology, software,
validation, visualization, writing—original draft, writing—review and editing; M.J.: conceptualization, data
curation, formal analysis, investigation, methodology, software, validation, visualization, writing—original draft,
writing—review and editing; S.R.J: Conceptualization, data curation, formal analysis, investigation, methodology,
software, supervision, validation, visualization, writing—original draft, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. No funding has been received for this article.
Acknowledgements. We thank Sandeep Joshi for several helpful discussions. R.G. acknowledges the fellowship
support received from CSIR-HRDG.

sosy/Jewnol/bio Buysygndaposiefos

€0SLET :LL DS uadp 20s°Y

References

1. Moore F, Robinson J, Bharucha C, Williams P, Raizen M. 1994 Observation of dynamical localization in atomic momentum transfer: a new
testing ground for quantum chaos. Phys. Rev. Lett. 73,2974-2977. (doi:10.1103/PhysRevLett.73.2974)

2. Thalhammer G, Barontini G, De Sarlo L, Catani J, Minardi F, Inguscio M. 2008 Double species Bose-Einstein condensate with tunable interspecies
interactions. Phys. Rev. Lett. 100, 210402. (doi:10.1103/PhysRevLett.100.210402)

3. (uiY,Deng M, YouL, Gao B, Tey MK. 2018 Broad Feshbach resonances in ultracold alkali-metal systems. Phys. Rev. A. 98, 042708. (doi:10.1103/
PhysRevA.98.042708)

4. Lamporesi G, Catani J, Barontini G, Nishida Y, Inguscio M, Minardi F. 2010 Scattering in mixed dimensions with ultracold gases. Phys. Rev. Lett.
104, 153202. (doi:10.1103/PhysRevLett.104.153202)

5. Tanzi L, Cabrera (R, Sanz J, Cheiney P, Tomza M, Tarruell L. 2018 Feshbach resonances in potassium Bose-Bose mixtures. Phys. Rev. A. 98,
062712. (doi:10.1103/PhysRevA.98.062712)

6. D'Errico C, Zaccanti M, Fattori M, Roati G, Inguscio M, Modugno G, Simoni A. 2007 Feshbach resonances in ultracold *K. New J. Phys. 9, 223. (doi:
10.1088/1367-2630/9/7/223)

7. MarteA, VolzT, Schuster J, Diirr S, Rempe G, van Kempen EGM, Verhaar BJ. 2002 Feshbach resonances in rubidium 87: precision measurement
and analysis. Phys. Rev. Lett. 89, 283202. (doi:10.1103/PhysRevLett.89.283202)

8. Yurovsky VA, Ben-Reuven A. 2003 Three-hody loss of trapped ultracold *’Rb atoms due to a Feshbach resonance. Phys. Rev. A. 67, 050701. (doi:
10.1103/PhysRevA.67.050701)

9. Vogels JM, Tsai CC, Freeland RS, Kokkelmans SJIMF, Verhaar BJ, Heinzen DJ. 1997 Prediction of Feshbach resonances in collisions of ultracold
rubidium atoms. Phys. Rev. A. 56, R1067—-R1070. (doi:10.1103/PhysRevA.56.R1067)

10.  Blackley CL, Le Sueur CR, Hutson JM, Hung-Wen C, Jenkin DL, Cornish SL. 2013 Feshbach resonances in ultracold *Rb. Phys. Rev. A. 87,033611.
(doi:10.1103/PhysRevA.87.033611)

11.  Tobias F, Alexander G, Wilson KE, Jack S, Frye MD, Hutson JM, Cornish SL. 2022 Observation of magnetic Feshbach resonances between Cs and
"3Yb. Phys. Rev. Res. 4,043072. (doi:10.1103/PhysRevResearch.4.043072)

12. Hung-Wen G, et al. 2013 Feshbach spectroscopy of an ultracold mixture of *Rb and ™*Cs. Phys. Rev. A. 87, 010703. (doi:10.1103/Phys