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1. INTRODUCTION

Frequency- domain analyses of oscillations in electro-
physiological recordings of brain activity contain infor-
mation about the underlying neuronal activity. Both the 
peaks of specific oscillations and the broader spectral 
shape are informative about brain function and have 
inspired a wide literature across neuroscience ( Buzsaḱi  & 
 Draguhn,  2004;  Kopell  et al.,  2014). The time- averaged 

periodogram is the predominant method for spectrum 

estimation in neuroscience. It computes the average 

Fourier spectrum across a set of sliding window seg-

ments ( Bartlett,  1948,  1950;  Welch,  1967) based on the 

premise that the data are comparable over time and that 

the effect of noise will be attenuated when averaging 

across segments. This algorithm produces a statistical 

estimate of a spectrum and has remained largely the 
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same for many decades. Statistical methods have greatly 
progressed in this time and many newer ap proaches can 
be directly applied to the windowed periodogram.

Here, we propose the General Linear Model Spec-
trum (GLM- Spectrum) framework for analysing time- 
averaged periodogram estimates of frequency spectra. 
This reframes the method of averaged periodograms as 
a regression problem by modelling frequency spectra 
over successive windows as a linear mixture of a set of 
user- specified regressors. This links linear spectrum 
estimation to the GLM analyses that have been devel-
oped for a broad range of neuroimaging applications, 
including structural and functional MRI ( Friston  et  al., 
 1994;  Woolrich  et al.,  2009), event- related fields ( Smith 
 &  Kutas,  2014), and induced responses ( Litvak  et  al., 
 2013). Specifically, we demonstrate the utility of multi-
level models ( Friston,  2007;  Woolrich  et al.,  2004), non- 
parametric permutation testing ( Nichols  &  Holmes, 
 2001;  Winkler  et  al.,  2014), contrast coding, and con-
found regression in the context of spectrum estimation. 
GLM- Spectrum can be applied to analyse any time 
series, from Local Field Potentials to multichannel 
 Electro-  and Magnetoencephalography (EEG & MEG). It 
is not dependent on any specific preprocessing meth-
ods in sensor-  or source-  space analyses, beyond what 
would apply to a typical frequency spectrum analysis. 
The GLM- Spectrum could also be configured to per-
form task analyses on the timescale of the sliding win-
dows used in the STFT. For example, a set of “boxcar” 
regressors could be defined to contrast different task 
states. More broadly, the method is applicable to any 
time series analysis that looks to estimate a Fourier- 
based frequency spectrum.

We illustrate the GLM- Spectrum by analysing EEG 
recordings alternating between eyes- open and eyes- 
closed resting- state conditions from a freely available 
dataset ( Babayan  et al.,  2019). First, the GLM- Spectrum 
is used to analyse time- series data from a single chan-
nel of one individual. The spectrum for the two resting 
conditions and their difference are computed, whilst a 
set of covariate and confound regressors account for 
linear trends over time and a diverse set of potential 
artefact sources. This approach is generalised to the 
whole head recording of a single subject to describe the 
spatial patterns associated with each regressor. Finally, 
a group- level, whole head analysis explores the GLM- 
Spectra of specific regressors and contrasts before 
quantifying how they differ between younger and older 
participants.

2. METHODS

2.1. Time- averaged periodogram estimation

Time- averaged periodogram methods start by estimating 
a windowed short- time Fourier transform across time 
series y using the windowing function w

 
Yy f,k( ) = w t( ) y t,k( )e

− i2π ft
fs

t=1

T

∑
 

(1)

The Fourier transform above is computing the k- th seg-
ment of the continuous input y t( ), which we denote with 
y t,k( ). The output matrix Y f,k( ) contains the STFT, which 
describes how the spectrum changes in power across the 
K segments. A time- varying magnitude spectrum Sy or 
power spectrum Py can be computed from the STFT.

 
Sy f,k( ) = Y f,k( )  Py f,k( ) = |Y f,k( ) |2

N  
(2)

Where N is the length of the sliding window segments. 
Finally, the time- averaged periodogram is then the aver-
age of the time- varying power spectral density across 
segments.

 
Pwelchy f( ) = 1

K
Py f,k( )

k=1

K

∑
 

(3)

If the previous computations included a windowing 
function w t( ) and overlapping time segments, then this 
is Welch’s power spectral density estimate ( Welch,  1967). 
Welch’s time- averaged periodogram has the property 
that the noise level of the estimate decreases with 
increased data length, since more input data provide a 
larger number of segments for the central averaging 
step. It is still an imperfect estimator that has been sub-
ject to criticism ( Prerau  et al.,  2017;  Thomson,  1982) but 
it is practical, straightforward to compute, and in wide 
use across science and engineering. A detailed descrip-
tion of these equations is provided in Supplementary 
Section A. A description of how parameters such as 
 window length and sample rate affect the spectrum is 
provided in Supplementary Section B.

2.2. General linear model spectrum

The GLM- Spectrum replaces the averaging step in the 
time- averaged spectrum estimation methods with a Gen-
eral Linear Model (also known as multiple regression). 
The GLM is widely used in neuroimaging analyses 
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( Friston,  2007;  Woolrich  et al.,  2009) and the same princi-
ples around analysis, model validation, and statistics 
apply here. The objective is to model the spectrum across 
the K sliding window segments as a linear function of a 
set of regressor variables. The magnitude GLM- Spectrum 
is defined as:

 Sy f,k( ) = X k( )B f( )+ e f( ) (4)

where Sy f( ) is the (Kx1) time- varying spectrum estimated 
at frequency (f ) across all K segments/windows (the STFT 
computed in 2) computed from a single channel (time 
series) of data, X is a (KxP) design matrix containing the P 
regressors of interest as they vary over time, and e(f) is a 
(Kx1) vector of residual errors. We model the whole spec-
trum using a mass- univariate modelling approach that fits 
a separate GLM for each frequency bin in the FFT. The 
resulting (Px1) vector B(f) contains the estimated regres-
sion parameters. We refer to the whole vector of esti-
mates across frequency as the GLM “beta- spectrum.”1

2.3. Estimating the GLM parameters

Once the design matrix has been specified and the data 
have been transformed into the STFT, we are ready to fit 
the regression parameters B in equation  4. Under the 
assumptions specified above, this can be achieved using 
Ordinary Least Squares (OLS) to estimate the regression 
parameters (also known as beta- estimates), B f( ), as

 B! f( ) = (XT X )−1XTSy f( )  (5)

Alternatively, we can pre- multiply the data by the 
Moore- Penrose pseudo- inverse (MPPI) ( Penrose,  1956) 
of the design matrix, which performs well even when 
there are multi- collinearities in X  (see Section 2.4):

 B! f( ) = X+Sy f( ) (6)

where the superscript  + denotes the MPPI. More complex 
fitting routines could be used if the assumptions underly-
ing OLS are inappropriate for a particular application. For 
example, the rest of the GLM- Spectrum framework would 
work in the same way if B f( ) were estimated using a 
robust or regularised regression. Similarly, it would be 
possible to extend the approach to Bayesian regression 
methods. Here, we use the pseudo- inverse model fitting 
approach (equation 6) for all GLM estimation.

2.4. Assumptions of the GLM- spectrum

The theory of linear regression underlying the GLM- 
Spectrum uses assumptions that simplify the problem and 
specify the conditions under which the solution is valid. 
Typically, five different assumptions are defined: validity, 
linearity, independence of errors, homoscedasticity of 
errors, and normality of errors. There remains debate 
about their relative importance ( Gelman  &  Hill,  2007;  Knief 
 &  Forstmeier,  2021).

The first two assumptions are relatively general. Valid-
ity states that the data being analysed should be an 
appropriate match to the research question. This appar-
ently simple point is frequently overlooked by researchers 
( Gelman  &  Hill,  2007). Linearity is the assumption that the 
dependent variable can be described as a linear function 
of the predictors in the model design matrix. This is the 
central mathematical feature of linear regression models. 
We cover assumptions about the residuals and the distri-
bution of variables in more detail in the next two sections.

2.4.1. Distribution of the residuals

Three commonly reported assumptions relate to the 
residuals of the fitted model e f( ). Independence of errors 
states that the residuals of the model fit are independent 
and identically distributed (IID) over observations (over 
time in the case of GLM- Spectrum). Homoscedasticity of 
errors states that the variance of the error is consistent 
across all values of the predictor. Finally, normality of 
errors states that the residuals should have a normal, 
Gaussian distribution. Violating these assumptions affects 
the validity of inferential statistics computed from the 
model, limiting our ability to generalise results from our 
data to the population. Parameter estimates are more 
robust to violations of these assumptions. In most cases, 
we anticipate that inferential statistics will not be per-
formed on first- level GLM- Spectrum results. Rather, the 
parameter estimates or t- values of many first- level mod-
els will be combined into a group model.

GLMs are relatively robust to violations of homosce-
dasticity of errors and normality of errors ( Williams  et al., 
 2019). The p- values computed from models with viola-
tions of these errors tend to be robust at moderate to 
large sample sizes, except in datasets with substantial 
outliers ( Knief  &  Forstmeier,  2021).

A specific issue for first- level statistics is the likely 
presence of temporal autocorrelation in e f( ), indicating a 
violation of the independence of errors assumption. This 
issue is commonly encountered in other time- series 
models such as first- level fMRI analyses ( Friston  et al., 

1 The term “beta” has different uses in the fields of statistics/linear- modelling 
and neuronal oscillations. In this work, we refer to a “beta- spectrum” in the 
statistical sense (a spectrum of linear model parameter estimates) rather than 
the neuronal sense (oscillatory activity within a 15Hz to 30Hz frequency range).
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 2000;  Woolrich  et al.,  2001;  Worsley  and  Friston,  1995). 
Future work that requires valid inferential statistics on 
first- level GLM- Spectra may develop explicit models for 
this temporal autocorrelation similar to the approach 
taken in fMRI ( Friston  et al.,  2000;  Woolrich  et al.,  2001).

2.4.2. Distribution of the data and predictor variables

The ordinary least- squares GLM does not make any for-
mal assumptions about the distributions of the data or 
predictor variables ( Williams  et  al.,  2019). Non- normal 
predictor variables are commonplace in regression anal-
yses. For example, binary variables that “dummy code” 
for individual groups of observations are commonly used 
as predictors. Strongly skewed, fat- tailed or non- normal 
distributions can still negatively impact the fit by a greater 
likelihood of influential outlier observations. This may be 
increasingly problematic with smaller sample sizes, or 
with increasingly extreme outlier values in the data.

Distribution checking is a critical factor in the choice of 
whether to use the complex, magnitude, power or log- 
power spectrum as the dependent variable in a GLM- 
Spectrum. Power is most commonly used for spectrum 
analysis but power estimates are strictly positive- valued 
and tend to have distributions with a strong positive 
skew. The magnitude (Sy (f )) and log- power ( log(Py (f ))) 
spectra are likely to be more Gaussian and both result in 
similar GLM- Spectrum results (See Supplementary Sec-
tion C). Though either of these forms are appropriate, 
here we use the magnitude spectrum as it is a good com-
promise between reducing the impact of outliers and 
maintaining simple visual interpretability of the results.

Future work could equally use the log- power spectrum 
or consider expanding the GLM- Spectrum approach to 
use Generalised Linear Modelling ( Nelder  &  Wedderburn, 
 1972) to account for specific differences in the distribu-
tion of the data being modelled. Finally, we do not con-
sider the complex spectrum due to variability in phase 
across time segments, leading to significant cancellation 
of the signal. If phase information is critical, and expected 
to be consistent across time segments, then future work 
may generalise these statistics to the complex spectrum 
(for example,  Baker,  2021).

2.5. Design matrix specification

2.5.1. Regressor selection

The regressors in the design matrix X  will typically be 
secondary time series that are recorded simultaneously 

with the main data or known a priori. The regressors must 
be prepared in the same manner as the main data, includ-
ing any filtering and segmentation, to ensure correspon-
dence between the design matrix and data. All regressors 
used in this paper are segmented following the modelled 
time- series data and summed within each segment to 
create a vector of values to use as a covariate.

The GLM is a highly general method as the design 
matrix, X, can be adapted depending on the application 
in question. However, this flexibility can also make the 
specification and interpretation of the regressors chal-
lenging. The addition of a new regressor to an existing 
GLM design matrix can change the parameter estimates 
and standard errors of the previous regressors. There-
fore, the final choice and interpretation of any regressors 
is necessarily specific to each individual analysis.

Standard time- averaged spectrum estimation meth-
ods (such as Welch’s Periodogram) model the mean 
spectrum across time segments. Similarly, most GLM- 
Spectrum analyses will also want to include regressors 
that quantify this average. In the simplest case, a single, 
constant regressor of ones is directly equivalent to the 
standard method. However, the flexibility of the GLM 
allows us to build on this and define more sophisticated 
models with multiple covariates if required.

One extension enabled by the GLM- Spectrum is to use 
confound regression to model the effect of an artefact 
source and attenuate its contribution to the estimate of the 
overall mean. The amount of denoising applied by the 
model is proportional to the effect size of the confound 
regressor in question. This makes the confound regression 
adaptive to each individual model; the same potential noise 
source may be highly predictive of the STFT in one dataset 
but not the next. Researchers could consider running a for-
mal model comparison to remove ineffective confound 
regressors from first- level analyses altogether. Here, we 
have taken the approach of maintaining all first- level 
regressors to simplify group analysis. Further group- level 
permutation testing assesses whether a noise source has 
a “significant” effect on the STFT. This is a flexible alterna-
tive to removing the artefactual time periods altogether. 
Confound regression can be performed by including a non- 
zero mean regressor alongside a constant regressor in the 
design matrix. With this specification, the constant regres-
sor models the intercept (the average where the value of 
the artefact regressor is zero) whilst the confound regres-
sor quantifies the artefact effect. This example is explored 
in more detail in Supplementary Section F.

Covariates can be included into the GLM in several 
ways. We can use indicator regressors (containing zeros 
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and ones) which assume that the covariates effect will be 
the same each time it is present. Otherwise, we can use 
dynamic covariates to model phenomena that dynami-
cally change over time in a continuous way. For example, 
this might include pupil size, heart rate, or respiration 
rate. When we include these types of continuous regres-
sors, their regression parameters capture the “slope” 
effect; in other words, how much does the spectrum 
change with each increment in the value of the regressor. 
For example, when including a pupil- size regressor, the 
spectrum resulting from its regression parameter esti-
mates would indicate how much the power in a particular 
frequency bin increases or decreases as the pupil- size 
changes by a certain amount.

Another decision is whether to demean a given covari-
ate regressor in the design matrix. Counterintuitively, the 
interpretation of the regression parameter estimate is 
unchanged when a covariate is demeaned; in both cases, it 
is modelling the “slope” effect that quantifies how much the 
spectrum changes with each increment of the regressor. In 
contrast, the interpretation of a constant regressor in the 
same model will change depending on whether a covariate 
is demeaned or not. A constant regressor will model the 
mean over all time points if the other covariates are 
demeaned and will model the intercept if non- zero mean 
regressors are included. As a result, confound regressors 
that are intended to remove a given effect from the estimate 
of the mean will typically have a non- zero mean whilst 
dynamic covariates that model changes around the mean 
will be demeaned or z- transformed prior to model fitting.

2.5.2. Multicollinearity

Finally, while it is not a violation of the model assump-
tions, one should take care when regressors in X can be 
expressed, to any extent, as a linear combination of other 
regressors. This is referred to as multicollinearity and 
means that there are infinite equally good solutions to the 
regression equation. Using the MPPI to fit the model 
parameters can overcome this limitation. If multiple solu-
tions to equation 4 exist, the MPPI will return the regres-
sion parameters with the minimum Euclidean norm 
( Penrose,  1956). Note that when there is partial multicol-
linearity, the MPPI uses the component of the regressor 
that is uncorrelated with the rest of the design matrix (i.e., 
corresponding to any unique variability in that regressor) 
to find each parameter estimate. This property means the 
MPPI solution quantifies the unique effect of each regres-
sor that cannot be accounted for by the others. Therefore, 
it is frequently desirable to proceed with the MPPI solu-

tion for a GLM whose design contains some degree of 
multicollinearity that we wish to eliminate from the results.

In addition, the impact of any multicollinearity is natu-
rally accounted for in the variance of the affected regres-
sion parameter estimates. For example, when the 
presence of multicollinearity increases uncertainty about 
the value of a regression parameter, then that parameter 
estimate’s variance (as computed in Section 2.6) will be 
appropriately increased. Nonetheless, even when using 
the MPPI, we recommend assessing the correlation and 
singular value spectrum of the design matrix prior to 
model fitting as well as the variance of the regression 
parameters ( Smith  et al.,  2007). This ensures that one is 
aware of the potential impact of multicollinearity on find-
ing a significant result. If these checks identify unexplain-
able or unintended multicollinearity, perhaps from 
including too many or inappropriate regressors, then the 
design should be re- assessed prior to further analysis.

2.6. Contrasts and t- statistics

Once the design matrix is specified and the model parame-
ters have been estimated, the GLM- Spectrum consists of a 
beta- spectrum for each regressor. This beta- spectrum con-
tains the regression parameter estimates quantifying the 
linear effect of that regressor across the frequency range.

Next, we can compute simple linear combinations of 
regression parameter estimates, known as contrasts. 
Contrasts can be defined to ask questions about the size 
of these linear combinations, including whether they are 
significantly different to zero (using t- tests). This approach 
is commonly applied in neuroimaging applications ( Friston, 
 2007;  Woolrich  et al.,  2009).

Each contrast is defined as a vector of values that 
define the relative weights used to compare different 
parameter estimates. For example, we could define the 
following contrasts for a model that contains three regres-
sors in its design matrix:

 

c1 =
1
0
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,c2 =

0
0.5
0.5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,c3 =

0
1
−1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,C = c1,c2,c3⎡⎣ ⎤⎦

 

(7)

where C is a (P x Nc) matrix containing all Nc contrasts. 
Using terminology common in neuroimaging, these con-
trasts define a Contrast Of Parameter Estimates, or a 
cope, which is computed from a matrix multiplication 
between the contrast and the model parameter estimates:

 cope f( ) = CB! f( ) (8)
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Here, we refer to the resulting frequency resolved vec-
tor of cope values, cope(f), as the GLM cope- spectrum. 
The individual contrasts are designed to ask specific 
experimental questions. Using the examples in equa-
tion  7, the first contrast asks whether c1B! f( ) = 0. This 
specifies a t- test that quantifies whether each value in the 
beta- spectrum of the first regressor is different from zero; 
regressors two and three are weighted to zero in this spe-
cific contrast, but nevertheless still explain variance in the 
overall model. The second contrast tests if c2B! f( ) = 0 
and asks whether the mean of the beta- spectra from 
regressors two and three is different from zero. Note that 
setting the values in this contrast to 0.5 ensures that the 
contrast of the regression parameter estimates can be 
interpreted as the mean of the two regression parameters 
involved. When turned into statistics (see below), con-
trasts c1 and c2 are equivalent to one- sample t- tests in 
classical statistical frameworks.

Finally, testing if c3B! f( ) = 0 tests whether the difference 
in parameter estimates in the beta- spectrum of regressor 
2 minus regressor 3 is different from zero. This is equiva-
lent to an independent- samples t- test between the condi-
tions modelled by these regressors. Regressor 1 is set to 
zero in the second two contrasts and is not directly 
included in the comparison. However, it is still explaining 
variance in the model and may be indirectly affecting the 
outcome of the contrast between regressors 2 and 3.

These contrasts are useful combinations of parameter 
estimates but we need the associated standard error to 
complete a formal statistical test. The ratio of the con-
trast value (cope) and its standard error is a t- statistic that 
indicates the estimated magnitude of a cope relative to 
its standard error. To compute the standard errors and 
subsequent t- statistics for each contrast, we first need to 
compute the residuals of the model fit:

 Ry f( ) = Sy f( )− B! f( )X  (9)

Note that Ry f( ) contains the actual set of residuals for 
a given dataset and model fit. This is distinct from ey f( ), 
which denotes a more general white noise process. 
These residuals are used to compute the variance in the 
estimate of the cope, also known as a varcope. Firstly, we 
compute the variance of the residuals:

 σ2(f ) = diag(Ry f( )Ry (f )
T ) (10)

And transform this to get the variance of the relevant 
part of the model for this contrast:

 varcope f( ) = diag(C XT X )−1C( )σ2 f( ) (11)

varcope f( ) now contains the square of the standard 
error for this contrast. This computation can be costly 
with large datasets as several matrix multiplications must 
be performed. However, only the diagonal of the resultant 
matrix is used for further analysis. Therefore, we speed- up 
this computation using Einstein summation in numpy 
(https://numpy.org/doc/stable/reference/generated/
numpy.einsum.html) to compute only the multiplications 
which appear in the final diagonal. More information on 
this and comparisons to alternative computation methods 
are described in Supplementary Section D. The spectrum 
of t- values corresponding to the contrast can then be 
computed as the ratio of the cope to its standard error:

 
t f( ) = cope f( )

varcope f( )  
(12)

This GLM t- spectrum quantifies the difference of each 
cope from zero in statistical terms, incorporating both the 
parameter estimates and their standard errors. Taken 
together, the GLM beta- spectrum B f( ), cope- spectrum 
cope f( ), and t- spectrum t f( ) provide an intuitive descrip-
tion of the frequency spectrum of the input data in terms 
of the specified regressors and contrasts.

2.7. Effect size computation with Cohen’s F 2

Effect sizes represent the strength of a statistical relation-
ship as a complement to hypothesis- based test statistics 
like t- tests. The effect size of a single variable within the 
context of a multivariate regression model can be com-
puted with Cohen'sF2 ( Cohen,  1988). The spectrum of 
effect sizes for a single regressor within a GLM- Spectrum 
model can be computed as ( Selya  et al.,  2012).

 
Cohen'sF2 f( ) = RAB

2 f( )− RA
2 f( )

1− RAB
2 f( )  

(13)

in which B denotes the regressor of interest and A the 
set of all other regressors. RAB

2  is then the proportion of 
variance explained by the full model, and RA

2  is the vari-
ance explained by all regressors except B. This metric 
can be computed for every frequency, channel, and 
regressor within a model to establish a full spectrum of 
effect sizes.2

2 Cohen’s original work suggests that values of F2 ≥ 0.02, F2 ≥ 0.15, and 
F2 ≥ 0.35 represent small, medium, and large effects respectively ( Cohen, 
 1988;  Selya  et al.,  2012). These labels should be interpreted with caution and 
only used as informal guidelines.

https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://numpy.org/doc/stable/reference/generated/numpy.einsum.html


7

A.J. Quinn, L.Z. Atkinson, C. Gohil et al. Imaging Neuroscience, Volume 2, 2024

Here, we compute effect sizes for each covariate by 
eliminating it from the full model and computing the value 
in equation 13. For categorical predictors, the effect size 
is computed by comparing the full model to a model in 
which separate categorical regressors are combined into 
a single constant regressor. As an example, this models 
the effect of modelling two conditions with their own 
mean term compared to modelling them both with the 
same mean.

2.8. Visualising effects with model projected spectra

The GLM beta- , cope- , and t- spectra assess parts of the 
overall time- varying spectrum in relation to the model. As 
these GLM- Spectra can relate to combinations of effects, 
their impact on the mean spectrum can be difficult to 
intuit. We propose computing the model- projected spec-
tra to gain a more immediately intuitive visualisation of 
effects. This is a visualisation of how the spectrum 
changes for different values of the regressor of interest. 
For example, if the GLM- Spectrum of EEG data includes 
a covariate for pupil size, then its beta- spectrum will 
describe how the spectrum changes as pupil size 
expands and contracts. The model- projected spectrum 
could then be used to visualise the predicted spectrum 
at a specific pupil size.

The model- projected spectrum is typically calculated 
for a descriptive range of values in the original regressor. 
In this paper, we use the largest and smallest values from 
the regressor of interest. For example, to compute the 
projected spectrum for the largest and smallest value of 
a covariate regressor Rv  relative to a constant mean 
term, we use: model- projected spectra

 max{Sy |Rv} f( ) = max Rv( )B! rv f( )+ B!mean f( ) (14)

 min{Sy |Rv} f( ) = min Rv( )B! rv f( )+ B!mean f( ) (15)

The max and min model- projected spectrum then 
describes the range of variability in the spectrum that is 
described by the regressor. Note that this is only a visual-
isation method and that any apparent differences in these 
model projected spectra must be confirmed by statistical 
significance testing, such as non- parametric permuta-
tions (see Section 2.10).

2.9. Group models for GLM- spectrum

The GLM- Spectrum described thus far is used to 
describe continuous data recorded from a single session; 

we refer to this as the “first- level.” We now consider how 
we can carry out a “group- level” analysis to combine the 
results across the first- level GLM- Spectra from multiple 
sessions/subjects using a group- level (or second- level) 
GLM ( Beckmann  et  al.,  2003;  Friston  et  al.,  2002; 
 Woolrich  et al.,  2004). In brief, we create a group- level 
dependent variable by concatenating the parameter 
estimates, copes, or varcopes from a set of first- level 
analyses and use another GLM to model how GLM- 
Spectra vary over sessions/subjects across the group. 
For example, here we fit a group- level beta- spectrum 
using the first- level cope- spectra for N subjects and a 
group- level design matrix:

 

copesubj1
j f( )

copesubj2
j f( )

!

copesubjN
j f( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= XgroupBgroup f( )+ egroup f( )

 
(16)

where copesubj1
j f( ) is the j th first- level cope computed for 

subject n at frequency bin f , that is, copesubj1
j f( ) = 

cj B! subjn f( ) where cj is the j th first- level contrast and 
B! subjn is the first- level contrast regression parameter 
estimates for subject n. Note that Xgroup is the (NxQ) 
group- level design matrix and the (Qx1) matrix Bgroup f( ) 
is the group- level regression parameters, where Q is the 
number of group- level regressors. As with the first- level 
GLM, the error egroup f( ) is assumed to be Normal and IID.

As with the first- level analysis, the group- level GLM is 
fitted using OLS with the MPPI; and is computed sepa-
rately for each frequency, f  (and each channel or voxel— 
the indexing for which is not shown in the equations), in a 
mass- univariate manner. In addition, a separate group- 
level GLM is computed for each first- level cope of inter-
est. As with the first- level GLM, contrasts can be used to 
ask a range of inference questions from the regression 
parameter estimates, B!group f( ). A resource showing 
examples of commonly used group- level design matrices 
and contrasts is available online (https://fsl . fmrib . ox . ac 
. uk / fsl / fslwiki / GLM).

As shown in the equation above, the simplest group- 
level model carries forward the cope- spectra from a set 
of first- level analyses. This can be thought of as a fixed- 
effects group model in which each observation (first- level 
result) contributes equally to the group effect and the 
group- level GLM models the between- session/subject 
variability. This is the approach taken in this manuscript. 
Future work can extend it to incorporate the information 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM
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about the first- level standard errors in the varcope- 
spectra. Both the cope and varcope information could be 
carried forward to the group- level and fitting a mixed- 
effects model such as the FLAME method in fMRI 
( Woolrich  et al.,  2004). In practice, this model is challeng-
ing to fit as no simple closed- form estimation is available. 
Another alternative would be to carry the first- level t- sta-
tistics to the group- level. Future work can explore a wide 
range of possibilities for multilevel and mixed- modelling 
for the GLM- Spectrum (Table 1).

2.10. Non- parametric permutations for group GLM- spectra

Null- hypothesis testing for a given contrast can be car-
ried out with non- parametric permutations ( Nichols  & 
 Holmes,  2001;  Winkler  et al.,  2014). A null distribution of 
observed statistics is derived by recomputing the GLM 
after manipulating the design matrix in line with the null 
hypothesis. The observed group average is then com-
pared to this null distribution and is “significant” if it 
exceeds a pre- set critical threshold, such as the 95th 
percentile of the null distribution. Here, we perform 

non- parametric permutation using “sign- flipping” for 
categorical regressors and using “row- shuffling” for para-
metrically varying regressors.

In all cases, we permute the columns of the design 
matrix that are directly related to the relevant contrast 
whilst the remaining regressors are fixed ( Draper  & 
 Stoneman,  1966;  Winkler  et  al.,  2014). The Draper- 
Stoneman approach can produce erratic results for small 
sample sizes and may be out- performed by more gener-
ally robust methods ( Winkler  et  al.,  2014), such as 
 O’Gorman  (2005) or  Freedman  and  Lane  (1983).

Non- parametric permutation testing could, in principle, 
be carried out to assess the results of a first- level GLM- 
Spectrum. In contrast to a group- level analysis, the first- 
level permutations would only assess whether a particular 
effect observed within a dataset could be expected to gen-
eralise to a wider sample of possible data observations 
from the same source. Moreover, the time segments in a 
first- level GLM- Spectrum are likely to exhibit strong auto-
correlation (see Section  2.4) which would need to be 
accounted for before any permutation testing could pro-
vide a valid result ( Friston  et al.,  2000;  Woolrich  et al.,  2001).

Table 1. Glossary of definitions for the GLM- spectrum.

Term Definition

STFT The short- time Fourier transform of a time series, containing the spectrum computed within 
sliding window time segments across the data. Also called a time- varying spectrum.

Design Matrix A matrix of regressors used to explain variability in observed data with a linear regression 
model.

Regressor A single column of a design matrix containing explanatory variables relating to each  
individual observation.

Beta- estimates A parameter estimate describing the linear relation between a regressor and the observed 
data. Also known as regression parameter estimates.

Beta- Spectrum A vector of parameter estimates for a single regressor across the range of a frequency 
spectrum.

Contrast A planned comparison between one or more parameter estimates.
Cope The result of a defined contrast between beta- estimates.
cope- spectrum A vector of cope estimates for a single contrast across the range of a frequency spectrum.
Varcope The square of the standard error of the cope estimates.
varcope- spectrum A vector of estimates for a single contrast across the range of a frequency spectrum.
t- statistic The ratio of the departure of the estimated value of a contrast from its hypothesised value 

to its standard error.
t- spectrum A vector of t- statistics for a single contrast across the range of a frequency spectrum.
Model- projected spectrum A visualisation of a spectrum as predicted by a fitted GLM set at a particular set of  

covariate values.
First- Level GLM A linear model for a single data recording that models variability across time segments  

in an STFT with a specified design-  and contrast- matrix, resulting in a set of beta- ,  
cope- , and t- spectra.

Group- Level GLM A linear model for a group dataset combining a set of first- level GLM- Spectra. A  
group- level design-  and contrast- matrix models variability in first- level beta or  
t- spectra across datasets, resulting in a set of group- level beta- , cope- , and t- spectra.
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2.11. Software implementation and dependencies

The analyses in this paper were carried out in Python 3.9 
with core dependencies of numpy ( Harris  et  al.,  2020), 
scipy ( Virtanen  et al.,  2020), and Matplotlib ( Hunter,  2007). 
MNE python ( Gramfort,  2013) was used for EEG/MEG data 
processing with OSL (https://github . com / OHBA - analysis 
/ osl) batch processing tools ( Quinn  et al.,  2022). Python- 
meegkit (https://github . com / nbara / python - meegkit) was 
used for the “zapline” line noise removal algorithm ( de 
 Cheveigné,  2020). The spectrum analyses further depend 
on the Spectrum Analysis in Linear Systems toolbox ( Quinn 
 &  Hymers,  2020) and glmtools (https://pypi . org / project 
/ glmtools/). All codes used to run analyses and generate 
the figures in this paper are available online (https://github 
. com / OHBA - analysis / Quinn2022 _ GLMSpectrum).

2.12. The LEMON dataset

2.12.1. Participants and ethics

Resting- state EEG recordings from 191 individuals of an 
open- source dataset were analysed. The details of the 
original study including participant recruitment, experi-
mental proceedures, and ethical approval can be found in 
the original publication ( Babayan  et al.,  2019). The study 
was carried out in accordance with the Declaration of Hel-
sinki, and the study protocol was approved by the ethics 
committee at the medical faculty of the University of Leipzig 
(reference number 154/13- ff) ( Babayan  et al.,  2019).

2.12.2. EEG preprocessing

All data pre- processing was carried out using MNE- 
Python and OSL using the OSL batch pre- processing 
tools. The raw data for each subject comprise a resting- 
state EEG recording from a 62- channel (61 EEG and 1 
EOG) using a BrainAmp MR plus amplifier. The channels 
were in a 10- 10 layout and referenced to FCz. Sixteen 
minutes of data were recorded in one- minute blocks 
alternating between eyes- closed and eyes- open resting- 
state. Data were acquired with a bandpass filter between 
0.015 Hz and 1 kHz at a sampling frequency of 2500 Hz. 
The remaining acquisition details are reported in  Babayan 
 et al.  (2019).

The raw data were first converted from Brainvision files 
into MNE- Python Raw data objects. The continuous data 
were bandpass filtered between 0.25 Hz and 125 Hz using 
an order- 5 Butterworth filter. Line noise was suppressed 
using a spatial filter following the “zapline” algorithm ( de 
 Cheveigné,  2020) as implemented in python- meegkit. 

Bad channels were automatically identified using the 
generalised- extreme studentized deviate (G- ESD;  Rosner, 
 1983) routine to identify outliers in the distribution of  
variance per channel over time. The data were then resa-
mpled to 250 Hz to reduce space on- disk and ease sub-
sequent computations. Independent Component Analysis 
(ICA) denoising was carried out using a 30 component 
FastICA decomposition ( Hyvarinen,  1999) on the EEG 
channels. This decomposition explained an average of 
99.2% of variance in the sensor data across datasets. 
Independent components that contained non- neuronal 
signals such as blinks were automatically identified by 
correlation with the simultaneous V- EOG channel. ICA 
components linked to saccades were identified by cor-
relation with a surrogate H- EOG channel, that is, the dif-
ference between channels F7 and F8. Between 2 and 7 
“artefactual” components were identified in each dataset, 
with an average of 2.66 across all datasets. The two ICs 
that correlated strongest with the V- EOG and H- EOG 
channels were separately retained for later use in the GLM 
design matrix.

The continuous sensor data were then reconstructed 
without the influence of the artefactual V- EOG and 
H- EOG components. Bad segments were identified by 
segmenting the ICA- cleaned data into arbitrary 2- second 
chunks (distinct from the STFT time segments) and using 
the G- ESD algorithm to identify outlier (bad) samples 
with high variance across channels. An average of 
31 seconds of data (minimum 6 seconds and maximum 
114 seconds) were marked as bad in this step. This pro-
cedure is biased towards low- frequency artefacts due to 
the 1/f shape of electrophysiological recordings. There-
fore, to identify bad segments with high- frequency con-
tent, the same procedure was repeated on the temporal 
derivative of the ICA- cleaned data. An average of 
27  seconds of data (minimum 2  seconds, maximum 
109 seconds) were marked as bad when using the differ-
ential of the data.

To retain consistent dimensionality across the group, 
any bad channels were interpolated using a spherical 
spline interpolation ( Perrin  et al.,  1989) as implemented in 
MNE- Python. Finally, the spatial gradient between each 
channel and its distance from the reference sensor (FCz), 
is attenuated by computing the surface Laplacian (or cur-
rent source density) of the sensor data. The surface 
Laplacian data is reference free and has sharper spatial 
topographies than the raw EEG; though this is a complex 
computation that is dependent on several hyperparame-
ters, and which may reduce sensitivity to deeper sources 
( Kayser  &  Tenke,  2015).

https://github.com/OHBA-analysis/osl
https://github.com/OHBA-analysis/osl
https://github.com/nbara/python-meegkit
https://pypi.org/project/glmtools/
https://pypi.org/project/glmtools/
https://github.com/OHBA-analysis/Quinn2022_GLMSpectrum
https://github.com/OHBA-analysis/Quinn2022_GLMSpectrum
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Fig. 1. An example first- level design matrix and contrast matrix for a single subject. The top matrix shows the GLM 
design matrix with individual regressors in columns and single sliding window time segments in rows. The table shows the 
contrast matrix with corresponding weightings for each regressor. The regressor correlations, singular- value spectrum, and 
variance inflation factors for this design matrix are summarised in Supplementary Section E.

2.12.3. First- level GLM- spectrum

A “first- level” analysis models the data within each indi-
vidual participant’s EEG data. The STFT is computed for 
each dataset using a 2- second segment length, a 
1- second overlap between segments, and a Hanning 
taper. The 2- second segment length at the sample rate of 
250 Hz gives a resolution of around 2 frequency bins per 
unit Hertz in the resulting spectrum. The short- time mag-
nitude spectrum is computed from the complex valued 
STFT and the frequency bins ranging between 0.1 Hz and 
100 Hz taken forward as the dependent variable in the 
first- level GLM- Spectrum for that dataset. The GLM 
design matrix is specified with six regressors (Fig. 1). Two 

binary regressors model intercept terms for each of the 
eyes- open and eyes- closed time segments. The third 
regressor is a z- transformed covariate describing a linear 
trend over time. This regressor is included to model 
potential “time on task” effects over the course of the 
recording. Previous literature has reported that both alpha 
power and alpha frequency may change over time within 
a single EEG recording ( Benwell  et al.,  2019). A non- zero 
mean regressors for bad segments is computed from the 
sum of the number of “bad” samples within each STFT 
time segment. Finally, two further non- zero mean regres-
sors are computed from absolute value of the V- EOG and 
H- EOG independent component time- courses.
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A range of contrasts are specified to quantify critical 
hypothesis tests (see contrast table in Fig. 1). The overall 
mean is modelled by a contrast summing the eyes- open 
and eyes- closed regressors together weighted by the 
proportion of ones in each regressor (Contrast 1, Fig. 1). 
A t- test between the spectrum in the eyes- open and eye- 
closed conditions is specified with a differential contrast 
(weighted [1, - 1], in the direction of eyes- open minus 
eyes- closed; Contrast 5; Fig.  1). Finally, separate one- 
sample tests are specified for each covariate with con-
trasts containing a single 1 for a given regressor (Contrasts 
3 to 8; Fig.  1). The model parameters were estimated 
using the MPPI, and no statistical assessment was car-
ried out at the first- level.

2.12.4. Structural MRI processing

Individual anatomical details were extracted from 
T- weighted structural MRI scans ( Babayan  et al.,  2019). 
All images were processed using the FMRIB Software 
Library ( Woolrich  et al.,  2009). Images were reoriented to 
standard Montreal Neurological Institute (MNI) space, 
cropped, and bias- field corrected. FMRIB’s Linear Regis-
tration Tool (FLIRT;  Greve  &  Fischl,  2009;  Jenkinson  & 
 Smith,  2001;  Jenkinson  et al.  2002) was used to register 
to standard space before brain extraction was performed 
using BET ( Smith,  2002). Brain images were segmented 
into different tissue types (grey matter, white matter, and 
CSF) using FMRIB’s Automated Segmentation Tool 
(FAST;  Zhang  et al.,  2001). The voxel count for each tis-
sue type was extracted and normalised by the individu-
al’s total brain volume (also computed by FAST) to create 
a percentage. The total brain volume and individual per-
centage of grey matter were carried forward as group- 
level covariates in the GLM- Spectrum.

2.12.5. Group- level GLM- spectrum

We now carry out a “group- level” analysis to combine the 
first- level results and describe between- subject variabil-
ity with another GLM. As described in Section 2.13.2, the 
cope- spectra of each first- level GLM were used as the 
dependent variable in the group- level GLM. The group- 
level design matrix contained categorical regressors cod-
ing the age group of each participant and covariates 
corresponding to variability in participant sex, head size, 
and relative grey matter volume (Fig. 2). We have mod-
elled age as two distinct, categorical regressors as the 
LEMON dataset contains participants recruited from 
either a young (20- 40 years old) or an old (60- 80 years 

old) group. Age could equally be included as a single 
parametrically varying regressor in a dataset that recruited 
from across a broad age range. A contrast was defined to 
estimate the mean across all participants and a second 
to estimate the difference between young and old partic-
ipants. Finally, one- sample t- tests were specified for 
each covariate to test whether the regression coefficient 
significantly differed from zero.

The group- level design matrix was used to model 
each of the first- level contrasts. The group model param-
eter estimates were computed using the MPPI. Statistical 
significance in the group- level t- spectra was assessed 
using cluster- based non- parametric permutations using 
sign- flipping or row- shuffle permutations. A cluster form-
ing threshold of p  =  0.001 was used (equivalent to 
t(205) = 3.34) across all tests. A spatial extent threshold 
of 1 was set to ensure that any cluster has at least 2 adja-
cent points exceeding the cluster forming threshold.

3. RESULTS

3.1. First- level covariate spectra on a central EEG channel

Figure 2 summarises the first- level GLM- Spectrum anal-
ysis of a single channel (Pz) from an exemplar resting- 
state EEG recording. The pre- processed EEG time series 
(Fig. 3A) was split into 2 second time segments with a 
50% overlap (Fig.  3B), modified by a Hann window 
(Fig.  3C) and transformed into the frequency domain 
using a Short- Time Fourier Transform (STFT; Fig.  3D). 
Each column of this STFT contains the time- course of the 
magnitude at each frequency and constitutes the depen-
dent variable in a first- level GLM. The first- level GLM (see 
methods Section 2.13.2) models this variability over time 
in relation to the resting conditions, artefacts detected in 
the data, and the electrooculogram (EOG). The final first- 
level design matrix had six regressors (Fig. 3E) modelling 
the two resting- state conditions, a linear trend over time, 
and three potential dynamic confounds. The full design 
matrix and contrast specification for the entire run can be 
seen in Figure 1.

The first- level GLM was fitted separately for each fre-
quency bin using a standard ordinary least squares rou-
tine. The average magnitude spectra for the eyes- open 
and eyes- closed rest periods are quantified by two cope- 
spectra (Fig. 3F) specified by first- level contrasts 3 and 4 
(Fig.  1). Both cope- spectra showed a 1/f- type structure 
and a prominent alpha peak around 9  Hz. The eyes- 
open > eyes- closed contrast (the regressor was coded to 
have ones for eyes- open and minus ones for eyes- closed; 
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specified in contrast 5 in Fig. 1) had negative values in the 
cope- spectrum, indicating that spectral magnitude was 
larger in the eyes- closed condition across a range of fre-
quencies, peaking around the alpha range (Fig. 3G – top 
panel). The square of the standard error of the estimates is 
shown in the varcope- spectrum (Fig. 3G – top panel) and 
indicates where the estimate of the mean was least cer-
tain. This roughly followed the shape of the spectra in  
Figure 3F, showing a clear alpha peak and a weak 1/f 
trend. This is an example of a close relationship between 
cope and varcope estimates that can lead to large effects 
in the beta- spectrum being substantially less prominent 
in the t- spectrum. The final t- spectrum contained a full 

spectrum of t- values for the contrast between the two 
resting conditions (Fig. 3H). The large magnitude, negative 
t- values in alpha and surrounding frequencies qualitatively 
indicated a greater magnitude in the eyes- closed condition. 
In sum, this shows a full spectrum perspective on the “alpha 
reactivity” or “alpha blocking” effect ( Adrian  &  Matthews, 
 1934) that is most commonly assessed within a- priori fre-
quency bands ( Babiloni  et al.,  2011;  Wan  et al.,  2018).

3.2. First- level spectral analysis on whole head EEG

So far, GLM- Spectrum method has been applied to univar-
iate data (i.e., single channel EEG data), but it can be  readily 

Fig. 2. The group- level design matrix and contrast matrix. The matrix shows the design matrix with regressors in 
columns and individual first- level datasets in columns. The table shows the contrast matrix with corresponding weightings 
for each regressor. The regressor correlations, singular- value spectrum, and variance inflation factors for this design matrix 
are summarised in Supplementary Section E. This group design matrix was used to model variability across datasets in 
each of the first- level contrasts.
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extended to a full multichannel dataset. To model the GLM- 
Spectrum across channels, a separate GLM using the 
same design matrix was fitted to each channel and fre-
quency bin. This provides a description of spectral effects 
over frequency and space. Accordingly, we extended the 

resting- state model to the 61- channel whole head EEG 
recording. The design matrix and contrast specification 
were the same as the single channel analysis.

The beta- spectrum computed from the condition 
regressors showed the familiar 1/f slope and prominent 

Fig. 3. First- level (i.e., within- session) GLM- Spectrum description during alternating eyes- open and eyes- closed resting 
state from channel Pz in a single EEG recording. (A) A 32- second segment of pre- processed EEG time- course from sensor 
Pz. (B) EEG time- course segmented into 2- second sliding windows with 50% overlap. (C) Windowed data segments 
modified by a tapered Hann window function. (D) Short time- Fourier transform computed with the FFT of each windowed 
data segment. Each column of this matrix (change in magnitude of a single frequency over time) is the dependent variable 
to be described by the GLM. (E) The GLM design matrix containing condition, covariate, and confound regressors. This 
is zoomed in section of the full design matrix in Figure 1, showing only rows corresponding to the data shown here. (F) 
The GLM beta- spectra for the two regressors modelling the spectrum during eyes- open and eyes- closed rest (contrasts 
3 and 4 in Fig. 1). (G) The cope-  and varcope- spectrum for a differential contrast between the eyes- open and eyes- closed 
conditions as specified in contrast 5 in Figure 1. (H) The t- spectrum for the contrast in G.
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occipital alpha features in both resting- state conditions. 
The GLM analysis was identical to the single channel 
results (Fig. 3) but now can include spatial distributions 
alongside the frequency spectrum. Qualitatively, the 
eyes- open condition (Fig. 4A) had a smaller alpha peak 
than the eyes- closed condition (Fig. 4B). Both conditions 
had a similar topography in this subject. The t- spectrum 
of the contrast between eyes- open and eyes- closed rest 
showed a large, negative effect peaking around the alpha 
range (Fig.  4C) as seen in the single channel example 
(Fig.  3G). This difference had a spatial maximum in 
posterior- central regions, replicating the occipital- parietal 
location of the alpha reactivity effect widely reported in 
the literature ( Babiloni  et al.,  2011;  Wan  et al.,  2018).

The linear trend showed substantial t- values around 
the alpha range, though its model projected spectra sug-
gest that this is a subtle effect (Fig. 4D). The bad segment 
regressor effect (Fig. 4E) peaks at relatively low (<4 Hz) 
and high (>25  Hz) frequency ranges. The size of this 
effect is visualised more intuitively in the model projected 
spectrum (Fig.  3F—  bottom panel) which showed the 
substantial increase in both a low-  and high- frequency 
range. Finally, the V- EOG (Fig. 4F) and H- EOG (Fig. 4G) 
covariates both showed large t- values in relatively low 
frequencies (around 1 Hz). The V- EOG had a large nega-
tive effect around the alpha range, suggesting that time 
segments with high V- EOG activity were associated with 
lower alpha magnitude. In contrast, the H- EOG showed 
an additional positive effect in high frequencies, suggest-
ing that segments with high H- EOG activity are associ-
ated with larger high frequency spectral magnitude. In 
particular, the complex pattern of effects in the V- EOG 
t- spectrum manifests as segments with high V- EOG 
activity showing a decrease in alpha magnitude and an 
increase in alpha frequency.

3.3. Covariate effects are highly variable across datasets

Next, we build on the single subject exemplar result by 
exploring the effect of the covariate and confound regres-
sors across 206 EEG recordings from the LEMON data-
set. Firstly, we show a qualitative description of the model 
R- squared values and related effect sizes for each pre-
dictor variable. The group averages here are intended as 
illustrations and are not supported by inferential statis-
tics. Firstly, the GLM- Spectrum was able to describe 
between 60% and 70% of the variance in the STFT, aver-
aged across all participants and channels (Fig. 5A). This 
value was highly variable across participants, particularly 
above 50 Hz where the R- square values ranges between 

20% and 80%. Secondly, Cohen’s F2  statistic was used 
to compute the marginal effect size of each predictor 
within the model (see Section 2.7 for details). Modelling 
the two resting conditions separately, as opposed to using 
a single average, results in a group average effect size 
which peaks around the alpha frequency, though the effect 
in individual datasets was highly variable (Fig.  5B). The 
effect size of the four covariates has a low group average 
but is, again, highly variable in individual datasets (Fig. 5C). 
This variability was particularly prominent at higher fre-
quencies and indicates the adaptive effects of the covari-
ate regressors. These predictors have strong associations 
with the STFT in some individuals but not others.

To further illustrate the effect of including the continu-
ous covariate predictors, the frequency spectrum was 
computed for both the full model and a reduced model 
containing only the two condition terms (i.e., eyes- open 
and eyes- closed), excluding other covariates and con-
founds (Fig.  5D). The inclusion of covariate regressors 
has a different pattern of effect across frequencies for 
each dataset. The difference between the full and reduced 
model is relatively small for datasets i and v, indicating 
that the effect of the covariates was minimal for these 
recordings. In contrast, datasets ii and iv show moderate 
differences in low and high frequencies whilst iii shows a 
substantial difference between the full and reduced 
model.

3.4. Group- level design matrix and contrasts

The GLM- Spectrum framework can be extended to group 
analyses by carrying a set of first- level results to a 
second- level GLM (See methods Section  2.9). This 
group- level analysis models between- subject variability 
across independent first- level GLM- Spectra. These mul-
tilevel, hierarchical models are well established in neuro-
imaging ( Beckmann  et  al.,  2003;  Friston,  2007;  Friston 
 et al.,  2002;  Woolrich  et al.,  2004), and the existing theory 
applies to the GLM- Spectrum.

The group- level GLM was fitted to the first- level cope- 
spectra (Fig. 6A) across all datasets separately for each 
channel, frequency bin, and first- level contrast (see 
methods Section 2.13.4). The group- level design matrix 
contained two condition regressors modelling the mean 
across subjects for younger and older participants sepa-
rately and three z- transformed parametric covariates 
modelling between- subject variability in sex, total brain 
volume, and relative grey matter volume (Fig.  6B). Two 
group contrasts were defined alongside the main effects. 
One overall average modelled the sum of the young and 
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Fig. 4. GLM- Spectrum fits for alternating eyes- open and eyes- closed resting- state EEG for a single participant. Mean 
magnitude spectrum estimates for each channel and frequency bin. The topography (top right) provides location- 
colour coding used in the t- spectra throughout the figure. The colour range of each topography is set to vary between 
plus and minus the maximum absolute value of the data plotted. The contrasts shown in this figure are detailed in 
Supplementary Section H. (A) Beta- spectrum for the eyes- open condition regressor. The topography shows the 
spatial distribution of spectral magnitude at 9 Hz. (B) Beta- spectrum for the eyes- closed condition regressor, layout 
is same as in A. (C) t- Spectrum for the contrast between the eyes- open and eyes- closed conditions. (D) t- Spectrum 
spectrum for the linear trend covariate (top). Model- predicted magnitude spectra averaged across all sensors for the 
extrema of the predictor, which in the case of a linear trend regressor corresponds to the start and end of the scan 
(bottom). (E) t- Spectrum spectrum for the bad segment confound (layout same as for D), model- projected spectra 
are shown for good and bad segments. (F) t- Spectrum spectrum for V- EOG confound (layout same as for D), model- 
projected spectra are shown for the maximum and minimum observed V- EOG activity. (G) t- Spectrum spectrum for 
H- EOG segment confound (layout same as for D), model- projected spectra are shown for the maximum and minimum 
observed, H- EOG activity.
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old groups (Contrast 1; Fig. 6B) weighted by the number 
of participants in each group. A second contrast quanti-
fied the linear group difference (Contrast 2; Fig.  6B). 
Finally, a set of main effect contrasts were also defined 
for each regressor (Contrasts 3 to 7; Fig. 6B). The final 
fitted model contains a group- level beta- spectrum that 
describes the linear effect of a group regressor across 
separate datasets. The group- level GLM returns beta- 
spectra for the overall mean spectrum (Fig. 6C) as well as 
contrasts and main effects (Fig. 6D). At the group- level, 
the error bars now indicate the standard error of the fitted 
mean across participants (rather than across STFT time 
windows, as in the first- level).

3.5. Group effects of age and eyes- open versus eyes- closed rest

Next, we explored how the GLM- Spectrum varies across 
resting conditions and participant age. Therefore, two 
main- effect contrasts and their interaction were explored. 
Two- tailed, non- parametric, cluster (with clusters formed 
over frequencies and sensors) permutation tests were 
used to establish statistical significance for all group- 
level analyses.

We first computed the group average of the within- 
subject difference between eyes- open > eyes- closed 
rest. Specifically, we computed the Mean group- level 
contrast (Contrast 1; Fig. 6B) on the eyes- open > eyes- 
closed first- level contrast (Contrast 2; Fig.  1). Non- 
parametric cluster permutation testing indicated two 
significant clusters (Fig. 7A) that together cover the whole 
frequency range investigated here. The first cluster 
showed a negative effect with greater magnitude in the 
eyes- closed condition. This cluster spanned the lower 
frequency range (approximately 30 Hz and lower) across 
almost all channels, though the effect peaked around the 
alpha range in occipital channels. The posterior peak 
within this cluster matched the expected occipito- parietal 
source of the alpha reactivity effect ( Wan  et  al.,  2018). 
The second cluster showed a positive effect, indicating 
higher magnitude in the eyes- open condition. This clus-
ter spanned the higher frequency range (10- 100  Hz) 
across all channels with the largest effect in bilateral fron-
tal regions. This cluster may partially reflect residual eye 
movements that have not been accounted for by ICA or 
the first- level artefact regression. The t- statistics in a low- 
frequency range in frontal sensors are strongly modu-
lated by the inclusion or exclusion of the EOG- based 
confound regressors (see Supplementary Section G).

Further, we computed the difference in the time- 
averaged first- level spectra between the younger and older 

adults. This corresponds to computing the Young > Old 
group- level contrast (Contrast 2; Fig.  6B) on the Overall 
Mean first- level contrast’s cope- spectrum (Contrast 1; 
Fig. 1). Non- parametric permutations on this showed three 
significant clusters. The first cluster indicated a positive 
effect in which younger participants had larger power than 
older participants. The cluster covered low frequencies 
(<8  Hz) and all channels peaking in frontal and occipital 
channels (Fig. 7B). The direction of this effect is consistent 
with previously reported decreases in delta and theta power 
in older adults ( Klimesch,  1999). The second cluster indi-
cates greater beta- frequency magnitude for older adults. 
The cluster spans between 15 Hz and 30 Hz and peaks in 
bilateral central sensors. This finding replicates literature 
showing higher beta power in older adults ( Xifra- Porxas 
 et al.,  2019). Finally, the third cluster indicates greater mag-
nitude for older participants in a cluster between 35 Hz and 
100 Hz that peaks in frontal sensors. In addition, the change 
in overall spectral shape qualitatively supports indications 
that older adults have a flatter 1/f slope in the EEG spec-
trum ( Merkin  et al.,  2022;  Voytek  et al.,  2015), though we did 
not explicitly quantify 1/f slope here.

No significant cluster for an age difference was identi-
fied in the alpha range, though individual t- statistics 
reach around 5. This null effect may relate to the choice 
of sensor normalisation during pre- processing ( Klimesch, 
 1999). In addition, the choice of a 0.5 Hz to 100 Hz fre-
quency range may be too wide to assess any relatively 
narrow band alpha changes in the presence of large 
broadband effects in higher frequencies.

Finally, we explored whether the within- subject differ-
ence in eyes- open and eyes- closed resting- state changed 
between the younger and older adults. Specifically, this 
corresponds to the Young > Old group- level contrast (Con-
trast 2; Fig. 6B) computed on the eyes- open > eyes- closed 
first- level contrast (Contrast 5; Fig. 1). Non- parametric per-
mutation testing identified a single significant cluster with 
a negative t- statistic (Fig. 7C). This indicates the presence 
of an interaction effect in which older adults show a larger 
difference in the eyes- open > eyes- closed contrast. Inter-
estingly, there is no indication of an interaction effect in the 
low to mid alpha range. The interaction can be qualitatively 
summarised by plotting the beta- spectrum separately for 
each of the underlying four mean levels (Fig. 7D).

3.6. Group average of first- level cope- spectra

We explored the group averages of each first- level covari-
ate regressor. The first- level linear trend regressor is 
expected to be sensitive to slow drifts throughout the 
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recording. The t- spectrum of the Mean group- level con-
trast (Contrast 1; Fig. 6B) computed on the Linear Trend 
first- level contrast (Contrast 5; Fig. 1) showed four signif-
icant clusters (Fig.  8A) with a mix of increases and 
decreases across space and frequency. Broadly these 
clusters showed a decrease in magnitude over time in 
both low frequencies (0.5- 4 Hz) and high frequencies (20- 
100 Hz) peaking in occipital posterior channels. In con-
trast, an increase in magnitude over time was found in a 
low theta/alpha range (3- 9 Hz) and high frequencies (15- 
100 Hz) peaking in frontal sensors. The presence of bad 
segments was associated with a single, strong positive 
effect indicating increased magnitude in the EEG during 
marked bad segments. The Mean group- level contrast 
(Contrast 1; Fig.  6B) computed on the Bad Segments 
first- level contrast (Contrast 6; 1) showed a strong posi-
tive effect across all frequencies and across all channels 
(Fig. 8B).

Finally, we computed the Mean group- level contrast 
(Contrast 1; Fig. 6B) computed on the V- EOG and H- EOG 
first- level contrasts separately (Contrast 7 and 8; Fig. 1). 
Three clusters indicated that increased variance in the 
V- EOG is associated with both increases and decreases 
in magnitude of the EEG (Fig.  8C). One positive effect 
impacted all sensors and all frequencies (though not 
always simultaneously) showing the wide- ranging impact 
of eye movements on the spectrum. Two clusters showed 
negative effects in the alpha range (around 9 Hz) and its 
harmonic (18  Hz) in posterior sensors. This effect indi-
cates a decrease in alpha when eye movements are larg-
est. Increased variance in H- EOG time series was 
associated with increased magnitude across nearly all 
sensors and frequencies, as summarised in a single, pos-
itive statistical cluster (Fig. 8D).

These effects demonstrate that the first- level covari-
ates are associated with consistent group- level effects. 
However, the results must be interpreted in the context of 
the variability in first- level effect sizes (Fig. 5). Each first- 
level covariate effect was highly variable in the individual 
datasets, ranging from no effect in some participants to a 
covariate effect that exceeded the eyes- open > eyes- 
closed difference in others (Fig. 5B, C). As such, we might 
not expect to see one or more of these effects in a given 
single dataset, though the group effects are strong.

3.7. Group- level covariate effects

The results so far have combined and contrasted group 
averages of the first- level results. One possible group- 
level confound for the age contrast is that the LEMON 

dataset contains a different number of male and female 
participants who are not perfectly balanced across age 
groups. A separate group regressor indicating the 
reported sex of each participant was included to model 
between- subject variability relating to this factor, effec-
tively partialling it out from the main age effect of interest 
in each group contrast. We visualise the overall effect of 
participant- reported sex on the first- level cope- spectra 
(averaged across eyes- open and eyes- closed resting- 
state); this corresponds to the Sex group- level contrast 
(Contrast 5; Fig. 6B) computed on the Overall Mean first- 
level contrast (Contrast 1; Fig.  1). A single significant 
cluster identified stronger spectral magnitude in female 
participants between 1 and 48 Hz, peaking around the 
alpha and beta frequency ranges (Fig.  9A). Increased 
power in females relative to males has been previously 
reported in the EEG literature ( Aurlien  et  al.,  2004; 
 Zibrandtsen  and  Kjaer,  2021). Further work is required to 
distinguish whether this is a true neuronal difference or 
reflects simpler anatomical differences such as skull 
thickness.

Between- subject variability associated with two ana-
tomical covariates was modelled at the group- level. The 
total brain volume of each participant and the proportion 
of grey matter were relative to total brain volume. As 
before, the inclusion of these regressors ensures that the 
reported group effects are not biased by these anatomi-
cal factors. We separately computed the TotalBrainVol 
and GrayMatterVol group- level contrasts (Contrasts 6 
and 7; Fig.  6B) on the Overall Mean first- level contrast 
(Contrast 1; Fig. 1). Non- parametric permutation testing 
did not identify any significant effects for either overall 
brain volume or relative grey matter volume (Fig. 9B, C). 
Though these are null effects, the inclusion of these 
regressors in the group model enables a more refined 
interpretation of the other results. The inclusion of these 
confounds means that any variance they might explain 
can not be attributed to one of the other regressors. Spe-
cifically, this increases our confidence that the differences 
between younger and older adults are not caused by  
correlated variability in head size or relative grey matter 
volume.

4. DISCUSSION

We have outlined the theory behind the GLM- Spectrum 
and provided a tutorial overview of its application. We illus-
trated a practical application for the use of the GLM- 
Spectrum, using an open EEG dataset to simultaneously 
quantify and contrast the spectrum of two alternating 
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resting- state conditions whilst regressing out the effect of 
artefacts including bad segments and eye movements. 
Both artefact types were associated with a strong group 
effect but diverse effects at the first- level. Of particular 
interest is the alpha peak in the spectrum of regression 
coefficients of the V- EOG regressor. This is likely a true neu-
ronal effect linked to blinking that is not removed by ICA but 
can be explicitly modelled by the GLM- Spectrum. Finally, 
we extended our analysis to the group- level and explored 
the spectral differences between older and younger adults, 
whilst accounting for the effects of sex, brain volume, and 
relative grey matter volume. Older adults have lower magni-
tude in the theta range (3- 7 Hz) and higher magnitude in the 
beta and gamma ranges (>15 Hz). A range of within-  and 
between- subject effects were explored and, crucially, we 
showed that the reported age effect is robust to differences 
in participant sex, head size, or relative grey matter volume.

4.1. A comprehensive framework for spectrum analysis

The GLM- Spectrum is a practical combination of two 
well- established methodologies that modernises the sta-
tistics underlying the time- averaged periodogram, a 
long- standing and standard spectral estimation method 
( Bartlett,  1948,  1950;  Welch,  1967). Specifically, we utilise 
multilevel general linear modelling ( Friston,  2007; 
 Woolrich  et al.,  2004), non- parametric permutation test-
ing ( Nichols  &  Holmes,  2001;  Winkler  et al.,  2014), con-
trast coding, and confound regression to extend the 
scope of classical time- averaged spectrum estimators.

This approach is generalisable to a huge range of 
analyses. In principle, the GLM- Spectrum could be used 
in place of Welch’s periodogram or other time- averaged 
spectrum estimate in any analysis pipeline. A very simple 
GLM- Spectrum analysis could be configured to be 
exactly equivalent to these standard approaches. In the 

Fig. 9. Between- subject group covariate effects on the overall first- level mean. The topography (top right) provides 
location- colour coding used in the t- spectra throughout the figure. In all cases, statistical significance is assessed by 
sensors x frequency cluster permutation testing and is indicated in grey. The colour range of each topography is set range 
between plus and minus the maximum absolute value of the data plotted. (A) The between- subject difference effect of 
sex on the average magnitude between females and males. The model projected spectra visualise the group differences 
(bottom). (B) Same as A for total brain volume. The model projected spectra visualise the spectrum at the smallest and 
largest head size. (C) Same as A for normalised grey matter volume. The model projected spectra visualise the spectrum 
at the smallest and largest grey matter volume.
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simplest case, without first- level covariates, the GLM- 
Spectrum provides a formal framework for multivariate 
whole head group analysis of power spectra. Moreover, 
GLM- Spectrum allows for linear denoising of spectrum 
estimates in datasets where simultaneous recordings of 
potential artefact sources are available, or artefact time 
courses can be derived. In addition, covariate effects and 
contrasts can be readily defined to quickly compute 
spectra associated with specific external dynamics. For 
example, an early application of this method has used a 
GLM- Spectrum to compute power spectra associated 
with dynamic whole- brain functional networks in MEG 
( Gohil  et al.,  2022).

4.2. Covariate and confound regression for spectrum analysis

The GLM- Spectrum can characterise spectral changes 
associated with covariates and potential artefact sources. 
Standard ICA denoising removes artefacts that share the 
time- course of the artefact channel. In contrast, confound 
regression is exploratory across the spectrum. Denoising 
can be applied to any frequency band with dynamics 
associated with the segmented artefact time- course irre-
spective of the original spectrum. For example, the V- EOG 
blink artefact has a classic low- frequency response that 
can be attenuated by removing correlated independent 
components. However, eye blinks are also associated 
with relatively prolonged changes in alpha and beta power 
( Liu  et al.,  2020). In the context of this paper, we consider 
this to be an “indirect” artefact; it is spatially and spec-
trally separated from the artefact source and is unlikely to 
have arisen from volume conduction. The GLM- Spectrum 
can detect these differences and remove their effect from 
the overall mean. As such, it could not have been detected 
or removed by ICA denoising. In another context, this 
might form the contrast of interest, but in this case, we 
apply confound regression to minimise the effect of eye 
movements and blinks on the eyes- open > eyes- closed 
condition contrast.

4.3. Limitations of the GLM- spectrum model

As outlined in the main text, the parameters of a model 
are only valid if the underlying assumptions are met. The 
GLM has several relevant assumptions for the spectrum 
analysis presented here, particularly at the first- level. In 
detail, the GLM assumes that the residuals of the model 
are independently and identically distributed. The pres-
ence of any temporal autocorrelation in the residuals indi-
cates that the parameter estimates must be interpreted 

with caution as this assumption has been violated. Future 
work can account for this shortcoming by building on 
similar work in fMRI.

The covariate and confound regressors in a GLM- 
Spectrum model dynamics over time are found to be in a 
highly simplified sense. This approach is appropriate to 
quantify relatively slow dynamics, on timescales of sec-
onds, in the context of a spectrum estimator that already 
utilises sliding time segments for spectrum estimation. 
The sliding windows are tuned for spectral resolution. 
They have fixed and arbitrary length and may not accu-
rately reflect the true timescale of dynamics in the  
covariate variables. As such, limited conclusions about 
underlying dynamics can be made from a GLM- Spectrum. 
We can only say that a dynamic relationship existed at the 
specific timescale selected for spectrum estimation. If 
precise temporal dynamics are of interest, a more 
advanced, window- free method such as the Hidden Mar-
kov Model ( Quinn  et al.,  2018,  2019;  Vidaurre  et al.,  2016, 
 2018) or Empirical Mode Decomposition ( Huang  et  al., 
 1998) might be more appropriate.

4.4. Conclusion

The GLM- Spectrum builds on methodologies that are all 
well established in the field. The novelty of this work is to 
bring modern statistics and classical spectrum estima-
tion together into a single framework and to thoroughly 
explore the theoretical, computational, and practical 
challenges of its use. The result is an approach for spec-
trum analysis across the whole head and frequency range 
with the flexibility to generalise to a huge variety of 
research and engineering questions.

DATA AND CODE AVAILABILITY

The data analysed in this paper are resting- state EEG 
recordings from an open- source dataset ( Babayan  et al., 
 2019) (https://fcon _ 1000 . projects . nitrc . org / indi / retro / MPI 
_ LEMON . html) covered by the Open Data Commons Pub-
lic Domain Dedication and License (PDDL) v1.0 licence 
(https://opendatacommons . org / licenses / pddl / 1 - 0/). Raw 
EEG data were downloaded in BIDS format from the 
Gesellschaft für wissenschaftliche Datenverarbeitung 
mbH Göttingen (GWDG) FTP server (https://ftp . gwdg . de 
/ pub / misc / MPI - Leipzig _ Mind - Brain - Body - LEMON / EEG 
_ MPILMBB _ LEMON / EEG _ Raw _ BIDS _ ID/). All code used 
to run analyses and generate the figures in this paper are 
available online via github (https://github . com / OHBA 
- analysis / Quinn2022 _ GLMSpectrum).

https://fcon_1000.projects.nitrc.org/indi/retro/MPI_LEMON.html
https://fcon_1000.projects.nitrc.org/indi/retro/MPI_LEMON.html
https://opendatacommons.org/licenses/pddl/1-0/
https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/EEG_MPILMBB_LEMON/EEG_Raw_BIDS_ID/
https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/EEG_MPILMBB_LEMON/EEG_Raw_BIDS_ID/
https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/EEG_MPILMBB_LEMON/EEG_Raw_BIDS_ID/
https://github.com/OHBA-analysis/Quinn2022_GLMSpectrum
https://github.com/OHBA-analysis/Quinn2022_GLMSpectrum
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