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ABSTRACT

The frequency spectrum is a central method for representing the dynamics within electrophysiological data. Some
widely used spectrum estimators make use of averaging across time segments to reduce noise in the final spectrum.
The core of this approach has not changed substantially since the 1960s, though many advances in the field of
regression modelling and statistics have been made during this time. Here, we propose a new approach, the General
Linear Model (GLM) Spectrum, which reframes time averaged spectral estimation as multiple regression. This brings
several benefits, including the ability to do confound modelling, hierarchical modelling, and significance testing via
non-parametric statistics. We apply the approach to a dataset of EEG recordings of participants who alternate
between eyes-open and eyes-closed resting state. The GLM-Spectrum can model both conditions, quantify their
differences, and perform denoising through confound regression in a single step. This application is scaled up from a
single channel to a whole head recording and, finally, applied to quantify age differences across a large group-level
dataset. We show that the GLM-Spectrum lends itself to rigorous modelling of within- and between-subject contrasts
as well as their interactions, and that the use of model-projected spectra provides an intuitive visualisation. The GLM-
Spectrum is a flexible framework for robust multilevel analysis of power spectra, with adaptive covariate and con-
found modelling.

Keywords: Electroencephalography, regression, general linear model, neuronal oscillations, spectra, statistics

1. INTRODUCTION periodogram is the predominant method for spectrum

Frequency-domain analyses of oscillations in electro- estimation in neuroscience. It computes the average
physiological recordings of brain activity contain infor- FoUrier spectrum across a set of sliding window seg-
mation about the underlying neuronal activity. Both the ~Ments (Bartlett, 1948, 1950; Welch, 1967) based on the
peaks of specific oscillations and the broader spectral ~Premise that the data are comparable over time and that
shape are informative about brain function and have the effect of noise will be attenuated when averaging
inspired a wide literature across neuroscience (Buzsaki & across segments. This algorithm produces a statistical
Draguhn, 2004; Kopell et al., 2014). The time-averaged estimate of a spectrum and has remained largely the
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same for many decades. Statistical methods have greatly
progressed in this time and many newer approaches can
be directly applied to the windowed periodogram.

Here, we propose the General Linear Model Spec-
trum (GLM-Spectrum) framework for analysing time-
averaged periodogram estimates of frequency spectra.
This reframes the method of averaged periodograms as
a regression problem by modelling frequency spectra
over successive windows as a linear mixture of a set of
user-specified regressors. This links linear spectrum
estimation to the GLM analyses that have been devel-
oped for a broad range of neuroimaging applications,
including structural and functional MRI (Friston et al.,
1994; Woolrich et al., 2009), event-related fields (Smith
& Kutas, 2014), and induced responses (Litvak et al.,
2013). Specifically, we demonstrate the utility of multi-
level models (Friston, 2007; Woolrich et al., 2004), non-
parametric permutation testing (Nichols & Holmes,
2001; Winkler et al., 2014), contrast coding, and con-
found regression in the context of spectrum estimation.
GLM-Spectrum can be applied to analyse any time
series, from Local Field Potentials to multichannel
Electro- and Magnetoencephalography (EEG & MEG). It
is not dependent on any specific preprocessing meth-
ods in sensor- or source- space analyses, beyond what
would apply to a typical frequency spectrum analysis.
The GLM-Spectrum could also be configured to per-
form task analyses on the timescale of the sliding win-
dows used in the STFT. For example, a set of “boxcar”
regressors could be defined to contrast different task
states. More broadly, the method is applicable to any
time series analysis that looks to estimate a Fourier-
based frequency spectrum.

We illustrate the GLM-Spectrum by analysing EEG
recordings alternating between eyes-open and eyes-
closed resting-state conditions from a freely available
dataset (Babayan et al., 2019). First, the GLM-Spectrum
is used to analyse time-series data from a single chan-
nel of one individual. The spectrum for the two resting
conditions and their difference are computed, whilst a
set of covariate and confound regressors account for
linear trends over time and a diverse set of potential
artefact sources. This approach is generalised to the
whole head recording of a single subject to describe the
spatial patterns associated with each regressor. Finally,
a group-level, whole head analysis explores the GLM-
Spectra of specific regressors and contrasts before
quantifying how they differ between younger and older
participants.

2. METHODS
2.1. Time-averaged periodogram estimation

Time-averaged periodogram methods start by estimating
a windowed short-time Fourier transform across time
series ¥ using the windowing function w

T —i2nft

Y, (f.k)=Y w(t)y(tk)e s (1)

t=1

The Fourier transform above is computing the k-th seg-
ment of the continuous input y(t), which we denote with
y(t,k). The output matrix Y (f,k) contains the STFT, which
describes how the spectrum changes in power across the
K segments. A time-varying magnitude spectrum S, or
power spectrum Py can be computed from the STFT.

Y (f.K) P

s, (rK)=ly (1| B (1=

@

Where N is the length of the sliding window segments.
Finally, the time-averaged periodogram is then the aver-
age of the time-varying power spectral density across
segments.

K
Pwelch, (f)= %ZPy (k) ®)
k=1

If the previous computations included a windowing
function w(t) and overlapping time segments, then this
is Welch’s power spectral density estimate (Welch, 1967).
Welch’s time-averaged periodogram has the property
that the noise level of the estimate decreases with
increased data length, since more input data provide a
larger number of segments for the central averaging
step. It is still an imperfect estimator that has been sub-
ject to criticism (Prerau et al., 2017; Thomson, 1982) but
it is practical, straightforward to compute, and in wide
use across science and engineering. A detailed descrip-
tion of these equations is provided in Supplementary
Section A. A description of how parameters such as
window length and sample rate affect the spectrum is
provided in Supplementary Section B.

2.2. General linear model spectrum

The GLM-Spectrum replaces the averaging step in the
time-averaged spectrum estimation methods with a Gen-
eral Linear Model (also known as multiple regression).
The GLM is widely used in neuroimaging analyses
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(Friston, 2007; Woolrich et al., 2009) and the same princi-
ples around analysis, model validation, and statistics
apply here. The objective is to model the spectrum across
the K sliding window segments as a linear function of a
set of regressor variables. The magnitude GLM-Spectrum
is defined as:

S, (f.k)=X(k)B(f)+e(f) @)

where S, (f) is the (Kx1) time-varying spectrum estimated
at frequency (f) across all K segments/windows (the STFT
computed in 2) computed from a single channel (time
series) of data, X is a (KxP) design matrix containing the P
regressors of interest as they vary over time, and e(f) is a
(Kx1) vector of residual errors. We model the whole spec-
trum using a mass-univariate modelling approach that fits
a separate GLM for each frequency bin in the FFT. The
resulting (Px1) vector B(f) contains the estimated regres-
sion parameters. We refer to the whole vector of esti-
mates across frequency as the GLM “beta-spectrum.”

2.3. Estimating the GLM parameters

Once the design matrix has been specified and the data
have been transformed into the STFT, we are ready to fit
the regression parameters B in equation 4. Under the
assumptions specified above, this can be achieved using
Ordinary Least Squares (OLS) to estimate the regression
parameters (also known as beta-estimates), B(f), as

B(f)=(X"Xx)"x"s, (f) )

Alternatively, we can pre-multiply the data by the
Moore-Penrose pseudo-inverse (MPPI) (Penrose, 1956)
of the design matrix, which performs well even when
there are multi-collinearities in X (see Section 2.4):

B(f)= XS, (f) 6)

where the superscript * denotes the MPPI. More complex
fitting routines could be used if the assumptions underly-
ing OLS are inappropriate for a particular application. For
example, the rest of the GLM-Spectrum framework would
work in the same way if B(f) were estimated using a
robust or regularised regression. Similarly, it would be
possible to extend the approach to Bayesian regression
methods. Here, we use the pseudo-inverse model fitting
approach (equation 6) for all GLM estimation.

" The term “beta” has different uses in the fields of statistics/linear-modelling
and neuronal oscillations. In this work, we refer to a “beta-spectrum” in the
statistical sense (a spectrum of linear model parameter estimates) rather than
the neuronal sense (oscillatory activity within a 15Hz to 30Hz frequency range).

2.4. Assumptions of the GLM-spectrum

The theory of linear regression underlying the GLM-
Spectrum uses assumptions that simplify the problem and
specify the conditions under which the solution is valid.
Typically, five different assumptions are defined: validity,
linearity, independence of errors, homoscedasticity of
errors, and normality of errors. There remains debate
about their relative importance (Gelman & Hill, 2007; Knief
& Forstmeier, 2021).

The first two assumptions are relatively general. Valid-
ity states that the data being analysed should be an
appropriate match to the research question. This appar-
ently simple point is frequently overlooked by researchers
(Gelman & Hill, 2007). Linearity is the assumption that the
dependent variable can be described as a linear function
of the predictors in the model design matrix. This is the
central mathematical feature of linear regression models.
We cover assumptions about the residuals and the distri-
bution of variables in more detail in the next two sections.

2.4.1. Distribution of the residuals

Three commonly reported assumptions relate to the
residuals of the fitted model e(f). Independence of errors
states that the residuals of the model fit are independent
and identically distributed (IID) over observations (over
time in the case of GLM-Spectrum). Homoscedasticity of
errors states that the variance of the error is consistent
across all values of the predictor. Finally, normality of
errors states that the residuals should have a normal,
Gaussian distribution. Violating these assumptions affects
the validity of inferential statistics computed from the
model, limiting our ability to generalise results from our
data to the population. Parameter estimates are more
robust to violations of these assumptions. In most cases,
we anticipate that inferential statistics will not be per-
formed on first-level GLM-Spectrum results. Rather, the
parameter estimates or t-values of many first-level mod-
els will be combined into a group model.

GLMs are relatively robust to violations of homosce-
dasticity of errors and normality of errors (Williams et al.,
2019). The p-values computed from models with viola-
tions of these errors tend to be robust at moderate to
large sample sizes, except in datasets with substantial
outliers (Knief & Forstmeier, 2021).

A specific issue for first-level statistics is the likely
presence of temporal autocorrelation in e(f), indicating a
violation of the independence of errors assumption. This
issue is commonly encountered in other time-series
models such as first-level fMRI analyses (Friston et al.,
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2000; Wooalrich et al., 2001; Worsley and Friston, 1995).
Future work that requires valid inferential statistics on
first-level GLM-Spectra may develop explicit models for
this temporal autocorrelation similar to the approach
taken in fMRI (Friston et al., 2000; Woolrich et al., 2001).

2.4.2. Distribution of the data and predictor variables

The ordinary least-squares GLM does not make any for-
mal assumptions about the distributions of the data or
predictor variables (Williams et al., 2019). Non-normal
predictor variables are commonplace in regression anal-
yses. For example, binary variables that “dummy code”
for individual groups of observations are commonly used
as predictors. Strongly skewed, fat-tailed or non-normal
distributions can still negatively impact the fit by a greater
likelihood of influential outlier observations. This may be
increasingly problematic with smaller sample sizes, or
with increasingly extreme outlier values in the data.

Distribution checking is a critical factor in the choice of
whether to use the complex, magnitude, power or log-
power spectrum as the dependent variable in a GLM-
Spectrum. Power is most commonly used for spectrum
analysis but power estimates are strictly positive-valued
and tend to have distributions with a strong positive
skew. The magnitude (S, (f)) and log-power (log(P, (f))
spectra are likely to be more Gaussian and both result in
similar GLM-Spectrum results (See Supplementary Sec-
tion C). Though either of these forms are appropriate,
here we use the magnitude spectrum as it is a good com-
promise between reducing the impact of outliers and
maintaining simple visual interpretability of the results.

Future work could equally use the log-power spectrum
or consider expanding the GLM-Spectrum approach to
use Generalised Linear Modelling (Nelder & Wedderburn,
1972) to account for specific differences in the distribu-
tion of the data being modelled. Finally, we do not con-
sider the complex spectrum due to variability in phase
across time segments, leading to significant cancellation
of the signal. If phase information is critical, and expected
to be consistent across time segments, then future work
may generalise these statistics to the complex spectrum
(for example, Baker, 2021).

2.5. Design matrix specification
2.5.1. Regressor selection

The regressors in the design matrix X will typically be
secondary time series that are recorded simultaneously

with the main data or known a priori. The regressors must
be prepared in the same manner as the main data, includ-
ing any filtering and segmentation, to ensure correspon-
dence between the design matrix and data. All regressors
used in this paper are segmented following the modelled
time-series data and summed within each segment to
create a vector of values to use as a covariate.

The GLM is a highly general method as the design
matrix, X, can be adapted depending on the application
in question. However, this flexibility can also make the
specification and interpretation of the regressors chal-
lenging. The addition of a new regressor to an existing
GLM design matrix can change the parameter estimates
and standard errors of the previous regressors. There-
fore, the final choice and interpretation of any regressors
is necessarily specific to each individual analysis.

Standard time-averaged spectrum estimation meth-
ods (such as Welch’s Periodogram) model the mean
spectrum across time segments. Similarly, most GLM-
Spectrum analyses will also want to include regressors
that quantify this average. In the simplest case, a single,
constant regressor of ones is directly equivalent to the
standard method. However, the flexibility of the GLM
allows us to build on this and define more sophisticated
models with multiple covariates if required.

One extension enabled by the GLM-Spectrum is to use
confound regression to model the effect of an artefact
source and attenuate its contribution to the estimate of the
overall mean. The amount of denoising applied by the
model is proportional to the effect size of the confound
regressor in question. This makes the confound regression
adaptive to each individual model; the same potential noise
source may be highly predictive of the STFT in one dataset
but not the next. Researchers could consider running a for-
mal model comparison to remove ineffective confound
regressors from first-level analyses altogether. Here, we
have taken the approach of maintaining all first-level
regressors to simplify group analysis. Further group-level
permutation testing assesses whether a noise source has
a “significant” effect on the STFT. This is a flexible alterna-
tive to removing the artefactual time periods altogether.
Confound regression can be performed by including a non-
zero mean regressor alongside a constant regressor in the
design matrix. With this specification, the constant regres-
sor models the intercept (the average where the value of
the artefact regressor is zero) whilst the confound regres-
sor quantifies the artefact effect. This example is explored
in more detail in Supplementary Section F.

Covariates can be included into the GLM in several
ways. We can use indicator regressors (containing zeros
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and ones) which assume that the covariates effect will be
the same each time it is present. Otherwise, we can use
dynamic covariates to model phenomena that dynami-
cally change over time in a continuous way. For example,
this might include pupil size, heart rate, or respiration
rate. When we include these types of continuous regres-
sors, their regression parameters capture the “slope”
effect; in other words, how much does the spectrum
change with each increment in the value of the regressor.
For example, when including a pupil-size regressor, the
spectrum resulting from its regression parameter esti-
mates would indicate how much the power in a particular
frequency bin increases or decreases as the pupil-size
changes by a certain amount.

Another decision is whether to demean a given covari-
ate regressor in the design matrix. Counterintuitively, the
interpretation of the regression parameter estimate is
unchanged when a covariate is demeaned; in both cases, it
is modelling the “slope” effect that quantifies how much the
spectrum changes with each increment of the regressor. In
contrast, the interpretation of a constant regressor in the
same model will change depending on whether a covariate
is demeaned or not. A constant regressor will model the
mean over all time points if the other covariates are
demeaned and will model the intercept if non-zero mean
regressors are included. As a result, confound regressors
that are intended to remove a given effect from the estimate
of the mean will typically have a non-zero mean whilst
dynamic covariates that model changes around the mean
will be demeaned or z-transformed prior to model fitting.

2.5.2.  Multicollinearity

Finally, while it is not a violation of the model assump-
tions, one should take care when regressors in X can be
expressed, to any extent, as a linear combination of other
regressors. This is referred to as multicollinearity and
means that there are infinite equally good solutions to the
regression equation. Using the MPPI to fit the model
parameters can overcome this limitation. If multiple solu-
tions to equation 4 exist, the MPPI will return the regres-
sion parameters with the minimum Euclidean norm
(Penrose, 1956). Note that when there is partial multicol-
linearity, the MPPI uses the component of the regressor
that is uncorrelated with the rest of the design matrix (i.e.,
corresponding to any unique variability in that regressor)
to find each parameter estimate. This property means the
MPPI solution quantifies the unique effect of each regres-
sor that cannot be accounted for by the others. Therefore,
it is frequently desirable to proceed with the MPPI solu-

tion for a GLM whose design contains some degree of
multicollinearity that we wish to eliminate from the results.
In addition, the impact of any multicollinearity is natu-
rally accounted for in the variance of the affected regres-
sion parameter estimates. For example, when the
presence of multicollinearity increases uncertainty about
the value of a regression parameter, then that parameter
estimate’s variance (as computed in Section 2.6) will be
appropriately increased. Nonetheless, even when using
the MPPI, we recommend assessing the correlation and
singular value spectrum of the design matrix prior to
model fitting as well as the variance of the regression
parameters (Smith et al., 2007). This ensures that one is
aware of the potential impact of multicollinearity on find-
ing a significant result. If these checks identify unexplain-
able or unintended multicollinearity, perhaps from
including too many or inappropriate regressors, then the
design should be re-assessed prior to further analysis.

2.6. Contrasts and t-statistics

Once the design matrix is specified and the model parame-
ters have been estimated, the GLM-Spectrum consists of a
beta-spectrum for each regressor. This beta-spectrum con-
tains the regression parameter estimates quantifying the
linear effect of that regressor across the frequency range.

Next, we can compute simple linear combinations of
regression parameter estimates, known as contrasts.
Contrasts can be defined to ask questions about the size
of these linear combinations, including whether they are
significantly different to zero (using t-tests). This approach
is commonly applied in neuroimaging applications (Friston,
2007; Woolrich et al., 2009).

Each contrast is defined as a vector of values that
define the relative weights used to compare different
parameter estimates. For example, we could define the
following contrasts for a model that contains three regres-
sors in its design matrix:

1 0 0
ci=| 0 |,co=| 05 |,cz=| 1 |C=[ci,Crc3] ()
0 0.5 -1

where C is a (P x N;) matrix containing all N, contrasts.
Using terminology common in neuroimaging, these con-
trasts define a Contrast Of Parameter Estimates, or a
cope, which is computed from a matrix multiplication
between the contrast and the model parameter estimates:

A~

cope(f)=CB(f) 8)
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Here, we refer to the resulting frequency resolved vec-
tor of cope values, cope(f), as the GLM cope-spectrum.
The individual contrasts are designed to ask specific
experimental questions. Using the examples in equa-
tion 7, the first contrast asks whether ¢,B(f)=0. This
specifies a t-test that quantifies whether each value in the
beta-spectrum of the first regressor is different from zero;
regressors two and three are weighted to zero in this spe-
cific contrast, but nevertheless still explain variance in the
overall model. The second contrast tests if c,B(f)=0
and asks whether the mean of the beta-spectra from
regressors two and three is different from zero. Note that
setting the values in this contrast to 0.5 ensures that the
contrast of the regression parameter estimates can be
interpreted as the mean of the two regression parameters
involved. When turned into statistics (see below), con-
trasts ¢y and ¢, are equivalent to one-sample t-tests in
classical statistical frameworks.

Finally, testing if c;B(f) = 0 tests whether the difference
in parameter estimates in the beta-spectrum of regressor
2 minus regressor 3 is different from zero. This is equiva-
lent to an independent-samples t-test between the condi-
tions modelled by these regressors. Regressor 1 is set to
zero in the second two contrasts and is not directly
included in the comparison. However, it is still explaining
variance in the model and may be indirectly affecting the
outcome of the contrast between regressors 2 and 3.

These contrasts are useful combinations of parameter
estimates but we need the associated standard error to
complete a formal statistical test. The ratio of the con-
trast value (cope) and its standard error is a t-statistic that
indicates the estimated magnitude of a cope relative to
its standard error. To compute the standard errors and
subsequent t-statistics for each contrast, we first need to
compute the residuals of the model fit:

R,(f)=S,(f)-B(f)X €)

Note that R, (f) contains the actual set of residuals for
a given dataset and model fit. This is distinct from e, (f),
which denotes a more general white noise process.
These residuals are used to compute the variance in the
estimate of the cope, also known as a varcope. Firstly, we
compute the variance of the residuals:

o”(f)=diag(R, ()R, (N)") (10)

And transform this to get the variance of the relevant
part of the model for this contrast:

varcope(f)= diag(C(XTX)_1C)02 (f) (11)

varcope(f) now contains the square of the standard
error for this contrast. This computation can be costly
with large datasets as several matrix multiplications must
be performed. However, only the diagonal of the resultant
matrix is used for further analysis. Therefore, we speed-up
this computation using Einstein summation in numpy
(https://numpy.org/doc/stable/reference/generated/
numpy.einsum.html) to compute only the multiplications
which appear in the final diagonal. More information on
this and comparisons to alternative computation methods
are described in Supplementary Section D. The spectrum
of t-values corresponding to the contrast can then be
computed as the ratio of the cope to its standard error:

cope(f)

)= varcope(f)

(12)

This GLM t-spectrum quantifies the difference of each
cope from zero in statistical terms, incorporating both the
parameter estimates and their standard errors. Taken
together, the GLM beta-spectrum B(f), cope-spectrum
cope(f), and t-spectrum t(f) provide an intuitive descrip-
tion of the frequency spectrum of the input data in terms
of the specified regressors and contrasts.

2.7. Effect size computation with Cohen’s F 2

Effect sizes represent the strength of a statistical relation-
ship as a complement to hypothesis-based test statistics
like t-tests. The effect size of a single variable within the
context of a multivariate regression model can be com-
puted with Cohen'sF? (Cohen, 1988). The spectrum of
effect sizes for a single regressor within a GLM-Spectrum
model can be computed as (Selya et al., 2012).

2 _p2
Cohen'sF2(f) = Rag(f)-Ra(f)

- 2o 1) "

in which B denotes the regressor of interest and A the
set of all other regressors. R%B is then the proportion of
variance explained by the full model, and Rf\ is the vari-
ance explained by all regressors except B. This metric
can be computed for every frequency, channel, and
regressor within a model to establish a full spectrum of
effect sizes.2

2 Cohen’s original work suggests that values of F2>0.02, F2>0.15, and

F2>0.35 represent small, medium, and large effects respectively (Cohen,
1988; Selya et al., 2012). These labels should be interpreted with caution and
only used as informal guidelines.
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Here, we compute effect sizes for each covariate by
eliminating it from the full model and computing the value
in equation 13. For categorical predictors, the effect size
is computed by comparing the full model to a model in
which separate categorical regressors are combined into
a single constant regressor. As an example, this models
the effect of modelling two conditions with their own
mean term compared to modelling them both with the
same mean.

2.8. Visualising effects with model projected spectra

The GLM beta-, cope-, and t-spectra assess parts of the
overall time-varying spectrum in relation to the model. As
these GLM-Spectra can relate to combinations of effects,
their impact on the mean spectrum can be difficult to
intuit. We propose computing the model-projected spec-
tra to gain a more immediately intuitive visualisation of
effects. This is a visualisation of how the spectrum
changes for different values of the regressor of interest.
For example, if the GLM-Spectrum of EEG data includes
a covariate for pupil size, then its beta-spectrum will
describe how the spectrum changes as pupil size
expands and contracts. The model-projected spectrum
could then be used to visualise the predicted spectrum
at a specific pupil size.

The model-projected spectrum is typically calculated
for a descriptive range of values in the original regressor.
In this paper, we use the largest and smallest values from
the regressor of interest. For example, to compute the
projected spectrum for the largest and smallest value of
a covariate regressor Rv relative to a constant mean
term, we use: model-projected spectra

max{S, | Rv}(f)=max(Rv)Br (f)+ Bmean (f) ~ (14)

min{S, | Rv}(f)=min(Rv)Bn (f)+Bmean(f)  (15)

The max and min model-projected spectrum then
describes the range of variability in the spectrum that is
described by the regressor. Note that this is only a visual-
isation method and that any apparent differences in these
model projected spectra must be confirmed by statistical
significance testing, such as non-parametric permuta-
tions (see Section 2.10).

2.9. Group models for GLM-spectrum

The GLM-Spectrum described thus far is used to
describe continuous data recorded from a single session;

we refer to this as the “first-level.” We now consider how
we can carry out a “group-level” analysis to combine the
results across the first-level GLM-Spectra from multiple
sessions/subjects using a group-level (or second-level)
GLM (Beckmann et al., 2003; Friston et al., 2002;
Woolrich et al., 2004). In brief, we create a group-level
dependent variable by concatenating the parameter
estimates, copes, or varcopes from a set of first-level
analyses and use another GLM to model how GLM-
Spectra vary over sessions/subjects across the group.
For example, here we fit a group-level beta-spectrum
using the first-level cope-spectra for N subjects and a
group-level design matrix:

COpeéubﬂ (f)

copel , ., (f
: ez 1) = XgroupBgroup () + €group ()

COPeéuij (f) (16)

where cope],,;;(f) is the jt" first-level cope computed for
subject n at frequency bin f, that is, copef,,(f)=
¢;Bsubin(f) where c; is the jt first-level contrast and
Bsubjn is the first-level contrast regression parameter
estimates for subject n. Note that Xy, is the (NxQ)
group-level design matrix and the (Qx1) matrix Byyo,, ()
is the group-level regression parameters, where Q is the
number of group-level regressors. As with the first-level
GLM, the error ey, (f) is assumed to be Normal and IID.

As with the first-level analysis, the group-level GLM is
fitted using OLS with the MPPI; and is computed sepa-
rately for each frequency, f (and each channel or voxel—
the indexing for which is not shown in the equations), in a
mass-univariate manner. In addition, a separate group-
level GLM is computed for each first-level cope of inter-
est. As with the first-level GLM, contrasts can be used to
ask a range of inference questions from the regression
parameter estimates, Bgroup(f). A resource showing
examples of commonly used group-level design matrices
and contrasts is available online (https://fsl.fmrib.ox.ac
.uk/fsl/fslwiki/GLM).

As shown in the equation above, the simplest group-
level model carries forward the cope-spectra from a set
of first-level analyses. This can be thought of as a fixed-
effects group model in which each observation (first-level
result) contributes equally to the group effect and the
group-level GLM models the between-session/subject
variability. This is the approach taken in this manuscript.
Future work can extend it to incorporate the information
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about the first-level standard errors in the varcope-
spectra. Both the cope and varcope information could be
carried forward to the group-level and fitting a mixed-
effects model such as the FLAME method in fMRI
(Woolrich et al., 2004). In practice, this model is challeng-
ing to fit as no simple closed-form estimation is available.
Another alternative would be to carry the first-level t-sta-
tistics to the group-level. Future work can explore a wide
range of possibilities for multilevel and mixed-modelling
for the GLM-Spectrum (Table 1).

2.10. Non-parametric permutations for group GLM-spectra

Null-hypothesis testing for a given contrast can be car-
ried out with non-parametric permutations (Nichols &
Holmes, 2001; Winkler et al., 2014). A null distribution of
observed statistics is derived by recomputing the GLM
after manipulating the design matrix in line with the null
hypothesis. The observed group average is then com-
pared to this null distribution and is “significant” if it
exceeds a pre-set critical threshold, such as the 95th
percentile of the null distribution. Here, we perform

non-parametric permutation using “sign-flipping” for
categorical regressors and using “row-shuffling” for para-
metrically varying regressors.

In all cases, we permute the columns of the design
matrix that are directly related to the relevant contrast
whilst the remaining regressors are fixed (Draper &
Stoneman, 1966; Winkler et al.,, 2014). The Draper-
Stoneman approach can produce erratic results for small
sample sizes and may be out-performed by more gener-
ally robust methods (Winkler et al., 2014), such as
O’Gorman (2005) or Freedman and Lane (1983).

Non-parametric permutation testing could, in principle,
be carried out to assess the results of a first-level GLM-
Spectrum. In contrast to a group-level analysis, the first-
level permutations would only assess whether a particular
effect observed within a dataset could be expected to gen-
eralise to a wider sample of possible data observations
from the same source. Moreover, the time segments in a
first-level GLM-Spectrum are likely to exhibit strong auto-
correlation (see Section 2.4) which would need to be
accounted for before any permutation testing could pro-
vide a valid result (Friston et al., 2000; Woolrich et al., 2001).

Table 1. Glossary of definitions for the GLM-spectrum.
Term Definition
STFT The short-time Fourier transform of a time series, containing the spectrum computed within

sliding window time segments across the data. Also called a time-varying spectrum.

Design Matrix
Regressor
Beta-estimates
Beta-Spectrum
Contrast

Cope
cope-spectrum
Varcope
varcope-spectrum

t-statistic

t-spectrum
Model-projected spectrum

First-Level GLM

Group-Level GLM

A matrix of regressors used to explain variability in observed data with a linear regression
model.

A single column of a design matrix containing explanatory variables relating to each
individual observation.

A parameter estimate describing the linear relation between a regressor and the observed
data. Also known as regression parameter estimates.

A vector of parameter estimates for a single regressor across the range of a frequency
spectrum.

A planned comparison between one or more parameter estimates.

The result of a defined contrast between beta-estimates.

A vector of cope estimates for a single contrast across the range of a frequency spectrum.
The square of the standard error of the cope estimates.

A vector of estimates for a single contrast across the range of a frequency spectrum.

The ratio of the departure of the estimated value of a contrast from its hypothesised value
to its standard error.

A vector of t-statistics for a single contrast across the range of a frequency spectrum.

A visualisation of a spectrum as predicted by a fitted GLM set at a particular set of
covariate values.

A linear model for a single data recording that models variability across time segments

in an STFT with a specified design- and contrast-matrix, resulting in a set of beta-,

cope-, and t-spectra.

A linear model for a group dataset combining a set of first-level GLM-Spectra. A
group-level design- and contrast-matrix models variability in first-level beta or

t-spectra across datasets, resulting in a set of group-level beta-, cope-, and t-spectra.
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2.11. Software implementation and dependencies

The analyses in this paper were carried out in Python 3.9
with core dependencies of numpy (Harris et al., 2020),
scipy (Virtanen et al., 2020), and Matplotlib (Hunter, 2007).
MNE python (Gramfort, 2013) was used for EEG/MEG data
processing with OSL (https://github.com/OHBA-analysis
/osl) batch processing tools (Quinn et al., 2022). Python-
meegkit (https://github.com/nbara/python-meegkit) was
used for the “zapline” line noise removal algorithm (de
Cheveigné, 2020). The spectrum analyses further depend
on the Spectrum Analysis in Linear Systems toolbox (Quinn
& Hymers, 2020) and glmtools (https://pypi.org/project
/glmtools/). All codes used to run analyses and generate
the figures in this paper are available online (https://github
.com/OHBA-analysis/Quinn2022_GLMSpectrum).

2.12. The LEMON dataset

2.12.1.  Participants and ethics

Resting-state EEG recordings from 191 individuals of an
open-source dataset were analysed. The details of the
original study including participant recruitment, experi-
mental proceedures, and ethical approval can be found in
the original publication (Babayan et al., 2019). The study
was carried out in accordance with the Declaration of Hel-
sinki, and the study protocol was approved by the ethics
committee at the medical faculty of the University of Leipzig
(reference number 154/13-ff) (Babayan et al., 2019).

2.12.2. EEG preprocessing

All data pre-processing was carried out using MNE-
Python and OSL using the OSL batch pre-processing
tools. The raw data for each subject comprise a resting-
state EEG recording from a 62-channel (61 EEG and 1
EOG) using a BrainAmp MR plus amplifier. The channels
were in a 10-10 layout and referenced to FCz. Sixteen
minutes of data were recorded in one-minute blocks
alternating between eyes-closed and eyes-open resting-
state. Data were acquired with a bandpass filter between
0.015 Hz and 1 kHz at a sampling frequency of 2500 Hz.
The remaining acquisition details are reported in Babayan
et al. (2019).

The raw data were first converted from Brainvision files
into MNE-Python Raw data objects. The continuous data
were bandpass filtered between 0.25 Hz and 125 Hz using
an order-5 Butterworth filter. Line noise was suppressed
using a spatial filter following the “zapline” algorithm (de
Cheveigné, 2020) as implemented in python-meegkit.

Bad channels were automatically identified using the
generalised-extreme studentized deviate (G-ESD; Rosner,
1983) routine to identify outliers in the distribution of
variance per channel over time. The data were then resa-
mpled to 250 Hz to reduce space on-disk and ease sub-
sequent computations. Independent Component Analysis
(ICA) denoising was carried out using a 30 component
FastlICA decomposition (Hyvarinen, 1999) on the EEG
channels. This decomposition explained an average of
99.2% of variance in the sensor data across datasets.
Independent components that contained non-neuronal
signals such as blinks were automatically identified by
correlation with the simultaneous V-EOG channel. ICA
components linked to saccades were identified by cor-
relation with a surrogate H-EOG channel, that is, the dif-
ference between channels F7 and F8. Between 2 and 7
“artefactual” components were identified in each dataset,
with an average of 2.66 across all datasets. The two ICs
that correlated strongest with the V-EOG and H-EOG
channels were separately retained for later use in the GLM
design matrix.

The continuous sensor data were then reconstructed
without the influence of the artefactual V-EOG and
H-EOG components. Bad segments were identified by
segmenting the ICA-cleaned data into arbitrary 2-second
chunks (distinct from the STFT time segments) and using
the G-ESD algorithm to identify outlier (bad) samples
with high variance across channels. An average of
31 seconds of data (minimum 6 seconds and maximum
114 seconds) were marked as bad in this step. This pro-
cedure is biased towards low-frequency artefacts due to
the 1/f shape of electrophysiological recordings. There-
fore, to identify bad segments with high-frequency con-
tent, the same procedure was repeated on the temporal
derivative of the ICA-cleaned data. An average of
27 seconds of data (minimum 2 seconds, maximum
109 seconds) were marked as bad when using the differ-
ential of the data.

To retain consistent dimensionality across the group,
any bad channels were interpolated using a spherical
spline interpolation (Perrin et al., 1989) as implemented in
MNE-Python. Finally, the spatial gradient between each
channel and its distance from the reference sensor (FC2),
is attenuated by computing the surface Laplacian (or cur-
rent source density) of the sensor data. The surface
Laplacian data is reference free and has sharper spatial
topographies than the raw EEG; though this is a complex
computation that is dependent on several hyperparame-
ters, and which may reduce sensitivity to deeper sources
(Kayser & Tenke, 2015).
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2.12.3.  First-level GLM-spectrum

A “first-level” analysis models the data within each indi-
vidual participant’s EEG data. The STFT is computed for
each dataset using a 2-second segment length, a
1-second overlap between segments, and a Hanning
taper. The 2-second segment length at the sample rate of
250 Hz gives a resolution of around 2 frequency bins per
unit Hertz in the resulting spectrum. The short-time mag-
nitude spectrum is computed from the complex valued
STFT and the frequency bins ranging between 0.1 Hz and
100 Hz taken forward as the dependent variable in the
first-level GLM-Spectrum for that dataset. The GLM
design matrix is specified with six regressors (Fig. 1). Two
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Linear Trend

Eyes Open Eyes Closed

C1: RestMean 0.0
C2: Open>Closed 0.0
C3: Eyes Open 0.0
C4: Eyes Closed 0.0
C5: Linear Trend 1.0
C6: Bad Segs 0.0
C7: V-EOG 0.0

C8: H-EOG 0.0

Fig. 1.

binary regressors model intercept terms for each of the
eyes-open and eyes-closed time segments. The third
regressor is a z-transformed covariate describing a linear
trend over time. This regressor is included to model
potential “time on task” effects over the course of the
recording. Previous literature has reported that both alpha
power and alpha frequency may change over time within
a single EEG recording (Benwell et al., 2019). A non-zero
mean regressors for bad segments is computed from the
sum of the number of “bad” samples within each STFT
time segment. Finally, two further non-zero mean regres-
sors are computed from absolute value of the V-EOG and
H-EOG independent component time-courses.

Regressors

l'-&

15

|
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0.5
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An example first-level design matrix and contrast matrix for a single subject. The top matrix shows the GLM

design matrix with individual regressors in columns and single sliding window time segments in rows. The table shows the
contrast matrix with corresponding weightings for each regressor. The regressor correlations, singular-value spectrum, and
variance inflation factors for this design matrix are summarised in Supplementary Section E.
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A range of contrasts are specified to quantify critical
hypothesis tests (see contrast table in Fig. 1). The overall
mean is modelled by a contrast summing the eyes-open
and eyes-closed regressors together weighted by the
proportion of ones in each regressor (Contrast 1, Fig. 1).
A t-test between the spectrum in the eyes-open and eye-
closed conditions is specified with a differential contrast
(weighted [1, -1], in the direction of eyes-open minus
eyes-closed; Contrast 5; Fig. 1). Finally, separate one-
sample tests are specified for each covariate with con-
trasts containing a single 1 for a given regressor (Contrasts
3 to 8; Fig. 1). The model parameters were estimated
using the MPPI, and no statistical assessment was car-
ried out at the first-level.

2.12.4.  Structural MRI processing

Individual anatomical details were extracted from
T-weighted structural MRI scans (Babayan et al., 2019).
All images were processed using the FMRIB Software
Library (Woolrich et al., 2009). Images were reoriented to
standard Montreal Neurological Institute (MNI) space,
cropped, and bias-field corrected. FMRIB’s Linear Regis-
tration Tool (FLIRT;, Greve & Fischl, 2009; Jenkinson &
Smith, 2001; Jenkinson et al. 2002) was used to register
to standard space before brain extraction was performed
using BET (Smith, 2002). Brain images were segmented
into different tissue types (grey matter, white matter, and
CSF) using FMRIB’s Automated Segmentation Tool
(FAST; Zhang et al., 2001). The voxel count for each tis-
sue type was extracted and normalised by the individu-
al’s total brain volume (also computed by FAST) to create
a percentage. The total brain volume and individual per-
centage of grey matter were carried forward as group-
level covariates in the GLM-Spectrum.

2.12.5. Group-level GLM-spectrum

We now carry out a “group-level” analysis to combine the
first-level results and describe between-subject variabil-
ity with another GLM. As described in Section 2.13.2, the
cope-spectra of each first-level GLM were used as the
dependent variable in the group-level GLM. The group-
level design matrix contained categorical regressors cod-
ing the age group of each participant and covariates
corresponding to variability in participant sex, head size,
and relative grey matter volume (Fig. 2). We have mod-
elled age as two distinct, categorical regressors as the
LEMON dataset contains participants recruited from
either a young (20-40 years old) or an old (60-80 years
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old) group. Age could equally be included as a single
parametrically varying regressor in a dataset that recruited
from across a broad age range. A contrast was defined to
estimate the mean across all participants and a second
to estimate the difference between young and old partic-
ipants. Finally, one-sample t-tests were specified for
each covariate to test whether the regression coefficient
significantly differed from zero.

The group-level design matrix was used to model
each of the first-level contrasts. The group model param-
eter estimates were computed using the MPPI. Statistical
significance in the group-level t-spectra was assessed
using cluster-based non-parametric permutations using
sign-flipping or row-shuffle permutations. A cluster form-
ing threshold of p = 0.001 was used (equivalent to
1(205) = 3.34) across all tests. A spatial extent threshold
of 1 was set to ensure that any cluster has at least 2 adja-
cent points exceeding the cluster forming threshold.

3. RESULTS

3.1. First-level covariate spectra on a central EEG channel

Figure 2 summarises the first-level GLM-Spectrum anal-
ysis of a single channel (Pz) from an exemplar resting-
state EEG recording. The pre-processed EEG time series
(Fig. 3A) was split into 2 second time segments with a
50% overlap (Fig. 3B), modified by a Hann window
(Fig. 3C) and transformed into the frequency domain
using a Short-Time Fourier Transform (STFT; Fig. 3D).
Each column of this STFT contains the time-course of the
magnitude at each frequency and constitutes the depen-
dent variable in a first-level GLM. The first-level GLM (see
methods Section 2.13.2) models this variability over time
in relation to the resting conditions, artefacts detected in
the data, and the electrooculogram (EOG). The final first-
level design matrix had six regressors (Fig. 3E) modelling
the two resting-state conditions, a linear trend over time,
and three potential dynamic confounds. The full design
matrix and contrast specification for the entire run can be
seen in Figure 1.

The first-level GLM was fitted separately for each fre-
quency bin using a standard ordinary least squares rou-
tine. The average magnitude spectra for the eyes-open
and eyes-closed rest periods are quantified by two cope-
spectra (Fig. 3F) specified by first-level contrasts 3 and 4
(Fig. 1). Both cope-spectra showed a 1/f-type structure
and a prominent alpha peak around 9 Hz. The eyes-
open > eyes-closed contrast (the regressor was coded to
have ones for eyes-open and minus ones for eyes-closed,;
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Fig. 2. The group-level design matrix and contrast matrix. The matrix shows the design matrix with regressors in
columns and individual first-level datasets in columns. The table shows the contrast matrix with corresponding weightings
for each regressor. The regressor correlations, singular-value spectrum, and variance inflation factors for this design matrix
are summarised in Supplementary Section E. This group design matrix was used to model variability across datasets in

each of the first-level contrasts.

specified in contrast 5 in Fig. 1) had negative values in the
cope-spectrum, indicating that spectral magnitude was
larger in the eyes-closed condition across a range of fre-
quencies, peaking around the alpha range (Fig. 3G - top
panel). The square of the standard error of the estimates is
shown in the varcope-spectrum (Fig. 3G — top panel) and
indicates where the estimate of the mean was least cer-
tain. This roughly followed the shape of the spectra in
Figure 3F, showing a clear alpha peak and a weak 1/f
trend. This is an example of a close relationship between
cope and varcope estimates that can lead to large effects
in the beta-spectrum being substantially less prominent
in the t-spectrum. The final t-spectrum contained a full
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spectrum of t-values for the contrast between the two
resting conditions (Fig. 3H). The large magnitude, negative
t-values in alpha and surrounding frequencies qualitatively
indicated a greater magnitude in the eyes-closed condition.
In sum, this shows a full spectrum perspective on the “alpha
reactivity” or “alpha blocking” effect (Adrian & Matthews,
1934) that is most commonly assessed within a-priori fre-
quency bands (Babiloni et al., 2011; Wan et al., 2018).

3.2. First-level spectral analysis on whole head EEG

So far, GLM-Spectrum method has been applied to univar-
iate data (i.e., single channel EEG data), but it can be readily
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Fig. 3. First-level (i.e., within-session) GLM-Spectrum description during alternating eyes-open and eyes-closed resting
state from channel Pz in a single EEG recording. (A) A 32-second segment of pre-processed EEG time-course from sensor
Pz. (B) EEG time-course segmented into 2-second sliding windows with 50% overlap. (C) Windowed data segments
modified by a tapered Hann window function. (D) Short time-Fourier transform computed with the FFT of each windowed
data segment. Each column of this matrix (change in magnitude of a single frequency over time) is the dependent variable
to be described by the GLM. (E) The GLM design matrix containing condition, covariate, and confound regressors. This

is zoomed in section of the full design matrix in Figure 1, showing only rows corresponding to the data shown here. (F)
The GLM beta-spectra for the two regressors modelling the spectrum during eyes-open and eyes-closed rest (contrasts

3 and 4 in Fig. 1). (G) The cope- and varcope-spectrum for a differential contrast between the eyes-open and eyes-closed
conditions as specified in contrast 5 in Figure 1. (H) The t-spectrum for the contrast in G.

extended to a full multichannel dataset. To model the GLM-
Spectrum across channels, a separate GLM using the
same design matrix was fitted to each channel and fre-
quency bin. This provides a description of spectral effects
over frequency and space. Accordingly, we extended the

resting-state model to the 61-channel whole head EEG
recording. The design matrix and contrast specification
were the same as the single channel analysis.

The beta-spectrum computed from the condition
regressors showed the familiar 1/f slope and prominent
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occipital alpha features in both resting-state conditions.
The GLM analysis was identical to the single channel
results (Fig. 3) but now can include spatial distributions
alongside the frequency spectrum. Qualitatively, the
eyes-open condition (Fig. 4A) had a smaller alpha peak
than the eyes-closed condition (Fig. 4B). Both conditions
had a similar topography in this subject. The t-spectrum
of the contrast between eyes-open and eyes-closed rest
showed a large, negative effect peaking around the alpha
range (Fig. 4C) as seen in the single channel example
(Fig. 3G). This difference had a spatial maximum in
posterior-central regions, replicating the occipital-parietal
location of the alpha reactivity effect widely reported in
the literature (Babiloni et al., 2011; Wan et al., 2018).

The linear trend showed substantial t-values around
the alpha range, though its model projected spectra sug-
gest that this is a subtle effect (Fig. 4D). The bad segment
regressor effect (Fig. 4E) peaks at relatively low (<4 Hz)
and high (>25 Hz) frequency ranges. The size of this
effect is visualised more intuitively in the model projected
spectrum (Fig. 3F— bottom panel) which showed the
substantial increase in both a low- and high-frequency
range. Finally, the V-EOG (Fig. 4F) and H-EOG (Fig. 4G)
covariates both showed large t-values in relatively low
frequencies (around 1 Hz). The V-EOG had a large nega-
tive effect around the alpha range, suggesting that time
segments with high V-EOG activity were associated with
lower alpha magnitude. In contrast, the H-EOG showed
an additional positive effect in high frequencies, suggest-
ing that segments with high H-EOG activity are associ-
ated with larger high frequency spectral magnitude. In
particular, the complex pattern of effects in the V-EOG
t-spectrum manifests as segments with high V-EOG
activity showing a decrease in alpha magnitude and an
increase in alpha frequency.

3.3. Covariate effects are highly variable across datasets

Next, we build on the single subject exemplar result by
exploring the effect of the covariate and confound regres-
sors across 206 EEG recordings from the LEMON data-
set. Firstly, we show a qualitative description of the model
R-squared values and related effect sizes for each pre-
dictor variable. The group averages here are intended as
illustrations and are not supported by inferential statis-
tics. Firstly, the GLM-Spectrum was able to describe
between 60% and 70% of the variance in the STFT, aver-
aged across all participants and channels (Fig. 5A). This
value was highly variable across participants, particularly
above 50 Hz where the R-square values ranges between
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20% and 80%. Secondly, Cohen’s F? statistic was used
to compute the marginal effect size of each predictor
within the model (see Section 2.7 for details). Modelling
the two resting conditions separately, as opposed to using
a single average, results in a group average effect size
which peaks around the alpha frequency, though the effect
in individual datasets was highly variable (Fig. 5B). The
effect size of the four covariates has a low group average
but is, again, highly variable in individual datasets (Fig. 5C).
This variability was particularly prominent at higher fre-
quencies and indicates the adaptive effects of the covari-
ate regressors. These predictors have strong associations
with the STFT in some individuals but not others.

To further illustrate the effect of including the continu-
ous covariate predictors, the frequency spectrum was
computed for both the full model and a reduced model
containing only the two condition terms (i.e., eyes-open
and eyes-closed), excluding other covariates and con-
founds (Fig. 5D). The inclusion of covariate regressors
has a different pattern of effect across frequencies for
each dataset. The difference between the full and reduced
model is relatively small for datasets i and v, indicating
that the effect of the covariates was minimal for these
recordings. In contrast, datasets ii and iv show moderate
differences in low and high frequencies whilst iii shows a
substantial difference between the full and reduced
model.

3.4. Group-level design matrix and contrasts

The GLM-Spectrum framework can be extended to group
analyses by carrying a set of first-level results to a
second-level GLM (See methods Section 2.9). This
group-level analysis models between-subject variability
across independent first-level GLM-Spectra. These mul-
tilevel, hierarchical models are well established in neuro-
imaging (Beckmann et al., 2003; Friston, 2007; Friston
et al., 2002; Woolrich et al., 2004), and the existing theory
applies to the GLM-Spectrum.

The group-level GLM was fitted to the first-level cope-
spectra (Fig. 6A) across all datasets separately for each
channel, frequency bin, and first-level contrast (see
methods Section 2.13.4). The group-level design matrix
contained two condition regressors modelling the mean
across subjects for younger and older participants sepa-
rately and three z-transformed parametric covariates
modelling between-subject variability in sex, total brain
volume, and relative grey matter volume (Fig. 6B). Two
group contrasts were defined alongside the main effects.
One overall average modelled the sum of the young and
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Fig. 4. GLM-Spectrum fits for alternating eyes-open and eyes-closed resting-state EEG for a single participant. Mean
magnitude spectrum estimates for each channel and frequency bin. The topography (top right) provides location-
colour coding used in the t-spectra throughout the figure. The colour range of each topography is set to vary between
plus and minus the maximum absolute value of the data plotted. The contrasts shown in this figure are detailed in
Supplementary Section H. (A) Beta-spectrum for the eyes-open condition regressor. The topography shows the
spatial distribution of spectral magnitude at 9 Hz. (B) Beta-spectrum for the eyes-closed condition regressor, layout

is same as in A. (C) t-Spectrum for the contrast between the eyes-open and eyes-closed conditions. (D) t-Spectrum
spectrum for the linear trend covariate (top). Model-predicted magnitude spectra averaged across all sensors for the
extrema of the predictor, which in the case of a linear trend regressor corresponds to the start and end of the scan
(bottom). (E) t-Spectrum spectrum for the bad segment confound (layout same as for D), model-projected spectra

are shown for good and bad segments. (F) t-Spectrum spectrum for V-EOG confound (layout same as for D), model-
projected spectra are shown for the maximum and minimum observed V-EOG activity. (G) t-Spectrum spectrum for
H-EOG segment confound (layout same as for D), model-projected spectra are shown for the maximum and minimum

observed, H-EOG activity.
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old groups (Contrast 1; Fig. 6B) weighted by the number
of participants in each group. A second contrast quanti-
fied the linear group difference (Contrast 2; Fig. 6B).
Finally, a set of main effect contrasts were also defined
for each regressor (Contrasts 3 to 7; Fig. 6B). The final
fitted model contains a group-level beta-spectrum that
describes the linear effect of a group regressor across
separate datasets. The group-level GLM returns beta-
spectra for the overall mean spectrum (Fig. 6C) as well as
contrasts and main effects (Fig. 6D). At the group-level,
the error bars now indicate the standard error of the fitted
mean across participants (rather than across STFT time
windows, as in the first-level).

3.5. Group effects of age and eyes-open versus eyes-closed rest

Next, we explored how the GLM-Spectrum varies across
resting conditions and participant age. Therefore, two
main-effect contrasts and their interaction were explored.
Two-tailed, non-parametric, cluster (with clusters formed
over frequencies and sensors) permutation tests were
used to establish statistical significance for all group-
level analyses.

We first computed the group average of the within-
subject difference between eyes-open > eyes-closed
rest. Specifically, we computed the Mean group-level
contrast (Contrast 1; Fig. 6B) on the eyes-open > eyes-
closed first-level contrast (Contrast 2; Fig. 1). Non-
parametric cluster permutation testing indicated two
significant clusters (Fig. 7A) that together cover the whole
frequency range investigated here. The first cluster
showed a negative effect with greater magnitude in the
eyes-closed condition. This cluster spanned the lower
frequency range (approximately 30 Hz and lower) across
almost all channels, though the effect peaked around the
alpha range in occipital channels. The posterior peak
within this cluster matched the expected occipito-parietal
source of the alpha reactivity effect (Wan et al., 2018).
The second cluster showed a positive effect, indicating
higher magnitude in the eyes-open condition. This clus-
ter spanned the higher frequency range (10-100 Hz)
across all channels with the largest effect in bilateral fron-
tal regions. This cluster may partially reflect residual eye
movements that have not been accounted for by ICA or
the first-level artefact regression. The t-statistics in a low-
frequency range in frontal sensors are strongly modu-
lated by the inclusion or exclusion of the EOG-based
confound regressors (see Supplementary Section G).

Further, we computed the difference in the time-
averaged first-level spectra between the younger and older
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adults. This corresponds to computing the Young > Old
group-level contrast (Contrast 2; Fig. 6B) on the Overall
Mean first-level contrast’s cope-spectrum (Contrast 1;
Fig. 1). Non-parametric permutations on this showed three
significant clusters. The first cluster indicated a positive
effect in which younger participants had larger power than
older participants. The cluster covered low frequencies
(<8 Hz) and all channels peaking in frontal and occipital
channels (Fig. 7B). The direction of this effect is consistent
with previously reported decreases in delta and theta power
in older adults (Klimesch, 1999). The second cluster indi-
cates greater beta-frequency magnitude for older adults.
The cluster spans between 15 Hz and 30 Hz and peaks in
bilateral central sensors. This finding replicates literature
showing higher beta power in older adults (Xifra-Porxas
et al., 2019). Finally, the third cluster indicates greater mag-
nitude for older participants in a cluster between 35 Hz and
100 Hz that peaks in frontal sensors. In addition, the change
in overall spectral shape qualitatively supports indications
that older adults have a flatter 1/f slope in the EEG spec-
trum (Merkin et al., 2022; Voytek et al., 2015), though we did
not explicitly quantify 1/f slope here.

No significant cluster for an age difference was identi-
fied in the alpha range, though individual t-statistics
reach around 5. This null effect may relate to the choice
of sensor normalisation during pre-processing (Klimesch,
1999). In addition, the choice of a 0.5 Hz to 100 Hz fre-
quency range may be too wide to assess any relatively
narrow band alpha changes in the presence of large
broadband effects in higher frequencies.

Finally, we explored whether the within-subject differ-
ence in eyes-open and eyes-closed resting-state changed
between the younger and older adults. Specifically, this
corresponds to the Young > Old group-level contrast (Con-
trast 2; Fig. 6B) computed on the eyes-open > eyes-closed
first-level contrast (Contrast 5; Fig. 1). Non-parametric per-
mutation testing identified a single significant cluster with
a negative t-statistic (Fig. 7C). This indicates the presence
of an interaction effect in which older adults show a larger
difference in the eyes-open > eyes-closed contrast. Inter-
estingly, there is no indication of an interaction effect in the
low to mid alpha range. The interaction can be qualitatively
summarised by plotting the beta-spectrum separately for
each of the underlying four mean levels (Fig. 7D).

3.6. Group average of first-level cope-spectra

We explored the group averages of each first-level covari-
ate regressor. The first-level linear trend regressor is
expected to be sensitive to slow drifts throughout the
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recording. The t-spectrum of the Mean group-level con-
trast (Contrast 1; Fig. 6B) computed on the Linear Trend
first-level contrast (Contrast 5; Fig. 1) showed four signif-
icant clusters (Fig. 8A) with a mix of increases and
decreases across space and frequency. Broadly these
clusters showed a decrease in magnitude over time in
both low frequencies (0.5-4 Hz) and high frequencies (20-
100 Hz) peaking in occipital posterior channels. In con-
trast, an increase in magnitude over time was found in a
low theta/alpha range (3-9 Hz) and high frequencies (15-
100 Hz) peaking in frontal sensors. The presence of bad
segments was associated with a single, strong positive
effect indicating increased magnitude in the EEG during
marked bad segments. The Mean group-level contrast
(Contrast 1; Fig. 6B) computed on the Bad Segments
first-level contrast (Contrast 6; 1) showed a strong posi-
tive effect across all frequencies and across all channels
(Fig. 8B).

Finally, we computed the Mean group-level contrast
(Contrast 1; Fig. 6B) computed on the V-EOG and H-EOG
first-level contrasts separately (Contrast 7 and 8; Fig. 1).
Three clusters indicated that increased variance in the
V-EOG is associated with both increases and decreases
in magnitude of the EEG (Fig. 8C). One positive effect
impacted all sensors and all frequencies (though not
always simultaneously) showing the wide-ranging impact
of eye movements on the spectrum. Two clusters showed
negative effects in the alpha range (around 9 Hz) and its
harmonic (18 Hz) in posterior sensors. This effect indi-
cates a decrease in alpha when eye movements are larg-
est. Increased variance in H-EOG time series was
associated with increased magnitude across nearly all
sensors and frequencies, as summarised in a single, pos-
itive statistical cluster (Fig. 8D).

These effects demonstrate that the first-level covari-
ates are associated with consistent group-level effects.
However, the results must be interpreted in the context of
the variability in first-level effect sizes (Fig. 5). Each first-
level covariate effect was highly variable in the individual
datasets, ranging from no effect in some participants to a
covariate effect that exceeded the eyes-open > eyes-
closed difference in others (Fig. 5B, C). As such, we might
not expect to see one or more of these effects in a given
single dataset, though the group effects are strong.

3.7. Group-level covariate effects

The results so far have combined and contrasted group
averages of the first-level results. One possible group-
level confound for the age contrast is that the LEMON

20

dataset contains a different number of male and female
participants who are not perfectly balanced across age
groups. A separate group regressor indicating the
reported sex of each participant was included to model
between-subject variability relating to this factor, effec-
tively partialling it out from the main age effect of interest
in each group contrast. We visualise the overall effect of
participant-reported sex on the first-level cope-spectra
(averaged across eyes-open and eyes-closed resting-
state); this corresponds to the Sex group-level contrast
(Contrast 5; Fig. 6B) computed on the Overall Mean first-
level contrast (Contrast 1; Fig. 1). A single significant
cluster identified stronger spectral magnitude in female
participants between 1 and 48 Hz, peaking around the
alpha and beta frequency ranges (Fig. 9A). Increased
power in females relative to males has been previously
reported in the EEG literature (Aurlien et al., 2004;
Zibrandtsen and Kjaer, 2021). Further work is required to
distinguish whether this is a true neuronal difference or
reflects simpler anatomical differences such as skull
thickness.

Between-subject variability associated with two ana-
tomical covariates was modelled at the group-level. The
total brain volume of each participant and the proportion
of grey matter were relative to total brain volume. As
before, the inclusion of these regressors ensures that the
reported group effects are not biased by these anatomi-
cal factors. We separately computed the TotalBrainVol
and GrayMatterVol group-level contrasts (Contrasts 6
and 7; Fig. 6B) on the Overall Mean first-level contrast
(Contrast 1; Fig. 1). Non-parametric permutation testing
did not identify any significant effects for either overall
brain volume or relative grey matter volume (Fig. 9B, C).
Though these are null effects, the inclusion of these
regressors in the group model enables a more refined
interpretation of the other results. The inclusion of these
confounds means that any variance they might explain
can not be attributed to one of the other regressors. Spe-
cifically, this increases our confidence that the differences
between younger and older adults are not caused by
correlated variability in head size or relative grey matter
volume.

4. DISCUSSION

We have outlined the theory behind the GLM-Spectrum
and provided a tutorial overview of its application. We illus-
trated a practical application for the use of the GLM-
Spectrum, using an open EEG dataset to simultaneously
quantify and contrast the spectrum of two alternating
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Fig. 9. Between-subject group covariate effects on the overall first-level mean. The topography (top right) provides
location-colour coding used in the t-spectra throughout the figure. In all cases, statistical significance is assessed by
sensors x frequency cluster permutation testing and is indicated in grey. The colour range of each topography is set range
between plus and minus the maximum absolute value of the data plotted. (A) The between-subject difference effect of
sex on the average magnitude between females and males. The model projected spectra visualise the group differences
(bottom). (B) Same as A for total brain volume. The model projected spectra visualise the spectrum at the smallest and
largest head size. (C) Same as A for normalised grey matter volume. The model projected spectra visualise the spectrum

at the smallest and largest grey matter volume.

resting-state conditions whilst regressing out the effect of
artefacts including bad segments and eye movements.
Both artefact types were associated with a strong group
effect but diverse effects at the first-level. Of particular
interest is the alpha peak in the spectrum of regression
coefficients of the V-EOG regressor. This is likely a true neu-
ronal effect linked to blinking that is not removed by ICA but
can be explicitly modelled by the GLM-Spectrum. Finally,
we extended our analysis to the group-level and explored
the spectral differences between older and younger adults,
whilst accounting for the effects of sex, brain volume, and
relative grey matter volume. Older adults have lower magni-
tude in the theta range (3-7 Hz) and higher magnitude in the
beta and gamma ranges (>15 Hz). A range of within- and
between-subject effects were explored and, crucially, we
showed that the reported age effect is robust to differences
in participant sex, head size, or relative grey matter volume.

22

4.1. A comprehensive framework for spectrum analysis

The GLM-Spectrum is a practical combination of two
well-established methodologies that modernises the sta-
tistics underlying the time-averaged periodogram, a
long-standing and standard spectral estimation method
(Bartlett, 1948, 1950; Welch, 1967). Specifically, we utilise
multilevel general linear modelling (Friston, 2007;
Woolrich et al., 2004), non-parametric permutation test-
ing (Nichols & Holmes, 2001; Winkler et al., 2014), con-
trast coding, and confound regression to extend the
scope of classical time-averaged spectrum estimators.
This approach is generalisable to a huge range of
analyses. In principle, the GLM-Spectrum could be used
in place of Welch’s periodogram or other time-averaged
spectrum estimate in any analysis pipeline. A very simple
GLM-Spectrum analysis could be configured to be
exactly equivalent to these standard approaches. In the
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simplest case, without first-level covariates, the GLM-
Spectrum provides a formal framework for multivariate
whole head group analysis of power spectra. Moreover,
GLM-Spectrum allows for linear denoising of spectrum
estimates in datasets where simultaneous recordings of
potential artefact sources are available, or artefact time
courses can be derived. In addition, covariate effects and
contrasts can be readily defined to quickly compute
spectra associated with specific external dynamics. For
example, an early application of this method has used a
GLM-Spectrum to compute power spectra associated
with dynamic whole-brain functional networks in MEG
(Gohil et al., 2022).

4.2. Covariate and confound regression for spectrum analysis

The GLM-Spectrum can characterise spectral changes
associated with covariates and potential artefact sources.
Standard ICA denoising removes artefacts that share the
time-course of the artefact channel. In contrast, confound
regression is exploratory across the spectrum. Denoising
can be applied to any frequency band with dynamics
associated with the segmented artefact time-course irre-
spective of the original spectrum. For example, the V-EOG
blink artefact has a classic low-frequency response that
can be attenuated by removing correlated independent
components. However, eye blinks are also associated
with relatively prolonged changes in alpha and beta power
(Liu et al., 2020). In the context of this paper, we consider
this to be an “indirect” artefact; it is spatially and spec-
trally separated from the artefact source and is unlikely to
have arisen from volume conduction. The GLM-Spectrum
can detect these differences and remove their effect from
the overall mean. As such, it could not have been detected
or removed by ICA denoising. In another context, this
might form the contrast of interest, but in this case, we
apply confound regression to minimise the effect of eye
movements and blinks on the eyes-open > eyes-closed
condition contrast.

4.3. Limitations of the GLM-spectrum model

As outlined in the main text, the parameters of a model
are only valid if the underlying assumptions are met. The
GLM has several relevant assumptions for the spectrum
analysis presented here, particularly at the first-level. In
detail, the GLM assumes that the residuals of the model
are independently and identically distributed. The pres-
ence of any temporal autocorrelation in the residuals indi-
cates that the parameter estimates must be interpreted
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with caution as this assumption has been violated. Future
work can account for this shortcoming by building on
similar work in fMRI.

The covariate and confound regressors in a GLM-
Spectrum model dynamics over time are found to be in a
highly simplified sense. This approach is appropriate to
quantify relatively slow dynamics, on timescales of sec-
onds, in the context of a spectrum estimator that already
utilises sliding time segments for spectrum estimation.
The sliding windows are tuned for spectral resolution.
They have fixed and arbitrary length and may not accu-
rately reflect the true timescale of dynamics in the
covariate variables. As such, limited conclusions about
underlying dynamics can be made from a GLM-Spectrum.
We can only say that a dynamic relationship existed at the
specific timescale selected for spectrum estimation. If
precise temporal dynamics are of interest, a more
advanced, window-free method such as the Hidden Mar-
kov Model (Quinn et al., 2018, 2019; Vidaurre et al., 2016,
2018) or Empirical Mode Decomposition (Huang et al.,
1998) might be more appropriate.

4.4. Conclusion

The GLM-Spectrum builds on methodologies that are all
well established in the field. The novelty of this work is to
bring modern statistics and classical spectrum estima-
tion together into a single framework and to thoroughly
explore the theoretical, computational, and practical
challenges of its use. The result is an approach for spec-
trum analysis across the whole head and frequency range
with the flexibility to generalise to a huge variety of
research and engineering questions.

DATA AND CODE AVAILABILITY

The data analysed in this paper are resting-state EEG
recordings from an open-source dataset (Babayan et al.,
2019) (https://fcon_1000.projects.nitrc.org/indi/retro/MPI
_LEMON.html) covered by the Open Data Commons Pub-
lic Domain Dedication and License (PDDL) v1.0 licence
(https://opendatacommons.org/licenses/pddl/1-0/). Raw
EEG data were downloaded in BIDS format from the
Gesellschaft fir wissenschaftliche Datenverarbeitung
mbH Géttingen (GWDG) FTP server (https://ftp.gwdg.de
/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/EEG
_MPILMBB_LEMON/EEG_Raw_BIDS_ID/). All code used
to run analyses and generate the figures in this paper are
available online via github (https://github.com/OHBA
-analysis/Quinn2022_GLMSpectrum).
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